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Abstract. This paper studies the Sobolev–Lorentz capacity and its regularity in the Euclidean
setting for n ≥ 1 integer. We extend here our previous results on the Sobolev–Lorentz capacity
obtained for n ≥ 2. Moreover, for n ≥ 2 integer we obtain a few new results concerning the n, 1
relative and global capacities. Specifically, we obtain sharp estimates for the n, 1 relative capacity
of the concentric condensers (B(0, r), B(0, 1)) for all r in [0, 1). As a consequence we obtain the
exact value of the n, 1 capacity of a point relative to all its bounded open neighborhoods from R

n

when n ≥ 2. These new sharp estimates concerning the n, 1 relative capacity improve some of our
previous results. We also obtain a new result concerning the n, 1 global capacity. Namely, we show
that this aforementioned constant is also the value of the n, 1 global capacity of any point from R

n,
where n ≥ 2 is integer. Computing the aforementioned exact value of the n, 1 relative capacity of
a point with respect to all its bounded open neighborhoods from R

n allows us to give a new prove

of the embedding H
1,(n,1)
0 (Ω) →֒ C(Ω) ∩ L∞(Ω), where Ω ⊂ R

n is open and n ≥ 2 is an integer.
In the penultimate section of our paper we prove a new weak convergence result for bounded

sequences in the non-reflexive spaces H1,(p,1)(Ω) and H
1,(p,1)
0 (Ω). The weak convergence result

concerning the spaces H1,(p,1)(Ω) is valid whenever 1 < p < ∞, while the weak convergence result

concerning the spaces H
1,(p,1)
0 (Ω) is valid whenever 1 ≤ n < p < ∞ or 1 < n = p < ∞. As a

consequence of the weak convergence result concerning the spaces H
1,(p,1)
0 (Ω), in the last section of

our paper we show that the relative and the global (p, 1) and p, 1 capacities are Choquet whenever
1 ≤ n < p < ∞ or 1 < n = p < ∞.

1. Introduction

In this paper we study the Sobolev–Lorentz capacity and its regularity in the
Euclidean setting for n ≥ 1. This paper is motivated by the work of Stein–Weiss
[18] and Bennett–Sharpley [1] on Lorentz spaces and by the work of Stein [17] and
Cianchi–Pick [2], [3] on Sobolev–Lorentz spaces.

We studied the Sobolev–Lorentz spaces and their associated capacities extensively
in our previous work. In this paper we extend some of the previous results obtained
in our book [6] and in our papers [5] and [7]. In [6] we studied the Sobolev–Lorentz
spaces and the associated Sobolev–Lorentz capacities in the Euclidean setting for
n ≥ 2. The restriction on n there as well as in [5] was due to the fact that we studied
the n, q capacity for n > 1. In our recent paper [7] we studied the Sobolev–Lorentz
spaces in the Euclidean setting for n ≥ 1. There we extended to the case n = 1
many of the results on Sobolev–Lorentz spaces obtained in [4] and [6] for n ≥ 2. In
this paper we extend to n = 1 many on the results on Sobolev–Lorentz capacities
obtained in [4] and [6] for n ≥ 2.
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The Lorentz spaces were studied by Bennett–Sharpley in [1] and by Stein–Weiss
in [18]. The Sobolev–Lorentz spaces have also been studied by Stein in [17], Cianchi–
Pick in [2] and [3], by Kauhanen–Koskela–Malý in [14], and by Malý–Swanson–Ziemer
in [15]. We studied the Sobolev–Lorentz relative p, q-capacity in the Euclidean setting
(see [4], [5] and [6]). See also our joint work [8] with Maz’ya.

The classical Sobolev spaces were studied by Gilbarg–Trudinger in [11], Maz’ja in
[16], Evans in [10], Heinonen–Kilpeläinen–Martio in [12], and by Ziemer in [19]. The
Sobolev p-capacity was studied by Maz’ya [16] and by Heinonen–Kilpeläinen–Martio
[12] in Rn.

After recalling the definition of Lorentz spaces and some of its basic properties
in Section 3, we move to Section 4, where we recall the definition of the Sobolev–
Lorentz spaces and some of the results that are to be used later in the paper. In
Section 5 we study the basic properties of the Sobolev–Lorentz capacities on Rn for
n ≥ 1. There we study the global Sobolev–Lorentz capacities Cap(p,q)(·) and Capp,q(·)
and the relative Sobolev–Lorentz capacities cap(p,q)(·,Ω) and capp,q(·,Ω) for Ω ⊂ Rn

bounded and open, n ≥ 1 integer, 1 < p < ∞ and 1 ≤ q ≤ ∞. The p, q-capacity is
associated to the Lorentz p, q-quasinorm while the (p, q)-capacity is associated to the
Lorentz (p, q)-quasinorm. The case p = q yields the p-capacity, studied extensively
in literature.

In Section 5 we revisit many of the basic properties of the Sobolev–Lorentz ca-
pacities, studied extensively in Chapter 4 of our book [6] for n ≥ 2 and we extend
them to the case n = 1. The results that we extend here concern the monotonicity,
the convergence, the countable subadditivity and the regularity of these capacities.
The regularity of these capacities was extended in this section to the case n = 1 for
1 < q < ∞ when we worked with the (p, q) global and the (p, q) relative capacities
and for 1 < q < p when we worked with the p, q global and the p, q relative capacities.

Due to the non-reflexivity of the Sobolev–Lorentz spaces H
1,(p,1)
0 (Ω) and H

1,(p,∞)
0

(Ω), it is challenging to prove the Choquet property for the corresponding relative
and global capacities associated to these non-reflexive Sobolev–Lorentz spaces. Also,
due to the fact that the p, q-quasinorm is not a norm when p < q ≤ ∞, the Choquet
property of the p, q relative and global capacities is not known when q is in the range
(p,∞].

No positive results on the Choquet property for the corresponding relative and
global capacities associated to these non-reflexive Sobolev–Lorentz spaces have been
obtained until now. In this paper we obtain a few partial positive new results con-
cerning the Choquet property of (p, 1) and the p, 1 relative and global capacities.
Namely, in Section 8 we show that the global Sobolev–Lorentz capacities Cap(p,1)(·)
and Capp,1(·) as well as the relative Sobolev–Lorentz capacities cap(p,1)(·,Ω) and
capp,1(·,Ω) are Choquet whenever 1 ≤ n < p < ∞ or 1 < n = p <∞. Here Ω ⊂ Rn

is a bounded and open set and n ≥ 1 is an integer. See Theorems 8.2 and 8.3 for the
regularity of the relative capacities. Theorems 8.5 and 8.6 deal with the regularity
of the global capacities.

In order to prove the regularity of these capacities we needed to prove a Monotone
Convergence Theorem for each of them. See Theorem 8.1 for the relative capacities
and Theorem 8.4 for the global capacities. These are new results as well. When
proving the Choquet property of the (p, 1) and p, 1 relative and global capacities for
these values of n and p (that is, 1 ≤ n < p < ∞ or 1 < n = p < ∞) we used
many times the fact that for these values of n and p we can work with continuous

admissible functions from H
1,(p,1)
0 (Ω).
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Indeed, in [7] we proved that the spaces H
1,(p,q)
0 (Ω) embed into the space C1−n

p (Ω)
of Hölder continuous functions on Ω with exponent 1− n

p
whenever Ω ⊂ Rn is open

and 1 ≤ n, q ≤ ∞. See [7, Theorem 5.5 (iii)] for 1 = n < p <∞ and [7, Theorem 5.6
(iv)] for 1 < n < p < ∞. For 1 < n = p < ∞ we give a new prove of the embedding

H
1,(n,1)
0 (Ω) →֒ C(Ω) ∩ L∞(Ω) in section 6 and we find the optimal constant for the

embedding. See Theorem 6.4 (ii). This embedding was proved by Stein in his paper
[17] and by Cianchi–Pick (see [2, Theorem 3.5 (i)]) with the same optimal constant
that we obtained in this paper.

Our proof of this embedding is different. We use a new approach. Specifically,
we use the theory of the n, 1 relative capacity in Rn, n ≥ 2. In Section 6 we obtain
a new result by improving our estimates from [5, Theorem 3.11] for the n, 1 relative
capacity of the condensers (B(0, r), B(0, 1)) and extending them to ALL r in [0, 1).
See Theorem 6.2 (i). In particular, we obtain the exact value for the n, 1 capacity of
a point relative to all its bounded open neighborhoods from Rn, a strictly positive
number as we saw in [5, Corollary 3.8]. See Theorem 6.2 (ii). Moreover, in this section
we obtain a new result for the global n, 1 capacity as well. Namely, in Theorem 6.3
we show that the value from Theorem 6.2 (ii) is also the value of the global n, 1
capacity of any point from Rn.

By using the theory of the n, 1 relative capacity in Rn, n ≥ 2, we see that this

aforementioned constant shows up in the embedding H
1,(n,1)
0 (Ω) →֒ C(Ω) ∩ L∞(Ω).

See (3). Thus, Section 6 together with our paper [7] (see [7, Theorems 3.5, 4.3, 4.13
and 5.6]) reinforce the fact that for every n ≥ 2 integer and for every Ω ⊂ Rn open,

the space H
1,(n,1)
loc

(Ω) is the largest Sobolev–Lorentz space defined on Ω for which
each function has a version in C(Ω).

This embedding result from Section 6 is being relied on heavily in Section 7 and
in Section 8.

In Section 7 we prove a new weak convergence result for bounded sequences in the

non-reflexive spaces H1,(p,1)(Ω) and H
1,(p,1)
0 (Ω). This convergence result applied to

bounded sequences fromH1,(p,1)(Ω) (or fromH
1,(p,1)
0 (Ω)) appears to yield less than the

existence of subsequences that converge weakly in Lp,1(Ω)×Lp,1(Ω;Rn) in the classical
sense. See Theorem 7.1. This new weak convergence result concerning H1,(p,1)(Ω)
holds for all p in (1,∞) and for all integers n ≥ 1. See Theorem 7.1 (i). We fix q in
(1,∞). We show that even in a non-reflexive space such as H1,(p,1)(Ω), if we have a
bounded sequence uk in H1,(p,1)(Ω) such that (uk,∇uk) converges weakly to (u,∇u)
in L(p,q)(Ω)×L(p,q)(Ω;Rn), then the function u is in the reflexive space H1,(p,s)(Ω) and
in fact (uk,∇uk) converges weakly to (u,∇u) in L(p,s)(Ω) × L(p,s)(Ω;Rn) whenever
1 < s <∞.

Then we show that this limit function u is also in the non-reflexive spaceH1,(p,1)(Ω).
This task is challenging to prove. Due to the non-reflexivity of the spaces Lp,1(Ω;Rm),
we do not know whether the sequence (uk,∇uk) converges weakly to (u,∇u) in
Lp,1(Ω)×Lp,1(Ω;Rn) or not. Although we cannot rely on the weak-⋆ lower semicon-
tinuity of the p, 1 norm, we manage to prove the membership of u in H1,(p,1)(Ω) and
a Fatou-type result for u and for ∇u with respect to both the p, 1 norm and the (p, 1)
norm.

The new weak convergence result forH
1,(p,1)
0 (Ω) is even more challenging to prove.

We managed to prove it for 1 ≤ n < p < ∞ and for 1 < n = p < ∞. See

Theorem 7.1 (ii). When proving this weak convergence result for H
1,(p,1)
0 (Ω) we relied

heavily many times on the fact that for these values of n and p we can work with
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continuous functions from H
1,(p,1)
0 (Ω). This leaves for instance as an open question

the membership of the limit function u in H
1,(p,1)
0 (Ω) when 1 < p < n, Ω ⊂ Rn is

bounded and u is not compactly supported in Ω.
This new weak convergence theorem from Section 7 is being put to use later in

Section 8 to prove the Choquet property of the global Sobolev–Lorentz capacities
Cap(p,1)(·) and Capp,1(·) and of the relative Sobolev–Lorentz capacities cap(p,1)(·,Ω)
and capp,1(·,Ω) whenever 1 ≤ n < p < ∞ or 1 < n = p < ∞. Like before, Ω ⊂ Rn

is a bounded and open set and n ≥ 1 is an integer. The existence of discontinuous

and/or unbounded functions in H
1,(p,1)
0 (Ω) when 1 < p < n prevents us for now from

extending the Choquet property of the p, 1 and (p, 1) relative and global capacities
to the case 1 < p < n.

2. Notations

Here we recall the standard notation to be used throughout this paper. (See also
[7]). Throughout this paper, C will denote a positive constant whose value is not
necessarily the same at each occurrence; it may vary even within a line. C(a, b, . . .)
is a constant that depends only on the parameters a, b, · · · .

Throughout this paper Ω will denote a nonempty open subset of Rn, while dx =
dmn(x) will denote the Lebesgue n-measure in Rn, where n ≥ 1 is an integer. For
E ⊂ Rn, the boundary, the closure, and the complement of E with respect to Rn

will be denoted by ∂E, E, and Rn \ E, respectively, while |E| =
´

E
dx will denote

the Lebesgue measure of E whenever E is measurable; E ⊂⊂ F means that E is a
compact subset of F . Moreover, B(a, r) = {x ∈ Rn : |x − a| < r} is the open ball
with center a ∈ Rn and radius r > 0, while B(a, r) = {x ∈ Rn : |x − a| ≤ r} is the
closed ball with center a ∈ Rn and radius r > 0.

For n ≥ 1 integer, Ωn denotes the Lebesgue measure of the n-dimensional unit
ball. (That is, Ωn = |B(0, 1)|). For n ≥ 2 integer, ωn−1 denotes the spherical measure
of the n − 1-dimensional sphere; thus, ωn−1 = nΩn for every integer n ≥ 2. For a
Lebesgue measurable function u : Ω → R, supp u is the smallest closed set such
that u vanishes outside supp u. For a Lebesgue measurable vector-valued function
f = (f1, . . . , fm) : Ω → Rm, we let

|f | =
√
f 2
1 + f 2

2 + . . .+ f 2
m.

3. Lorentz spaces

For the next three subsections we follow mostly our paper [7].

3.1. Definitions and basic properties. Let f : Ω → R be a measurable
function. We define λ[f ], the distribution function of f as follows (see Bennett–
Sharpley [1, Definition II.1.1] and Stein–Weiss [18, p. 57]):

λ[f ](t) = |{x ∈ Ω: |f(x)| > t}|, t ≥ 0.

We define f ∗, the nonincreasing rearrangement of f by

f ∗(t) = inf{v : λ[f ](v) ≤ t}, t ≥ 0.

