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Abstract. In the paper composition operators acting on quasi-Banach spaces of analytic

functions on the unit disc of the complex plane are studied. In particular characterizations in

terms of a function ϕ of order bounded as well as summing operators Cϕ are presented, if Cϕ is an

operator from an abstract Hardy space. Applications are shown for the special case of Hardy–Orlicz,

Hardy–Lorentz, and growth spaces.

1. Introduction

Let D be the unit disc of the complex plane C and denote by H(D) the space
of holomorphic functions on D. For a function ϕ ∈ H(D) satisfying ϕ(D) ⊂ D the
composition operator Cϕ : H(D) → H(D) is defined with the formula

Cϕf(z) = f ◦ ϕ(z), f ∈ H(D), z ∈ D.

The composition operator Cϕ : X (D) → H(D) restricted to any subspace X (D) of

H(D) consisting of functions having radial limits, induces an operator C̃ϕ mapping

X (D) into the space of Borel measurable functions given by C̃ϕf := C̃ϕf for all
f ∈ H(D), where g̃ denotes the radial limit function of g ∈ H(D).

This paper is devoted to the study of composition operators on abstract variants
of Hardy spaces. The most research has been done on the composition operators
on the Hilbert–Hardy space H2 and its direct generalizations—Hardy classes Hp.
Note however that in the last years the study of composition operators in the more
general variants of Banach spaces of holomorphic functions on D have attracted more
attention, just to mention the recent memoir [12] and articles [6, 13, 16, 17].

The study of composition operators on spaces of analytic functions reveals re-
markable and enlightening connections between operator theoretic properties of Cϕ
and geometric properties of the symbol ϕ. We refer the reader to Shapiro’s article
[20] and the comments given there. In this note we present a further evidence of this
principle and show how to study order boundedness and summability of composi-
tion operators acting on general Hardy spaces. Our research at its bases dates back
to the fundamental paper of Shapiro and Taylor [21], where the study of summing
composition operators on spaces Hp were initiated. Let us remark that this research
was then expanded in several papers including articles of Hunziker and Jarchow [5],
Jarchow [7, 8, 9], Jarchow and Riedl [10], Domenig [3], and recently by Lefèvre and
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Rodríguez-Piazza in [14]. Note that in the mentioned papers the study of absolutely
summing composition operators on Hp was combined with the study of factorization
of operators and order boundedness.

Our research goes far beyond the classical spaces. In this paper we use functional
analysis techniques and interpolation theory to study absolutely summing composi-
tion and order boundedness operators on abstract variants of Hardy spaces. Our
approach is similar in its philosophy to the one presented in the recent article [17],
where the Carleson embeddings from abstract Hardy spaces into Banach lattices were
analyzed.

In particular we will study order bounded composition operators on the so-called
growth spaces. Let φ : [0, 1] → [0,∞) be a continuous decreasing function with φ(1) =
0 and φ(r) > 0 for r ∈ [0, 1). We define the Banach space Xφ of all analytic functions
f : D → C equipped with the norm

‖f‖Xφ
= sup

z∈D
φ
(
|z|
)∣∣f(z)

∣∣.

Let us note the special case when for 0 < p <∞, φ(r) = (1− r)1/p, for all r ∈ [0, 1],
was studied by Jarchow and Riedl in [10]. In what follows when φ(r) = (1 − r)1/p,
we write X1/p instead of Xφ.

The main results of the paper are contained in Sections 3 and 4. For the conve-
nience we present below the flavor of those outcomes. In Section 3 we study order

bounded operators C̃ϕ from growth spaces Xφ into quasi-Banach lattices on [0, 2π).
The main result states that if Y has a non-trivial convexity and ψ be a quasi-concave

function satisfying some mild condition, then the operator C̃ϕ is order bounded from
Xφ into Y with φ(r) = 1/ψ( 1

1−r
) for all r ∈ [0, 1) if and only if one of the follow-

ing equivalent condition is satisfied: ψ( 1
1−|ϕ̃|

) belongs to Y or C̃ϕ defines a bounded

operator from Xφ into Y .
The results of Section 4 are inspired by Shapiro and Taylor paper [21], where it

was shown that the composition operator Cϕ is p-absolutely summing provided that
(1 − |ϕ̃|)−1 is integrable on [0, 2π). We investigate more general summing property.
Combining general variants of Hausdorff–Young inequalities with interpolation, we
study abstract summing and order bounded composition operators Cϕ on general
Hardy spaces. We present applications to Hardy–Orlicz and Hardy–Lorentz spaces.
In particular as a by-product of general results we show that if p ∈ [2,∞) and

1/p+ 1/p′ = 1, then C̃ϕ defines an order bounded operator from the Hardy–Lorentz
space Hp,p′ into Lp if and only if one of the following equivalent condition is satisfied:

(1−|ϕ̃|)−1 is integrable on [0, 2π) or C̃ϕ defines a p-summing operator from Hp,p′ into
Lp.

