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Abstract. In this paper, we study how the maximal dilatation of the Douady–Earle extension

near the origin is controlled by the distortion of the boundary map on finitely many points. Consider

the case of points evenly spread on the circle. We show that the maximal dilatation of the extension

in a neighborhood of the origin has an upper bound only depending on the cross-ratio distortion

of the boundary map on these points if and only if the number n of the points is more than 4.

Furthermore, we show that the size of the neighborhood is universal for each n ≥ 5 in the sense

that its size only depends on the distortion.

1. Introduction

Let S1 be the unit circle and n a positive integer. We define Fn to be the collection
of the homeomorphisms of S1 fixing n points evenly spread on S

1. Let Φ(f) be the
Douady–Earle extension of f to the unit disk D and K(Φ(f))(0) be the maximal
dilatation of Φ(f) at the origin 0 of D. Consider

sup
f∈Fn

K(Φ(f))(0).

One may easily observe the following. On one hand, the supremum is infinite if
n = 1, 2 or 3. On the other hand, if n is very large, then each element f of Fn

is quite close to the identity map in the C0 topology. It follows that the Douady–
Earle extension Φ(f) is close to the identity in the C∞ topology on D and hence the
maximal dilatation of Φ(f) at 0 is close to the one of the identity map. This means
the supremum is close to 1 when n is large enough. An interesting question arise:
what is the minimum value of n such that the supremum is finite? In this paper, we
first show that this supremum is finite if and only if n ≥ 5. Furthermore, we prove
that there exists a neighborhood U of the origin in D such that for each n ≥ 5,

sup
f∈Fn

K(Φ(f)|U) < ∞.

This property implies that for each n ≥ 5, {Φ(f)|U}f∈Fn
is a normal family under

certain normalization.
To prove these two results, it suffices to show the following theorem.
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Theorem 1. (i) There exists a (universal) neighborhood U of the origin in
D such that

sup
n≥5

sup
f∈Fn

K(Φ(f)|U) < ∞,

where K(Φ(f)|U) denotes the maximal dilatation of Φ(f) on U .
(ii) For each n < 5,

sup
f∈Fn

K(Φ(f))(0) = ∞.

When studying regularities of Douady–Earle extensions, one often normalizes
them to fix the origin; that is, Φ(f)(0) = 0. This motivates us to consider a subset
of Fn. We define F0

n to be the subset of Fn such that the Douady–Earle extensions
of the maps in F0

n fix the origin. Now we consider the same supremum problem for
F0

n. Clearly, the first part of Theorem 1 holds for this subset, but the conclusion of
the second part changes when n = 3. We obtain the following theorem.

Theorem 2. (i) There exists a universal neighborhood U of the origin in D

such that

sup
f∈F0

3

K(Φ(f)|U) < ∞.

(ii) For each n = 1, 2, 4,

sup
f∈F0

n

K(Φ(f))(0) = ∞.

In the second half of the paper, we use cross-ratio distortion to relax the condi-
tion(s) on the homeomorphisms f in Fn with n ≥ 5 and obtain similar upper bound
properties for collections of circle homeomorphisms more general than the ones in
Fn. We first introduce some concepts and notation.

Given a quadruple Q = {a, b, c, d} consisting of four points a, b, c, d on the unit
circle S

1 arranged in counterclockwise order, we define a cross ratio of Q by

(1) cr(Q) =
(b− a)(d− c)

(c− b)(d− a)
.

It is easy to check that a quadruple Q has cr(Q) = 1 if and only if the geodesic ac
from a to c is perpendicular to the geodesic bd from b to d.

Given an orientation-preserving homeomorphism f of S1, a cross-ratio distortion

norm of f is defined as

(2) ||f ||cr = sup
cr(Q)=1

| ln cr(f(Q))|,

where

(3) cr(f(Q)) =
(f(b)− f(a))(f(d)− f(c))

(f(c)− f(b))(f(d)− f(a))
.

In this paper, we need to consider quadruples Q with cr(Q) 6= 1. For each
constant L ≥ 1, we define a cross-ratio distortion norm of f to be

(4) ||f ||Lcr = sup
1
L
≤cr(Q)≤L

∣∣∣∣ln
cr(f(Q))

cr(Q)

∣∣∣∣ .

Clearly, ||f ||Lcr is invariant under pre or post composition by any Möbius transforma-
tion preserving the unit disk.
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One often defines f to be quasisymmetric if there exists a positive constant M
such that for any 0 ≤ t < 2π and 0 < s < π,

1

M
≤ |f(ei(t+s))− f(eit)|

|f(eit)− f(ei(t−s))| ≤ M.

