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Abstract. A one-component inner function © is an inner function whose level set
Qo(e) ={zeD: |0(2)| < e}

is connected for some € € (0,1). We give a sufficient condition for a Blaschke product with zeros in
a Stolz domain to be a one-component inner function. Moreover, a sufficient condition is obtained
in the case of atomic singular inner functions. We study also derivatives of one-component inner
functions in the Hardy and Bergman spaces. For instance, it is shown that, for 0 < p < oo, the
derivative of a one-component inner function © is a member of the Hardy space HP if and only if

©" belongs to the Bergman space A”_,, or equivalently ©' € Affi 1-

p—1

1. Examples of one-component inner functions

Let D be the open unit disc of the complex plane C. A bounded and analytic
function in D is an inner function if it has unimodular radial limits almost everywhere
on the boundary T of D. In this note, we study so-called one-component inner
functions [14], which are inner functions © whose level set

Oo(e) = {z € D: |0(2)] < £}

is connected for some ¢ € (0,1). In particular, Blaschke products in this class are
of interest. For a given sequence {z,} C D\ {0} satisfying > (1 — |2,]) < oo, the
Blaschke product with zeros {z,} is defined by

H‘zn‘ “n T2 z € D.

2 1 —2Zp2’

Here each zero z, is repeated accordmg to its multiplicity. In addition, we assume
that {z,} is ordered by non-decreasing moduli.

Recently several authors have studied one-component inner functions in the con-
text of model spaces and operator theory; see for instance [6, 8, 9, 10]. In addition,
Aleksandrov’s paper [5], which contains several characterizations for one-component
inner functions, is worth mentioning. These references do not offer any concrete ex-
amples of infinite one-component Blaschke products; even though, reference [5] offers
tools for this purpose. In recent paper [13] by Cima and Mortini, one can find some
examples. However, all one-component Blaschke products constructed in [13] have
some heavy restrictions. Roughly speaking, zeros of all of them are at least uniformly
separated. Recall that {z,} C D is called uniformly separated if
inf L
neN kin

> 0.

1— Ekzn
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As a concrete example, we mention that the Blaschke product with zeros z, = 1—27"
for n € N is a one-component inner function [13|. In addition, it is a well-known fact
that every finite Blaschke product is a one-component inner function.

Forv>1,¢ €T and C' > 0, we define

R(7,6,C)={z€D: |1 -&|" < C(1 - |z])}.

The region R(1,¢,C) is a Stolz domain with vertex at £. Note that in the case v = 1
we have to assume C' > 1. For v > 1, R(v,&,C) is a tangential approaching region
in D, which touches T at §. Denote by R, the family of all Blaschke products whose
zeros lie in some R(v, &, C') with a fixed . References related to R, are for instance
[4, 11, 21]. With these preparations we are ready to state our first main result.

Theorem 1. Let B be a member of Ry with zeros {z,}52 . If

1— |z
(1.1) fim inf 2zl VD)

n—00 1— |zn|

then B is a one-component inner function.

As a consequence of Theorem 1, we obtain the affirmative answer to the following
question posed in [13]: Is the Blaschke product B with zeros 2z, = 1 — n~2 for
n € N a one-component inner function? Some other examples of one-component
inner functions are listed below. All of these examples can be verified by using the
fact that condition (1.1) is valid if {z,} is ordered by strictly increasing moduli and

lim inf 71 ~ [znil
n—oo | — |zn|

> 0.

Example 2. Let 1 < o < 0o and B be a Blaschke product with zeros

(a) z,=1—n"forn €N, or
(b) znzl—mfornEN\{l},or
(¢) zn=1—a " forn € N.

Then B is a one-component inner function.
A Blaschke product B is said to be thin if its zeros {z,}>2, satisfy

lim (1 — |2,/3)|B'(z,)| = 1.

n—oo
We interpret that finite Blaschke products are not thin. By [13, Corollary 21|, any
thin Blaschke product is not a one-component inner function. Using this fact and
[12, Proposition 4.3(i)], we can give an example which shows that condition (1.1) in
Theorem 1 is essential.

