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Abstract. Kager, Nienhuis, and Kadanoff conjectured that the hull generated from the
Loewner equation driven by two constant functions with constant weights could be generated by
a single rapidly and randomly oscillating function. We prove their conjecture and generalize to
multiple continuous driving functions. In the process, we generalize to multiple hulls a result of
Roth and Schleissinger that says multiple slits can be generated by constant weight functions. The
proof gives a simulation method for hulls generated by the multiple Loewner equation.

1. Introduction

The Loewner equation is the initial value problem

(1)
∂

∂t
gt(z) =

2

gt(z)− λ(t)
, g0(z) = z,

where λ : [0, T ] → R is called the driving function. For z ∈ H, a solution exists up
to a maximum time, call it Tz. The collection of points

Kt = {z ∈ H : Tz ≤ t}

is called a hull. A fundamental note is that there is a one-to-one correspondence
between hulls and driving functions. The map gt in (1) is a conformal map fromH\Kt

to H (see Section 4.1 for more details). The Loewner equation was discovered in 1923
by Loewner in pursuit of proving the Bieberbach conjecture and it reemerged in 2000,
when Schramm discovered its relationship to the scaling limit of loop-erased random
walks. This discovery lead to construction of the Schramm–Loewner evolution (SLEκ)
and has been vigorously studied ever since.

In this paper, our main focus is the multiple Loewner equation

∂

∂t
gt(z) =

n∑
k=1

2wk(t)

gt(z)− λk(t)
a.e. t ∈ [0, T ], g0(z) = z,

where λ1, . . . , λn : [0, T ] → R are continuous and w1, . . . , wn ∈ L1[0, T ] are weight
functions. In [KNK04], it was conjectured that the multiple Loewner equation driven
by λ1 = −1 and λ2 = 1 with constant weights equal to 1

2
could be realized by a single

rapidly and randomly oscillating function driven by the Loewner equation (1). We
prove this conjecture with the following more general result.

Proposition 1.1. Let K =
⋃n
i=1Ki, where K1, . . . , Kn are disjoint hulls driven

by continuous driving functions in the chordal sense. Then K is the limit of hulls
generated by a sequence of randomly and rapidly oscillating functions.
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This proposition inspires a simulation method for hulls from the multiple Loewner
equation driven with constant weights. The idea is to use a single driving function
that randomly and rapidly oscillates between the multiple driving functions, which
generalizes the conjecture in [KNK04]. We simulate the hull investigated in [KNK04]
and compare it to the actual hull in Section 3.

The proof of Proposition 1.1 result follows from a generalization of Theorem 1.1 in
[RS17], which says that multiple slits can be generated through the multiple Loewner
equation by continuous driving functions and constant weights. We generalize this
to multiple hulls, as follows:

Theorem 1.2. Let K1, . . . , Kn be disjoint Loewner hulls. Let hcap(K1 ∪ · · · ∪
Kn) = 2T . Then there exist constants w1, . . . , wn ∈ (0, 1) with

∑n
k=1wk = 1 and

continuous driving functions λ1, . . . , λn : [0, T ]→ R so that

∂

∂t
gt(z) =

n∑
k=1

2wk
gt(z)− λk(t)

, g0(z) = z,

satisfies gT = gK1∪···∪Kn .

One significant difference between Theorem 1.1 in [RS17] and this result is the
lack of uniqueness. This is due to the fact that we do not know the growth over time
of the hulls in Theorem 1.2, we only know what the hull looks like at a particular
time. This ambiguity allows the possibility that a hull can be driven by different
driving functions, whereas any slit has a unique driving function. For example, if
the hull is a semi-circle of radius 1 centered at 0, then two ways to generate this hull
are by travelling the boundary clockwise or counterclockwise. This corresponds to
scaling the driving function by −1. However, if we have Kj

t for each time and each
j ∈ {1, . . . , n}, then using the same proof of uniqueness for slits from [RS17], we
would have uniqueness in the multiple hull setting as well.

This paper is structured as follows: Section 2 introduces enough about the
Loewner equation to prove Proposition 1.1 from Theorem 1.2. Section 3 discusses
simulation of the multiple Loewner equation. Section 4 rigorously covers the back-
ground information about the Loewner equation, hulls, and a generalization of the
tip of a curve, which is needed to prove Theorem 1.2. Finally, Section 5 gives the
proof of Theorem 1.2. Sections 4 and 5 can be read without reading Sections 2 and
3. As in [RS17], we will only show results for n = 2 and the general result follows
from mathematical induction.

Acknowledgement. I would like to thank Joan Lind for all of her help and support
with this paper. I would like to thank the referees for their comments also.

2. Convergence of hulls using rapid and random oscillation

2.1. Brief introduction to Loewner equation. Our goal is to discuss con-
vergence of a rapidly and randomly oscillating driving function, but we need to define
what convergence we will use. We say that gnt converges to gt in the Carathéodory
sense, denoted gnt

Cara−−−→ gt, if for each ε > 0 gnt converges to gt uniformly on the set

[0, T ]× {z ∈ H : dist(z,KT ) ≥ ε}.

This form of convergence allows for convergence of functions when their domains are
changing.



The Loewner equation for multiple hulls 583

2.2. Introduction to conjecture. In Section 6 of [KNK04], Kager, Nienhuis,
and Kadanoff investigate the multiple Loewner equation generated from constant
driving functions, λ1 ≡ −1 and λ2 ≡ 1, and constant weights, w1 = w2 = 1

2
. They

show that the hull is given by

(2) Kt =

{√
2θt

sin(2θt)
(± cos θt + i sin θt)

}
where θt increases from 0 to π

2
as t increases. They make the conjecture that the

same hull can be generated by a single driving function that “makes rapid (random)
jumps between the values λj.” In this section, we will say that a sequence of driving
functions generate a hull if the corresponding conformal maps from the Loewner
equation converge in the Carathéodory sense to the conformal map corresponding to
the hull. We will prove their conjecture constructively. The key tool in the proof is
the use of the following theorem by Roth and Schleissinger from [RS17] which we use
to relate the multiple Loewner equation and a single driving function.

Theorem 2.1. [RS17, 2.4] For j ∈ {1, 2} let wnj , wj ∈ L1[0, 1] be weight functions
and let λnj , λj ∈ C[0, 1] be driving functions with associated Loewner chains gnt , gt.
If λnj converges to λj uniformly on [0, 1] and if wnj converges weakly in L1[0, 1] to wj
for j = 1, 2, then gnt converges in the Carathéodory sense to the chain gt.

The idea to constructing a randomly, rapidly oscillating driving function is to use
the driving functions that generate the hull Kt from the multiple Loewner equation.
We do this by dividing up the time interval into smaller intervals and then randomly
pick which driving function to use on each small interval. This random picking is
governed by the weights. Furthermore, this construction is not limited to the case
described above that is considered in [KNK04]. In fact, Proposition 1.1 is a more
general answer to their conjecture.

2.3. Controlled oscillation. Before we tackle the conjecture, we will do an
example. In the situation of [KNK04], let λ1 ≡ −1, λ2 ≡ 1, w1 = w2 = 1

2
, and Kt

be as in (2). We will create a sequence of rapidly oscillating functions that generate
Kt. The idea here is essentially the idea in the more general case: divide the interval
into smaller pieces and decide whether the driving function is −1 or 1 on each piece.
Here, since w1 = w2 = 1

2
, we will simply rotate between the driving functions −1 and

1. Let

λn(t) =
2n−1−1∑
k=0

χ
[ 2k+1

2n
,
2(k+1)

2n
)
(t)− χ[ 2k

2n
, 2k+1

2n
)(t).