It is known that f is quasisymmetric if and only if ||f ||Lcr is finite for some L ≥ 1.
On the other hand, if one uses the following supremum

||f ||∞cr = sup
Q

∣∣∣∣ln
cr(f(Q))

cr(Q)

∣∣∣∣ ,

then the quasisymmetry of f is not equivalent to ||f ||∞cr < ∞. Although ||f ||∞cr < ∞
implies f to be quasisymmetric, the converse is not true. This means there exist
quasisymmetric homeomorphisms f of S1 with ||f ||∞cr = ∞. For example, consider
conjugations of homeomorphisms g(x) = sign(x)|x|α of the real line to S

1, where
α > 0 but 6= 1. In this paper, we only use this notation for f when restricted on a
finite set of points on S

1.
For each positive constant M ≥ 0 and each positive integer n ≥ 4, a collection

BM
n of homeomorphisms f of S1 is defined as follows: f ∈ BM

n if there exists a set Sn

of n points evenly distributed on S
1 such that ||f |Sn

||∞cr ≤ M , where

||f |Sn
||∞cr = sup

Q⊂Sn

∣∣∣∣ln
cr(f(Q))

cr(Q)

∣∣∣∣ .

Clearly,
Fn ⊂ B0

n ⊂ BM
n

for each n ≥ 4 and any M ≥ 0. An immediate corollary of Part (ii) of Theorem 1
follows.

Corollary 1.

sup
f∈BM

4

K(Φ(f))(0) = ∞.

We also obtain the following result.

Theorem 3. For each integer n ≥ 5 and any constant M ≥ 0, there exists a
neighborhood U of the origin such that

sup
f∈BM

n

K(Φ(f)|U) < ∞,

where the supremum and the size of U depend on n and M .

In fact, a more general and even better result of Theorem 3 can be developed.
Given L ≥ 1, M ≥ 0 and a positive integer n, a collection AL,M

n of circle homeomor-
phisms f is defined as follows: f ∈ AL,M

n if there exists a set Sn of n points evenly
distributed on S

1 such that ||f |Sn
||Lcr ≤ M , where

(5) ||f |Sn
||Lcr = sup

Q⊂Sn,
1
L
≤cr(Q)≤L

∣∣∣∣ln
cr(f(Q))

cr(Q)

∣∣∣∣ .

We prove the following theorem.

Theorem 4. There exists a constant L > 1 such that for any M ≥ 0, there
exists a neighborhood U of the origin such that

sup
n≥5

sup
f∈AL,M

n

K(Φ(f)|U) < ∞,
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where the neighborhood U and the supremum only depend on M .

Since BM
n ⊂ AL,M

n for any constant L ≥ 1, Theorem 4 implies Theorem 3. We
also say that Theorem 4 is stronger than Theorem 3 in the sense that the size of U
in Theorem 4 is independent of n.

The paper is arranged as follows. In Section 2, we give a short overview of
known results on Douady–Earle extensions of circle homeomorphisms. Then we prove
Theorems 1 and 2 in Section 3. Finally, we prove Theorem 4 in Section 4.

2. Some background on the Douady–Earle extension

Let f be an orientation-preserving homeomorphism on the unit circle S
1. The

Douady–Earle extension Φ(f) of f is defined as follows. Let D be the open unit disk
centered at the origin. Given a point z ∈ D, let ηz be the harmonic measure on S

1

viewed from z; that is, for any Borel set A ⊂ S
1,

(6) ηz(A) =
1

2π

ˆ

A

1− |z|2
|z − ξ|2 |dξ|.

Now let f∗(ηz) be the push-forward of the measure ηz by f ; that is, f∗(ηz)(A) =
ηz(f

−1(A)) for any Borel set A ⊂ S
1. It is shown in [3] that there exists a unique

w ∈ D such that

(7)
1

2π

ˆ

ζ − w

1− w̄ζ
df∗(ηz)(ζ) = 0,

which is called the conformal barycenter for the measure f∗(ηz) and denoted by
w = B(f∗(ηz)) (it can be approximated through an iterated algorithm developed in
[1]). Finally the Douady–Earle extension Φ(f) of f is defined as: Φ(f)(z) = B(f∗(ηz))
for each z ∈ D and Φ(f)(z) = f(z) for each z ∈ S

1.
In summary, given any point z ∈ D, Φ(f)(z) is defined to be the unique point

w ∈ D such that

F (z, w) = 0,

where

(8) F (z, w) =
1

2π

ˆ

S1

f(ξ)− w

1− w̄f(ξ)
· 1− |z|2
|z − ξ|2 |dξ|.

The extension Φ(f) has the following two important features: (1) Φ(f) is an
orientation-preserving homeomorphism on the closed disk D and a real analytic dif-
feomorphism on D; (2) Φ(f) is conformally natural in the sense that for any two
conformal homeomorphisms A and B of D, Φ(A ◦ f ◦B) = A ◦Φ(f) ◦B. For proofs
for these statements, we refer to [3]. Conformally natural extensions were developed
in [2] for monotone maps of the circle, in [7] for circle endomorphisms, and in [8] for
general continuous circle maps.