Example 3. Let B be the Blaschke product with zeros {w,}>°, ordered by
strictly increasing moduli and satisfying
1- n
7|w +| — 0, n — oo.
1 — fwy|
Then, by [12, Proposition 4.3(i)], B is a thin Blaschke product (with uniformly
separated zeros). Consequently, for instance, the Blaschke product with zeros z, =

1 —27%" for n € N is not a one-component inner function. Note that zeros {z,} lie
in R(1,1,C) for every C' > 1 but they do not satisfy (1.1).
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Let us recall a classical result of Frostman [17|: The Blaschke product B with
zeros {z,} has a unimodular radial limit at £ € T if and only if

(1.2) 3 |€__|Z: <0

A Blaschke product is called a Frostman Blaschke product if it has a unimodular
radial limit at every point on T. It is a well-known fact that an infinite Frostman
Blaschke product cannot be a one-component inner function; see for instance |5,
Theorem 1.11| or Theorem A in Section 2. Using this fact, we show that any R,
with v > 1 contains a member which is not a one-component inner function but its
zeros {z,} satisfy (1.1). This means that the hypothesis B € Ry in Theorem 1 is
essential.

Example 4. Fix v > 1 and choose o« = () > 1 such that « > 5. Let {zn}
be such that
lzo] =1—n"% and |1—2z,]=n"%", neN.
Since the sequence {z,} is a subset of R(v,1,1), all points of {z,} lie in D. More-

over, it is clear that {z,} satisfies the Blaschke condition ) (1 —|z,|) < oo and
(1.1) in Theorem 1. Hence the Blaschke product B with zeros {z,} is well-defined.

Furthermore,
_I=n a/v—a .
E E n < 00;
< |1 - Zn| —

and thus, B has a unimodular radial limit at 1 by Frostman’s result. Since condition
(1.2) is trivially valid for every & € T \ {1}, B is an infinite Frostman Blaschke
product. Consequently, it is not a one-component inner function.

Recall that a singular inner function takes the form

S,(2) = exp (/ijgda(g)) ., -eD,

where o is a positive measure on T, singular with respect to the Lebesgue measure.
If the measure o is atomic, then this definition reduces to the form

2 + eifn
= exp (Z Vn 629n> , ze€D,

where 6,, € [0, 27) are distinct points and 7,, > 0 satisfy > v, < co. These functions
are known as atomic singular inner functions associated with {e?"} and {v,}.

An atomic singular inner function associated with a measure having only finitely
many mass points is a one-component inner function; see [13, Corollary 17|. In the
literature, one cannot find any example of a one-component singular inner function
associated with a measure having infinitely many mass points. However, the following
result gives a way to construct such functions.

Theorem 5. Let S be the atomic singular inner function associated with {e»}2°
and {v,}2,. Moreover, assume that the following conditions are valid:

(i) 8o =0, {0,}>2, C (0,1) is strictly decreasing and lim,,_,, 6, = 0.
(ii) There exists a constant C' = C(S) > 0 such that |0, _1 — 0,41| < C~2 for all
sufficiently large n € N.

Then S is a one-component inner function.
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Next we give a concrete example of a one-component singular inner function.
This example is a direct consequence of Theorem 5.

Example 6. Let 6y = 0, 6, = 27", v = 1 and 7, = n~2 for n € N. Then
the atomic singular inner function S associated with {e?"}%°  and {v,}5%, is a one-
component inner function.

The remainder of this note is organized as follows. Sections 2 and 3 consist of the
proofs of Theorems 1 and 5, respectively. In Section 4, we study one-component inner
functions whose derivatives belong to the Hardy or Bergman spaces. In particular,
we give partial improvements for [1, Theorem 6.2] and |19, Theorem 3.10].

2. Proof of Theorem 1

We begin by stating a modification of [5, Theorem 1.11], which is due to |5,
p. 2915, Remark 2|. This result offers two practical characterizations for one-compo-
nent inner functions and plays an important role in the proofs of Theorems 1 and 5.
Before it we recall that the spectrum p(©) of an inner function © is the set of all
points on T in which © does not have an analytic continuation. It is a well-known
fact that the spectrum of a Blaschke product consists of the accumulation points of
zeros. By [18, Chapter 2, Theorem 6.2|, the spectrum of a singular inner function S,
is the closed support of the associated measure o.