2. Preliminaries

Throughout the paper we will use the standard notations from the Banach space
theory and the theory of Hardy spaces. Below we collect the basic notions and
definitions.

Symmetric quasi-Banach spaces. If X is a quasi-Banach space we denote by
BX the closed unit ball of X. For a given complete σ-finite measure space (Ω, µ) :=
(Ω,Σ, µ) the symbol L0(µ) := L0(Ω,Σ, µ) stands for the space of (equivalence classes
of µ-a.e. equal) complex-valued measurable functions on Ω with the topology of
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convergence in measure on µ-finite sets. As usual the order |f | ≤ |g| means that
|f(t)| ≤ |g(t)| for µ-almost all t ∈ Ω.

If a quasi-normed space X ⊂ L0(µ) is such that there exists u ∈ X with u > 0 µ-
a.e. on Ω and X is solid (meaning that f ∈ X with ‖f‖X ≤ ‖g‖X whenever |f | ≤ |g|
with f ∈ L0(µ) and g ∈ X), then X is said to be a quasi-normed lattice (on Ω or
on (Ω, µ)). A quasi-Banach lattice X is said to be maximal (or to have the Fatou

property), if for any sequence {fn} of non-negative elements from X such that fn ↑ f
for f ∈ L0(Ω) and sup

{
‖fn‖X : n ∈ N

}
< ∞, one has f ∈ X and ‖fn‖X → ‖f‖X .

A Banach lattice X is said to be order continuous if for every 0 ≤ fn ↓ 0 a.e. it
follows that ‖fn‖X → 0. If X is an order-continuous Banach lattice on (Ω, µ), then
X∗ can be identified with the Köthe dual space (X ′, ‖ · ‖X′) of all f ∈ L0(µ) such
that

‖f‖X′ := sup

{
ˆ

Ω

|fg| dµ : ‖g‖X ≤ 1

}
<∞.

We note that X ′ is a maximal Banach lattice on (Ω, µ). It is well known that X is
maximal if and only if the Köthe bidual X ′′ = X with equality of norms. For details
we refer the reader to [15].

An important class of quasi-Banach lattices on a measure space (Ω,Σ, µ) are
symmetric quasi-Banach spaces. Given f ∈ L0(µ), its distribution function is defined
as a function of non-negative λ by µf (λ) = µ{t ∈ Ω: |f(t)| > λ}. Then a quasi-
Banach lattice X on (Ω, µ) is said to be a symmetric quasi-Banach space if g ∈ X
and ‖f‖X = ‖g‖X whenever f ∈ X, g ∈ L0 and µf = µg. Symmetric Banach
spaces are also called rearrangement invariant spaces (see [15]). In the sequel, if X
is a symmetric Banach space, we call it simply a symmetric space. Recall also that
in this case X ⊂ L1(µ) + L∞(µ).

In what follows the term complex quasi-normed (resp., quasi-Banach) lattice
refers to the complexification X(C) of a real quasi-normed (resp., quasi-Banach)
lattice X (namely the space of all complex valued measurable functions f on Ω
such that the element |f | defined by |f |(t) := |f(t)| for t ∈ Ω belongs to X and
‖f‖X(C) := ‖|f |‖X). Throughout the paper for the simplicity of presentation we will
often avoid using the term “complex”.

Hardy spaces on the disc. For any f ∈ H(D) and r ∈ [0, 1), denote by
fr the function fr : D → C given with the formula fr(z) = f(rz), z ∈ D. Let X
be a symmetric space on (T, m), where m is the normalized Lebesgue measure on
T := [0, 2π), that is dm(eit) = 1

2π
dt. We define the abstract Hardy space HX to be

the Banach space of all f ∈ H(D) such that sup{‖fr‖X : r ∈ [0, 1)} < ∞, equipped
with the norm

‖f‖HX = sup
{
‖fr‖X : r ∈ [0, 1)

}
.