By using the conformal naturality of Φ(f), the work of estimating the complex
dilatation of Φ(f) is reduced to estimating the complex dilatation at the origin for
a normalized map Φ(f); that is, Φ(f)(0) = 0. Let Φ(f) be an extension with such a
normalization. By the differentiability of Φ(f), the Beltrami coefficient of Φ(f) can
be explicitly expressed in terms of the partial derivatives of F at the origin (0, 0). If
we denote by

(9) c1 =
∂F

∂z
(0, 0) =

1

2π

ˆ

S1

ξ̄f(ξ)|dξ|, c−1 =
∂F

∂z̄
(0, 0) =

1

2π

ˆ

S1

ξf(ξ)|dξ|
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and

(10) d1 =
∂F

∂w
(0, 0) = −1, d−1 =

∂F

∂w̄
(0, 0) =

1

2π

ˆ

S1

f(ξ)2|dξ|,

then

(11)
∂w

∂z̄
(0) = −

∂F
∂w

(0, 0)∂F
∂z̄
(0, 0)− ∂F

∂w̄
(0, 0)∂F

∂z
(0, 0)

|∂F
∂w

(0, 0)|2 − |∂F
∂w̄

(0, 0)|2

and

(12)
∂w

∂z
(0) = −

∂F
∂w

(0, 0)∂F
∂z
(0, 0)− ∂F

∂w̄
(0, 0)∂F

∂z̄
(0, 0)

|∂F
∂w

(0, 0)|2 − |∂F
∂w̄

(0, 0)|2 .

Furthermore, the Jacobian of Φ(f) at 0 is equal to

(13)

∣∣∣∣
∂w

∂z
(0)

∣∣∣∣
2

−
∣∣∣∣
∂w

∂z̄
(0)

∣∣∣∣
2

=
|∂F
∂z
(0, 0)|2 − |∂F

∂z̄
(0, 0)|2

|∂F
∂w

(0, 0)|2 − |∂F
∂w̄

(0, 0)|2
=

|c1|2 − |c−1|2
|d1|2 − |d−1|2

.

Now let h : R → R be a lifting of f to the real line R; that is, f(eiu) = eih(u) for any
u ∈ R, where h(u+ 2π) = h(u) + 2π. Then one can rewrite

(14) |d1|2 − |d−1|2 = 2

(
1

2π

)2 ˆ 2π

0

ˆ 2π

0

sin2(h(s)− h(t)) ds dt.

It follows that |d1|2 − |d−1|2 > 0.
In [3], |c1|2 − |c−1|2 is expressed as

(15) |c1|2 − |c−1|2 =
(

1

2π

)2 ˆ π

u=0

sin u

ˆ 2π

t=0

H(t, u) dt du

with

H(t, u) = sin(h(t+ u)− h(t)) + sin(h(t+ 2π)− h(t+ u+ π))

+ sin(h(t+ π + u)− h(t + π)) + sin(h(t + π)− h(t + u)).

Let α1 = h(t+u)−h(t), α2 = h(t+2π)−h(t+u+π), α3 = h(t+π+u)−h(t+π) and
α4 = h(t+ π)− h(t+ u). Clearly, all αj’s are nonnegative and their sum

∑
αj = 2π.

By applying the summation formula from trigonometry, it is obtained in [2] that

(16)

4∑

j=1

sinαj = 4 sin
α1 + α2

2
sin

α1 + α3

2
sin

α2 + α3

2
.

Now we can easily see |c1|2 − |c−1|2 > 0 since H(t, u) ≥ 0 for all t and u and is
not identically 0. It follows that the Jacobian of Φ(f) at the origin is positive. By
the conformal naturality, the Jacobian of Φ(f) is positive at every point z ∈ D,
which implies that Φ(f) is an orientation-preserving homeomorphism on D ([3]).
Furthermore, Φ(f) is quasiconformal if f admits a quasiconformal extension ([3]). It
is proved in [5] that the maximal dilatation K(Φ(f)) on the unit disk D depends on
||f ||cr in a linear fashion.

Using the expressions (9)–(16), Markovic developed a criterion (Lemma 3.6, [9])
for a family of circle homeomorphisms f to have a uniform upper bound for the
maximal dilatations of their Douady–Earle extensions on a uniform neighborhood
of the origin. There are two goals for this paper: one is to introduce some explicit
conditions on f such that f satisfies Markovic’s criterion; the other goal is to show
some explicit conditions on f that do not lead to any upper bound for the maximal
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dilatation of Φ(f) on any neighborhood of the origin. We have given the statements
of these results in the introduction, which are proved in the following sections. Given
an arc Γ on the unit circle S

1, denote by |Γ| the arc length of Γ. Now we end this
section by stating Markovic’s criterion.

Lemma 1. (Markovic) Let 0 < ǫ < π and 0 < δ < π. Then there exists an open
neighborhood U(ǫ, δ) of the origin and a positive constant M(ǫ, δ) such that if a circle
homeomorphism f satisfies |f(Γ)| ≥ ǫ for any arc Γ on S

1 with π− δ ≤ |Γ| ≤ π, then
K(Φ(f)|U(ǫ,δ)) ≤ M(ǫ, δ).

Note that it is developed in [6] that the Douady–Earle extension Φ(f) of a circle
homeomorphism f has a local quasiconformality near a circular arc β on S

1 if f has
a local quasisymmetry on β.

3. Proofs of Theorems 1 and 2

In this section, we develop four propositions to prove Theorems 1 and 2.