Theorem A. Let © be an inner function. Then the following statements are
equivalent:

(a) © is a one component inner function.
(b) There exists a constant C' = C(©) > 0 such that

(2.1) ©"(OI < ClO'(Q)I, ¢ T\p(O),

and
(2.2) limir}f\@(rgﬂ <1, €&€p(O).

(c) There exists a constant C' = C(©) > 0 such that (2.1) holds, the Lebesgue
measure of p(©) is zero and ©' is not bounded on any arcI' C T\ p(©) with

T'Np(©) 0.

Write f < g if there exists a constant C' > 0 such that f < Cg, while f 2 g is
understood in an analogous manner. If f < g and f 2 ¢, then the notation f < g is
used. With these preparations we are ready to prove Theorem 1.

Proof of Theorem 1. If B is an arbitrary Blaschke product with zeros {z,}, then

B(z) < EN |2 — 2|
= d |B < — .
B(2) 20 and - [B(:)] = =)

Using these estimates, one can easily verify

B'(2))? I R L
B2 < |B(2) +2BG)| nZ::I 1 —Z,2% 7€
In particular,
> 1—|Zn|2 - 1_|'zn|2
BOISIBOF+2) e < IBOF+ Y
n=1 n n=1 "
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for every ¢ € T \ p(B). Using [4, Theorem 2|, we deduce that (2.1) (with © = B) is
valid if

1— 2] AN
2 2T (F —<\3~<Z\zn <|2>

holds for every ¢ € T \ p(B).

Assume without loss of generality that zeros {z,} of B lie in a Stolz domain
R(1,1,C), and remind that {z,} is ordered by non-decreasing moduli. Then p(B) =
{1}, and the functions f and g, defined by

f(x):{L' 0<z<l1,

min,<,(1 —|z,]), 1<z < oo,

and

g(0) =inf{x: f(x) <0}, 0<6<1,
are non-increasing. Since f(w) =1 —|z,| forn € N and n < w < n+ 1, it is clear
that g: (0,1] = NU{0}, f(z) > 0 for z < g(0), and f(z) < 0 for x > g(d). Write
¢ = €, and assume without loss of generality that # > 0 is close enough to zero.
Using [4, Lemma 3| together with some standard estimates, we obtain

Lo\ (S 1l 1|| v
— |Zn - — |Zn — |Zn
(len <|3> B ;Hznl—d?’) (Z:: 1—1z +92]3/2>
1/2
<| D fm)+o7 Y fn)
n<g(9) n>g(0)
(2.4) 1/2 1/2
<| ) fn +07¥2 1 N f(n
n<g(0) n>g(0)
1/2
< f)T e Y fn
n<g(0) n>g(0)

Applying hypothesis (1.1) and the above-mentioned properties of f and g, we find
C' = C(B) > 0 such that

Zf > Cf(g(0) —1) > C0.

n>g(6
It follows that

1_|Zn| - S 1 — |2,
Z\zn C|2A2(1—|Z )2 + 62

(2.5) 2 n<g(6) n>g(0)
S 1/2
1 B co—3/2
2§Zf(n)l—l— B Zf(n)
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Using estimates (2.4) and (2.5), it is easy to see that condition (2.3) is valid for
¢ € T\ {1}. Consequently, B satisfies (2.1).

Let By be the Blaschke product with zeros {|z,|}. It is obvious that liminf, ,;-
|Bo(r)] = 0. Hence, by the deduction above, it is clear that By satisfies condition
(b) in Theorem A, and thus also the other conditions are valid. Since By satisfies (c)
in Theorem A, also B satisfies it. This is due to [4, Lemma 3|, which asserts that
|B'(&)] < |By(&)| for € € T\ {1}. Hence B is a one-component inner function by
Theorem A. This completes the proof. O

3. Proof of Theorem 5

Let us prove Theorem 5.