We note that in the case when X = Lp(m) and p ∈ [1,∞], then HLp is the
classical Hardy space Hp (we refer to the Duren’s monograph [4]). Record that
spaces HX were studied for example in [12] for the case when X is an Orlicz space
and in more general case of X being a symmetric space in [16].

As in the classical case of Hp spaces, the fact that one can study properties of HX
functions via the study of the corresponding boundary X functions, is very fruitful.
The space of all f ∈ H(D) such that the radial limit function

f̃(ξ) := lim
r→1−

fr(ξ)
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exists for m-almost every ξ ∈ T, is denoted by H̃(D). Since HX →֒ H1 then for

every function f(z) =
∑∞

n=0 anz
n in HX, the radial limit f̃ exists a.e. on T (see [4,

Theorem 5, p. 17]). In the sequel we will use the following fact without any references
(see [16, Proposition 2.2]). If X is a symmetric space on T, then f ∈ HX implies

f̃ ∈ X ′′, the Köthe bidual of X, and

‖f‖HX = ‖f̃‖X′′ .

In particular, in the case when X is a maximal symmetric space (that is, when

X = X ′′), the liner map f 7→ f̃ is a linear isometric isomorphism from HX onto
a closed subspace of X, which consists of those members of X whose negative Fourier
coefficients vanish.

3. Order bounded composition operators

Throughout the paper Φ denotes the set of all analytic self-maps ϕ : D → D. If

ϕ ∈ Φ with |ϕ̃(eit)| < 1 for almost all t ∈ T, we write ϕ ∈ Φ̃. From the Littlewood
subordination principle, it follows that Cϕ maps every Hardy space Hp, p > 0, into
itself and is continuous on Hp (see [4, Theorem 1.7]).

Let X (D) ⊂ H̃(D) be a Banach space of analytic functions. Then every compo-

sition operator Cϕ : X (D) → X (D) induces an operator C̃ϕ : X (D) → L0(m) defined

by C̃ϕf = C̃ϕ(f). In this section we study order boundedness of operator C̃ϕ defined
on abstract spaces of analytic functions.

We recall that an operator T : X → Y from a Banach space X into a Banach
lattice Y is order bounded if it maps the unit ball BX of X into an order bounded
interval of Y , i.e., there exists y ∈ Y such that |Tx| ≤ y for all x ∈ BX .

Recall that the fundamental function ϕX of a symmetric space X(µ) is given by
ϕX(t) := ‖χA‖X , where A is any measurable set with µ(A) = t. Notice that if X is
a symmetric space on nonatomic measure space (Ω, µ), then ϕX is a quasi-concave
function (see [1, 11]) and for any t ∈ [0, µ(Ω)) we have

ϕX(t)ϕX′(t) = t.

A non-negative function q : [0, a) → [0,∞) defined on [0, a) with a ∈ (0,∞] is called
quasi-concave if it is non-decreasing on [0, a), q(0) = 0 and t 7→ q(t)/t is non-
increasing on (0, a). Notice also that if q is a quasi-concave function on [0, a), then
the function q̂ : [0, a) → [0,∞) defined for t ∈ [0, a) with

q̂(t) := inf
{(

1 + t
s

)
q(s) : s ∈ (0, a)

}

is a concave function and satisfies conditions q(t) ≤ q̂(t) ≤ 2q(t) for all t ∈ [0, a).
The set of all quasi-concave functions on [0,∞) will be denoted by P. If in addition
q(t) → ∞ as t→ ∞ then we write q ∈ P∞.

The following proposition is a slightly more general version of the result obtained
in [17, Proposition 1.5].

Proposition 3.1. Let X 6= L∞ be a maximal symmetric space on T, Y be

a Banach lattice on T and ϕ ∈ Φ. Then the following statements are equivalent:

(i) C̃ϕ defines an order bounded operator from HX into Y.
(ii) ϕX(1− |ϕ̃|)−1 ∈ Y.
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Proof. (i) =⇒ (ii). Assume that C̃ϕ : HX → Y is order bounded. Then there
exists a non-negative g ∈ Y such that the following inequality holds a.e. on T

|C̃ϕf | ≤ g, f ∈ BHX .