So, we take [0, 1] and divide it into an even number of intervals of the from [ j
2n
, j+1

2n
).

When j is even λn|[ j
2n
, j+1
2n

) ≡ −1 and when j is odd λn|[ j
2n
, j+1
2n

) ≡ 1. This means for
any n ∈ N λn(t) = −1 = λ1 for half of the time and λn(t) = 1 = λ2 for the other half
of the time, corresponding to w1 = w2 = 1

2
. Now, we will show that Kt is generated

by λn. The proof uses Theorem 2.1 to relate the multiple Loewner equation to a
single driving function. We have already defined the driving function, so we will now
set up the multiple Loewner equation situation. Define the weight functions

wn1 (t) :=
2n−1−1∑
k=0

χ[ 2k
2n
, 2k+1

2n
)(t) and wn2 (t) :=

2n−1∑
k=1

χ[ 2k−1
2n

, 2k
2n

)(t).
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At any time, they sum to 1 and they are never 1 at the same time. We will show wnj
converges to 1

2
weakly. Since the conformal maps from the Loewner equation driven

by λn and the conformal maps from the multiple Loewner equation driven by λ1, λ2,
wn1 , and wn2 are the same, we will have that Kt is generated by (λn)∞n=1.

Lemma 2.2. As n → ∞, wnj converges weakly to 1
2
for j = 1, 2 - that is, for

each h ∈ L∞[0, 1] ˆ
wnj h→

ˆ
1

2
h as n→∞.

Proof. We will prove this for j = 1 first. Let ε > 0 and h ∈ L∞[0, 1]. If ||h||∞ = 0,
then the result clearly holds. Assume ||h||∞ 6= 0. By Lusin’s Theorem there exists
E ∈ B([0, 1]) (the Borel sets of R) compact with m([0, 1] \ E) < ε

2||h||∞ (m denotes
Lebesgue measure) and h restricted to E is continuous. So,∣∣∣∣ˆ

[0,1]\E
h

(
wn1 −

1

2

)∣∣∣∣ < ε

2
.

Since E is compact, h is uniformly continuous on E. So there exists δ > 0 such that
for each x, y ∈ E with |x− y| < δ, we have that |h(x)− h(y)| < ε. Also, there exists
N ∈ N such that for all n ≥ N , 1

2n−1 < δ. Let n ≥ N . For k ∈ N, define

Ik =

[
k

2n
,
k + 1

2n

)
∩ E

and xk = max{x ∈ Ik}. Then∣∣∣∣ˆ
E

h ·
(
wn1 −

1

2

)∣∣∣∣ =

∣∣∣∣∣
2n−1∑
k=0

ˆ
Ik

(−1)k

2
h

∣∣∣∣∣ ≤ 1

2

2n−1−1∑
k=0

∣∣∣∣∣
ˆ
I2k

h−
ˆ
I2k+1

h

∣∣∣∣∣ .
Since the length of I2k ∪ I2k+1 is 1

2n−1 < δ, for all x ∈ I2k ∪ I2k+1,

h (x2k+1)− ε ≤ h(x) ≤ h (x2k+1) + ε.

So, ∣∣∣∣∣
ˆ
I2k

h−
ˆ
I2k+1

h

∣∣∣∣∣ ≤ 1

2n
(2ε) =

ε

2n−1
.

Hence, ∣∣∣∣ˆ
E

h ·
(
wn1 −

1

2

)∣∣∣∣ ≤ 1

2

2n−1−1∑
k=0

ε

2n−1
< ε.

This shows that wn1 converges weakly to 1
2
.

Since wn2 = 1− wn1 , we have that wn2 converges weakly to 1
2
, as well. �

Since λn(t) = wn1 (t)λ1(t) + wn2 (t)λ2(t), by Theorem 2.1, we have that Kt is gen-
erated by λn. This proves that Kt is generated by a rapidly oscillating function.

2.4. Rapid, random oscillation. Now that we have shown that a rapidly
oscillating function can be used to satisfy the conjecture in [KNK04], we turn to
proving that we do not have to control the oscillation as we did before. In the
random case, we begin construction of the sequence of driving functions by defining
weight functions. Let w1 ∈ (0, 1) and w2 = 1−w1 be constants. For each k ∈ N, let
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Xk be a random variable such that P (Xk = 1) = w1 and P (Xk = 0) = w2 (i.e. Xk is
a Bernoulli random variable). For each n ∈ N and k ∈ {1, . . . , n}, define

Ink =

[
k − 1

n
,
k

n

)
.

For each n ∈ N, define

(3) wn1 =
n∑
k=1

XkχInk (t) and wn2 =
n∑
k=1

(1−Xk)χInk (t).

Then for every t ∈ [0, 1] and n ∈ N, wn1 (t) + wn2 (t) = 1 a.s. Further, wn1 (t) = 1 only
when wn2 (t) = 0 and vice versa. Let

λn(t) = wn1 (t)λ1(t) + wn2 (t)λ2(t).

For any n ∈ N, λn rapidly (for large n) and randomly oscillates between the values of
λ1 and λ2. The idea here is that wnj turns off and on λj. So, essentially we are using
the single Loewner equation to approximate the multiple Loewner equation and the
weights control which function is turned on or picked in the intervals Ink . We will
first show that wnj converges weakly to wj for j = 1, 2. Then using Theorems 2.1 and
1.2, we will obtain the desired result.

Lemma 2.3. As n→∞, almost surely wnj as in (3) converges weakly to wj for
j = 1, 2.

We will prove this for j = 1 using a standard approach by proving that conver-
gence holds on intervals, for step functions, for non-negative functions, and for L∞
functions. Then the result will also hold for j = 2 as wn2 = 1− wn1 .

Claim 2.4. Let J ⊆ [0, 1] be an interval. Then almost surely
´
J
wn1 →

´
J
w1 =

w1m(J)

Proof. Let ε > 0 and J ⊆ [0, 1] be an interval. Then there exists N1 ∈ N such
that for all n ≥ N1 there exists an ∈ {1, . . . , n} and mn ∈ {0, . . . , n− an} such that⋃an+mn

k=an
Ink ⊆ J. Then there exists a natural number N2 ≥ N1 such that for all n ≥ N2

In =
an+mn⋃
k=an

Ink ⊆ J and m(J \ In) <
ε

2
.

So, ∣∣∣∣ˆ
J\In

wn1 − w1

∣∣∣∣ ≤ ∣∣∣∣ˆ
J\In

dt

∣∣∣∣ = m(J \ In) <
ε

2

As n→∞, mn →∞. By the Strong Law of Large Numbers, we have
an+mn∑
k=an

Xk

mn

→ w1 a.s.

So, there exists N ≥ N2 such that for all n ≥ N∣∣∣∣∣
an+mn∑
k=an

Xk

mn

− w1

∣∣∣∣∣ < ε

2
a.s.