Proposition 1. The supremum supf∈F0
4
K(Φ(f))(0) = ∞.

Proof. It suffices to show that there exists a sequence {fn}∞n=1 of homeomorphisms
in F0

4 such that limn→∞K(Φ(fn))(0) = ∞.
In the rest of the proof, we assume that n is a positive odd integer. Then

hn(x) = xn defines a homeomorphism of the extended real line. Let g(z) = −iz−i
z+i

,
which maps the upper half plane onto the unit disk D and the extended real line
onto the unit circle onto. More specifically, g maps −1 to 1, 0 to i, 1 to −1, and ∞
to −i. Then fn = g ◦ hn ◦ g−1 is a homeomorphism of S1 and fixes four points ±1
and ±i. Hence fn ∈ F 0

4 . Since fn is symmetric with respect to the origin (that is,
fn(e

i(θ+π)) = fn(e
iθ) for any θ), Φ(fn)(0) = 0.

The maximal dilatation K(Φ(fn)(0)) of Φ(fn) at the origin is equal to 1−|k(0)|
1+|k(0)| ,

where k(0) = ∂Φ(fn)
∂z̄

(0)/∂Φ(fn)
∂z

(0). Using the expressions (9), (10), (11) and (12),

we obtain k(0) = c−1+d−1c1
c1+d−1c−1

. In order to understand the asymptotic behavior of

K(Φ(fn)(0)) as n → ∞, we first use (9) and (10) to estimate c1, c−1, d−1 for Φ(fn).
Let ǫ = 1/

√
n and let ξ ∈ S

1 be a point on S
1 such that ξ = eiǫ. Then

ξ = ei/
√
n = 1 + i

1√
n
+O

(
1

n

)
.

Thus,

(g−1(ξ))n =

(−1 − iξ

ξ + i

)n

=

(−1− i+ 1/
√
n+O(1/n)

1 + i+ i
√
n +O(1/n)

)n

= (−1 + 1/
√
n+O(1/n))n = (−1)n

(
1− 1/

√
n+O(1/n)

)n

= −
(

1

1 + 1/
√
n+O(1/n)

)n

= −
(

1

(1 + 1/
√
n+O(1/n))

√
n

)√
n

= O(e−
√
n).

Hence,

fn(ξ) = g(O(e−
√
n)) = −i

O(e−
√
n)− i

O(e−
√
n) + i

= i+O(e−
√
n)

and

f 2
n(ξ) = (g(O(e−

√
n)))2 = (i+O(e−

√
n))2 = −1 +O(e−

√
n).
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Note that each map fn is symmetric with respect to the origin. Furthermore, it
is symmetric with respect to the x-axis and hence to the y-axis. Thus, z̄fn, zfn and
f 2
n are symmetric with respect to the x-axis and take the same value at z and −z for

each z ∈ S
1. Then the quantities c1, c−1 and d−1 expressed in (9) and (10) can be

estimated as follows:

c1 =
1

2π

ˆ

S1

z̄fn(z)|dz| =
2

π
Re

ˆ π/2

0

e−iθfn(e
iθ) dθ

=
2

π
Re

ˆ ǫ

0

e−iθfn(e
iθ) dθ +

2

π
Re

ˆ π/2

ǫ

e−iθfn(e
iθ) dθ

= O(ǫ) +
2

π
Re

ˆ π/2

ǫ

ie−iθ dθ +O(e−
√
n)

= O

(
1√
n

)
+

2

π
Re

(
−e−iπ

2 + e−iǫ
)
+O(e−

√
n)

=
2

π
Re

(
i+ 1− i√

n
+O

(
1

n

))
+O

(
1√
n

)
=

2

π
+O

(
1√
n

)
,

c−1 =
1

2π

ˆ

S1

zfn(z)|dz| =
2

π
Re

ˆ π/2

0

eiθfn(e
iθ) dθ

=
2

π
Re

ˆ ǫ

0

eiθfn(e
iθ) dθ +

2

π
Re

ˆ π/2

ǫ

eiθfn(e
iθ) dθ

= O(ǫ) +
2

π
Re

ˆ π/2

ǫ

ieiθ dθ +O(e−
√
n)

= O

(
1√
n

)
+

2

π
Re

(
ei

π
2 − eiǫ

)
+O(e−

√
n)

=
2

π
Re

(
i− 1− i√

n
+O

(
1

n

))
+O

(
1√
n

)
=

−2

π
+O

(
1√
n

)
,

and

d−1 =
1

2π

ˆ

S1

f 2
n(z)|dz| =

2

π
Re

ˆ π/2

0

f 2
n(e

iθ) dθ

=
2

π
Re

ˆ ǫ

0

f 2
n(e

iθ) dθ +
2

π
Re

ˆ π/2

ǫ

f 2
n(e

iθ) dθ

= O(ǫ) +
2

π
Re

ˆ π/2

ǫ

−1 dθ +O(e−
√
n)

= O

(
1√
n

)
+

2

π

(
−π

2
+ ǫ

)
+O(e−

√
n) = −1 +O

(
1√
n

)
.