Proof of Theorem 5. Due to hypothesis (i), the set of mass points {e?"}> , is
closed. Consequently, the spectrum p(S) consists of points {e®=}°>° . Hence, by [18,
Chapter 2, Theorem 6.2], we have

lim [S(r€)[ =0, €€ p(S).
This means that S satisfies condition (2.2) (with © = S) in Theorem A. Conse-
quently, it suffices to show that S fulfills also (2.1).
By a straightforward calculation, one can check that

2
"oy — Tne " Tme€ " 2+ e'r
S"(z) =4 e <§ oy ewm)2> exp <k§_0 T 62%) , z€D.

o ’yn
1S"(Q)] = 22 [C = ein]?’ ¢ €T\ p(S),
n=0
by [4, Theorem 2|, we obtain
2
50 < 42 T m ISP, CET\AS)
Consequently, it suffices to show
2
(3.1) Z e“"n|3 < <Z eu"n\?) , CeT\p(S).
Assume without loss of generality that ¢ € T \ p(S) is close enough to one, and

write ¢ = €. Choose j = j(0,S) € NU{0} such that |§ — ;] is as small as possible.
Then standard estimates yield

00 1/2 00 1/2
I R ZL)
(Er) - (S
o 1/2
< \9—0j|_3/2 (Z%) = |0—9j|‘3/2
n=0

(3.2)

and

[e.9]

T %
5 LT L aF S T-aF

:0
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If 6 <0, then j7 = 0; and hence, (3.1) is a direct consequence of (3.2) and (3.3). Let
¢ > 0. By hypothesis (i), we have 0;1; < § < 6;_1, where j € N is large enough.
Consequently, hypothesis (ii) gives

i i —3/2
> > 10— 0,2,
0 6P = 1005, g~

According to this estimate, (3.1) is a consequence of (3.2) and (3.3). Finally the
assertion follows from Theorem A. O

4. Derivatives of one-component inner functions in function spaces

We begin by fixing the notation. Let H(D) be the space of all analytic functions
in D. For 0 < p < oo, the Hardy space H? consists of those f € H(D) such that

1 2 ]
1l = sup My(r, f) < oo, Mm.wmﬁz—/|mwww
0<r<1 2 Jo

For 0 < p < oo and —1 < a < 00, the Bergman space AP consists of those f € H(D)
such that

rwy—/uwp 12)* dA(z) < oo,

where dA(z) = dx dy is the Lebesgue area measure on D.
By [23, Theorem 5| and |28, Lemma 1.4], we have

(4.1) {f:ffeA }cH!, 0<p<2
and
(4.2) HP C{f: ffeA) |}, 2<p<oo.

It is clear that {f: f’ € A3} = H? while otherwise the inclusions are strict. For
instance, an example showing the strictness of inclusions (4.1) and (4.2) can be given
by using gap series; see details in |7]. Nevertheless, we have the following result,
which is essentially a consequence of [1, Theorem 6.2] and [19, Theorem 3.10].

Theorem 7. Let % < p < oo and © be an inner function. Then the following
statements are equivalent:

(a) © € HP,

( ) @, S Ap 1

( ) (__)l/ c Ap_

Before the proof of Theorem 7, we note that, for f € H(D),n € Nand 0 <p <
o0, we have M, (r, f®) =< M,(r, D" f) with comparison constants independent of r
[16]. Here D" is the fractlonal derivative of order n. This fact is exploited when we
apply some results in the literature.

Proof. The equivalence (a) < (c) is a consequence of [19, Theorem 3.10]. For 1 <
p < 1, the equivalence (a) < (b) can be verified, for instance, using [1, Theorem 6.2]
together with |26, Corollary 7|. It is a well-known fact the only inner functions whose
derivative belongs to H? for some p > 1 are finite Blaschke products. Using this fact
together with |22, Theorem 7(c)| and the equivalence (a) < (c), it is easy to deduce
that an inner function O is a finite Blaschke product if it satisfies any of conditions
(a)—(c) for some p > 1. In addition, it is clear that every finite Blaschke product ©
satisfies conditions (a)—(c) for all p > 0. Finally the assertion follows by combining
the above-mentioned facts. O
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By [3, Lemma 2|, there exists a Blaschke product B such that B’ € A1_1/2\H1/2.

This means that, for p = 1, condition (b) in Theorem 7 does not always imply (a).

Nevertheless, it is an open question whether the equivalence (a) < (c) is valid also
for0 <p < % This question was earlier posed in [27]|. The next result shows that the
statement of Theorem 7 is valid for all p > 0 if © is a one-component inner function.
Consequently, we obtain a partial answer to the question.

Theorem 8. Let 0 < p < oo and © be a one-component inner function. Then
conditions (a)—(c) in Theorem 7 are equivalent.