Fix n ≥ N . Then with probability 1, since m(In) = 1
n
,∣∣∣∣ˆ

In

wn1 − w1

∣∣∣∣ =

∣∣∣∣∣mn

n

an+mn∑
k=an

Xk − w1

mn

∣∣∣∣∣ = m(In)

∣∣∣∣∣
an+mn∑
k=an

Xk

mn

− w1

∣∣∣∣∣ ≤ ε

2
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Therefore, as n→∞, almost surelyˆ
J

wn1 → w1m(J). �

Claim 2.5. Let h ∈ L∞[0, 1] be a step function. Then almost surelyˆ
[0,1]

hwn1 → w1

ˆ
[0,1]

h.

Proof. Since h is a bounded step function, there exist finitely many nonempty
intervals J1, . . . , Jn and α1, . . . , αn ∈ R \ {0} so that h =

∑n
i=1 αiχJi . Then, by the

previous claim, there exists N such that for all n ≥ N almost surely∣∣∣∣ˆ
Ji

wn1 − w1m(Ji)

∣∣∣∣ < ε

2
∑n

i=1 |αi|
.

Then with probability 1,∣∣∣∣ˆ
[0,1]

h(wn1 − w1)

∣∣∣∣ ≤ n∑
i=1

∣∣∣∣αi ˆ
Ji

(wn1 − w1)

∣∣∣∣ ≤ n∑
i=1

|αi|
ε

2
∑n

i=1 |αi|
< ε

This proves the claim. �

Claim 2.6. For h ∈ L∞[0, 1] with h ≥ 0, almost surelyˆ
hwn1 → w1

ˆ
h.

Proof. Let h ∈ L∞[0, 1] with h ≥ 0. Then there exists a step function f ∈ L∞[0, 1]
such that ||f − h||2 ≤ ε

2
, where ‖ · ‖k denotes the Lk[0, 1] norm. Then there exists

N ∈ N such that for all n ≥ N , almost surely |
´

(wn1 − w1)| < ε
2(‖f‖∞∨1) . Also, since

0 ≤ wn1 (t) ≤ 1 a.s., |wn1 − w1| ≤ 1 a.s. for all t ∈ [0, 1]. So,∣∣∣∣ˆ h(wn1 − w1)

∣∣∣∣ ≤ ∣∣∣∣ˆ f(wn1 − w1)

∣∣∣∣+

∣∣∣∣ˆ (h− f)(wn1 − w1)

∣∣∣∣ ≤ ε

2
+ ||h− f ||2 < ε

This proves the claim. �

Claim 2.7. For h ∈ L∞[0, 1], almost surelyˆ
hwn1 → w1

ˆ
h.

Proof. Let h ∈ L∞[0, 1]. Then h+, h− ∈ L∞[0, 1] (where h+, h− ≥ 0 and h =
h+ − h−). Then there exists N ∈ N such that for all n ≥ N , almost surely∣∣∣∣ˆ

[0,1]

h+ (wn1 − w1)

∣∣∣∣ < ε

2
and

∣∣∣∣ˆ
[0,1]

h− (wn1 − w1)

∣∣∣∣ < ε

2
.

Then with probability 1,∣∣∣∣ˆ h (wn1 − w1)

∣∣∣∣ ≤ ∣∣∣∣ˆ h+ (wn1 − w1)

∣∣∣∣+

∣∣∣∣ˆ h− (wn1 − w1)

∣∣∣∣ < ε. �

Proof of Lemma 2.3. By Claim 2.7, we have that wn1 converges weakly to w1.
Then as wn2 = 1−wn1 , we have wn2 converges weakly to 1−w1 = w2. So we have the
result. �

Proof of Proposition 1.1. Apply Theorem 1.2 to get λ1, . . . , λn continuous
functions and constant weights w1, . . . , wn ∈ (0, 1). Applying Lemma 2.3 to wnj from
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(3), we have that wnj converges weakly to wj in L1[0, 1] for j = 1, 2. Now, using
Theorem 2.1, we have that we get the convergence we desire. �

3. Simulating the multiple Loewner equation

The Loewner equation yields a conformal map that takes sets in the upper half-
plane and maps them down to the real line and for this reason is sometimes referred
to as the downward Loewner equation. For a map that does the opposite, we can
consider the initial value problem

∂tft(z) =
−2

ft(z)− ξ(t)
, f0(z) = z.

We call this the upward Loewner equation and the conformal maps ft grow sets in
the upper half-plane. There is a relationship between the downward and upward
Loewner equations. If gt is the map given by the downward Loewner equation driven
by λ : [0, T ] → R and ft is the map given by the upward Loewner equation driven
by ξ(t) = λ(T − t), then fT = g−1T .

The idea of the standard algorithm to simulate the hulls from the Loewner equa-
tion uses the upward Loewner equation driven by constant functions (see for instance
[Bau03], [Ken07], [Ken09], or [MR05]). For a constant driving function ξ(t) = c, the
solution to the upward Loewner equation is

(4) f ct (z) =
√

(z − c)2 − 4t+ c.

c

f ct

c

c+ 2i
√
t

Figure 1. Mapping up hull corresponding to f c
t .

The algorithm for simulating the hull driven by λ : [0, T ]→ R with N +1 sample
points is as follows:

0. Compute λ(T ) and add to hull.
1. Apply (4) with c = λ(T · N−k

N
) to points in hull.

2. Add λ(T · N−k
N

) to hull.
3. Repeat steps 1-2 for k ∈ {1, . . . , N}.
For the multiple Loewner equation, we want to use the same idea as above but

our driving function (randomly) oscillates between the driving functions. This is in
effect what the proof in Section 2.4 does to generate the hulls. Let λ1, λ2 : [0, T ]→ R
be driving functions and w1, w2 ∈ [0, 1] be constant weights. For k ∈ {0, . . . , N}:

1. (Randomly) assign jk to be either 1 or 2 so that P (jk = 1) = w1 and P (jk =
2) = w2.

2. Define λ(T · k
N

) = λjk(T · k
N

).
3. Repeat steps in previous algorithm.
We will investigate this algorithm by revisiting the example done in [KNK04] and

mentioned here in Section 2 that motivates all of our results. Let λ1 = −1, λ2 = 1,
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and w1 = 1
2

= w2. Recall the hull is given by

Kt =

{√
2θt

sin(2θt)
(± cos θt + i sin θt)

}
.

First, we will control the oscillation by assigning jk to be 1 when k is odd and
2 when k is even. The simulations for 1,000 and 10,000 oscillations are given in
Figures 2 and 3. For 1,000 oscillations, the simulated data points are extremely
close to the curve. There is a larger spread in the points near the real line since the
growth of f ct is faster there. For 10,000 oscillations, the simulated data is almost
indistinguishable from the curve.

The errors (that is, the maximum distance the data is from the hull) for 1000,
500, 400, 300, 200, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10 controlled oscillations are
shown in Figure 4, where the blue points correspond to points on the left side (i.e.
associated with λ1) and the red points correspond to points on the right side (i.e.
associated with λ2). Since the last map used in each controlled simulation is f 1

t , all
of the right sided points are shifted up from their previous positions. This causes
more error for these points. On the other hand, the map shifts the left sided points
towards the right and reduces the error for these points. One amazing note is that
even for 10 oscillations (11 data points), the error is small enough that simulated
points are closer to their respective side than the opposite side (that is, their real
parts are on the same side of 0 as their corresponding driving function). Further, for
any number of oscillations (≥ 10), we could thicken each side of the hull by the error
and they would not intersect (up to T = 10).