Then the numerator and denominator of k(0) can be estimated as follows:

c−1+d−1c1 =
−2

π
+O

(
1√
n

)
+

(
−1 +O

(
1√
n

))(
2

π
+O

(
1√
n

))
=

−4

π
+O

(
1√
n

)

and

c1+d−1c−1 =
2

π
+O

(
1√
n

)
+

(
−1 +O

(
1√
n

))(−2

π
+O

(
1√
n

))
=

4

π
+O

(
1√
n

)
.
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Hence,

|c−1 + d−1c1| ≥
4

π
−O

(
1√
n

)

and

|c1 + d−1c−1| ≤
4

π
+O

(
1√
n

)
.

Therefore,

k(0) ≥ 1− O

(
1√
n

)

and hence

K(Φ(fn))(0) ≥
2−O

(
1√
n

)

O
(

1√
n

) .

This means

lim
n→∞

K(Φ(fn))(0) = ∞. �

Remark 1. The collection {fn}∞n=1 of the homeomorphisms fn in the proof of
Proposition 1 provides a counter-example to Lemma 2.2 in [10]. By developing a
suitable modification of that lemma, it is shown in [4] that the main results of [10]
continue to hold.

Proposition 2. The supremum supf∈F3
K(Φ(f))(0) = ∞.

Proof. Let n be a positive odd integer and fn be the same as defined in the
proof of Proposition 1. Let An be the conformal homeomorphism of D fixing 1

and mapping fn(e
± 2πi

3 ) to e±
2πi
3 respectively. Then hn = An ◦ fn ∈ F3. From the

conformal naturality, Φ(hn) = An ◦ Φ(fn). Hence, K(Φ(hn))(0) = K(Φ(fn))(0). By
Proposition 1,

lim
n→∞

K(Φ(hn))(0) = lim
n→∞

K(Φ(fn))(0) = ∞. �

Proposition 3. There exists a neighborhood U of the origin in D such that the
supremum

sup
f∈F0

3

K(Φ(f)|U) < ∞.

Proof. By the contrapositive of Markovic’s Lemma, if our proposition 3 fails,
then for any small positive ǫ and δ, there exist f ∈ F0

3 and an arc Γ on S
1 such that

π − δ ≤ |Γ| ≤ π and |f(Γ)| < ǫ, where | · | denote the arc length on S
1 with the

arc length of S1 equal to 2π. In particular, for ǫ = δ = 1/n, there exist fn ∈ F0
3

and an arc In ⊂ S
1 such that π − 1/n ≤ |In| ≤ π and |fn(In)| < 1/n. Without loss

of generality, we may assume that all fn fix 1, e
2πi
3 and e−

2πi
3 . Since |fn(In)| → 0

as n → ∞, both In and fn(In) eventually contain only one of the fixed points. For
simplicity and without loss of generality, we may assume that this fixed point is 1. In
the following, we use the condition Φ(fn)(0) = 0 for all n to derive a contradiction.
Keep in mind that Φ(fn)(0) = 0 if and only if

´

S1 fn(ζ)|dζ | = 0. On the other hand,
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using the conditions satisfied by fn, we can see for large n,

Re (Φ(fn)(0)) = Re

(
ˆ

S1

fn(ζ)|dζ |
)

= Re

(
ˆ

In

fn(ζ)|dζ |+
ˆ

J

fn(ζ)|dζ |+
ˆ

Jc\In
fn(ζ)|dζ |

)

≥ cos(ǫ)

(
1

2
− δ

π

)
+

1

3
(−1) +

(
1

6
+

δ

π

)(
−1

2

)

= cos

(
1

n

)(
1

2
− 1

nπ

)
− 1

3
− 1

12
− 1

2nπ
,

where J is the short arc on S
1 between e

2πi
3 and e−

2πi
3 and Jc = S

1 \ J . Thus

lim
n→∞

Re (Φ(fn)(0)) = 1/12 > 0.

Hence Φ(fn)(0) 6= 0 for large n, which is a contradiction. Therefore, our Proposition 3
holds. �

Finally, we prove the case Fn for n ≥ 5.

Proposition 4. There exists a universal neighborhood U of the origin in D such
that

sup
n≥5

sup
f∈Fn

K(Φ(f)|U) < ∞.

Proof. Let n ≥ 5, f ∈ Fn and Pn the collection of n points evenly spread on
S
1 and fixed by f . Let Γ be an arc with arc length π − π

5
= 4π

5
< |Γ| < π. By

checking the number of fixed points of f contained in Γ, one can obtain |f(Γ)| ≥ 2π
7

and in fact the lower bound 2π
7

is attained when f ∈ F7. This claim can be proved
by considering three cases as follows.

Case 1. When 5 ≤ n ≤ 7, |Γ| > 4π
5
≥ 2(2π

n
). This implies that Γ contains at least

two adjacent points of Pn and then |f(Γ)| ≥ 2π
n
≥ 2π

7
.