(See Bennett–Sharpley [1, Definition II.1.5] and Stein–Weiss [18, p. 189]). We notice
that f and f ∗ have the same distribution function. Moreover, for every positive α we
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have (|f |α)∗ = (|f |∗)α and if |g| ≤ |f | a.e. on Ω, then g∗ ≤ f ∗. (See Bennett–Sharpley
[1, Proposition II.1.7]). We also define f ∗∗, the maximal function of f ∗ by

f ∗∗(t) = mf∗(t) =
1

t

ˆ t

0

f ∗(s) ds, t > 0.

(See Bennett–Sharpley [1, Definition II.3.1] and Stein–Weiss [18, p. 203]).
Throughout this paper, we denote by q′ the Hölder conjugate of q ∈ [1,∞]. The

Lorentz space Lp,q(Ω), 1 < p <∞, 1 ≤ q ≤ ∞, is defined as follows:

Lp,q(Ω) = {f : Ω → R : f is measurable and ‖f‖Lp,q(Ω) <∞},

where

‖f‖Lp,q(Ω) = ‖f‖p,q =





(
´∞

0
(t

1
pf ∗(t))q dt

t

) 1
q

, 1 ≤ q <∞,

supt>0 tλ[f ](t)
1
p = sups>0 s

1
pf ∗(s), q = ∞.

(See Bennett–Sharpley [1, Definition IV.4.1] and Stein–Weiss [18, p. 191]). If 1 ≤
q ≤ p, then ‖ · ‖Lp,q(Ω) already represents a norm (see Bennett–Sharpley [1, The-
orem IV.4.3]); when 1 < p < q ≤ ∞, ‖ · ‖Lp,q(Ω) represents a quasinorm that is
equivalent to the norm ‖ · ‖L(p,q)(Ω), where

‖f‖L(p,q)(Ω) = ‖f‖(p,q) =






(
´∞

0
(t

1
p f ∗∗(t))q dt

t

) 1
q

, 1 ≤ q <∞,

supt>0 t
1
pf ∗∗(t), q = ∞.

(See Bennett–Sharpley [1, Definition IV.4.4]). Namely, from Lemma IV.4.5 in Bennett–
Sharpley [1] we have that

‖f‖Lp,q(Ω) ≤ ‖f‖L(p,q)(Ω) ≤
p

p− 1
‖f‖Lp,q(Ω)

for every 1 ≤ q ≤ ∞.
For a measurable vector-valued function f = (f1, . . . , fm) : Ω → Rm we say

that f ∈ Lp,q(Ω;Rm) if and only if fi ∈ Lp,q(Ω) for i = 1, 2, . . . , m, if and only if
|f | ∈ Lp,q(Ω) and we define

‖f‖Lp,q(Ω;Rm) = ‖ |f | ‖Lp,q(Ω).

Similarly
‖f‖L(p,q)(Ω;Rm) = ‖ |f | ‖L(p,q)(Ω).

Obviously, it follows from the real-valued case that

‖f‖Lp,q(Ω;Rm) ≤ ‖f‖L(p,q)(Ω;Rm) ≤
p

p− 1
‖f‖Lp,q(Ω;Rm)

for every 1 ≤ q ≤ ∞, and like in the real-valued case, ‖ · ‖Lp,q(Ω;Rm) is already a norm
when 1 ≤ q ≤ p, while it is a quasinorm when 1 < p < q ≤ ∞.

It is known that (Lp,q(Ω;Rm), ‖·‖Lp,q(Ω;Rm)) is a Banach space for 1 ≤ q ≤ p, while
(Lp,q(Ω;Rm), ‖ · ‖L(p,q)(Ω;Rm)) is a Banach space for 1 < p <∞, 1 ≤ q ≤ ∞. For more
results on Lorentz spaces we refer the reader to Bennett–Sharpley [1, Chapter IV]
and to Stein–Weiss [18, Chapter V].
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3.2. Weak convergence of the (p, q)-norm and reflexivity of the Lorentz

spaces.

Definition 3.1. Let Ω be an open set in Rn, where n ≥ 1 is an integer. Suppose
1 < p <∞ and 1 ≤ q <∞. We say that a sequence uj in L(p,q)(Ω) converges weakly

to a function u ∈ L(p,q)(Ω) if
ˆ

Ω

v(x)uj(x) dx→

ˆ

Ω

v(x)u(x) dx

whenever v ∈ L(p′,q′)(Ω). There is an obvious interpretation in terms of the coordinate
functions for the weak convergence of vector-valued functions in L(p,q)(Ω;Rm), where
m ≥ 1 is an integer.

The spaces Lp,q(Ω;Rm) are reflexive whenever 1 < q < ∞ and the dual of
Lp,q(Ω;Rm) is, up to equivalence of norms, the space Lp′,q′(Ω;Rm) for 1 ≤ q < ∞.
See Bennett–Sharpley [1, Theorem IV.4.7 and Corollary IV.4.8], Hunt [13, p. 259–
262] and the definition of the spaces Lp,q(Ω;Rm). We notice that the terminology in
the previous definition agrees with the usual weak convergence in the Banach space
theory if 1 ≤ q <∞.

3.3. Strict inclusions between Lorentz spaces.

Remark 3.2. It is known (see Bennett–Sharpley [1, Proposition IV.4.2]) that
for every p ∈ (1,∞) and 1 ≤ r < s ≤ ∞ there exists a constant C(p, r, s) > 0 such
that

(1) ‖f‖Lp,s(Ω) ≤ C(p, r, s)‖f‖Lp,r(Ω)

for all measurable functions f ∈ Lp,r(Ω). In particular, Lp,r(Ω) ⊂ Lp,s(Ω). Like in
the real-valued case, it follows that

(2) ‖f‖Lp,s(Ω;Rm) ≤ C(p, r, s)‖f‖Lp,r(Ω;Rm)

for every m ≥ 1 integer and for all measurable functions f ∈ Lp,r(Ω;Rm), where
C(p, r, s) is the constant from (1). In particular,

Lp,r(Ω;Rm) ⊂ Lp,s(Ω;Rm) for every m ≥ 1 integer.

The above inclusion is strict. See Ziemer [19, p. 37, Exercise 1.7] and [7, Theo-
rems 3.4 and 3.5].

4. Sobolev–Lorentz Spaces

This section is based in part on Chapter 3 of our book [6] and on Section 4 of
our article [7].

4.1. The H1,(p,q) and W 1,(p,q) spaces. In this subsection we recall the defi-

nition of the Sobolev–Lorentz spaces H
1,(p,q)
0 (Ω), H1,(p,q)(Ω), and W 1,(p,q)(Ω), where

Ω ⊂ Rn is an open set and n ≥ 1 is an integer. These spaces were studied extensively
in Chapter 3 of our book [6] (the case n ≥ 2) and in Section 4 of our article [7] (the
case n ≥ 1).

For 1 < p <∞ and 1 ≤ q ≤ ∞ we define the Sobolev–Lorentz space H1,(p,q)(Ω) as
follows. Let r = min(p, q). For a function φ ∈ C∞(Ω) we define its Sobolev–Lorentz
(p, q)-norm by

‖φ‖1,(p,q);Ω =
(
‖φ‖rL(p,q)(Ω) + ‖∇φ‖rL(p,q)(Ω;Rn)

)1/r
,
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where ∇φ = (∂1φ, . . . , ∂nφ) is the gradient of φ. Similarly we define the Sobolev–
Lorentz p, q-quasinorm of φ by

‖φ‖1,p,q;Ω =
(
‖φ‖rLp,q(Ω) + ‖∇φ‖rLp,q(Ω;Rn)

)1/r
,

Then H1,(p,q)(Ω) is defined as the completion of

{φ ∈ C∞(Ω) : ‖φ‖1,(p,q);Ω <∞}

with respect to the norm ‖ · ‖1,(p,q);Ω. Throughout the paper we use ‖ · ‖H1,(p,q)(Ω)

instead of ‖ · ‖1,(p,q);Ω and ‖ · ‖H1,p,q(Ω) instead of ‖ · ‖1,p,q;Ω.

The Sobolev–Lorentz space H
1,(p,q)
0 (Ω) is defined as the closure of C∞

0 (Ω) in
H1,(p,q)(Ω). From the discussion in subsection 4.1 of our paper [7], we have that the

Sobolev–Lorentz spaces H
1,(p,q)
0 (Ω) and H1,(p,q)(Ω) are reflexive Banach spaces when

1 < q < ∞. From the same discussion it follows that H
1,(p,1)
0 (Ω) and H1,(p,1)(Ω) are

non-reflexive Banach spaces.
Let u ∈ L1

loc
(Ω). For i = 1, . . . , n a function v ∈ L1

loc
(Ω) is called the ith weak

partial derivative of u and we denote v = ∂iu if
ˆ

Ω

ϕ(x)v(x) dx = −

ˆ

Ω

∂iϕ(x)u(x) dx

for all ϕ ∈ C∞
0 (Ω). We define the Sobolev–Lorentz space W 1,(p,q)(Ω) by

W 1,(p,q)(Ω) = L(p,q)(Ω) ∩ {u : ∂iu ∈ L(p,q)(Ω), i = 1, . . . , n}.

The space W 1,(p,q)(Ω) is equipped with the norm

‖u‖W 1,(p,q)(Ω) = ‖u‖L(p,q)(Ω) +
n∑

i=1

‖∂iu‖L(p,q)(Ω),

which is clearly equivalent to
(
‖u‖rL(p,q)(Ω) + ‖∇u‖rL(p,q)(Ω;Rn)

)1/r
,

where r = min(p, q). Here ∇u is the distributional gradient of u.
In [7, Theorem 4.8] we showed that H1,(p,∞)(Ω) ( W 1,(p,∞)(Ω) and that the

spaces H
1,(p,∞)
0 (Ω), H1,(p,∞)(Ω) and W 1,(p,∞)(Ω) are not reflexive. Furthermore, in

[7, Theorem 4.11] we proved that H1,(p,q)(Ω) = W 1,(p,q)(Ω) whenever 1 ≤ q < ∞.

The corresponding local space H
1,(p,q)
loc

(Ω) is defined in the obvious manner: u is in

H
1,(p,q)
loc

(Ω) if and only if u is in H1,(p,q)(Ω′) for every open set Ω′ ⊂⊂ Ω. Similarly,

the local space W
1,(p,q)
loc

(Ω) is defined as follows: u is in W
1,(p,q)
loc

(Ω) if and only if u is
in W 1,(p,q)(Ω′) for every open set Ω′ ⊂⊂ Ω.

For more details on these spaces including their basic properties we refer the
readers to Chapter 3 of our book [6] and to Section 4 of our article [7].

4.2. Product rule. Next we record the following lemma which says that the
product between a function u in H1,(p,q)(Ω) and a function ϕ in C∞

0 (Ω) yields a

function in H
1,(p,q)
0 (Ω) if 1 < p < ∞ and 1 ≤ q ≤ ∞. See also [7, Lemma 4.9 and

Theorem 4.11]).

Lemma 4.1. Let Ω ⊂ Rn be an open set, where n ≥ 1 is an integer. Suppose
that 1 < p <∞ and 1 ≤ q ≤ ∞. Suppose that u ∈ H1,(p,q)(Ω) and that ϕ ∈ C∞

0 (Ω).

Then uϕ ∈ H
1,(p,q)
0 (Ω) and ∇(uϕ) = u∇ϕ+ ϕ∇u.
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Remark 4.2. Lemma 4.1 easily implies

‖uϕ‖W 1,(p,q)(Ω) ≤ ‖ϕ‖L∞(Ω)‖u‖L(p,q)(Ω) + ‖ϕ‖L∞(Ω)

(
n∑

i=1

‖∂iu‖L(p,q)(Ω)

)

+

(
n∑

i=1

‖∂iϕ‖L∞(Ω)

)
‖u‖L(p,q)(Ω)

≤

(
‖ϕ‖L∞(Ω) +

n∑

i=1

‖∂iϕ‖L∞(Ω)

)
‖u‖W 1,(p,q)(Ω)

for every u ∈ H1,(p,q)(Ω) and

‖uϕ‖H1,(p,q)(Ω) =
(
‖uϕ‖rL(p,q)(Ω) + ‖∇(uϕ)‖rL(p,q)(Ω;Rn)

)1/r

=
(
‖uϕ‖rL(p,q)(Ω) + ‖ϕ∇u+ u∇ϕ‖rL(p,q)(Ω;Rn)

)1/r

≤
(
‖uϕ‖rL(p,q)(Ω) + ‖ϕ∇u‖rL(p,q)(Ω;Rn)

)1/r
+ ‖u∇ϕ‖L(p,q)(Ω;Rn)

≤ ‖ϕ‖L∞(Ω)‖u‖H1,(p,q)(Ω) + ‖∇ϕ‖L∞(Ω)‖u‖L(p,q)(Ω;Rn)

≤
(
‖ϕ‖L∞(Ω) + ‖∇ϕ‖L∞(Ω)

)
‖u‖H1,(p,q)(Ω)

for every u ∈ H1,(p,q)(Ω); here 1 ≤ q ≤ ∞ and r = min(p, q), like in the definition of
the ‖ · ‖H1,(p,q)(Ω) norm.

4.3. Reflexivity results. Next we recall the following reflexivity results from
[6] concerning the Sobolev–Lorentz spaces, valid for all integers n ≥ 1 and for all q
in (1,∞). Both these results are standard applications of Mazur’s lemma.

Theorem 4.3. (See [4, Theorem V.20] and [6, Theorem 3.5.2]) Let 1 < p, q <
∞. Suppose that K is a convex and closed set of H1,(p,q)(Ω). If uj ∈ K is a sequence
and if u ∈ L(p,q)(Ω) and v ∈ L(p,q)(Ω;Rn) are functions such that uj → u weakly in
Lp,q(Ω) and ∇uj → v weakly in Lp,q(Ω;Rn), then u ∈ K and v = ∇u.

Theorem 4.4. (See [4, Theorem V.21] and [6, Theorem 3.5.3]) Let 1 < p, q <
∞. Suppose that uj is a bounded sequence inH1,(p,q)(Ω). Then there is a subsequence
uji and a function u ∈ H1,(p,q)(Ω) such that uji → u weakly in Lp,q(Ω) and ∇uji → ∇u

weakly in Lp,q(Ω;Rn). Moreover, if uj ∈ H
1,(p,q)
0 (Ω) for all j ≥ 1, then u ∈ H

1,(p,q)
0 (Ω).