Second, we switch to randomly oscillating the driving function. We randomly
assign jk to be 1 or 2 by flipping a fair, virtual coin. In each of Figures 6 and 7 are 10
simulated hulls (non-black curves) with 1,000 and 10,000 oscillations (respectively)
and the hull (black curves). For 1,000 oscillations, the simulated hulls have the
same overall shape (e.g. they approach each other as their imaginary parts increase),
but there is significant variation between the curves. For 10,000 oscillations, the
simulated hulls are significantly closer to the hull, but there is still variation between
the curves. The upshot is that the random hulls are visually a good replacement
for the actual hull. Figure 5 gives a histogram of 100 simulations of 1,000 random
oscillations where left and right sides correspond to the colors blue and red as before.

It appears that the controlled oscillation (i.e. forcing a switch between driving
functions) always outperforms the random oscillation. This intuitively makes sense.
Say we grow the −1 hull first using f−1t . If we use f 1

t next, the hull corresponding to
−1 will be shifted to the right. Instead, if we use f−1t next, the hull corresponding
to −1 will be higher. In the random oscillation case, either of these maps could be
used over and over before switching. This would cause the hulls to be higher or more
to the left or right than the actual hull. The forced oscillation appears to not allow
either side of the hull to get too far away from the actual hull.

4. Background

We now give a more rigorous introduction to the Loewner equation, hulls, and
prime ends. This section gives us the tools and background needed to generalize
Theorem 1.1 in [RS17] which we used to prove Proposition 1.1. We begin by reintro-
ducing the Loewner equation. Next we discuss hulls in the upper half-plane. This
leads to the section on Loewner hulls, which are hulls that can be generated through
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the Loewner equation driven by a continuous driving function. We then generalize
the notion of the tip of a curve to prime ends. This section concludes with results on
multiple Loewner hulls, which are hulls that can be generated through the multiple
Loewner equation driven by multiple continuous driving functions.

-1.0 -0.5 0.0 0.5 1.0

Figure 2. 1000 controlled oscillations.
-1.0 -0.5 0.0 0.5 1.0

Figure 3. 10000 controlled oscillations.

0.1

0.2

0.3

Figure 4. Errors for 1000, 500, 400, 300, 200,
100, 90, 80, 70, 60, 50, 40, 30, 20, 10 con-
trolled oscillations.

0

5

10

0.05 0.10 0.15 0.20

errors

co
un

t

Figure 5. Histogram of 100 errors for 1000
random oscillations.

-1.0 -0.5 0.0 0.5 1.0

Figure 6. 1000 random oscillations.
-1.0 -0.5 0.0 0.5 1.0

Figure 7. 10000 random oscillations.

4.1. Loewner equation. Let λ : [0, T ] → R be continuous. For z ∈ H, the
(single, chordal) Loewner equation is the initial value problem

(5)
∂

∂t
gt(z) =

2

gt(z)− λ(t)
, g0(z) = z.
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A solution to the Loewner equation exists on some time interval, where the only issue
stopping existence is when gt(z) = λ(t). We denote Kt as the points of H when the
solution has failed to exist at some time up to time t, that is,

Kt = {z ∈ H : gs(z) = λ(s) for some s ∈ [0, t]}.

The function λ is called the driving function and (gt)t∈[0,T ] is called a Loewner chain.
For t ∈ [0, T ], we call Kt a Loewner hull and we call the family (Kt)t∈[0,T ] a Loewner
family (see Section 4.3). We introduce the Loewner hull moniker to distinguish hulls
that can be generated by a single, continuous driving function from hulls that cannot.
For example, using λ(t) = c, we can grow a vertical line starting at c. However, two
vertical lines at c1 and c2 (with c1 6= c2) cannot be generated from a single continuous
driving function. We discuss this further in Section 4.3. The solution gt(z) is the
conformal map from H \Kt onto H that satisfies

gt(z) = z +
2t

z
+O

(
1

z2

)
near infinity. We define the half-plane capacity of Kt, hcap(Kt), to be 2t (see Sec-
tion 4.2).

If instead of starting with a continuous function, we started with a Loewner
family, we can find a unique driving function satisfying (5). This gives a one-to-
one correspondence between continuous functions and Loewner families of hulls. See
[Law05] Lemma 4.2, Theorem 4.6, and the discussion following Example 4.12 for
more details.

Now, let λ1, . . . , λn : [0, T ] → R be continuous and w1, . . . , wn ∈ L1[0, T ] with∑∞
k=1wk(t) ≡ 1. For z ∈ H, the multiple Loewner equation is the initial value

problem

(6)
∂

∂t
gt(z) =

n∑
k=1

2wk(t)

gt(z)− λk(t)
a.e. t ∈ [0, T ], g0(z) = z.

This is the sum of weighted Loewner equations, which allows growth of multiple
Loewner hulls simultaneously. Note that (6) holds a.e. t ∈ [0, T ] whereas (5) holds
for all t ∈ [0, T ].

4.2. Hulls.

Definition 4.1. A bounded set K ⊆ H is a hull if H \K is simply connected.

For any hull K, there is a unique conformal map gK : H \K → H with limz→∞
(gK(z) − z) = 0, by Riemann mapping theorem (see Proposition 3.36 in [Law05]).
The inverse of gK satisfies the Nevanlinna representation formula

g−1K (z) = z +

ˆ
R

dµK(t)

t− z
for some finite, nonnegative Borel measure on R (see Section 3.1 in [Sch14]). We
now state a very useful result from [RS17].

Lemma 4.2. [RS17, 3.4] Let A be a hull.
(a) If A ∩ R is contained in the closed interval [a, b], then gA(α) ≤ α for every

α ∈ R with α < a and gA(β) ≥ β for every b ∈ R with β > b.
(b) If the open interval (a, b) is contained in R\A, then |gA(β)−gA(α)| ≤ |β−α|

for all α, β ∈ (a, b).
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Definition 4.3. Let K be a hull. The half-plane capacity of K is defined as

hcap(K) = lim
z→∞

z(gK(z)− z).

Half-plane capacity is a real value relating gK and K. Part of the importance of the
half-plane capacity is captured in the following lemma from [RS17].

Lemma 4.4. [RS17, 3.1] Let A, A1, A2 be hulls.
(a) If A1 ∪ A2 and A1 ∩ A2 are hulls, then

hcap(A1) + hcap(A2) ≥ hcap(A1 ∪ A2) + hcap(A1 ∩ A2)

(b) If A1 ⊂ A2, then hcap(A2) = hcap(A1) + hcap(gA1(A2 \ A1)) ≥ hcap(A1).
(c) If A1 ∪ A2 is a hull and A1 ∩ A2 = ∅, then hcap(gA1(A2)) ≤ hcap(A2).
(d) If c > 0, then hcap(cA) = c2 hcap(A) and hcap(A± c) = hcap(A).

Remark 3.50 in [Law05] gives that there exists M > 0 so that for any hull K,

diam(gK(K)) < Mdiam(K).

In order to further discuss diamgK(K), we introduce some notation.