Case 2. When 8 ≤ n ≤ 9, |Γ| > 4π
5
≥ 3(2π

n
). This implies that Γ contains at least

three consecutive points of Pn and then |f(Γ)| ≥ 22π
n
> 2π

7
.

Case 3. When n ≥ 10, let n = 5k + j, where k ≥ 2 and 0 ≤ j ≤ 4. Then

4π

5
/
2π

n
=

2n

5
=

2(5k + j)

5
≥ 2k.

It follows that Γ contains at least 2k consecutive points of Pn. Then

|f(Γ)| ≥ (2k − 1)
2π

n
= 2π

2k − 1

5k + j
= 2π

2− 1/5

5 + j/k
>

2π

7

because k ≥ 2 and 0 ≤ j ≤ 4.
Therefore, all maps f ∈ ∪∞

n=5Fn satisfy the condition required in Markovic’s
Lemma for ǫ = 2π

7
and δ = π

5
. Hence there exist a neighborhood U(δ) and a constant

M(ǫ, δ) such that K(Φ(f)|U(δ)) < M(ǫ, δ) for any f ∈ Fn. Proposition 4 follows. �

Theorem 2 follows from Proposition 3, Proposition 1 and the fact that F0
4 ⊂ F0

1

and F0
4 ⊂ F0

2 .
Theorem 1 follows from Proposition 4, Proposition 2, Proposition 1 and the fact

that F0
4 ⊂ Fk for each k = 1, 2, 4.
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4. Proof of Theorem 4

Assume n ≥ 4. Let Sn be a set of n points evenly distributed on S
1 and a

quadruple Q ⊂ Sn. Define

L(n) = max
Q⊂Sn

cr(Q).

Then L(n) ≥ 1 and L(n) → ∞ as n → ∞. In fact, one can prove that L(n) is an

increasing function of n. Let pj = e
2πj

n
i, j = 0, 1, · · · , n − 1, and let k = ⌊n

2
⌋ (the

largest integer less than or equal to n
2
). Then

1

L(n)
= cr({p0, p1, pk, pk+1}) =

|p0 − p1|2
|p0 − pk+1|2

=

[
sin π

n

sin (k+1)π
n

]2

.

If n is even, then

1

L(n)
=

[
sin π

n

cos π
n

]2
=

[
tan

π

n

]2
.

If n is odd, then

1

L(n)
=

[
sin π

n

cos π
2n

]2
=

[
2 sin

π

2n

]2
.

Now it is clear to see that 1
L(n)

is decreasing when n is even or odd. To claim that

1
L(n)

is decreasing for all n, we consider
√

1
L(n)

. It suffices to show for any integer

m ≥ 2,

tan
π

2m+ 2
< 2 sin

π

2(2m+ 1)
< tan

π

2m
.

This double inequality can be verified by using the Taylor series of sin and tan at 0.
In the following, we first prove a lemma, which is a subcase of Theorem 4 and

in the meantime provides the motivation and essence to prove Theorem 4. Before
proving this lemma and Theorem 4, we clarify a terminology used in the proofs of
these results. Let n ≥ 5 and P be a collections of n points on the unit circle. Given
2 ≤ k ≤ n− 1, by a circular arc spanned by k consecutive points of P we mean the
shortest arc containing exactly these points.

Lemma 2. For any M > 0, there exists a neighborhood U of the origin in D

depending on M such that

sup
f∈AL(5),M

5

K(Φ(f)|U) < ∞.

Note that AL(5),M
5 = BM

5 . Hence this lemma proves the conclusion of Theorem 3
for the case n = 5.

Proof. Let L = L(5) and f ∈ AL,M
5 . Using the conformal natural property

of Douady–Earle extension Φ(f) of f and the property that any conformal homeo-
morphism of D preserves the cross ratio of any quadruple, we may assume that
Φ(f)(0) = 0 by post-composing f by a conformal homeomorphism of D.

Let a, b, c, d and e be five points evenly distributed on S
1 in the counterclockwise

order and let P denote the collection of these five points. Denote by a′, b′, c′, d′ and
e′ the images of the five points under f respectively. Note that for any quadruple
Q ⊂ P , 1

L
≤ cr(Q) ≤ L. Then by definition, cr(f(Q)) ≥ 1

L
e−M .

The proof of this lemma is divided into 4 steps. In the first step, we show that
the Lebesque measure of the image of any closed arc containing 4 consecutive points
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in P is bounded from below away from zero. In the second and third steps, we show
similar bounds for closed arcs containing 3 and 2 consecutive points in P respectively.
Finally, in the last step we apply Markovic’s Lemma to deduce the conclusion.

Step 1. We show that there exists a constant ρ > 0 such that for any arc I on
S
1 spanned by four (adjacent) points of P , the Lebesque measure m(f(I)) > 2ρ > 0.