5. Sobolev–Lorentz Capacity

This section is based on Chapter 4 of our book [6]. In [6] we studied the Sobolev–
Lorentz relative and global capacities for 1 < p < ∞, 1 ≤ q ≤ ∞ and n > 1 integer.
There we developed a capacity theory based on the definition of Sobolev functions
on Rn with respect to the Lorentz norm. Basic properties of capacity, including
monotonicity, countable subadditivity and several convergence results were included
there. All those results were proved in [6] for n ≥ 2 but they can be extended to the
case n = 1. We do it here, in this section of our paper.

5.1. The Sobolev–Lorentz (p, q) relative capacity. Let n ≥ 1 be an integer.
Suppose 1 < p < ∞ and 1 ≤ q ≤ ∞. Let Ω ⊂ Rn be a bounded open set and let E
be a subset of Ω. The Sobolev–Lorentz (p, q) relative capacity of the pair (E,Ω) is
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denoted

cap(p,q)(E,Ω) = inf {‖∇u‖p
L(p,q)(Ω;Rn)

: u ∈ A(E,Ω)},

where

A(E,Ω) = {u ∈ H
1,(p,q)
0 (Ω) : u ≥ 1 in a neighborhood of E}.

We call A(E,Ω) the set of admissible functions for the condenser (E,Ω). If A(E,Ω) =
∅, we set cap(p,q)(E,Ω) = ∞.

Since H
1,(p,q)
0 (Ω) is closed under truncations from below by 0 and from above by

1 and since these truncations do not increase the (p, q)-norm of the distributional
gradients, it is enough to consider only those admissible functions u for which 0 ≤
u ≤ 1.

5.1.1. Basic properties of the (p, q) relative capacity. Usually, a capacity
is a monotone and subadditive set function. The following theorem will show, among
other things, that this is true in the case of the (p, q) relative capacity. In our thesis
[4] we studied only the case 1 < n = p < ∞. In [6] we extended the results from [4]
to the case 1 < p <∞ and n > 1. The following theorem generalizes Theorem V.23
from [4] and Theorem 4.1.1 from [6] to the case 1 < p <∞ and n = 1.

Theorem 5.1. (See [4, Theorem V.23] and [6, Theorem 4.1.1]) Let n ≥ 1 be
an integer. Suppose 1 < p < ∞ and 1 ≤ q ≤ ∞. Let Ω ⊂ Rn be a bounded open
set. The set function E 7→ cap(p,q)(E,Ω), E ⊂ Ω, enjoys the following properties:

(i) If E1 ⊂ E2, then cap(p,q)(E1,Ω) ≤ cap(p,q)(E2,Ω).
(ii) If Ω1 ⊂ Ω2 are open and bounded and E ⊂ Ω1, then

cap(p,q)(E,Ω2) ≤ cap(p,q)(E,Ω1).

(iii) cap(p,q)(E,Ω) = inf {cap(p,q)(U,Ω): E ⊂ U ⊂ Ω, U open}.
(iv) If Ki is a decreasing sequence of compact subsets of Ω with K =

⋂∞
i=1Ki,

then

cap(p,q)(K,Ω) = lim
i→∞

cap(p,q)(Ki,Ω).

(v) Suppose that 1 < q <∞. If E1 ⊂ E2 ⊂ . . . ⊂ E =
⋃∞

i=1Ei ⊂ Ω, then

cap(p,q)(E,Ω) = lim
i→∞

cap(p,q)(Ei,Ω).

(vi) If E =
⋃∞

i=1Ei ⊂ Ω, then

cap(p,q)(E,Ω)
1/p ≤

∞∑

i=1

cap(p,q)(Ei,Ω)
1/p.

Proof. This result was proved in [6] for n ≥ 2. See [6, Theorem 4.1.1]. The proof
of the case n = 1 is very similar to the proof of [6, Theorem 4.1.1] and omitted. �

The set function cap(p,q)(·,Ω) satisfies properties (i), (iv), and (v) of Theorem 5.1
whenever 1 < p, q <∞ and Ω is a bounded open set in Rn, where n ≥ 1 is an integer.
Thus, cap(p,q)(·,Ω) is a Choquet capacity (relative to Ω) whenever 1 < p, q <∞ and
Ω is a bounded open set in Rn, where n ≥ 1 is an integer. We may thus invoke
an important capacitability theorem of Choquet and state the following result. See
Doob [9, Appendix II].

Theorem 5.2. Let Ω be a bounded open set in Rn, where n ≥ 1 is an integer.
Suppose 1 < p, q < ∞. The set function E 7→ cap(p,q)(E,Ω), E ⊂ Ω, is a Choquet
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capacity. In particular, all Borel subsets (in fact, all analytic) subsets E of Ω are
capacitable, i.e.

cap(p,q)(E,Ω) = sup {cap(p,q)(K,Ω): K ⊂ E compact}.

The set function cap(p,q)(·,Ω) satisfies properties (i) and (iv) of Theorem 5.1
whenever q = 1 or q = ∞. Like in Theorem 5.1, the set Ω is bounded and open in
Rn, where n ≥ 1 is an integer.

Question 5.3. Let Ω be a bounded open set in Rn, where n ≥ 1 is an integer.
Suppose 1 < p <∞. Is cap(p,q)(·,Ω) a Choquet capacity when q = 1 or when q = ∞?

We obtain a partial positive result later. Namely, we show later that if Ω ⊂ Rn

is a bounded open set, then cap(p,1)(·,Ω) is a Choquet capacity whenever 1 ≤ n <
p <∞ or 1 < n = p <∞.

Remark 5.4. Suppose 1 ≤ q ≤ ∞. The definition of the (p, q)-capacity easily
implies

cap(p,q)(K,Ω) = cap(p,q)(∂K,Ω)

whenever K is a compact set in Ω.

5.2. The Sobolev–Lorentz p, q relative capacity. Let n ≥ 1 be an integer.
Suppose 1 < p < ∞ and 1 ≤ q ≤ ∞. We can introduce the p, q relative capacity
the way we introduced the (p, q) relative capacity. Let Ω ⊂ Rn be a bounded and
open set and let E be a subset of Ω. We can define the Sobolev–Lorentz p, q relative
capacity of the pair (E,Ω) by

capp,q(E,Ω) = inf {‖∇u‖pLp,q(Ω;Rn) : u ∈ A(E,Ω)}

where (like before)

A(E,Ω) = {u ∈ H
1,(p,q)
0 (Ω) : u ≥ 1 in a neighborhood of E}.

Like before, we call A(E,Ω) the set of admissible functions for the condenser (E,Ω).
If A(E,Ω) = ∅, we set capp,q(E,Ω) = ∞.

Since H
1,(p,q)
0 (Ω) is closed under truncations from below by 0 and from above by

1 and since these truncations do not increase the p, q-quasinorm of the distributional
gradients, it is enough to consider only those admissible functions u for which 0 ≤
u ≤ 1.

5.2.1. Basic properties of the p, q relative capacity. Usually, a capacity is
a monotone and subadditive set function. The following theorem will show, among
other things, that this is true in the case of the p, q relative capacity. In our book
[6] we studied the case 1 < p < ∞ and n ≥ 2. We extend these results to the case
n = 1. The following theorem generalizes Theorem 3.2 from Costea–Maz’ya [8] and
Theorem 4.2.2 from [6].

Theorem 5.5. (See Costea–Maz’ya [8, Theorem 3.2] and [6, Theorem 4.2.2])
Let n ≥ 1 be an integer. Suppose 1 < p < ∞ and 1 ≤ q ≤ ∞. Let Ω ⊂ Rn be a
bounded open set. The set function E 7→ capp,q(E,Ω), E ⊂ Ω, enjoys the following
properties:

(i) If E1 ⊂ E2 ⊂ Ω, then capp,q(E1,Ω) ≤ capp,q(E2,Ω).
(ii) If Ω1 ⊂ Ω2 ⊂ Rn are open and E ⊂ Ω1, then

capp,q(E,Ω2) ≤ capp,q(E,Ω1).

(iii) capp,q(E,Ω) = inf {capp,q(U,Ω): E ⊂ U ⊂ Ω, U open}.
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(iv) If Ki is a decreasing sequence of compact subsets of Ω with K =
⋂∞

i=1Ki,
then

capp,q(K,Ω) = lim
i→∞

capp,q(Ki,Ω).

(v) Suppose that 1 < q ≤ p. If E1 ⊂ E2 ⊂ . . . ⊂ E =
⋃∞

i=1Ei ⊂ Ω, then

capp,q(E,Ω) = lim
i→∞

capp,q(Ei,Ω).

(vi) Suppose that 1 ≤ q ≤ p. If E =
⋃∞

i=1Ei ⊂ Ω, then

capp,q(E,Ω)
q/p ≤

∞∑

i=1

capp,q(Ei,Ω)
q/p.

(vii) Suppose that p < q <∞. If E =
⋃∞

i=1Ei ⊂ Ω, then

capp,q(E,Ω) ≤
∞∑

i=1

capp,q(Ei,Ω).

(viii) Suppose that q = ∞. Let k ≥ 1 be an integer. If E =
⋃k

i=1Ei ⊂ Ω, then

capp,q(E,Ω) ≤
k∑

i=1

capp,q(Ei,Ω).

(ix) Suppose that 1 ≤ q ≤ ∞. If Ω1 and Ω2 are two disjoint open sets and E ⊂ Ω1,
then

capp,q(E,Ω1 ∪ Ω2) = capp,q(E,Ω1).

(x) Suppose that 1 ≤ q ≤ p. Suppose that Ω1, . . . ,Ωk are pairwise disjoint open

sets and Ei are subsets of Ωi for i = 1, . . . , k. If E =
⋃k

i=1Ei and Ω =
⋃k

i=1Ωi,
then

capp,q(E,Ω) ≥
k∑

i=1

capp,q(Ei,Ωi).

(xi) Suppose that p < q <∞. Suppose that Ωi, . . . ,Ωk are pairwise disjoint open

sets and Ei are subsets of Ωi for i = 1, . . . , k. If E =
⋃k

i=1Ei and Ω =
⋃k

i=1Ωi,
then

capp,q(E,Ω)
q/p ≥

k∑

i=1

capp,q(Ei,Ωi)
q/p.

Proof. This result was proved in [6] for n ≥ 2. See [6, Theorem 4.2.2]. The proof
of the case n = 1 is very similar to the proof of [6, Theorem 4.2.2] and omitted. �

The set function capp,q(·,Ω) satisfies properties (i), (iv), and (v) of Theorem 5.5
whenever 1 < q ≤ p < ∞ and Ω is a bounded open set in Rn, where n ≥ 1
is an integer. Thus, cap(p,q)(·,Ω) is a Choquet capacity (relative to Ω) whenever
1 < q ≤ p < ∞ and Ω is a bounded open set in Rn, where n ≥ 1 is an integer.
We may thus invoke an important capacitability theorem of Choquet and state the
following result. See Doob [9, Appendix II].

Theorem 5.6. Let Ω be a bounded open set in Rn, where n ≥ 1 is an integer.
Suppose 1 < q ≤ p < ∞. The set function E 7→ capp,q(E,Ω), E ⊂ Ω, is a Choquet
capacity. In particular, all Borel subsets (in fact, all analytic) subsets E of Ω are
capacitable, i.e.

capp,q(E,Ω) = sup {capp,q(K,Ω): K ⊂ E compact}.
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The set function capp,q(·,Ω) satisfies properties (i) and (iv) of Theorem 5.5 when-
ever q = 1 or p < q ≤ ∞. Like in Theorem 5.5, the set Ω is bounded and open in
Rn, where n ≥ 1 is an integer.

Question 5.7. Let 1 < p < ∞ be fixed. Suppose that Ω is a bounded open set
in Rn, where n ≥ 1 is an integer. Is capp,q(·,Ω) a Choquet capacity when q = 1 or
when p < q ≤ ∞ ?

We obtain a partial positive result later. Namely, we show later that if Ω ⊂ Rn is
a bounded open set, then capp,1(·,Ω) is a Choquet capacity whenever 1 ≤ n < p <∞
or 1 < n = p <∞.

Remark 5.8. The definition of the p, q-capacity easily implies

capp,q(K,Ω) = capp,q(∂K,Ω)

whenever K is a compact set in Ω.

5.3. The Sobolev–Lorentz (p, q) global capacity. Let n ≥ 1 be an integer.
Suppose 1 < p <∞ and 1 ≤ q ≤ ∞. For a set E ⊂ Rn we define the Sobolev–Lorentz
global (p, q)-capacity of E by

Cap(p,q)(E) = inf ‖u‖p
H1,(p,q)(Rn)

,

where u runs through the set

S(E) = {u ∈ H
1,(p,q)
0 (Rn) : u ≥ 1 in an open set containing E}.

If S(E) = ∅, we set Cap(p,q)(E) = ∞. It is obvious that the same number is obtained
if the infimum in the definition is taken over u ∈ S(E) with 0 ≤ u ≤ 1.

5.3.1. Basic properties of the (p, q) global capacity. The following theorem
summarizes the properties of the global Sobolev–Lorentz (p, q)-capacity, extending
our results from [6, Theorem 4.6.2] to the case n = 1.

Theorem 5.9. (See [6, Theorem 4.6.2]) Let n ≥ 1 be an integer. Suppose
1 < p < ∞ and 1 ≤ q ≤ ∞. The set function E 7→ Cap(p,q)(E), E ⊂ Rn, has the
following properties:

(i) If E1 ⊂ E2, then Cap(p,q)(E1) ≤ Cap(p,q)(E2).
(ii) Cap(p,q)(E) = inf {Cap(p,q)(U) : E ⊂ U ⊂ Rn, U open}.
(iii) If Ki is a decreasing sequence of compact subsets of Rn with K =

⋂∞
i=1Ki,

then
Cap(p,q)(K) = lim

i→∞
Cap(p,q)(Ki).

(iv) Suppose that 1 < q <∞. If E1 ⊂ E2 ⊂ . . . ⊂ E =
⋃∞

i=1Ei ⊂ Rn, then

Cap(p,q)(E) = lim
i→∞

Cap(p,q)(Ei).

(v) If E =
⋃∞

i=1Ei, then

Cap(p,q)(E)
1/p ≤

∞∑

i=1

Cap(p,q)(Ei)
1/p.