Definition 4.5. Let A and B be hulls or a finite union of hulls. Let gB : H \
B → H be the hydrodynamically normalized conformal map. Define g+B(A) = 0 if
A ⊆ int(B) and otherwise

g+B(A) = max
{

lim
n→∞

gB(zn) : (zn)∞n=1 ⊆ H \B, zn → z ∈ A, gB(zn)→ x ∈ R
}
.

Similarly, define g−B(A) = 0 if A ⊆ int(B) and otherwise

g−B(A) = min
{

lim
n→∞

gB(zn) : (zn)∞n=1 ⊆ H \B, zn → z ∈ A, gB(zn)→ x ∈ R
}
.

This means

g+K(K)− g−K(K) = diam(gK(K)) ≤Mdiam(K)

4.3. Loewner hulls. As previously mentioned, not all hulls can be grown
from the Loewner equation driven by a continuous function, for instance a tree or a
disconnected set. We will call these special hulls Loewner hulls.

Definition 4.6. We say that a family of hulls, (Kt)t∈[0,T ] is a Loewner family if
for all t ∈ [0, T ], hcap(Kt) = 2t, Ks ⊂ Kt for s < t, and for all ε > 0 there exists
δ > 0 so that for t ∈ [0, T − δ] there is a bounded, connected set S ⊂ H \Kt with
diam(S) < ε where S disconnects Kt+δ \Kt from infinity in H \Kt.

The above definition is motivated by Theorem 2.6 of [LSW01] which states that
(Kt)t∈[0,T ] is a Loewner family if and only if there exists λ : [0, T ]→ R continuous so
that (Kt)t∈[0,T ] is driven by λ. Furthermore, λ(t) is the point in

⋂
ε>0 gt(Kt+ε\Kt). We

will say that two Loewner families (Kt)t∈[0,T ] and (Ls)s∈[0,S] are disjoint ifKT∩LS = ∅,
where the closure is taken in H. Similarly, if A and B are hulls, we say they are
disjoint if A∩B = ∅. When there is no risk of confusion, we denote Loewner families
simply by Kt, dropping the index on t.

Definition 4.7. We say that the hull K with hcap(K) = 2T is a Loewner hull
if there is a Loewner family Kt with KT = K.

The relationship between a Loewner family and its driving function is very deep.
We exemplify this relationship by stating a few results that will prove useful.
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Lemma 4.8. [CR09, 3.3 (a)] Let Kt be a Loewner family driven by λ. If λ(t) ∈
[a, b] for all t ∈ [0, T ], then KT ⊂ [a, b]×R.

Lemma 4.9. [Law05, 4.13] Let Kt be a Loewner family generated by λ with
Loewner chain gt. Define Rt = max{

√
t, sup{|λ(s)| : 0 ≤ s ≤ t}}. Then sup{|z| : z ∈

Kt} ≤ 4Rt. In fact, if |z| > 4Rt, then |gs(z)− z| ≤ Rt for 0 ≤ s ≤ t.

Beyond the driving function, Loewner families can only grow in particular ways.

Definition 4.10. [Law05] Let Kt be a Loewner family. We call z a t-accessible
point if z ∈ Kt \

⋃
s<tKs and there exists a continuous curve γ : [0, 1] → C with

γ(0) = z and γ(0, 1] ⊆ H \Kt.

Proposition 4.11. [Law05, 4.26] If t > 0 and z is a t-accessible point, then
there is a strictly increasing sequence sj ↑ t and a sequence of sj-accessible points zj
with zj → z.

Proposition 4.12. [Law05, 4.27] For each t > 0, there is at most one t-accessible
point. Also, the boundary of the time t hull is contained in the closure of the set of
s-accessible points for s ≤ t.

The restriction on the number of t-accessible points also shows that the boundary
of a hull always intersects the boundary of previous hulls.

Lemma 4.13. Let Kt be a Loewner family generated by λ. Fix 0 < t ≤ T .
Then there exists 0 < s < t so that ∂HKt ∩Ks 6= ∅. Moreover, ∂HKt ∩ ∂Kr 6= ∅ for
s ≤ r ≤ t.

Note that here we use ∂H to indicate the boundary with respect to H. Explicitly,
for A ⊆ H,

∂HA = {z ∈ A ∩H : exists (zn)∞n=1 ⊆ H \ A with zn → z}

Proof. Suppose not—that is, for some fixed t ∈ (0, T ], ∂HKt ∩ Ks = ∅ for
all 0 < s < t. Since 0 < t, we have that ∂HKt is larger than a singleton set. Let
z1, z2 ∈ ∂HKt with |z1−z2| = δ > 0. Then there are w1, w2 ∈ H\Kt with |zi−wi| < δ

3

for i = 1, 2. Let γi : [0, 1]→ H be the straight line segment starting at wi and ending
at zi for i = 1, 2. Let ti ∈ (0, 1] be the first time that γi intersects Kt and z′i = γi(ti).
Two important facts follow. First, since z′i ∈ ∂HKt ⊆ Kt \

⋃
s<tKs for i = 1, 2, z′1

and z′2 are t-accessible. Second, by construction |z′1− z′2| > δ
3
, so z′1 6= z′2. This shows

that there is more than one t-accessible point, a contradiction to Proposition 4.12.
So, for all t ∈ (0, T ] there is 0 < s < t with ∂HKt ∩Ks 6= ∅.

The moreover statement follows immediately using the fact that s ≤ r ≤ t gives
Ks ⊆ Kr ⊆ Kt. �

Often we will be considering the family (gL(Kt))t∈[0,T ] where L is a hull disjoint
from KT . The next lemma investigates what happens when a Loewner family is
conformally transformed. We cannot force hcap(Kt) = 2t for the next lemma, so we
change to time-modified Loewner families (see [LSW01] for the definition of “time-
modified” expanding hull).

Lemma 4.14. [LSW01, 2.8] Let (Kt)t∈[0,T ] be a time-modified Loewner family
driven by λ. Let D be a relatively open subset of H which contains KT , and set
DR := D ∩R. Let G : D → H be conformal in D \ DR and continuous in D, and
suppose that G(DR) ⊂ R. Then (G(Kt))t∈[0,T ] is a time-modified Loewner family.
Moreover, ∂t[hcap(G(Kt))] = G′(λ(0))2∂t hcap(Kt) as t = 0.
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4.4. Prime ends. In order to generalize the results of [RS17], we need to
generalize the tip of a curve into the setting of hulls. This is done with prime ends,
which are equivalence classes of crosscuts. We give only a brief introduction, for more
details see [RG08].

Definition 4.15. [RG08] Let Ω ⊆ H be a simply connected domain containing
∞. Let C be a crosscut of Ω (that is, a Jordan arc in Ω with endpoints in ∂Ω) and
ΩC the component of Ω \ C not containing ∞. A prime end of Ω is represented by
a sequence of pairwise disjoint crosscuts (Cn)∞n=1 with diam(Cn)→ 0 as n→∞ and
Cn+1 ⊆ ΩCn . Two sequences, (Cn)∞n=1 and (C̃n)∞n=1, represent the same prime end if
for each n there is a Jn ∈ N so that C̃j ⊆ ΩCn for j ≥ Jn and vice versa.

Definition 4.16. Let p be a prime end represented by the sequence of crosscuts
(Cn)∞n=1. The impression of p is defined as I(p) =

⋂∞
n=1 ΩCn . Since (ΩCn)∞n=1 is a

decreasing sequence of nonempty, compact, and connected sets, the impression of p
is nonempty. Moreover, the impression of p is independent of its representation.