Without loss of generality, we may assume that I is the arc containing b and c with
endpoints at a and d. Because of the conformal naturality and invariance of cross
ratio under rotation, we can postcompose f by a rotation such that the real parts of
Re(f(a)) and Re(f(d)) are the same, which is denoted by x. We continue to use f to
denote the map. Note that the normalization condition Φ(f)(0) = 0 is also preserved
under postcomposition by a rotation. Then

´

S1 Re(z)dµf (z) = 0, where µf is the
push-forward of the Lebesgue measure m on S

1 by f . On the other hand,
ˆ

S1

Re(z) dµf(z) ≥ (−1)µf (d̂′e′a′) + xµf(â′b′c′d′)

= (−1)m(d̂ea) + (x)m(âbcd) = −2

5
+ x

3

5
,

where û · · · v denotes the arc on S
1 from u to v in the counterclockwise direction.

Then −2
5
+ x3

5
≤ 0 and hence x ≤ 2/3. Therefore, m(f(I)) ≥ 2 arccos(2/3). Letting

ρ = arccos(2/3), we obtain the claim at the beginning.
Step 2. We show that there exists a constant ρ1 > 0 such that for any arc I

spanned by three adjacent points of P , m(f(I)) ≥ ρ1. Without loss of generality, we

take I = b̂cd. Let ρ be the constant obtained in Step 1, We show if m(b̂′c′d′) < ρ,

then m(b̂′c′d′) is greater than or equal to another positive constant. Assume that

m(b̂′c′d′) < ρ. Using the conclusion of Step 1, we can see that both m(d̂′e′) and

m(â′b′) are greater than 2ρ −m(b̂′c′d′) > ρ. Therefore, |d′e′|, |a′b′| > 2 sin(ρ/2). Let
Q be the quadruple of e, a, b and d. Using the lower bound of cr(f(Q)), we obtain

1

L
e−M ≤ |e′a′||b′d′|

|a′b′||e′d′| ≤
2|b′d′|

4 sin2(ρ/2)
.

Thus,

|b′d′| ≥ 2
1

L
e−M sin2(ρ/2).

Let ρ′ = 2 arcsin( 1
L
e−M sin2(ρ/2)). Then we have shown m(b̂′c′d′) ≥ ρ′ if m(b̂′c′d′) <

ρ. Now we let ρ1 = min{ρ, ρ′}. Then m(b̂′c′d′) ≥ ρ1 always.
Step 3. We show that there exists a constant ρ2 > 0 such that for any arc I

spanned by two adjacent points of P , the Lebesque measure m(f(I)) ≥ ρ2. Without

loss of generality, we take I = b̂c. Let ρ1 be the constant obtained in Step 2. We

show if m(b̂′c′) < ρ1/2, then m(b̂′c′) is greater than or equal to another positive

constant. Assume that m(b̂′c′d′) < ρ1/2. Using the conclusion of Step 2, we can

see that both of m(ĉ′d′) and m(â′b′) are greater than ρ1 − m(b̂′c′) > ρ1/2. Then
|d′e′|, |a′b′| > 2 sin(ρ1/4). Let Q be the quadruple of b, c, d and a. Using the lower
bound of cr(f(Q)), we obtain

1

L
e−M ≤ |b′c′||d′a′|

|c′d′||a′b′| ≤
2|b′c′|

4 sin2(ρ1/4)
.
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Thus,

|b′c′| ≥ 2
1

L
e−M sin2(ρ1/4).

Let ρ′′ = 2 arcsin( 1
L
e−M sin2(ρ1/4)). Then we have shown m(b̂′c′) ≥ ρ′′ if m(b̂′c′) <

ρ1/2. Overall, m(b̂′c′) ≥ ρ2 for ρ2 = min{ρ1/2, ρ′′}. Hence, m(f(I)) ≥ ρ2.
Step 4. Let Γ be a closed arc on S

1 with arc length π − π/5 ≤ |Γ| ≤ π. Then Γ
contains two adjacent points in P and hence m(f(Γ)) ≥ ρ2 by using the conclusion
of Step 3. By setting δ = π/5 and ǫ = ρ2 obtained in Step 3 and applying Markovic’s
Lemma, we conclude that there exists a constant C > 0 and a neighborhood U of
the origin such that K(Φ(f)|U) ≤ C. �

An immediate corollary follows as:

Corollary 2. If n is a multiple of 5, then AL(n),M
n ⊂ AL(5),M

5 and hence

sup
f∈AL(n),M

n

K(Φ(f)|U) ≤ sup
f∈AL(5),M

5

K(Φ(f)|U) < ∞,

where U is the same neighborhood of the origin given in the previous lemma.

Proof of Theorem 4. Let M be a positive constant. Using Markovic’s criterion
(Lemma 1), we only need to prove there exist three positive constants L, δ and ǫ
such that for any f ∈

⋃∞
n=5AL,M

n ,

|f(Γ)| ≥ ǫ

for any arc Γ on S
1 with π − δ ≤ |Γ| ≤ π. We divide the work into two steps.

Step 1. Assume f ∈ AL(n),M
n for some 5 ≤ n ≤ 20, where L(n) is the same as

defined at the beginning of this section. We prove that there exists ǫn such that for
any arc Γ with 4π

n
≤ |Γ| ≤ π, m(f(Γ)) ≥ ǫn.