Proof. This result was proved in [6] for n ≥ 2. See [6, Theorem 4.6.2]. The proof
of the case n = 1 is very similar to the proof of [6, Theorem 4.6.2] and omitted. �

The set function Cap(p,q)(·) satisfies properties (i), (iii), and (iv) of Theorem 5.9
whenever n ≥ 1 is an integer and 1 < p, q <∞. Thus, this set function is a Choquet
capacity whenever n ≥ 1 is an integer and 1 < p, q < ∞. We may thus invoke
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an important capacitability theorem of Choquet and state the following result. See
Doob [9, Appendix II].

Theorem 5.10. Let n ≥ 1 be an integer. Suppose 1 < p, q < ∞. The set
function E 7→ Cap(p,q)(E), E ⊂ Rn, is a Choquet capacity. In particular, all Borel
subsets (in fact, all analytic) subsets E of Rn are capacitable, i.e.

Cap(p,q)(E) = sup {Cap(p,q)(K) : K ⊂ E compact}.

The set function Cap(p,q)(·) satisfies properties (i) and (iii) of Theorem 5.9 when-
ever q = 1 or q = ∞. Like in Theorem 5.9, n ≥ 1 is an integer.

Question 5.11. Let n ≥ 1 be an integer. Suppose 1 < p < ∞. Is Cap(p,q)(·)
Choquet when q = 1 or when q = ∞?

We obtain a partial positive result later. Namely, we show later that Cap(p,1)(·)
is a Choquet capacity whenever 1 ≤ n < p <∞ or 1 < n = p <∞.

5.4. The Sobolev–Lorentz p, q global capacity. Let n ≥ 1 be an integer.
Suppose 1 < p < ∞ and 1 ≤ q ≤ ∞. We can introduce the global p, q-capacity
the way we introduced the global (p, q)-capacity. For a set E ⊂ Rn we define the
Sobolev–Lorentz global p, q-capacity of E by

Capp,q(E) = inf ‖u‖pH1,p,q(Rn),

where u runs through the set

S(E) = {u ∈ H
1,(p,q)
0 (Rn) : u ≥ 1 in an open set containing E}.

If S(E) = ∅, we set Capp,q(E) = ∞. It is obvious that the same number is obtained
if the infimum in the definition is taken over u ∈ S(E) with 0 ≤ u ≤ 1.

5.4.1. Basic properties of the p, q global capacity. The following theorem
summarizes the properties of the global Sobolev–Lorentz p, q-capacity, extending our
results from [6, Theorem 4.7.3] to the case n = 1.

Theorem 5.12. (See [6, Theorem 4.7.3]) Let n ≥ 1 be an integer. Suppose
1 < p < ∞ and 1 ≤ q ≤ ∞. The set function E 7→ Capp,q(E), E ⊂ Rn, enjoys the
following properties:

(i) If E1 ⊂ E2, then Capp,q(E1) ≤ Capp,q(E2).
(ii) Capp,q(E) = inf {Capp,q(U) : E ⊂ U ⊂ Rn, U open}.
(iii) If Ki is a decreasing sequence of compact subsets of Rn with K =

⋂∞
i=1Ki,

then
Capp,q(K) = lim

i→∞
Capp,q(Ki).

(iv) Suppose that 1 < q ≤ p. If E1 ⊂ E2 ⊂ . . . ⊂ E =
⋃∞

i=1Ei ⊂ Rn, then

Capp,q(E) = lim
i→∞

Capp,q(Ei).

(v) Suppose that 1 ≤ q ≤ p. If E =
⋃∞

i=1Ei ⊂ Rn, then

Capp,q(E)
q/p ≤

∞∑

i=1

Capp,q(Ei)
q/p.

(vi) Suppose that p < q <∞. If E =
⋃∞

i=1Ei ⊂ Rn, then

Capp,q(E) ≤
∞∑

i=1

Capp,q(Ei).
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(vii) Suppose that q = ∞. Let k ≥ 1 be an integer. If E =
⋃k

i=1Ei ⊂ Rn, then

Capp,q(E) ≤
k∑

i=1

Capp,q(Ei).

Proof. This result was proved in [6] for n ≥ 2. See [6, Theorem 4.7.3]. The proof
of the case n = 1 is very similar to the proof of [6, Theorem 4.7.3] and omitted. �

The set function Capp,q(·) satisfies properties (i), (iii), and (iv) of Theorem 5.12
whenever n ≥ 1 is an integer and 1 < q ≤ p < ∞. Thus, this set function is a
Choquet capacity whenever n ≥ 1 is an integer and 1 < q ≤ p < ∞. We may thus
invoke an important capacitability theorem of Choquet and state the following result.
See Doob [9, Appendix II].

Theorem 5.13. Let n ≥ 1 be an integer. Suppose 1 < q ≤ p < ∞. The set
function E 7→ Capp,q(E), E ⊂ Rn, is a Choquet capacity. In particular, all Borel
subsets (in fact, all analytic) subsets E of Rn are capacitable, i.e.

Capp,q(E) = sup {Capp,q(K) : K ⊂ E compact}.

The set function Capp,q(·) satisfies properties (i) and (iii) of Theorem 5.12 when-
ever q = 1 or p < q ≤ ∞. Like in Theorem 5.12, n ≥ 1 is an integer.

Question 5.14. Let n ≥ 1 be an integer. Suppose 1 < p < ∞. Is Capp,q(·) a
Choquet capacity when q = 1 or when p < q ≤ ∞?

We obtain a partial positive result later. Namely, we show later that Capp,1(·) is
a Choquet capacity whenever 1 ≤ n < p <∞ or 1 < n = p <∞.

6. Sharp estimates for the Sobolev–Lorentz n, 1 relative capacity

In [5] we studied the n, q relative capacity for n ≥ 2 and 1 ≤ q ≤ ∞ and we ob-
tained sharp estimates for the n, q relative capacity of the condensers (B(0, r), B(0, 1))
for small values of r in [0, 1). See [5, Theorem 3.11]. In this section we obtain a few
new results. For instance, we obtain sharp estimates for the n, 1 relative capacity of
the aforementioned concentric condensers for ALL r in [0, 1). See Theorem 6.2 (i).
Thus, we improve the estimates that we obtained in [5] for the n, 1 relative capacity.
In particular, we obtain the exact value for the n, 1 capacity of a point relative to all
its bounded open neighborhoods from Rn, a strictly positive number as we saw in
[5, Corollary 3.8]. See Theorem 6.2 (ii).

Moreover, we obtain a new result concerning the n, 1 global capacity. We show
that this aforementioned value is also the value of the global n, 1 capacity of any
point from Rn. See Theorem 6.3. This constant will also come into play later when

we give a new proof of the embedding H
1,(n,1)
0 (Ω) →֒ C(Ω) ∩ L∞(Ω), where Ω ⊂ Rn

is open and n ≥ 2 is an integer. See Theorem 6.4. This embedding is proved by
using the exact value of the n, 1 capacity of a point relative to any of its bounded
open neighborhoods from Rn.

In order to obtain the sharp estimates for the condensers (B(0, r), B(0, 1)) for all
r in [0, 1), we revisit Proposition 2.11 from [5] for p = n > 1 and q = 1.

Proposition 6.1. Suppose n ≥ 2 is an integer. Let 0 ≤ r < 1 be fixed. Let

w : [Ωnr
n,Ωn] → [0,∞) be defined by w(t) = (t/Ωn)

1/n. Suppose f : [r, 1] → [0,∞)
is continuous and let g : [Ωnr

n,Ωn] → [0,∞) be defined by g(t) = f(w(t)). Then

‖g‖Ln,1([Ωnrn,Ωn]) ≥ nΩ1/n
n (1− rn)−1/n′

‖f‖L1([r,1]).
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Proof. By applying [5, Proposition 2.11] for p = n > 1 and q = 1, we obtain

‖g‖Ln,1([Ωnrn,Ωn]) ≥ nΩn‖(t/Ωn)
−1/n′

‖−1
Ln′,∞([Ωnrn,Ωn])

‖f‖L1([r,1])

= nΩ1/n
n ‖t−1/n′

‖−1

Ln′,∞([Ωnrn,Ωn])
‖f‖L1([r,1]).

We compute ‖t−1/n′

‖Ln′,∞([Ωnrn,Ωn])
. We notice that

‖t−1/n′

‖Ln′,∞([Ωnrn,Ωn])
= ‖(t + Ωnr

n)−1/n′

‖Ln′,∞([0,Ωn(1−rn)]).

An easy computation shows that

‖(t + Ωnr
n)−1/n′

‖Ln′,∞([0,Ωn(1−rn)]) = sup
0≤t≤Ωn(1−rn)

t1/n
′

(t+ Ωnr
n)−1/n′

= sup
0≤t≤Ωn(1−rn)

(
t

t + Ωnrn

)1/n′

= (1− rn)1/n
′

.

This finishes the proof. �

Next we obtain sharp estimates for the n, 1 relative capacity of the condensers
(B(0, r), B(0, 1)) for ALL r in [0, 1). Thus, we improve the estimates obtained in
[5, Theorem 3.11] for the n, 1 relative capacity of the aforementioned concentric
condensers. As a consequence we obtain the exact value of the n, 1 capacity of a
point relative to all its bounded open neighborhoods from Rn.

Theorem 6.2. Let n ≥ 2 be an integer.

(i) We have

nnΩn(1− rn)1−n ≤ capn,1(B(0, r), B(0, 1)) ≤ nnΩn
1− rn

(1− r)n

for every 0 ≤ r < 1.
(ii) We have

capn,1({x},Ω) = nnΩn

whenever x ∈ Rn and Ω is a bounded open set in Rn containing x.

Proof. We start by proving claim (i). Let r ∈ [0, 1) be fixed. We want to compute
the lower estimate. In order to do that, it is enough to consider via [5, Lemma 3.6]
only the admissible radial functions in C∞

0 (B(0, 1)) that are 1 on a neighborhood
of B(0, r). Let u be such a function. There exists a function f ∈ C∞([0, 1]) such
that u(x) = f(|x|) for every x ∈ B(0, 1). Hence |∇u(x)| = |f ′|(|x|) for every x ∈
B(0, 1). Moreover, f ′(t) = 0 for every t ∈ [0, r]. If we define g : [0,Ωn] → [0,∞) by
g(t) = |f ′|((t/Ωn)

1/n), we notice that g is a continuous function compactly supported
in (Ωnr

n,Ωn). Moreover, since |∇u(x)| = g(Ωn|x|
n) for every x ∈ B(0, 1), it follows

that |∇u| and g have the same distribution function. From this and the fact that g
is supported in (Ωnr

n,Ωn), we obtain

‖∇u‖Ln,1(B(0,1);Rn) = ‖g‖Ln,1([Ωnrn,Ωn]).

But via Proposition 6.1 we have

‖g‖Ln,1([Ωnrn,Ωn]) ≥ nΩ1/n
n (1− rn)−1/n′

‖f ′‖L1([r,1])

and since ‖f ′‖L1([r,1]) ≥ f(r)− f(1) = 1, we obtain

‖∇u‖Ln,1(B(0,1);Rn) = ‖g‖Ln,1([Ωnrn,Ωn]) ≥ nΩ1/n
n (1− rn)−1/n′

.

By taking the infimum over all admissible radial functions that are in C∞
0 (B(0, 1)),

we obtain the desired lower estimate.
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Now we compute the upper estimate. Let ur : B(0, 1) → [0, 1] be defined by

ur(x) =

{
1, if 0 ≤ |x| ≤ r,
1−|x|
1−r

, if r < |x| < 1.

We notice that ur is a Lipschitz function on B(0, 1) that can be extended contin-

uously by 0 on ∂B(0, 1). Thus, ur in H
1,(n,1)
0 (B(0, 1)). Moreover, the function 1

1−ε
ur

is admissible for the condenser (B(0, r), B(0, 1)) for every ε ∈ (0, 1).
Thus, we have

capn,1(B(0, r), B(0, 1)) ≤
1

(1− ε)n
‖∇ur‖

n
Ln,1(B(0,1);Rn)

for every ε ∈ (0, 1). By letting ε→ 0, the above inequality yields

capn,1(B(0, r), B(0, 1)) ≤ ‖∇ur‖
n
Ln,1(B(0,1);Rn).

An easy computation shows that

|∇ur(x)| =

{
0 if 0 ≤ |x| < r,
1

1−r
if r < |x| < 1.

Thus,

‖∇ur‖Ln,1(B(0,1);Rn) =
1

1− r
‖χB(0,1)\B(0,r)‖Ln,1(B(0,1)) =

1

1− r

ˆ Ωn(1−rn)

0

t
1
n
−1 dt

=
1

1− r
n[Ωn(1− rn)]1/n = nΩ1/n

n

(1− rn)1/n

1− r
.

Hence, we obtain the desired upper estimate

capn,1(B(0, r), B(0, 1)) ≤ nnΩn
(1− rn)

(1− r)n
.

We obtained the desired lower and upper estimates for capn,1(B(0, r), B(0, 1)). This
finishes the proof of claim (i).

We prove claim (ii) now. For r = 0, claim (i) yields

capn,1({0}, B(0, 1)) = nnΩn.

From this, the invariance of the n, 1 relative capacity under translations, [5, Lem-
ma 3.4] and [5, Theorem 3.2 (ii)] (see also Theorem 5.5 (ii)), the desired conclusion
follows. This finishes the proof. �

6.1. Sharp estimates for the n, 1 global capacity. In Theorem 6.2 we
computed the exact value of the n, 1 capacity of a point relative to all its bounded
open neighborhoods from Rn. We now prove that this strictly positive number is
also the exact value of the n, 1 global capacity of any point from Rn.

Theorem 6.3. Let n ≥ 2 be an integer. We have

Capn,1({x}) = nnΩn > 0

for every x ∈ Rn.

Proof. Since the n, 1 global capacity is invariant under translation, it is enough
to prove via Theorem 6.2 (ii) that

Capn,1({0}) = nnΩn.



Sobolev–Lorentz capacity and its regularity in the Euclidean setting 553

We prove first that

nnΩn ≤ Capn,1({0}).

Fix ε > 0. Let u ∈ S({0}) be an admissible function for {0} with respect to the n, 1
global capacity such that

‖u‖Ln,1(Rn) + ‖∇u‖Ln,1(Rn;Rn) < Capn,1({0})
1/n + ε.

Without loss of generality we can assume that u ∈ S({0}) ∩C∞
0 (Rn). Then u is

compactly supported in a bounded open set U ⊂ Rn that contains the origin. It is
easy to see that S({0}) ∩ C∞

0 (U) = A({0}, U) ∩ C∞
0 (U). Thus, u ∈ A({0}, U).