Next we recall |5, Theorem 1.9], which consists of a strengthened Schwarz—Pick

lemma for one-component inner functions. This result plays a key role in the proof
of Theorem 8.

Theorem B. Let n € N and © be a one-component inner function. Then there
exists C' = C'(n,©) > 0 such that

1-1© "
(1.3 () < o (119
1=z
for all z € D.
For the proof of Theorem 8, we need also a generalization of [1, Theorem 6.1].

Lemma 9. Let 0 < p < 1, =1 < a < o0 and © be an inner function. Then
there exists C' = C(p,a) > 0 such that

1
/ O/ (re )P (1 — ) dr < ClO/(E)P, ¢ € T\ p(O).
0

Piats < 20C)|© |-

+ati
AbFe

In particular, ||©’

Proof. Let e € T\ p(0). By [1, Lemma 6.1|, we know that |©'(re®)| < 4]0/(e?)|
for all € [0,1). Using this fact together with the Schwarz—Pick lemma, we obtain

/1 1O/ (re®) [PTet (1 — r)dr < /1‘(1 — )P dr + (4]0 () [)rrett /1(1 —r)%dr
O SU—a) 7= 1+ (L= e

for every x € [0, 1]. Now it suffices to show that

(4.4) (L—2)7 =14 (1 —2) /(") S |/ ()

for some z. If |©'(e")| < 1, then this true for x = 0. In the case where |0’(e?)| > 1,
the choice = 1—1/|0'(¢)| implies (4.4). Since the last assertion is a direct conse-
quence of the first assertion, Hardy’s convexity and the mean convergence theorems
[15], the proof is complete. O

Now we are ready to prove Theorem 8.

Proof of Theorem 8. By Theorem 7, we may assume 0 < p < 1 (or even p < %)
Using Theorem B with n = 2, |2, Theorem 6] and Lemma 9 with & = p — 1, we
obtain

i 1-1]© 2 — /
s ey, 5 [ () a-teiae < 10, < 1.

1— |Z‘ Afzzil

The assertion follows from (4.1) and (4.5). O
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It is a well-known fact that, for 0 < p < co and —1 < a < oo, the Bergman
space AP coincides with {f: f' € A}, } [16]. Using this result, it is easy to generalize
condition (c) in Theorem 8 to the form O ¢ Ai(n_l)_l for any/every n € N\ {1}.
For 0 < p < 1, we can show this also by modifying the proof of Theorem §; and as a
substitute of this process we obtain an alternative version of Theorem 8.

Theorem 10. Let 0 < p < oo and © be a one-component inner function. Then
the following statements are equivalent:

(a) © € HP,

(b) © € ArTot! for some o € (—1,00),

(c) © € APt for every a € (—1,00).

Proof. By the proof of Theorem 7, we know that, for 1 < p < oo, O satisfies
any/all of conditions (a)—(c) if and only if it is a finite Blaschke product. Hence we
may assume 0 < p < 1. Moreover, let —1 < @ < oo and n € N\ {1}. Then [16,
Theorem 3|, Theorem B, [2, Theorem 6|, the Schwarz—Pick lemma and Lemma 9
yield

/ n 1—16(2 P n—1)—
1 10, s [ (L) - peaac)

(4.6) -1 1— |7
1
S e 8

when p+ a+1 < np. Since we may choose n = n(p, a) such that n > (p+a+1)/p,
the assertion follows from (4.6). O

Note that, applying Theorem 10 and |27, Theorem 3|, we can give several char-
acterizations for one-component inner functions © whose derivative belongs to H?
for some p € (0,1). By [27, Corollary 4], these characterizations for p € (3,1) are
valid even if © would be an arbitrary inner function. Next we show a counterpart of
Theorem 10 for all members of R;.

Corollary 11. Let 0 < p < co and B € Ry. Then the following statements are
equivalent:

(a) B’ € H?,

(b) B’ € APt for some o € (—1,0),

(c) B’ € APt for every a € (—1,00).