Note that we have obtained the result for the case n = 5 in Lemma 2, which
we include here to have uniform notation for all cases of this step. In fact, the
main strategies and techniques to achieve the result of this step for any other case
5 < n ≤ 20 are very similar to the ones used to handle the case n = 5.

At first, we may assume Φ(f)(0) = 0 by postcomposing f by a Mob̈ius transfor-
mation preserving D. Let P = {a1, a2, a3, · · · , an} be a collection of n points evenly
spread on the unit circle and arranged in the counterclockwise direction. Assume
l = ⌊n

2
+ 2⌋ (the largest integer less than or equal to n

2
+ 2).

(1) Let I be an arc spanned by l consecutive points in P . Then m(I) is a
constant strictly greater than 1

2
. Using the normalization condition Φ(f)(0) = 0 and

the strategy used in Step 1 in the proof of Lemma 2, we can show that m(f(I)) is
greater than or equal to a positive constant ρ only depending on m(I).

(2) Let I be an arc spanned by l − 1 consecutive points of P . Without loss
of generality, we let I = ̂a2, a3, · · · , al. By using the conclusion of (1), we know
m(f( ̂a1, a2, · · · , al)) and m(f( ̂a2, a3, · · · , al+1)) are greater than or equal to ρ. Then
using the lower bound of the cross ratio cr(f({a2, al, al+1, a1})) and the same strategy
used in Step 2 in the proof of Lemma 2, we can obtain another positive constant ρ1
such that m(f(I)) ≥ ρ1.

(3) Let I be an arc spanned by l − 2 consecutive points of P . By using other
two points of P adjacent to I and the same strategy of (2), we can obtain a positive
constant ρ2 such that m(f(I)) ≥ ρ2. Using this idea inductively to reduce the
number of consecutive points in P spanning I, we can obtain positive constants
ρ3, ρ4, · · · , ρl−2 such that for any arc I spanned by l − j consecutive points of P ,
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m(f(I)) ≥ ρj , where j = 3, 4, · · · , l− 2. Thus, we obtain for any arc spanned by two
adjacent points of P , m(f(I)) ≥ ρl−2.

(4) Now let ǫn = ρl−2 obtained in (3). Then, given any arc Γ on S
1 with 4π

n
≤

|Γ| ≤ π, Γ contains at least two adjacent points of P . Using the conclusion of (3),
we obtain m(f(I)) ≥ ǫn. We denote by δn = π − 4π

n
. Then π − δn ≤ |Γ| ≤ π. Note

also that δn > π
10

for each 5 ≤ n ≤ 20.
Step 2. We prove there exist positive constants L > 1 and ǫ′ > 0 such that for

any n ≥ 21, f ∈ AL,M
n , and any circular arc Γ with π − π

10
< |Γ| < π, m(f(Γ)) ≥ ǫ′.

Now we assume n ≥ 21 and Pn is a collection of n points evenly spread on S
1.

For each 0 ≤ j ≤ 4, there is a point pj ∈ Pn such that the arc distance between

pj and e
2πj

5 is less than or equal to π
n
, which is less than π

20
(since n ≥ 21). Then

P ′
n = {pj : j = 0, 1, · · · , 4} consists of five distinct points of Pn. It is easy to see that

maxQ⊂P ′

n
cr(Q) converges to L(5) as n → ∞. In fact, the arc length between any

two adjacent points in P ′
n is greater than 2π

5
− π

10
> 2π

10
. It follows that

max
Q⊂P ′

n

cr(Q) < L(10) < L(20).

Now we let
L = sup

n≥21
(max
Q⊂P ′

n

cr(Q)).

Clearly, L < L(20). Then for each f ∈ AL,M
n with n ≥ 21, we first normalize

Φ(f)(0) = 0 by post-composing f by a Möbius transformation. Then we apply Steps
1-3 in the proof of Lemma 2 to the map f restricted on P ′

n and obtain a positive
constant ǫ′ such that for any arc I spanned two adjacent points of P ′

n, m(f(I)) ≥ ǫ′.
Now we show given any circular arc Γ with π − π

10
< |Γ| < π, m(f(I)) ≥ ǫ′. It

suffices to know that Γ contains at least two points of P ′
n, which is enough to show |Γ|

is greater than or equal to the maximum of the arc lengths of the arcs âbc spanned
by three consecutive points of P ′

n. This is true from how P ′
n is constructed; that is,

|âbc| ≤ 4π

5
+

π

20
+

π

20
=

9π

10
< |Γ|.

Now we use the conclusions of Step 1 and Step 2 to complete the proof. Let
ǫ = min{ǫ5, . . . , ǫ20, ǫ′} and let L be as the same as the one defined in Step 2 (note
that one may take L = L(20)). Then for any f ∈

⋃
n≥5AL,M

n and any arc Γ with
π − π

10
< |Γ| < π,

m(f(Γ)) > ǫ.

Therefore by Markovic’s Lemma, there exist a constant C > 0 and a neighborhood
U of the origin in D such that for all f ∈ ∪n≥5AM

n ,

K(Φ(f)|U) < C. �
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