Therefore we have via Theorem 6.2 (ii)

nΩ1/n
n = capn,1({0}, U)

1/n ≤ ‖∇u‖Ln,1(U ;Rn) = ‖∇u‖Ln,1(Rn;Rn)

≤ ‖u‖Ln,1(Rn) + ‖∇u‖Ln,1(Rn;Rn) < Capn,1({0})
1/n + ε.

By letting ε→ 0, we see that indeed nnΩn ≤ Capn,1({0}).
Conversely, we want to show that Capn,1({0}) ≤ nnΩn. Let u : Rn → [0, 1] be

defined by

u(x) =

{
1− |x| if 0 ≤ |x| ≤ 1,

0 if |x| > 1.

We notice that u is a Lipschitz function on Rn that is supported in B(0, 1).

Thus, u ∈ H
1,(n,1)
0 (Rn). Moreover, the function 1

1−ε
u is in S({0}) for every ε in (0, 1).

For every r in (0,∞) we define ur : R
n → [0, 1] by ur(x) = u(x

r
). We notice that

ur is a Lipschitz function on Rn that is supported in B(0, r) for every r > 0. Thus,

ur ∈ H
1,(n,1)
0 (Rn) for every r > 0. Moreover, the function 1

1−ε
ur is in S({0}) for every

r > 0 and for every ε in (0, 1).
It is easy to see that

‖ur‖Ln,1(Rn) = r‖u‖Ln,1(Rn) and ‖∇ur‖Ln,1(Rn;Rn) = ‖∇u‖Ln,1(Rn;Rn)

for every r > 0. Thus,

Capn,1({0})
1/n ≤

1

1− ε

(
‖ur‖Ln,1(Rn) + ‖∇ur‖Ln,1(Rn;Rn)

)

=
1

1− ε

(
r‖u‖Ln,1(Rn) + ‖∇u‖Ln,1(Rn;Rn)

)

for every r > 0 and for every ε in (0, 1). By letting r → 0 and ε→ 0, we obtain

Capn,1({0}) ≤ ‖∇u‖nLn,1(Rn;Rn).

An easy computation shows that

|∇u(x)| =

{
1 if 0 < |x| < 1,

0 if |x| > 1.

Thus,

‖∇u‖Ln,1(Rn;Rn) = ‖χB(0,1)‖Ln,1(Rn) =

ˆ Ωn

0

t
1
n
−1 dt = nΩ1/n

n .

Therefore, we obtain

Capn,1({0}) ≤ ‖∇u‖nLn,1(Rn;Rn) = nnΩn.

This finishes the proof of the theorem. �
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The following theorem gives a new proof of the embedding H
1,(n,1)
0 (Ω) →֒ C(Ω)∩

L∞(Ω) whenever Ω ⊂ Rn is an open set and n ≥ 2. This embedding was proved
before by Stein in [17] and by Cianchi–Pick in [2]. See [2, Theorem 3.5 (i)]. Our
approach is different. Our proof uses the theory of the n, 1 relative capacity in Rn,
n ≥ 2 and the the exact value of the n, 1 relative capacity of a point relative to
all its bounded and open neighborhoods from Rn. This value has been obtained in
Theorem 6.2 (ii).

Theorem 6.4. Let Ω ⊂ Rn be an open set, where n ≥ 2 is an integer. If

u ∈ H
1,(n,1)
0 (Ω), then u has a version u∗ ∈ C(Ω) ∩ L∞(Ω) and

(3) ‖u‖L∞(Ω) ≤
1

nΩ
1/n
n

‖∇u‖Ln,1(Ω;Rn).

Moreover, if Ω 6= Rn, then u∗ = 0 on ∂Ω.

Proof. First we prove (3) for the functions in C∞
0 (Ω). So let u be a function in

C∞
0 (Ω). We can assume without loss of generality that u is not identically zero. Let

U ⊂⊂ Ω be a bounded open set such that supp u ⊂⊂ U.
Fix λ ∈ (0, 1). Let Oλ = {x ∈ Ω: |u(x)| > λ‖u‖L∞(Ω)}. Then Oλ ⊂⊂ U is a

bounded nonempty open set and the Lipschitz function |u|
λ‖u‖L∞(Ω)

is supported in U

and is admissible for the condenser (Oλ, U) with respect to the n, 1-capacity. Let
x ∈ Oλ. The monotonicity of the capn,1(·, U) set function and Theorem 6.2 (ii) imply

nΩ1/n
n = capn,1({x}, U)

1/n ≤ capn,1(Oλ, U)
1/n ≤

‖∇u‖Ln,1(Ω;Rn)

λ‖u‖L∞(Ω)

.

Thus,

‖u‖L∞(Ω) ≤
1

nΩ
1/n
n

· λ−1‖∇u‖Ln,1(Ω;Rn)

for every λ ∈ (0, 1). By letting λ → 1, we obtain the desired inequality for u ∈
C∞

0 (Ω).

Suppose now that u ∈ H
1,(n,1)
0 (Ω). Let (uk)k≥1 ⊂ C∞

0 (Ω) be a sequence that

converges to u in H
1,(n,1)
0 (Ω). We can assume without loss of generality that the

sequence (uk)k≥1 ⊂ C∞
0 (Ω) is chosen such that uk converges pointwise to u almost

everywhere in Ω, ∇uk converges pointwise to ∇u almost everywhere in Ω, and such
that

‖uk+1 − uk‖Ln,1(Ω) + ‖∇uk+1 −∇uk‖Ln,1(Ω;Rn) < 2−2k, ∀k ≥ 1.

By applying the inequality (3) to the smooth functions uk and uk+1−uk that are
compactly supported in Ω for every k ≥ 1, we obtain

|uk(x)| ≤
1

nΩ
1/n
n

‖∇uk‖Ln,1(Ω;Rn) and(4)

|uk+1(x)− uk(x)| ≤
1

nΩ
1/n
n

‖∇uk+1 −∇uk‖Ln,1(Ω;Rn)(5)

for all x in Ω and for every k ≥ 1. From the choice of the sequence uk and (5),
it follows that the sequence uk is uniformly fundamental on Ω. Thus, uk converges
uniformly in Ω to a function v ∈ C(Ω). Since the functions uk are in C∞

0 (Ω), we
can assume without loss of generality that they are in C(Ω). This is trivial when
Ω = Rn; when Ω 6= Rn (that is, when ∂Ω 6= ∅), we set all the functions uk to be 0
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on ∂Ω. Thus, the sequence uk is uniformly fundamental in Ω and its uniform limit v
is continuous on Ω. Moreover, if Ω 6= Rn, then v is 0 on ∂Ω.

Since uk converges pointwise almost everywhere to u in Ω and uniformly to v in

Ω, it follows that u = v almost everywhere in Ω. Consequently, v ∈ H
1,(n,1)
0 (Ω) and

∇u = ∇v almost everywhere in Ω.
By letting k → ∞ in (4), we obtain

|v(x)| = lim
k→∞

|uk(x)| ≤
1

nΩ
1/n
n

lim
k→∞

‖∇uk‖Ln,1(Ω;Rn)

=
1

nΩ
1/n
n

‖∇u‖Ln,1(Ω;Rn) =
1

nΩ
1/n
n

‖∇v‖Ln,1(Ω;Rn)

for every x in Ω. Since u = v almost everywhere in Ω, this implies that u ∈ L∞(Ω)
and (3) holds. This finishes the proof of the theorem. �

Remark 6.5. Suppose n ≥ 2 is an integer. We can see easily that we have
equality in (3) for the functions ur that were used in the proof of Theorem 6.3. In
the aforementioned theorem, for a fixed r in (0,∞) the function ur : R

n → [0, 1] was
defined by

ur(x) =

{
1− |x|

r
if 0 ≤ |x| ≤ r,

0 if |x| > r.

As a consequence of Theorem 6.4, we now show that every function in H
1,(n,1)
loc

(Ω)
has a version that is continuous on Ω. It is pretty clear to see that this result also
follows as a consequence of the aforementioned results obtained by Stein in [17] and
by Cianchi–Pick in [2].

Proposition 6.6. Let Ω ⊂ Rn be an open set, where n ≥ 2 is an integer.

Suppose that u ∈ H
1,(n,1)
loc

(Ω). Then u has a version u∗ ∈ C(Ω).

Proof. Choose open sets ∅ = Ω0 ( Ωj ⊂⊂ Ωj+1, j ≥ 1 such that
⋃

j Ωj = Ω.

Like in the proof of [7, Theorem 4.11] (see also Heinonen–Kilpelainen–Martio [12,
Lemma 1.15]), we construct a sequence ψj , j ≥ 1 such that ψj ∈ C∞

0 (Ωj+1 \Ωj−1) for
every j ≥ 1 and

∑
j ψj ≡ 1 on Ω.

We notice via Lemma 4.1 that uψj ∈ H
1,(n,1)
0 (Ω) is compactly supported in Ω for

all j ≥ 1. By applying Theorem 6.4 to the sequence (uψj)j≥1, we find a continuous
version (uψj)

∗ of uψj that is compactly supported in Ω for every j ≥ 1. Then
u∗ :=

∑
j(uψj)

∗ is a version of u =
∑

j uψj. Since on every bounded open set

U ⊂⊂ Ω only finitely many of the functions (uψj)
∗ are non-vanishing, it follows

immediately that u∗ is in fact continuous on Ω. This finishes the proof. �

7. Bounded sequences in non-reflexive Sobolev–Lorentz spaces

Whenever we proved a Monotone Convergence Theorem for the relative and

global Sobolev–Lorentz (p, q) capacities associated to reflexive spaces H
1,(p,q)
0 (Ω), 1 <

q <∞, we always used the fact (via Theorems 4.3–4.4) that every bounded sequence

(uk)k≥1 ⊂ H
1,(p,q)
0 (Ω) has a subsequence (uki) that converges weakly in H1,(p,q)(Ω) to

a function u ∈ H
1,(p,q)
0 (Ω).

We know that the spaces H1,(p,1)(Ω) and H
1,(p,1)
0 (Ω) are not reflexive. See for

instance the discussion from Section 4.1 in our paper [7]. In this section we prove
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a weak convergence theorem concerning H1,(p,1)(Ω) and H
1,(p,q)
0 (Ω) that is similar to

Theorem 4.4. The weak convergence result concerning H1,(p,1)(Ω) is valid whenever

1 < p <∞. See Theorem 7.1 (i). The weak convergence result concerning H
1,(p,1)
0 (Ω)

is valid whenever 1 ≤ n < p <∞ or 1 < n = p <∞. See Theorem 7.1 (ii).
This theorem shows that if a bounded sequence from H1,(p,1)(Ω) converges weakly

in a reflexive space H1,(p,q)(Ω) to a function fromH1,(p,q)(Ω) for some fixed q in (1,∞),
then that limiting function is in H1,(p,1)(Ω) and the sequence converges weakly to
the same function in every reflexive space H1,(p,s)(Ω), 1 < s < ∞. However, this
type of convergence appears to yield less than the classical weak convergence in
Lp,1(Ω) × Lp,1(Ω;Rn). We plan to investigate the relation between these types of
convergence in a subsequent paper.

Theorem 7.1. Let Ω ⊂ Rn be an open set, where n ≥ 1 is an integer. Suppose
that 1 < p, q < ∞. Let u be a function in H1,(p,q)(Ω) and let (uk)k≥1 ⊂ H1,(p,1)(Ω)
be a sequence that is bounded in H1,(p,1)(Ω). Suppose that uk converges to u weakly
in L(p,q)(Ω) and that ∇uk converges to ∇u weakly in L(p,q)(Ω;Rn).

(i) We have that u is in H1,(p,1)(Ω). Moreover, the sequence uk converges to
u weakly in L(p,s)(Ω), while the sequence ∇uk converges to ∇u weakly in
L(p,s)(Ω;Rn) for every 1 < s <∞. Also, we have

ˆ

Ω

uk(x)ϕ(x) dx→

ˆ

Ω

u(x)ϕ(x) dx and

ˆ

Ω

∂iuk(x)ϕ(x) dx→

ˆ

Ω

∂iu(x)ϕ(x) dx, i = 1, . . . , n

(6)

for every simple function ϕ ∈ Lp′,∞(Ω). Furthermore, we have

‖u‖H1,(p,1)(Ω) ≤ lim inf
k→∞

‖uk‖H1,(p,1)(Ω),(7)

‖u‖H1,p,1(Ω) ≤ lim inf
k→∞

‖uk‖H1,p,1(Ω),(8)

‖∇u‖L(p,1)(Ω;Rn) ≤ lim inf
k→∞

‖∇uk‖L(p,1)(Ω;Rn) and(9)

‖∇u‖Lp,1(Ω;Rn) ≤ lim inf
k→∞

‖∇uk‖Lp,1(Ω;Rn).(10)

(ii) Suppose that 1 ≤ n < p < ∞ or 1 < n = p < ∞. If uj ∈ H
1,(p,1)
0 (Ω) for all

j ≥ 1, then u ∈ H
1,(p,1)
0 (Ω).

Proof. (i) We recall that H1,(p,r)(Ω) ⊂ H1,(p,s)(Ω) and H
1,(p,r)
0 (Ω) ⊂ H

1,(p,s)
0 (Ω)

whenever 1 ≤ r < s ≤ ∞. (See [7, Theorem 4.3]). Moreover, from Remark 3.2,
(2) and the definition of the Sobolev–Lorentz spaces and norms on Ω, it follows that
there exists a constant C(p, r, s) > 0 such that

(11) ‖v‖H1,(p,s)(Ω) ≤ C(p, r, s)‖v‖H1,(p,r)(Ω)

for every v ∈ H1,(p,r)(Ω). Thus, any sequence that is bounded in H1,(p,1)(Ω) is also
bounded in H1,(p,s)(Ω) whenever 1 < s <∞. Similarly, any sequence that is bounded

in H
1,(p,1)
0 (Ω) is also bounded in H

1,(p,s)
0 (Ω) whenever 1 < s < ∞. The spaces

H1,(p,s)(Ω) and H
1,(p,s)
0 (Ω) are reflexive whenever 1 < p, s < ∞. See the discussion

before Theorem 4.1 from our paper [7].
Let q in (1,∞) be fixed. From Theorem 4.4 it follows that for any sequence ũk

that is bounded inH1,(p,q)(Ω) there is a subsequence ũki and a function ũ ∈ H1,(p,q)(Ω)
such that ũki converges weakly to ũ in L(p,q)(Ω) and ∇ũki converges weakly to ∇ũ in
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L(p,q)(Ω;Rn). Moreover, from Theorem 4.4 it follows that ũ is in H
1,(p,q)
0 (Ω) if all the

functions ũj are in H
1,(p,q)
0 (Ω).