Lemma 4.17. Let Kt be a Loewner family generated by λ. Fix 0 < t ≤ T .
If there exists 0 < s < t such that λ(s) < λ(r) or λ(s) > λ(r) for r ∈ (s, t), then
Ks ∩ ∂HKt 6= ∅.

Proof. Suppose λ(s) < λ(r) (resp. λ(s) > λ(r)) for s < r < t. Then Lemma 4.8
shows that λ(s) ≤ min{gKs(Kt \Ks) ∩R} (≥ max resp.). As λ(s) ∈ gKs(Kt \Ks),
λ(s) ∈ ∂gKs(Kt \Ks). Now, there exists (wn)∞n=1 ⊂ H\gKs(Kt \Ks) with wn → λ(s).
So, there exists a corresponding sequence (zn)∞n=1 ⊂ H \ Kt so that gKs(zn) = wn.
Furthermore, there is a subsequence of (zn)∞n=1 that converges to a point in Ks as
there is at least one point in the impression of the prime end corresponding to λ(s).
This shows that Ks ∩ ∂HKt 6= ∅. �

Definition 4.18. Let Ω ⊆ H be a simply connected domain containing ∞. Let
P (Ω) denote the set of prime ends of Ω and Ω̂ := Ω∪P (Ω) denote the Carathéodory
compactification of Ω. We can define a topology on Ω̂ by making the following
equivalent:

• (zj)
∞
j=1 ⊆ Ω converges to p ∈ P (Ω)

• for any (Cn)∞n=1 ∈ p ∈ P (Ω) there exists J ∈ N so that (zj)
∞
j=J ⊆ ΩCn

Under this topology, if g : Ω → H is conformal, then g extends to a homeomor-
phism ĝ : Ω̂ → H. We can identify prime ends of Ω with boundary points of Ω as
follows:

(zj)
∞
j=1 ⊆ Ω with zj → z ∈ ∂Ω if and only if (zj)

∞
j=1 ⊆ Ω with zj → p ∈ P (Ω).

If z ∈ ∂Ω and p ∈ P (Ω) are identified, we do not distinguish the point z and the
prime end p.

Since the identity map on H is conformal, H and Ĥ are homeomorphic and
we can think of boundary points (i.e. real points) as prime ends and the other way
around.

Definition 4.19. Let Kt be a Loewner family driven by λ with Loewner chain
gt. Let p be a prime end of H \Kt. We say that “p corresponds to λ(t)” or “p is the
(generalized) tip of Kt” if ĝt(p) = λ(t).
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This gives us a family of prime ends (pt)t∈[0,T ] each corresponding to λ(t) which
generates Kt. More specifically, ĝt(pt) = λ(t) where gt is the Loewner chain corre-
sponding to Kt and λ is its driving function.

In the situation of a curve γ with Loewner chain gt, since gt(γ(t)) = λ(t), the tip
at time t, γ(t), is the prime end corresponding to λ(t). This is the reason that we
use prime ends to generalize tips.

We now will revisit the definitions of g+B(A) and g−B(A) and relate them to prime
ends. If A 6⊆ int(B),

g+B(A) = sup{gB(p) ∈ R : p ∈ P (H \ A), I(p) ∩ A 6= ∅}

and
g−B(A) = inf{gB(p) ∈ R : p ∈ P (H \ A), I(p) ∩ A 6= ∅}.

This follows from gB extending to Ĥ \B. Note that from now on, we will assume gB
is its extension ĝB.

4.5. Multiple Loewner hulls. We now switch to the setting of our main
result: multiple, disjoint Loewner families. Let K and L be disjoint hulls. There are
many ways that K ∪ L can be mapped down to the real line. Two basic ways are
mapping down one hull and then mapping down the image other hull, see Figure 8.
By uniqueness we have

(7) ggK(L) ◦ gK = gK∪L = ggL(K) ◦ gL.

This gives a significant amount of flexibility in our maps.

Kt

pt

L

gL(Kt)

gL(pt)

gKt(L)

gL

ggKt (L)

gKt
ggL(Kt)

g
K
t∪L

U(t) λ(t)

Figure 8. Mapping down hulls in different orders.

We now state a few preliminary results on what happens when another hull is
added.

Lemma 4.20. Let Kt be a Loewner family and L a hull disjoint from KT . If
Ks ∩ ∂HKt 6= ∅, then for s ≤ r ≤ t,

g−Kt∪L(Kt \Ks) ≤ g−Kt∪L(Kt \Kr) ≤ g+Kt∪L(Kt \Kr) ≤ g+Kt∪L(Kt \Ks)

Proof. The middle inequality follows from the definitions of g−Kt∪L and g+Kt∪L.
For the first inequality, let (zn)∞n=1 ⊆ H \ (Kt ∪ L) with zn → z ∈ Kt \ Kr and
gKt∪L → x ∈ R. Then as Ks ⊆ Kr, z ∈ Kt \Ks. So, gKt∪L(Kt \Ks) ≤ x. This holds
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for any such sequence, so the first inequality is proven. The third inequality follows
in the same manner. �

Let Kt be a Loewner family driven by U : [0, T ] → R and L be a hull disjoint
from KT . What happens to U if we map down L and then map down gL(Kt)? What
happens to U if we do the opposite and map down Kt then L? The answer is actually
given using (7) and gKt(pt) = U(t) for the corresponding family of prime ends pt.
Observe:

(8) ggKt (L)
(U(t)) = ggKt (L)

(gKt(pt)) = ggL(Kt)(gL(pt)).

If we define λ(t) = ggKt (L)
(U(t)), then, as gL(pt) is the (generalized) tip of gL(Kt),

λ drives gL(Kt). Moreover, by (8), λ(t) = gKt∪L(pt) (see Figure 8). Since pt is the
(generalized) tip of Kt in the hull Kt ∪L, we get the usual relationship between tips
and driving functions. This gives us a concrete way of defining the driving function
in the multiple hull setting.

Lemma 4.21. Let Kt be a Loewner family driven by U : [0, T ] → R. Let L
be a hull disjoint from KT . Let λ(t) = ggKt (L)

(U(t)). Fix 0 ≤ s < t ≤ T so that
Ks ∩ ∂HKt 6= ∅. Then for s ≤ r ≤ t

g−Kt∪L(Kt \Ks) ≤ λ(r) ≤ g+Kt∪L(Kt \Ks).

Proof. Let 0 ≤ s < t ≤ T , Ks ∩ ∂Kt 6= ∅, and Ar = gKr∪L(Kt \Kr) for s ≤ r ≤ t.
Then λ(r) ∈ R∩gKr∪L(Kt \Kr) = R∩Ar. Since gKt∪L = gAr ◦gKr∪L, by Lemma 4.2,
λ(r) ∈ R∩gKt∪L(Kt \Kr). So, g−Kt∪L(Kt\Kr) ≤ λ(r) ≤ g+Kt∪L(Kt\Kr) for s ≤ r ≤ t.