Let P [g] be the Poisson integral of g, that is P [g](z) =
´

T
Pz(ξ)g(ξ) dm. We have

|f(ϕ(z))| = |Cϕf(z)| ≤ P [g](z), f ∈ BHX , z ∈ D.

Now we use Lemma 1.2 from [17] to obtain the inequalities

ϕX(1− |ϕ(z)|)−1 ≤ 4 ‖δϕ(z)‖(HX)∗ ≤ 4P [g](z), z ∈ D,

where δz is a point evaluation functional on HX. Notice that if X 6= L∞, then
limt→0+ ϕX(t) = 0. If t ∈ T is such that limr→1+ P [g](re

it) = g(eit) < +∞, we
deduce from the above inequality applied to z = reit with 0 < r < 1, that

∣∣ϕ̃(eit)
∣∣ < 1 and ϕX

(
1− |ϕ̃(eit)|

)−1
≤ 4g(eit),

by the continuity of ϕX . That is we have ϕX(1− |ϕ̃|)−1 ≤ 4g almost everywhere and
so ϕX(1− |ϕ̃|)−1 ∈ X.

(ii) =⇒ (i). Suppose that ϕX(1 − |ϕ̃|)−1 ∈ Y . This implies in particular that

ϕ ∈ Φ̃. But then for all f ∈ BHX , by the continuity of f in D we have when
|ϕ̃(eit)| < 1

|C̃ϕf(e
it)| = lim

r→1−
|Cϕf(re

it)| = lim
r→1−

|f
(
ϕ(reit)

)
| = |f

(
ϕ̃(eit)

)
| ≤ ‖δϕ̃(eit)‖(HX)∗ .

Now it follows from [17, Lemma 1.2(ii)] that
∣∣C̃ϕf(eit)

∣∣ ≤ 2ϕX
(
1− |ϕ̃(eit)|

)−1
.

Thus |C̃ϕf | = |C̃ϕf | ≤ 2ϕX(1−|ϕ̃|)−1 a.e. on T, for all f ∈ BHX , and so C̃ϕ is order
bounded. This completes the proof. �

Now we will study order bounded composition operators on growth spaces (see
Introduction for the definition). In what follows we will use the Matuszewska–Orlicz
indices αf and βf defined for every f ∈ B, where B denotes the class of all measurable
functions f : (0,∞) → (0,∞) such that

f̄(t) := sup
s>0

f(st)

f(s)
<∞, t > 0

and f̄ is measurable. For f ∈ B we put (see [18])

αf := sup
0<t<1

log f̄(t)

log t
, βf := inf

t>1

log f̄(t)

log t
.

We note that for given s ∈ (0,∞) and for α ∈ R the function f : (0,∞) → (0,∞)
defined by f(t) = ts(1 + | log t|)α satisfies the following: f(t) = ts(1 + | log t|)|α| and
αf = βf = s.

Let f, g : [0,∞) → (0,∞). We say that f and g are equivalent (and write f ≍ g),
whenever for some a, b > 0, a−1f(b−1t) ≤ g(t) ≤ af(bt) for all t > 0. It is easy to see
that f , g ∈ B with f ≍ g implies that αf = αg and βf = βg. If f : [0,∞) → [0,∞) is
such that f(1) = 1, then f is called normalized.

Throughout the rest of the paper, we write f ∈ B0 whenever f ∈ B and 0 <
αf ≤ βf < 1.
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We will need the following formula which holds for all α > 0

(∗)

∞∑

n=0

2nαr2
n

= O((1− r)−α), 0 ≤ r < 1.

This formula is known (see [4, p. 66]), nonetheless for the sake of completeness we
justify it here. The above estimate follows from the following equality

ˆ ∞

0

2xαr2
x

dx =
1

log 2

ˆ ∞

1

eu log ruα−1 du.

Since for r ∈ (0, 1), log r < r − 1, the integral on the right hand side of equality is
dominated by

ˆ ∞

1

e−(1−r)uuα−1 du = (1− r)−α
ˆ ∞

1−r

e−ttα−1 dt ≤ Cα(1− r)−α

and so the required estimate follows.
Before we state and prove the following lemma we recall that the Rademacher

functions rn : [0, 1] → R are given by rn(t) = sgn sin(2nπt) for each integer n ≥ 0
and every t ∈ [0, 1]. For a function f : [0,∞) → [0,∞) we define the function
f∗ : [0,∞) → [0,∞) by f∗(0) := 0 and f∗(t) := 1/f(1/t) for all t > 0.