If such a sequence ũk is bounded in H1,(p,1)(Ω), from (11), Theorem 4.4 and from
the discussion in the previous paragraph we obtain the existence of a subsequence
ũki and of a function ũ ∈ H1,(p,q)(Ω) such that ũki converges weakly in Lp,q(Ω) to
ũ and such that ∇ũki converges weakly to ∇ũ in Lp,q(Ω;Rn). Moreover, from the

discussion in the previous paragraph and from (11) it follows that ũ is in H
1,(p,q)
0 (Ω)

if all the functions ũj are in H
1,(p,1)
0 (Ω).

However, since the subsequence ũki is bounded in the non-reflexive space H1,(p,1)

(Ω), it is also bounded via (11) in the reflexive spaces H1,(p,s)(Ω) for every 1 <
s < ∞. From this, the fact that ũ is the weak limit of the subsequence ũki in
H1,(p,q)(Ω), from the definition of the spaces Lp,s(Ω;Rm), from Hunt [13, p. 258] and
from Bennett–Sharpley [1, Theorem IV.4.7 and Corollary IV.4.8], it follows in fact
that ũ ∈ H1,(p,s)(Ω) for every 1 < s <∞. Moreover, ũki converges weakly in Lp,s(Ω)
to ũ and ∇ũki converges weakly to ∇ũ in Lp,s(Ω;Rn) for every 1 < s <∞.

Thus, if we have a bounded sequence uk in H1,(p,1)(Ω) that converges weakly in
H1,(p,q)(Ω) to a function u ∈ H1,(p,q)(Ω), the above argument shows that u belongs
to H1,(p,s)(Ω), uk converges weakly in Lp,s(Ω) to u and ∇uk converges weakly to ∇u
in Lp,s(Ω;Rn) for every 1 < s < ∞. Moreover, (6) holds for u and for the sequence

uk. If in addition the sequence (uk)k≥1 ⊂ H
1,(p,1)
0 (Ω) is bounded in H

1,(p,1)
0 (Ω), from

the previous argument and Theorem 4.4 it follows that the function u is in fact in

H
1,(p,s)
0 (Ω) for all 1 < s <∞.

From (6) it follows easily via Fatou’s Lemma and via the Hölder inequality for
Lorentz spaces (see [5, Theorem 2.3] and/or [7, Theorem 3.7]) that

∣∣∣∣
ˆ

Ω

u(x)ϕ(x) dx

∣∣∣∣ ≤
(
lim inf
k→∞

‖uk‖Lp,1(Ω)

)
‖ϕ‖Lp′,∞(Ω) and(12)

∣∣∣∣
ˆ

Ω

∂iu(x)ϕ(x) dx

∣∣∣∣ ≤
(
lim inf
k→∞

‖∂iuk‖Lp,1(Ω)

)
‖ϕ‖Lp′,∞(Ω), i = 1, . . . , n,(13)

for every simple function ϕ ∈ Lp′,∞(Ω).
From (12) and Bennett–Sharpley [1, Proposition I.3.13, Theorems I.4.1 and

IV.4.7] it follows that u is in Lp,1(Ω). From (13) and Bennett–Sharpley [1, Proposi-
tion I.3.13, Theorems I.4.1 and IV.4.7] it follows that ∂iu is in Lp,1(Ω) for i = 1, n.
Thus, u is in W 1,(p,1)(Ω). Since W 1,(p,1)(Ω) = H1,(p,1)(Ω) (see [7, Theorem 4.11]), it
follows that u is indeed in H1,(p,1)(Ω).

Thus, we finally showed that u is in H1,(p,1)(Ω). Now we prove that

‖u‖L(p,1)(Ω) ≤ lim inf
k→∞

‖uk‖L(p,1)(Ω) and(14)

‖∂iu‖L(p,1)(Ω) ≤ lim inf
k→∞

‖∂iuk‖L(p,1)(Ω), i = 1, . . . , n.(15)

From (6) and Stein–Weiss [18, Lemma V.3.17 (i) and (iii)] it follows that whenever
0 < t ≤ |Ω| there exist Lebesgue measurable sets Et and Et,i ⊂ Ω, i = 1, . . . n such
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that |Et| = |Et,i| = t, i = 1, . . . , n and such that

u∗∗(t) =
1

t

ˆ t

0

u∗(s) ds =
1

t

ˆ

Et

|u(x)| dx ≤ lim inf
k→∞

1

t

ˆ

Et

|uk(x)| dx(16)

≤ lim inf
k→∞

1

t

ˆ t

0

|uk|
∗(s) ds = lim inf

k→∞
u∗∗k (t) and

|∂iu|
∗∗(t) =

1

t

ˆ t

0

|∂iu|
∗(s) ds =

1

t

ˆ

Et,i

|∂iu(x)| dx ≤ lim inf
k→∞

1

t

ˆ

Et,i

|∂iuk(x)| dx(17)

≤ lim inf
k→∞

1

t

ˆ t

0

|∂iuk|
∗(s) ds = lim inf

k→∞
|∂iuk|

∗∗(t), i = 1, . . . , n.

Now (14) follows from (16) and Fatou’s Lemma, while (15) follows from (17) and
Fatou’s Lemma.

Since we do not know whether the sequence (uk,∇uk) converges weakly to (u,∇u)
in Lp,1(Ω)×Lp,1(Ω;Rn) or not, we cannot use the weak-⋆ lower semicontinuity of the
Lp,1 quasinorm in order to derive (7)–(10). Thus, we have to use a different approach
in order to obtain (7)–(10).

We can choose subsequences uk,1, uk,2, uk,3 and uk,4 such that

lim
k→∞

‖uk,1‖H1,(p,1)(Ω) = lim inf
k→∞

‖uk‖H1,(p,1)(Ω),(18)

lim
k→∞

‖uk,2‖H1,p,1(Ω) = lim inf
k→∞

‖uk‖H1,p,1(Ω),(19)

lim
k→∞

‖∇uk,3‖L(p,1)(Ω;Rn) = lim inf
k→∞

‖∇uk‖L(p,1)(Ω;Rn) and(20)

lim
k→∞

‖∇uk,4‖Lp,1(Ω;Rn) = lim inf
k→∞

‖∇uk‖Lp,1(Ω;Rn).(21)

We can apply the Mazur lemma to the sequences (uk,i,∇uk,i), i = 1, . . . , 4, with
respect to the reflexive space L(p,q)(Ω) × L(p,q)(Ω;Rn) to obtain sequences vk,i of
convex combinations of uk,i, i = 1, . . . , 4 such that vk,i → u in H1,(p,q)(Ω), vk,i → u
almost everywhere in Ω and ∇vk,i → ∇u almost everywhere in Ω, i = 1, 4.

We present here the construction argument for the Mazur lemma. Let k0 ≥ 1
and 1 ≤ i ≤ 4 be fixed. Since every subsequence of (uk,i,∇uk,i) converges to (u,∇u)
weakly in L(p,q)(Ω)×L(p,q)(Ω;Rn), we may use the Mazur lemma for the subsequence
uk,i, k ≥ k0 with respect to L(p,q)(Ω) × L(p,q)(Ω;Rn). We obtain a finite convex
combination vk0,i of the functions uk,i, k ≥ k0,

vk0,i =

jk0,i∑

j=k0

λk0,j,iuj,i, λk0,j,i ≥ 0 and

jk0,i∑

j=k0

λk0,j,i = 1

as close to u as we want in H1,(p,q)(Ω) (but not necessarily in H1,(p,1)(Ω)).
A finite convex combination of functions from H1,(p,1)(Ω) is a function from

H1,(p,1)(Ω). Moreover, for every i = 1, . . . , 4 we have (vk,i)k≥1 ⊂ H
1,(p,1)
0 (Ω) if

(uk)k≥1 ⊂ H
1,(p,1)
0 (Ω). Passing to subsequences if necessary, we may assume for every

i = 1, . . . , 4 that vk,i → u almost everywhere in Ω, ∇vk,i → ∇u almost everywhere
in Ω and that

‖vk+1,i − vk,i‖L(p,q)(Ω) + ‖∇vk+1,i −∇vk,i‖L(p,q)(Ω;Rn) < 2−2k

for every k ≥ 1.
This ends the construction of the sequences (vk,i)k≥1 ⊂ H1,(p,1)(Ω), i = 1, . . . , 4

by using the Mazur lemma with respect to L(p,q)(Ω)× L(p,q)(Ω;Rn).
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Now we finish the prove of claim (i). From the convexity of both the p, 1-norm and
the (p, 1)-norm, the choice of the sequences uk,i, and the definition of the functions
vk,i, i = 1, . . . , 4 we obtain

lim inf
k→∞

‖vk,1‖H1,(p,1)(Ω) ≤ lim inf
k→∞

‖uk‖H1,(p,1)(Ω),(22)

lim inf
k→∞

‖vk,2‖H1,p,1(Ω) ≤ lim inf
k→∞

‖uk‖H1,p,1(Ω),(23)

lim inf
k→∞

‖∇vk,3‖L(p,1)(Ω;Rn) ≤ lim inf
k→∞

‖∇uk‖L(p,1)(Ω;Rn) and(24)

lim inf
k→∞

‖∇vk,4‖Lp,1(Ω;Rn) ≤ lim inf
k→∞

‖∇uk‖Lp,1(Ω;Rn).(25)

Since the sequences vk,i, k ≥ 1 converge pointwise almost everywhere on Ω to u for
every i = 1, . . . , 4, it follows via Bennett–Sharpley [1, Proposition II.1.7] and via
Fatou’s Lemma that for every i = 1, . . . , 4 we have

(26) u∗(t) ≤ lim inf
k→∞

v∗k,i(t) and u∗∗(t) ≤ lim inf
k→∞

v∗∗k,i(t) for every t > 0.

Similarly, since the sequences ∇vk,i, k ≥ 1 converge pointwise almost everywhere
on Ω to ∇u for every i = 1, . . . , 4, it follows via Bennett–Sharpley [1, Proposi-
tion II.1.7] and via Fatou’s Lemma that for every i = 1, . . . , 4 we have

(27) |∇u|∗(t) ≤ lim inf
k→∞

|∇vk,i|
∗(t) and |∇u|∗∗(t) ≤ lim inf

k→∞
|∇vk,i|

∗∗(t)

for every t > 0. Moreover, from (22), (23), (24) and (25) we have via (26) and (27)
and via Fatou’s Lemma

‖u‖H1,(p,1)(Ω) ≤ lim inf
k→∞

‖vk,1‖H1,(p,1)(Ω) ≤ lim inf
k→∞

‖uk‖H1,(p,1)(Ω),

‖u‖H1,p,1(Ω) ≤ lim inf
k→∞

‖vk,2‖H1,p,1(Ω) ≤ lim inf
k→∞

‖uk‖H1,p,1(Ω),

‖∇u‖L(p,1)(Ω;Rn) ≤ lim inf
k→∞

‖∇vk,3‖L(p,1)(Ω;Rn) ≤ lim inf
k→∞

‖∇uk‖L(p,1)(Ω;Rn) and

‖∇u‖Lp,1(Ω;Rn) ≤ lim inf
k→∞

‖∇vk,4‖Lp,1(Ω;Rn) ≤ lim inf
k→∞

‖∇uk‖Lp,1(Ω;Rn).

This finishes the proof of claim (i).
(ii) Now we prove the second claim of the theorem. Before we start the proof of

claim (ii), we recall that in part (i) we proved that if we have a sequence (uk)k≥1 ⊂

H
1,(p,1)
0 (Ω) that is bounded in H1,(p,1)(Ω) such that uk converges to u weakly in

L(p,q)(Ω) and such that ∇uk converges to ∇u weakly in L(p,q)(Ω;Rn) for some q in

(1,∞), then u in H
1,(p,s)
0 (Ω) whenever 1 < s <∞. Moreover, we also proved in part

(i) that the sequence uk converges to u weakly in L(p,s)(Ω) and that the sequence ∇uk
converges to ∇u weakly in L(p,s)(Ω;Rn) whenever 1 < s <∞. Furthermore, we also
proved that u is in H1,(p,1)(Ω). The result in part (i) is valid whenever 1 < p <∞.

Now we show that if the sequence (uk)k≥1 ⊂ H
1,(p,1)
0 (Ω) is bounded in H1,(p,1)(Ω),

uk converges to u weakly in L(p,q)(Ω) and ∇uk converges to ∇u weakly in L(p,q)(Ω;Rn)

for some q in (1,∞), then u ∈ H
1,(p,1)
0 (Ω) provided that 1 ≤ n < p < ∞ or 1 < n =

p <∞.
Under the hypotheses of claim (ii) we can assume without loss of generality via

the discussion at the beginning of the proof of this theorem together with our previous
results [7, Theorem 5.5 (iii)] when 1 = n < p < ∞ and respectively [7, Theorem 5.6
(iv)] when 1 < n < p <∞ that u and all the functions uk and vk,i, k ≥ 1, i = 1, . . . , 4
are Hölder continuous with exponent 1− n

p
on the closed set Ω. Moreover, if ∂Ω 6= ∅,

all these functions are 0 on ∂Ω. Furthermore, from the construction of the sequences
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vk,i, from our previous results [7, Theorem 5.5 (iii)] when 1 = n < p < ∞ and
respectively [7, Theorem 5.6 (iv)] when 1 < n < p <∞, it follows that the sequences
vk,i converge uniformly to u on compact subsets of Ω (or respectively uniformly on
Ω if Ω is bounded).

When 1 < n = p <∞, we can assume without loss of generality via Theorem 6.6
that u is continuous on Ω. Moreover, when 1 < n = p < ∞ we can also assume
without loss of generality via Theorem 6.4 that all the functions uk and vk,i are
continuous on Ω and in addition, if ∂Ω 6= ∅, all of them are 0 on ∂Ω.

We notice that claim (ii) holds trivially for all p in (1,∞) when Ω = Rn via our
previous result [7, Theorem 4.12] or when u is compactly supported in Ω via our
previous result [7, Lemma 4.21].

We need to prove claim (ii) when Ω 6= Rn. We have to consider two separate
cases, Ω bounded and Ω 6= Rn unbounded. Before we differentiate between the
cases Ω bounded and Ω 6= Rn unbounded, we extend the functions uk, vk,i and u by
zero on the nonempty set Rn \ Ω and we denote these extensions by ũk, ṽk,i and ũ
respectively. From the discussion at the beginning of the proof of claim (ii) it follows
that all the functions ũk and ṽk,i are continuous on Rn. From our previous result [7,
Proposition 5.2] and from the hypothesis of claim (ii), we see that the sequence ũk is

bounded in H
1,(p,1)
0 (Rn), ũk converges weakly to ũ in L(p,q)(Rn) and ∇ũk converges

weakly to ∇ũ in L(p,q)(Rn;Rn). Thus, via claim (i) it follows that ũ ∈ H
1,(p,1)
0 (Rn).