Let s < r < t. Then as Ks ⊂ Kr and Ks ∩ ∂HKt 6= ∅, we have Kr ∩ ∂HKt 6= ∅.
Using Lemma 4.20,

g−Kt∪L(Kt \Ks) ≤ g−Kt∪L(Kt \Kr) ≤ λ(r) ≤ g+Kt∪L(Kt \Kr) ≤ g+Kt∪L(Kt \Ks)

Lastly, let rn ↑ t with s ≤ rn. Then for all n ∈ N

g−Kt∪L(Kt \Ks) ≤ λ(rn) ≤ g+Kt∪L(Kt \Ks)

As λ is continuous, the result holds for t. �

Corollary 4.22. Let Kt be a Loewner family driven by U : [0, T ] → R. Let L
be a hull disjoint from KT . Let λ(t) = ggKt (L)

(U(t)). If |λ(t)− λ(s)| > |λ(t)− λ(r)|
for s < r < t, then Ks ∩ ∂HKt 6= ∅.

Proof. Since L ∩KT = ∅, gL(Kt) is a Loewner family and furthermore is driven
by λ. If |λ(t) − λ(s)| > |λ(t) − λ(r)| for s < r < t, then clearly λ(s) 6= λ(r) for
s < r < t. Since λ is continuous either λ(s) > λ(r) for all s < r < t or λ(s) < λ(r)
for all s < r < t. By Lemma 4.17, ∂HgL(Kt) ∩ gL(Ks) 6= ∅. By the disjointness of
KT and L, ∂HKt ∩Ks 6= ∅ as well. �

Whenever we use the families Kt and Ls, we will assume that KT is on the left
side of LS. We note that the next lemma is a generalization of Lemma 3.5 from
[RS17]. The proof of part (a) uses the key ideas brought up in the corresponding
proof in [RS17], but the proof of part (b) is fundamentally different.

Lemma 4.23. Let (Kt)t∈[0,T ] and (Lv)v∈[0,S] be two disjoint Loewner families.
Then, for any t ∈ [0, T ] and s ∈ [0, S],

(a) g−KT∪LS
(KT ) ≤ g−Kt∪Ls

(KT ) < g+Kt∪Ls
(LS) ≤ g+KT∪LS

(LS)

(b) g−Kt∪Ls
(LS)− g+Kt∪Ls

(KT ) ≥ g−KT∪LS
(LS)− g+KT∪LS

(KT ).
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Proof of (a). First, the middle inequality is immediate since KT ∩ LS = ∅.
Second, we will prove the first inequality. Let t ∈ [0, T ] and s ∈ [0, S]. Define

A1 = gKt∪Ls(KT \Kt) and A2 = gKt∪Ls(LS \ Ls).

Then A1 ∩ H and A2 ∩ H are disjoint hulls. Let a = g−Kt∪Ls
(KT \ Kt) and b =

g+Kt∪Ls
(LS \Ls). Since KT \Kt ⊆ KT , g−Kt∪Ls

(KT ) ≤ a. Define A = A1 ∪A2 which is
a hull with A ∩R ⊆ [a, b].

If g−Kt∪Ls
(KT ) < a, then by Lemma 4.2 (a),

g−KT∪LS
(KT ) = gA(g−Kt∪Ls

(KT )) ≤ g−Kt∪Ls
(KT ).

If g−Kt∪Ls
(KT ) = a, then as gA ◦ gKt∪Ls = gKT∪LS

,

g−KT∪LS
(KT ) = g−A(gKt∪Ls(KT )) ≤ g−Kt∪Ls

(KT ).

In both cases, g−KT∪LS
(KT ) ≤ g−Kt∪Ls

(KT ).
Lastly, the other inequality follows in the same manner. �

Proof of (b). Let A = gKt∪Ls((KT \Kt) ∪ (LS \ Ls)). Then A ∩H is a hull with

A ∩R = [g−Kt∪Ls
(KT \Kt), g

+
Kt∪Ls

(KT \Kt)] ∪ [g−Kt∪Ls
(LS \ Ls), g+Kt∪Ls

(LS \ Ls)]

Let (xn)∞n=1, (yn)∞n=1 ⊂ R so that xn ↓ g+Kt∪Ls
(KT ), yn ↑ g−Kt∪Ls

(LS), and

g+Kt∪Ls
(KT ) < xn <

g+Kt∪Ls
(KT ) + g−Kt∪Ls

(LS)

2
< yn < g−Kt∪Ls

(LS)

Then for every n, 0 < gA(yn)−gA(xn) ≤ yn−xn by Lemma 4.2 (b) as (xn, yn) ⊆ R\A.
Since gA ◦ gKt∪Ls = gKT∪Ls ,

g−Kt∪Ls
(LS)− g+Kt∪Ls

(KT ) ≥ g−A(gKt∪Ls(LS))− g+A(gKt∪Ls(KT ))

= g−KT∪LS
(LS)− g+KT∪LS

(KT ). �

We will now generalize the notion of Loewner families to the multiple hull setting.

Definition 4.24. Let K1, . . . , Kn be disjoint Loewner hulls and hcap(K1 ∪ · · · ∪
Kn) = 2T . For j = 1, . . . , n let Kj

t be an increasing family of hulls so that
• t 7→ hcap(Kj

t ) is nondecreasing,
• hcap(K1

t ∪ · · · ∪Kn
t ) = 2t for t ∈ [0, T ],

• Kj
T = Kj.

We call Kt = (K1
t , . . . , K

n
t ) a Loewner parameterization for the hull K1 ∪ · · · ∪Kn.

5. Loewner parameterization precompactness

The generalization of Theorem 1.1 in [RS17], Theorem 1.2 here, follows with
almost the same proof due to prime ends generalizing tips so appropriately. In
[RS17] a few technical lemmas are shown, then Theorems 1.1 and 2.2 are proven.
Since credit for the proofs goes to the authors of [RS17], we will state results where
the proofs generalize quickly without proof and direct the reader to [RS17].

Lemma 5.1. [RS17, 3.2] Let Kt be a Loewner family. Let L be a hull disjoint
from KT . Then there exists a constant c > 0 so that for all 0 ≤ s < t ≤ T

c ≤ hcap(Kt ∪ L)− hcap(Ks ∪ L)

t− s
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Lemma 5.2. [RS17, 3.3] Let (Kt)t∈[0,T1] and (Lt)t∈[0,T2] be two disjoint Loewner
families. Then there is a constant c > 0 so that

c ≤ hcap(Kt1 ∪ Lt2)− hcap(Ks1 ∪ Ls2)
tj − sj

for all 0 ≤ sj < tj ≤ Tj and j = 1, 2.

Lemma 5.3. [RS17, 3.6] Let (Kt)t∈[0,T ] and (Lv)v∈[0,S] be two disjoint Loewner
families. Then there exists a constant M > 0 so that

|gKt∪Lu(p)− gKt∪Lv(p)| ≤M |v − u|

for any t ∈ [0, T ] and u, v ∈ [0, S] where p is the prime end corresponding to Kt.

The proof of Lemma 5.3 from [RS17], deals with images of base points of slits
(specifically, p1 and p2). In particular, the proof looks at the real points that corre-
spond to the prime ends p1 and p2. This is equivalent to mapping down both slits
and looking at the corresponding line segments. In order to prove this lemma, we
replace p1 by KT and p2 be LS, which gives the analogue of mapping down both
slits. The change from base points of a slit to entire hulls in the proof of Lemma 5.3
comes from the fact that for a slit, the two images of the base are the smallest and
largest real points in the image of the mapped down slit, whereas with hulls, this
corresponds to mapping down the entire hull.