Proof. Assume without loss of generality that 0 < p < 1 and zeros {w,} of B lie
in a Stolz domain R(1,1,C). Let By be the Blaschke product with zeros z,, = 1 —27"
for n € N, write © = BBy and {z,} = {w,} U{z,}, where {z,} is ordered by non-
decreasing moduli. Then, for each n € N, there exists k,, € N such that

|2k, | < [2n] < |Thnsa]-
It follows that

=3

1 — 2] - 1=,

Consequently, © is a one-component inner function by Theorem 1.
Let —1 < a < oo. By [4, Theorem 5| and a simple modification of |25, Corol-
lary 2.5] based on [2, Theorem 6], we know that

©eH’ & DB eHP and Bjec HP
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and

O € Artetl o B'e Artetl and B € Aptatl
In addition, [4, Theorem 7| and Lemma 9 imply B} € H? N A2l Finally, the
assertion follows by using Theorem 10 together with the above-mentioned facts. [

Since the derivative of an arbitrary B € R; belongs to HP N A2Tet1 for every
pe(0,%) and o € (— 1 ,00) by [20, Theorem 2.3|] and Lemma 9, the statement of
Corollary 11 for p ;é does not come as a surprise. However, the case p = % is
interesting because it 1s not easy to find an alternative way to prove this result.

Recall that f € H(D) belongs to the Nevalinna class N if

27
sup / log™ | f(re™)| df < oo,
0<r<1Jo

where log" 0 = 0 and log" 2 = max{0,logz} for 0 < x < oco. As a consequence
of Theorem B, we can also give sufficient conditions for higher order derivatives of
one-component inner functions to be in the Hardy space H? or Nevanlinna class N

Corollary 12. Let 0 < p < oo, n € N and © be a one-component inner function.
Then the following statements are valid:

(a) If © € HP, then O™ ¢ HP/",

(b) If @ € N, then ©™ € N

Proof. As a consequence of Theorem B [5], we find C' = C(n,©) such that

(4.7) M < Cle'©)", €€ T\pO).

Since the spectrum p(©) has a Lebesgue measure zero, inequality (4.7), Hardy’s
convexity and the mean convergence theorems yield

n n (n)( i n 1 o 7
0 = 5= [ e < o [P = e,

Hence assertion (a) is proved. Since case (b) can be verified in a similar manner, the
proof is complete. O

We close this note with two results regarding certain one-component singular
inner functions.

Corollary 13. Let 0 < p < oo and S be the one-component atomic singular
inner function associated with {e?*} and {v,} € 1/2. Then S satisfies any/all of
conditions (a)—(c) in Theorem 7 if and only if p < 3.

Proof. By [26 Theorem 3|, for < p < 00, the derivative of S belongs to A} 2p cif
and only if p < 5. Since HP' C Hf”2 for 0 < py < p; < o0, the assertion follows from
this result and Theorem 8. U

The following result shows that Corollary 12(a) is sharp.

Corollary 14. Let 0 < p < oo, m € N and S be the one-component atomic
singular inner function associated with {¢*»} and {v,} € I/2. Moreover, assume
that there exist an index j = j(S) and € = ¢(j) > 0 such that |0; — 6,| > ¢ for all
n # j. Then S'™ € H? if and only if p < %.

Proof. By Corollary 13, S’ € H™? if and only if p < ﬁ Consequently, Corol-
lary 12(a) implies St™ € HP for p < 5. Hence it suffices to show that St™ € HP
only if p < ﬁ
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Fix j = j(S) to be the smallest index such that |§; — 6,| > ¢ for all n # j and
some € = £(j) > 0. Let us represent S in the form S = 5155, where

S1(z) = exp (%’m) , z€eD,

and Sy = S/S;. Using this factorization, we obtain

;  (m m—k)/ j i
|S(m)(620)|: Z(k)sf k)(ee)sék)(ee) -

k=0

S () Sa(e) | = I5{ ()

when 6 (which is not ;) is close enough to 6; depending on S and m. Consequently,
we find a sufficiently small « = «a(p, S, m) > 0 such that

2w 0j+a ] 2 )

| isenras = [ s enpds [ Isenp .
0 0j—a 0

where the comparison constants depend only on p, S and m. It follows that S'™ ¢ H?

only if Sfm) € HP?. Moreover, a simple modification of the main result of [24] shows

that Sim) € HP? if and only if p < ﬁ Combining these facts, we deduce that

St ¢ HP (if and) only if p < ﬁ This completes the proof. O
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