This implies via [7, Theorem 5.5 (iii)] when 1 = n < p <∞, via [7, Theorem 5.6 (iv)]
when 1 < n < p <∞ and respectively via Theorem 6.6 when 1 < n = p <∞ that ũ
has a version ũ∗ ∈ C(Rn). Since ũ∗ is continuous on Rn, u is continuous on Ω and
the restriction of ũ∗ to Ω is a version of u, it follows immediately that u = ũ∗ = ũ
everywhere in Ω.

Now we consider the cases Ω bounded and Ω 6= Rn unbounded separately.
Case 1. We start with the case when Ω is bounded. We saw already that

u = ũ∗ = ũ everywhere in Ω. Since ũ is zero everywhere on Rn \ Ω ⊃ ∂Ω and its
version ũ∗ is in C0(R

n), it follows in fact that ũ∗ is zero everywhere in Rn \ Ω ⊃ ∂Ω
along with ũ. Thus, ũ = ũ∗ everywhere on Rn, both of them are zero on ∂Ω (along
with u) and ũ∗ = ũ = u in Ω. Thus, we proved that u is a continuous function
on Ω that extends continuously by 0 on ∂Ω. This implies via our previous result [7,

Lemma 4.21] that u ∈ H
1,(p,1)
0 (Ω). Thus, claim (ii) holds when Ω is bounded provided

that 1 ≤ n < p <∞ or 1 < n = p <∞.
Case 2. We consider now the case when Ω 6= Rn is unbounded. Without loss of

generality we can assume that 0 ∈ Ω 6= Rn. Like in the proof of [7, Theorem 4.12],
we choose a sequence of 2-Lipschitz smooth functions (φj)j≥1 ⊂ C∞

0 (Rn) such that
0 ≤ φj ≤ 1, φj = 1 on B(0, j) and such that φj is compactly supported in B(0, j+1)
for every j ≥ 1. We recall that in the discussion before the proof of Case 1, we
extended the functions uk, vk,i and u by zero on Rn \ Ω and we denoted these
extensions by ũk, ṽk,i and ũ respectively. We noticed then that all the functions ũk
and ṽk,i are continuous on Rn.

Let j ≥ 1 be a fixed integer and let s ≥ 1 be a finite number. Let Ωj :=
Ω ∩ B(0, j + 1). Via Lemma 4.1 and Remark 4.2 (see also [7, Lemma 4.9 and

Theorem 4.11]) we have that wφj is in H
1,(p,s)
0 (Ωj) whenever w is in H

1,(p,s)
0 (Ω) with

‖wφj‖H1,(p,s)(Ωj) ≤ 3‖w‖H1,(p,s)(Ω)
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for all w ∈ H
1,(p,s)
0 (Ω). Thus, via Lemma 4.1 and Remark 4.2 (see also [7, Lemma 4.9

and Theorem 4.11]), we see that the sequence ukφj is bounded in H
1,(p,1)
0 (Ωj) since

φj ∈ C∞
0 (Rn) is compactly supported in B(0, j + 1) and since the sequence uk is

bounded in H
1,(p,1)
0 (Ω).

It is also easy to see via [7, Lemma 4.9] that we have ukφj → uφj weakly in
L(p,q)(Ωj) and ∇(ukφj) → ∇(uφj) weakly in L(p,q)(Ωj;R

n) since φj ∈ C∞
0 (Rn) is

compactly supported in B(0, j+1), uk → u weakly in L(p,q)(Ω) and since ∇uk → ∇u
weakly in L(p,q)(Ω;Rn). By applying Case 1 to the sequence (ukφj)k≥1 with respect to

the bounded open set Ωj , we see that uφj ∈ H
1,(p,1)
0 (Ωj). Thus, uφj ∈ H

1,(p,1)
0 (Ωj) ⊂

H
1,(p,1)
0 (Ω) for every j ≥ 1 integer. By doing a computation similar to the one from

the proof of our previous result [7, Theorem 4.12], we obtain

‖ũ− ũφj‖H1,(p,1)(Rn) ≤ ‖ũ(1− φj)‖L(p,1)(Rn) + ‖ũ∇φj‖L(p,1)(Rn;Rn)

+ ‖(1− φj)∇ũ‖L(p,1)(Rn;Rn)

≤ 3 ‖ũχRn\B(0,j)‖L(p,1)(Rn) + ‖∇ũχRn\B(0,j)‖L(p,1)(Rn;Rn) → 0

as j → ∞. From this, [7, Proposition 5.2], the definition of ũ and the fact that ũφj

is the extension by 0 on Rn \ Ωj of uφj ∈ H
1,(p,1)
0 (Ωj) ⊂ H

1,(p,1)
0 (Ω) for every j ≥ 1

integer, it follows that u ∈ H
1,(p,1)
0 (Ω). This finishes the proof of the case Ω 6= Rn

unbounded. Thus, we finish proving claim (ii) and the theorem. �

Remark 7.2. When proving this weak convergence result for H
1,(p,1)
0 (Ω), we

relied heavily many times on the fact that we can work with continuous functions

from H
1,(p,1)
0 (Ω) whenever 1 ≤ n < p < ∞ or 1 < n = p < ∞. The existence of

discontinuous and/or unbounded functions in H
1,(p,1)
0 (Ω) when 1 < p < n leaves as an

open question the membership of the limit function u in H
1,(p,1)
0 (Ω) when 1 < p < n,

Ω ⊂ Rn is bounded and u is not compactly supported in Ω. Thus, we do not know

at this point in time whether the weak convergence result concerning H
1,(p,1)
0 (Ω) can

be extended to the case 1 < p < n.

The following proposition will be useful in the sequel.

Proposition 7.3. Suppose that 1 < n, q < ∞, where n is an integer. Let

Ω ⊂ Rn be an open set. Let u be a function in C(Ω) ∩H
1,(n,1)
0 (Ω) and let (uk)k≥1 ⊂

C(Ω) ∩H
1,(n,1)
0 (Ω) be a sequence in H

1,(n,1)
0 (Ω) such that

‖uk − u‖L(n,q)(Ω) + ‖∇uk −∇u‖L(n,q)(Ω;Rn) < 2−2k

for every k ≥ 1. Then there exists a Borel set F ⊂ Ω such that Capn,q(F ) = 0 and
such that uk → u pointwise on Ω \ F.

Proof. For every k ≥ 1 let

Ok = {x ∈ Ω: |uk+1(x)− uk(x)| > 2−k} and Uk =
⋃

l≥k

Ol.

Since all the functions uj are continuous on Ω, it follows that Ok is in fact an open
subset of Ω for every k ≥ 1. For every k ≥ 1, the function wk := 2k|uk+1 − uk| is
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admissible for the open set Ok with respect to the global (n, q)-capacity and we have

Cap(n,q)(Ok)
1/n ≤ ‖wk‖L(n,q)(Ω) + ‖∇wk‖L(n,q)(Ω;Rn)

= 2k(‖uk+1 − uk‖L(n,q)(Ω) + ‖∇uk+1 −∇uk‖L(n,q)(Ω;Rn))

≤ 2k(‖uk+1 − u‖L(n,q)(Ω) + ‖∇uk+1 −∇u‖L(n,q)(Ω;Rn))

+ 2k(‖uk − u‖L(n,q)(Ω) + ‖∇uk −∇u‖L(n,q)(Ω;Rn))

< 2k (2−2(k+1) + 2−2k) < 21−k.

The set Uk is a countable union of open sets in Ω, hence it an open set in Ω itself
and

Capn,q(Uk)
1/n ≤ Cap(n,q)(Uk)

1/n ≤
∞∑

j=k

Cap(n,q)(Oj)
1/n ≤

∞∑

j=k

21−j = 22−k.

Let F =
⋂

k≥1 Uk. It follows immediately that F is a Borel set and Capn,q(F ) =
Cap(n,q)(F ) = 0. Let v : Ω → R be the function

v(x) =

{
limk→∞ uk(x) if x ∈ Ω \ F,

0 if x ∈ F.

We notice that uk converges to v pointwise in Ω \ F and uniformly on the sets
Ω \ Uj, j ≥ 1. In particular v is continuous when restricted to the sets Ω \ Uj , j ≥ 1.
We know that u = v almost everywhere in Ω since the sequence uk converges to u in

H
1,(n,q)
0 (Ω) and to v almost everywhere in Ω. We claim that u = v on Ω \ F . This

would imply that that vk converges to u pointwise in Ω\F and uniformly on the sets
Ω \ Uj , j ≥ 1.

In order to prove that u = v on Ω \F , it is enough to prove that u = v on Ω \Uj

for all j ≥ 1 since F =
⋂

j≥1Uj . Let j ≥ 1 be fixed. We study two separate cases
here, depending on whether Ω is bounded or not.

Case 1. Assume that Ω is bounded. We can assume without loss of generality
via Theorem 6.4 that u and the functions uk are continuous on Ω and 0 on ∂Ω. We
can also extend v by 0 on ∂Ω.

Since u is continuous on Ω, since v is continuous when restricted to Ω \ Uj and
since u = v almost everywhere in Ω we have that u = v pointwise on the open set
Ω \ U j because all the points in this open set are Lebesgue points for both u and v.

We still have to show that u = v on ∂Uj . Since the functions u and v agree on Ω\U j

and on ∂Ω and since they are both continuous when restricted to Ω \ Uj , it follows
that they agree on ∂Uj as well. Therefore, u = v on Ω \ Uj when Ω is bounded.

Case 2. We assume now that Ω is unbounded. We can assume without loss of
generality that 0 ∈ Ω. Like in the proof of [7, Theorem 4.12], we choose a sequence
of 2-Lipschitz smooth functions (φm)m≥1 ⊂ C∞

0 (Rn) such that 0 ≤ φm ≤ 1, φm = 1
on B(0, m) and such that φm is compactly supported in B(0, m+1) for every integer
m ≥ 1. For a fixed m ≥ 1 let

Ok,m = {x ∈ Ω: |(uk+1φm)(x)− (ukφm)(x)| > 2−k} and Uk,m =
⋃

l≥k

Ol,m.
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For every fixed m ≥ 1 it is easy to see that uφm ∈ C(Ω) ∩ H
1,(n,1)
0 (Ω) and that

(ukφm)k≥1 ⊂ C(Ω) ∩H
1,(n,1)
0 (Ω). Moreover,

‖ukφm − uφm‖L(n,q)(Ω) ≤ ‖uk − u‖L(n,q)(Ω) and

‖∇(ukφm)−∇(uφm)‖L(n,q)(Ω;Rn) ≤ ‖∇uk −∇u‖L(n,q)(Ω;Rn) + 2‖uk − u‖L(n,q)(Ω)

for every k ≥ 1. From our choice of the sequence of the sequence (φm)m≥1 it follows
that

Ok∩B(0, m) ⊂ Ok,m ⊂ Ok∩B(0, m+1) and Uk∩B(0, m) ⊂ Uk,m ⊂ Uk∩B(0, m+1)

for all integers k,m ≥ 1.
By applying Case 1 to the sequence (ukφm)k≥1 and to the bounded sets Uj,m ⊂

Uj ∩B(0, m+1) and Ω∩B(0, m+1), we see that ukφm → uφm uniformly on Ω\Uj,m

for every m ≥ 1. From this, the definition of the functions φm and the fact that
uk → v uniformly on Ω \ Uj, it follows that uφm = vφm on Ω \ Uj for every m ≥ 1.
Thus, u = v on Ω \ Uj when Ω is unbounded. This finishes the proof of Case 2 and
the proof of the proposition. �

8. Choquet property for the capacities associated to H
1,(p,1)
0 (Ω)

In this section we prove that the Sobolev–Lorentz relative and global capacities
defined via the (p, 1) norm and respectively via the p, 1 norm have the Choquet
property whenever 1 ≤ n < p < ∞ or 1 < n = p < ∞. We prove that all
these set functions satisfy a Monotone Convergence Theorem type result whenever
1 ≤ n < p < ∞ or 1 < n = p < ∞. See Theorems 5.1 (v), 5.5 (v), 5.9 (iv) and
respectively 5.12 (iv) and the discussions before and after Questions 5.3, 5.7, 5.11
and respectively 5.14.

We start by showing that the Monotone Convergence Theorem holds for the (p, 1)
and the p, 1 relative capacities whenever 1 ≤ n < p <∞ or 1 < n = p <∞.

Theorem 8.1. Let n ≥ 1 be an integer. Suppose that 1 ≤ n < p < ∞ or
1 < n = p < ∞. Let Ω ⊂ Rn be bounded and open. Let Ek be an increasing set of
subsets in Ω and let E =

⋃∞
k=1Ek. Then

(i) limk→∞ cap(p,1)(Ek,Ω) = cap(p,1)(E,Ω),
(ii) limk→∞ capp,1(Ek,Ω) = capp,1(E,Ω).

Proof. We start by proving claim (i). Due to the monotonicity of cap(p,1)(·,Ω),
we have obviously

L := lim
k→∞

cap(p,1)(Ek,Ω)
1/p ≤ cap(p,1)(E,Ω)

1/p.

To prove the opposite inequality, we may assume without loss of generality that
L < ∞. Let ε ∈ (0, 1) be fixed. For every k ≥ 1 we choose uk ∈ A(Ek,Ω) such that
0 ≤ uk ≤ 1 and

(28) ‖∇uk‖L(p,1)(Ω;Rn) < cap(p,1)(Ek,Ω)
1/p + ε

for every k ≥ 1.
Via Theorem 6.4 when 1 < n = p < ∞, via [7, Theorem 5.5 (iii)] when 1 = n <

p < ∞ or via [7, Theorem 5.6 (iv)] when 1 < n < p < ∞ we can assume without
loss of generality (since uk = 1 on an open neighborhood of Ek) that uk is in C(Ω)∩

H
1,(p,1)
0 (Ω) and zero on ∂Ω for every k ≥ 1. We notice that the sequence (uk)k≥1 ⊂
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C(Ω) ∩ H
1,(p,1)
0 (Ω) is bounded in H

1,(p,1)
0 (Ω) because the sequence (uk,∇uk)k≥1 is

bounded in L(p,1)(Ω)× L(p,1)(Ω;Rn).