Lemma 5.4. [RS17, 3.7] Let Kt be a Loewner family driven by U : [0, T ]→ R.
Let L be a hull disjoint from KT . Let λ(t) = ggKt (L)

(U(t)). Then there exists
ω : [0, T ]→ [0,∞) increasing with limδ↓0 ω(δ) = ω(0) = 0 such that

(9) |gKt∪L(pt)− gKs∪L(ps)| ≤ ω(|t− s|)

for s, t ∈ [0, T ], where pt and ps are the prime ends corresponding to λ(t) and λ(s)
respectively.

The proof of (9) in the setting of hulls requires more background work than in the
setting of slits. The majority of the results in Section 4.5 are used to show that hulls
grow similarly to slits. It is this subtle difference in growth that requires a different
proof of (9) than in [RS17]. However, the proof that ω(δ)→ 0 as δ → 0 is the exact
same as in [RS17], so we refer the reader there for the proof.

Proof. Let ω : [0, T ]→ [0,∞) be defined by ω(0) = 0 and

ω(δ) = sup{g+Kt
(Kt \Ks)− g−Kt

(Kt \Ks) : 0 ≤ s < t ≤ T, t− s ≤ δ}

Clearly, ω(δ) is increasing.
Next, we will prove the inequality in (9). Let 0 ≤ s′ < t ≤ T and δ′ = t − s′.

Lemma 4.13 and the corollary to Lemma 4.17 show that there exists s′ ≤ s < t with
Ks ∩ ∂HKt 6= ∅ and

(10) |gKt∪L(pt)−gKs′∪L(ps′)| = |λ(t)−λ(s′)| ≤ |λ(t)−λ(s)| = |gKt∪L(pt)−gKs∪L(ps)|

Let δ = t − s ≤ δ′, so ω(δ) ≤ ω(δ′). Since Ks ∩ ∂HKt 6= ∅, by Lemma 4.21 we have
for r ∈ [s, t]

g−Kt∪L(Kt \Ks) ≤ λ(r) ≤ g+Kt∪L(Kt \Ks).

So,

|gKt∪L(pt)− gKs∪L(ps)| = |λ(t)− λ(s)| ≤ g+Kt∪L(Kt \Ks)− g−Kt∪L(Kt \Ks).
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Since gKt∪L = ggKt (L)
◦ gKt , Lemma 4.2 (b) shows

(11) g+Kt∪L(Kt \Ks)− g−Kt∪L(Kt \Ks) ≤ g+Kt
(Kt \Ks)− g−Kt

(Kt \Ks) ≤ ω(δ).

Combining (10), (11), and ω(δ) ≤ ω(δ′) gives the result. �

Lemma 5.5. [RS17, 3.8] Let (Kt)t∈[0,T ] and (Lv)v∈[0,S] be two disjoint Loewner
families. Then there exists constants c,M > 0 and ω : [0, T ]→ [0,∞) increasing with
limδ↓0 ω(δ) = ω(0) = 0 such that

|gKt∪Lv(pt)− gKs∪Lu(ps)| ≤ ω

(
1

c
| hcap(Kt ∪ Lv)− hcap(Ks ∪ Lu)|

)
+
M

c
| hcap(Kt ∪ Lv)− hcap(Ks ∪ Lu)|

for all s, t ∈ [0, T ] and u, v ∈ [0, S], where pt and ps are the prime ends corresponding
to λ(t) and λ(s), respectively.

Theorem 5.6. [RS17, 2.2] Let A be a multi-Loewner hull with hcap(A) = 2T .
For any Loewner parameterizationKt = (K1

t , K
2
t ) of A, let λjK be the driving function

of Kj
t for j = 1, 2. Then the sets

(12) {λjK : [0, T ]→ R | K Loewner parameterization of A}
are precompact subsets of the Banach space C([0, T ],R) for j = 1, 2.

The first step in proving this theorem in [RS17] is to get a uniform bound (in
time) on λjK(t) for j = 1, 2. This bound, in our case, is

g−A(A) = g−T (A) ≤ λjK(t) ≤ g+T (A) = g+A(A).

The rest of the proof in [RS17] generalizes.

Theorem 1.2. [RS17, 1.1] Let K1, . . . , Kn be disjoint Loewner hulls. Let
hcap(K1 ∪ · · · ∪ Kn) = 2T . Then there exist constants w1, . . . , wn ∈ (0, 1) with∑n

k=1wk = 1 and continuous driving functions λ1, . . . , λn : [0, T ]→ R so that

∂tgt(z) =
n∑
k=1

2wk
gt(z)− λk(t)

, g0(z) = z,

satisfies gT = gK1∪···∪Kn .

The proof of this theorem is the proof in [RS17] and [Sch14], but we include it
so that the reader can see where the previously proven lemmas are used.

Proof. LetK1, K2 be disjoint Loewner hulls, hcap(K1∪K2) = 2, cj = 1
2

hcap(Kj).
Define αn,w : [0, 1]→ {0, 1} for (n,w) ∈ N× [0, 1] as follows:

αn,w(t) =

{
1, t ∈ ( k

2n
, k+w

2n
),

0, t ∈ (k+w
2n

k+1
2n

),

for k ∈ {0, . . . , 2n}. Let

∂tgt,n(z) =
2αn,w(t)

gt,n(z)− λ1,n(t)
+

2(1− αn,w(t))

gt,n(z)− λ2,n(t)
, g0(z) = z.

By the construction of αn,w only one hull grows at a time. So, the Loewner equa-
tion (with a single driving function) gives that λ1,n(t) is defined on

⋃2n−1
k=0 ( k

2n
, k+w

2n
)

(similarly for λ2,n(t)). The disjointness of the hulls gives that we can extend λj,n to
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be the image of λj,n(t) under the map corresponding to the other hull. So, λ1,n and
λ2,n are continuous on [0, 1]. For t ∈ [0, 1] the hull at time t is

Hn,w,t = K1
xn,w,t

∪K2
yn,w,t

where xn,w,t ∈ [0, 1] depends continuously on w. For all n ∈ N, xn,0,1 = 0 and
xn,1,1 = 1 (as w = 0 and w = 1 correspond to single hull growth of K1 and K2

respectively). By the Intermediate Value Theorem, for each n ∈ N there exists wn
so that xn,wn,1 = c1. By Lemma 4.4 (b), yn,wn,1 = c2. So, Hn,wn,1 = K1 ∪K2. Which
means that αn,wn is a sequence of weights and λj,n are sequences of continuous driving
function generating K1 ∪K2.

By Theorem 5.6, there is a subsequence of λ1,n converging to a function λ1. Using
Theorem 5.6 again on the corresponding subsequence of λ2,n we get that there is a
further subsequence converging to a function λ2. Furthermore, the corresponding
subsequence of wn has a convergent subsequence converging to w ∈ [0, 1]. We will
now reindex this sequence by n ∈ N.

Let
∂tgt(z) =

2w

gt,n(z)− λ1,n(t)
+

2(1− w)

gt,n(z)− λ1,n(t)
, g0(z) = z.

Then it is easy to see that αn,wn converges weakly to w in L1([0, 1]) (similar to
Lemma 2.2). Now, by Theorem 2.1, we have the result. �
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