Since H
1,(p,1)
0 (Ω) ⊂ H1,p

0 (Ω) and the sequence uk is bounded in H
1,(p,1)
0 (Ω), it

follows that uk is bounded in the reflexive space H1,p
0 (Ω). (See the discussion at

the beginning of the proof of Theorem 7.1). Thus, via Theorem 4.4 there exists
u ∈ H1,p

0 (Ω) and a subsequence, which we denote again by uk, such that (uk,∇uk) →
(u,∇u) weakly in Lp(Ω)× Lp(Ω;Rn) as k → ∞.

From Theorem 7.1 (ii) we can assume that u is in fact in C(Ω) ∩H1,(p,1)
0 (Ω) and

u = 0 on ∂Ω. These assumptions can be made via Theorem 6.4 when 1 < n = p <∞,
via [7, Theorem 5.5 (iii)] when 1 = n < p < ∞ or via [7, Theorem 5.6 (iv)] when
1 < n < p <∞. Moreover, from (9) and (28) we also have

‖∇u‖L(p,1)(Ω;Rn) ≤ lim inf
k→∞

‖∇uk‖L(p,1)(Ω;Rn) ≤ L+ ε.

We want to show that u = 1 on E. Let vk,3 be the sequence constructed in the
proof of Theorem 7.1 (i) by applying Mazur’s Lemma with respect to the sequence
(uk,∇uk) and the space Lp(Ω) × Lp(Ω;Rn) in order to prove (9). Since the sets of
admissible functions are closed under finite convex combinations and Ek ր E as
k → ∞, we have that vk,3 ∈ A(Ek,Ω) for every k ≥ 1. In particular, vk,3 = 1 on an
open neighborhood of Ek for every k ≥ 1.

We assume first that 1 ≤ n < p < ∞. By inspecting the proof of Theorem 7.1
(ii) (the case Ω bounded), we see that the functions vk,3 converge uniformly to u on
Ω if 1 ≤ n < p < ∞. Since vj,3 is 1 on Ek whenever j ≥ k ≥ 1, since the functions
vk,3 converge uniformly to u on Ω and since Ek ր E as k → ∞, it follows that u = 1
on E when 1 ≤ n < p <∞. Thus, we proved that u = 1 on E if 1 ≤ n < p <∞.

Assume now that 1 < n = p < ∞. By inspecting the proof of Proposition 7.3,
we see that there exists a Borel set F ⊂ Ω such that Capn(F ) = 0 and such that
the sequence vk,3 converges to u pointwise on Ω \ F . Similarly to the notation from
Proposition 7.3, F ⊂ Ω is defined as F := ∩k≥1Uk, where Uk = ∪j≥kOj and

Ok = {x ∈ Ω: |vk+1,3(x)− vk,3(x)| > 2−k}

for every k ≥ 1.
We see that Oj ∩ Ek = ∅ whenever j ≥ k ≥ 1 because vj,3 = 1 on Ej ⊃ Ek

whenever j ≥ k ≥ 1. Thus, Uk ∩ Ek = ∅ for every k ≥ 1, which implies F ∩ E = ∅.
Thus, vk,3 converges to u pointwise on Ω \ F ⊃ E. Since vj,3 = 1 on Ek whenever
j ≥ k ≥ 1 and since Ek ր E as k → ∞, the pointwise convergence of vk,3 to u on E
implies that u = 1 on E when 1 < n = p < ∞. Thus, we proved that u = 1 on E if
1 < n = p <∞.

So far we showed that u ∈ C(Ω) ∩H
1,(p,1)
0 (Ω), u = 0 on ∂Ω and u = 1 on E. We

notice that u
1−ε

∈ A(E,Ω). Thus, we have

cap(p,1)(E,Ω)
1/p ≤

1

1− ε
‖∇u‖L(p,1)(Ω;Rn) ≤

1

1− ε
(L+ ε)

for every ε ∈ (0, 1). By letting ε→ 0, we obtain

cap(p,1)(E,Ω)
1/p ≤ L = lim

k→∞
cap(p,1)(Ek,Ω)

1/p ≤ cap(p,1)(E,Ω)
1/p.

This finishes the proof of the claim (i), namely the case of the (p, 1) relative capacity.
The proof of claim (ii), namely the case of the p, 1 relative capacity follows by doing
an argument very similar to the argument used in the proof of claim (i). This finishes
the proof of the theorem. �
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From Theorem 8.1 (i) and the discussion before Question 5.3 it follows that the set
function cap(p,1)(·,Ω) satisfies properties (i), (iv) and (v) of Theorem 5.1 whenever
1 ≤ n < p < ∞ or 1 < n = p < ∞. Thus, cap(p,1)(·,Ω) is a Choquet capacity
(relative to Ω) whenever 1 ≤ n < p < ∞ or 1 < n = p < ∞. Like in Theorem 5.1,
the set Ω is bounded and open in Rn, where n ≥ 1 is an integer. We may invoke
an important capacitability theorem of Choquet and state the following result. See
Doob [9, Appendix II].

Theorem 8.2. Let Ω be a bounded open set in Rn, where n ≥ 1 is an integer.
Suppose that 1 ≤ n < p <∞ or 1 < n = p <∞. The set function E 7→ cap(p,1)(E,Ω),
E ⊂ Ω, is a Choquet capacity. In particular, all Borel subsets (in fact, all analytic)
subsets E of Ω are capacitable, i.e.

cap(p,1)(E,Ω) = sup {cap(p,1)(K,Ω): K ⊂ E compact}.

Similarly, from Theorem 8.1 (ii) and the discussion before Question 5.7 it follows
that the set function capp,1(·,Ω) satisfies properties (i), (iv) and (v) of Theorem 5.5
whenever 1 ≤ n < p < ∞ or 1 < n = p < ∞. Thus, capp,1(·,Ω) is a Choquet
capacity (relative to Ω) whenever 1 ≤ n < p < ∞ or 1 < n = p < ∞. Like in
Theorem 5.5, the set Ω is bounded and open in Rn, where n ≥ 1 is an integer. We
may invoke an important capacitability theorem of Choquet and state the following
result. See Doob [9, Appendix II].

Theorem 8.3. Let Ω be a bounded open set in Rn, where n ≥ 1 is an integer.
Suppose that 1 ≤ n < p <∞ or 1 < n = p <∞. The set function E 7→ capp,1(E,Ω),
E ⊂ Ω, is a Choquet capacity. In particular, all Borel subsets (in fact, all analytic)
subsets E of Ω are capacitable, i.e.

capp,1(E,Ω) = sup {capp,1(K,Ω): K ⊂ E compact}.

Now we prove that the Monotone Convergence Theorem holds for the (p, 1) and
the p, 1 global capacities whenever 1 ≤ n < p <∞ or 1 < n = p <∞.

Theorem 8.4. Let n ≥ 1 be an integer. Suppose that 1 ≤ n < p < ∞ or
1 < n = p < ∞. Let Ek be an increasing set of subsets in Rn and let E =

⋃∞
k=1Ek.

Then

(i) limk→∞Cap(p,1)(Ek) = Cap(p,1)(E),
(ii) limk→∞Capp,1(Ek) = Capp,1(E).

Proof. We prove the claim in the case of the global (p, 1)-capacity. Due to the
monotonicity of Cap(p,1)(·), we have obviously

L := lim
k→∞

Cap(p,1)(Ek)
1/p ≤ Cap(p,1)(E)

1/p.

To prove the opposite inequality, we may assume without loss of generality that
L < ∞. Let ε ∈ (0, 1) be fixed. For every k ≥ 1 we choose uk ∈ S(Ek) such that
0 ≤ uk ≤ 1 and

(29) ‖uk‖H1,(p,1)(Rn) < Cap(p,1)(Ek)
1/p + ε

for every k ≥ 1.
Via Theorem 6.4 when 1 < n = p < ∞, via [7, Theorem 5.5 (iii)] when 1 =

n < p < ∞ or via [7, Theorem 5.6 (iv)] when 1 < n < p < ∞ we can assume
without loss of generality (since uk = 1 on an open neighborhood of Ek) that uk
is in C(Rn) ∩ H

1,(p,1)
0 (Rn) for every k ≥ 1. We notice that the sequence (uk)k≥1 ⊂
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C(Rn) ∩ H
1,(p,1)
0 (Rn) is bounded in H

1,(p,1)
0 (Rn) because the sequence (uk,∇uk)k≥1

is bounded in L(p,1)(Rn)× L(p,1)(Rn;Rn).

Since H
1,(p,1)
0 (Rn) ⊂ H1,p

0 (Rn) and the sequence uk is bounded in H
1,(p,1)
0 (Rn),

it follows that uk is bounded in the reflexive space H1,p
0 (Rn). (See the discussion

at the beginning of the proof of Theorem 7.1). Thus, via Theorem 4.4 there exists
u ∈ H1,p

0 (Rn) and a subsequence, which we denote again by uk, such that (uk,∇uk) →
(u,∇u) weakly in Lp(Rn)× Lp(Rn;Rn) as k → ∞.

From Theorem 7.1 (ii) we can assume that u is in fact in C(Rn) ∩H1,(p,1)
0 (Rn).

These assumptions can be made via Theorem 6.4 when 1 < n = p < ∞, via [7,
Theorem 5.5 (iii)] when 1 = n < p < ∞ or via [7, Theorem 5.6 (iv)] when 1 < n <
p <∞. Moreover, from (7) and (29) we also have

‖u‖H1,(p,1)(Rn) ≤ lim inf
k→∞

‖uk‖H1,(p,1)(Rn) ≤ L+ ε.

We want to show that u = 1 on E. Let vk,1 be the sequence constructed in the
proof of Theorem 7.1 (i) by applying Mazur’s Lemma with respect to the sequence
(uk,∇uk) and the space Lp(Rn) × Lp(Rn;Rn) in order to prove (7). Since the sets
of admissible functions are closed under finite convex combinations and Ek ր E as
k → ∞, we have that vk,1 ∈ S(Ek) for every k ≥ 1. In particular, vk,1 = 1 on an
open neighborhood of Ek for every k ≥ 1.

We assume first that 1 ≤ n < p < ∞. By inspecting the proof of Theorem 7.1
(ii) (the case Ω = Rn), we see that the functions vk,1 converge uniformly to u on
compact subsets of Rn if 1 ≤ n < p <∞. Since vj,1 is 1 on Ek whenever j ≥ k ≥ 1,
since the functions vk,1 converge uniformly to u on compact subsets of Rn and since
Ek ր E as k → ∞, it follows that u = 1 on E when 1 ≤ n < p < ∞. Thus, we
proved that u = 1 on E if 1 ≤ n < p <∞.

Assume now that 1 < n = p < ∞. By inspecting the proof of Proposition 7.3,
we see that there exists a Borel set F ⊂ Rn such that Capn(F ) = 0 and such that
the sequence vk,1 converge to u pointwise on Rn \ F . Similarly to the notation from
Proposition 7.3, F ⊂ Rn is defined as F :=

⋂
k≥1Uk, where Uk =

⋃
j≥kOj and

Ok = {x ∈ Rn : |vk+1,1(x)− vk,1(x)| > 2−k}.
We see that Oj ∩ Ek = ∅ whenever j ≥ k ≥ 1 because vj,1 = 1 on Ej ⊃ Ek

whenever j ≥ k ≥ 1. Thus, Uk ∩ Ek = ∅ for every k ≥ 1, which implies F ∩ E = ∅.
Thus, vk,1 converges to u pointwise on Rn \ F ⊃ E. Since vj,1 = 1 on Ek whenever
j ≥ k ≥ 1 and since Ek ր E as k → ∞, the pointwise convergence of vk,1 to u on E
implies that u = 1 on E when 1 < n = p < ∞. Thus, we proved that u = 1 on E if
1 < n = p <∞.

So far we showed that u ∈ C(Rn)∩H
1,(p,1)
0 (Rn) and u = 1 on E. We notice that

u
1−ε

∈ S(E). Thus, we have

Cap(p,1)(E)
1/p ≤

1

1− ε
‖u‖H1,(p,1)(Ω) ≤

1

1− ε
(L+ ε)

for every ε ∈ (0, 1). By letting ε→ 0, we obtain

Cap(p,1)(E)
1/p ≤ L = lim

k→∞
Cap(p,1)(Ek)

1/p ≤ Cap(p,1)(E)
1/p.

This finishes the proof of claim (i), namely the case of the (p, 1) global capacity.
The proof of claim (ii), namely the case of the global p, 1-capacity follows by doing
an argument very similar to the argument used in the proof of claim (i). This finishes
the proof of the theorem. �
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From Theorem 8.4 (i) and the discussion before Question 5.11 it follows that the
set function Cap(p,1)(·) satisfies properties (i), (iii) and (iv) of Theorem 5.9 whenever
1 ≤ n < p < ∞ or 1 < n = p < ∞. Thus, Cap(p,1)(·) is a Choquet capacity when
1 ≤ n < p < ∞ or when 1 < n = p < ∞. Like in Theorem 5.9, n ≥ 1 is an
integer. We may invoke an important capacitability theorem of Choquet and state
the following result. See Doob [9, Appendix II].

Theorem 8.5. Let n ≥ 1 be an integer. Suppose that 1 ≤ n < p < ∞ or
1 < n = p < ∞. The set function E 7→ cap(p,1)(E), E ⊂ Rn, is a Choquet capacity.
In particular, all Borel subsets (in fact, all analytic) subsets E of Rn are capacitable,
i.e.

Cap(p,1)(E) = sup {Cap(p,1)(K) : K ⊂ E compact}.

Similarly, from Theorem 8.4 (ii) and the discussion before Question 5.14 it follows
that the set function Capp,1(·) satisfies properties (i), (iii) and (iv) of Theorem 5.12
whenever 1 ≤ n < p <∞ or 1 < n = p <∞. Thus, Capp,1(·) is a Choquet capacity
whenever 1 ≤ n < p < ∞ or 1 < n = p < ∞. Like in Theorem 5.12, n ≥ 1 is an
integer. We may invoke an important capacitability theorem of Choquet and state
the following result. See Doob [9, Appendix II].

Theorem 8.6. Let n ≥ 1 be an integer. Suppose that 1 ≤ n < p < ∞ or
1 < n = p < ∞. The set function E 7→ Capp,1(E), E ⊂ Rn, is a Choquet capacity.
In particular, all Borel subsets (in fact, all analytic) subsets E of Rn are capacitable,
i.e.

Capp,1(E) = sup {capp,1(K) : K ⊂ E compact}.
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