Lemma 3.2. Let ψ ∈ B be a normalized increasing continuous function with

αψ > 0. For every t ∈ [0, 1] the functions ft defined by

ft(z) =
∞∑

n=0

rn(t)ψ(2
n)z2

n

, z ∈ D

belongs to Xφ, where φ is defined by φ(r) = ψ∗(1− r) for all r ∈ [0, 1]. Moreover we

have sup{‖ft‖Xφ
: t ∈ [0, 1]} <∞.

Proof. We will need the following known technical result (see, e.g., [16, Propo-
sition 5.1]) which states that if f ∈ B, then there exist real numbers α, β with
α < αf ≤ βf < β and a concave function ρ ∈ B0 such that

f(t) ≍ tαρ(tβ−α).

Since αψ > 0, ψ(t) → ∞ as t → ∞. Thus our hypotheses imply that φ satisfies
all required conditions in the definition of Xφ. By the mentioned technical result, we
may assume without loss of generality that there exist positive constants α, β with
α < β and a concave function ρ ∈ P, such that

ψ(t) = tαρ
(
tβ/tα

)
, t > 0 .

We now let Ψ(s, t) = sρ(t/s) for all s, t > 0. Observe that Ψ(λs, λt) = λΨ(s, t) for
λ, s, t > 0. Thus Ψ: (0,∞)× (0,∞) → (0,∞) is a concave function satisfying

ψ(t) = Ψ(tα, tβ), t > 0.

By concavity of Ψ, it follows easily that for any finite sets {s0, . . . , sm}, {t0, . . . , tm}
of positive numbers we have

m∑

k=0

Ψ(sk, tk) ≤ Ψ

(
m∑

k=0

sk,

m∑

k=0

tk

)
.
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Then by the formula (∗), for every α > 0, there exists a constant C(α) > 0 such that
the following estimate holds

∞∑

n=0

2αn|z|2
n

≤
C(α)

(1− |z|)α
, z ∈ D.

Put C = max{C(α), C(β)} and choose t ∈ [0, 1] and z ∈ D. Then combining the
above estimates we get that

|ft(z)| ≤

∞∑

n=0

ψ(2n)|z|2
n

=

∞∑

n=0

Ψ
(
2αn|z|2

n

, 2βn|z|2
n)

≤ Ψ

(
∞∑

n=0

2αn|z|2
n

,

∞∑

n=0

2βn|z|2
n

)

≤ CΨ
(
(1− |z|)−α, (1− |z|)−β

)
= Cψ

(
(1− |z|)−1).

In consequence ft ∈ Xφ with sup{‖ft‖Xφ
: t ∈ [0, 1]} ≤ C. �

In the sequel we will use the classical Khintchine inequality (see [15, Theo-
rem 2.b.3]), which states that for every p ∈ (0,∞) there exist constants Ap, Bp > 0
such that for any choice of scalars {ak}

n
k=1, we have

Ap

(
n∑

k=1

|ak|
2

)1/2

≤

(
ˆ 1

0

∣∣∣∣
∞∑

k=1

rk(t)ak

∣∣∣∣
p

dt

)1/p

≤ Bp

(
n∑

k=1

|ak|
2

)1/2

.

We recall also that a quasi-Banach lattice X is said to be p-convex, p ∈ (0,∞),
if there is positive constant C > 0 such that

∥∥∥∥∥∥

(
n∑

k=1

|xk|
p

)1/p
∥∥∥∥∥∥
X

≤ C

(
n∑

k=1

‖xi‖
p
X

)1/p

for every choice of vectors x1, . . . , xn ∈ X. The least C satisfying the above inequality
is denoted by M (p)(X). A quasi-Banach lattice X is said to have non-trivial convexity
if X is p-convex for some 0 < p <∞.

The following lemma will play a key role in the proof of the main theorem of this
section.

Lemma 3.3. Let Y be a maximal quasi-Banach lattice on T with non-trivial

convexity and let ψ ∈ P∞ be a normalized function. If C̃ϕ with ϕ ∈ Φ̃ defines

a bounded operator from Xφ into Y , where φ(r) = ψ∗(1− r) for all r ∈ [0, 1], then

(
∞∑

n=0

ψ(2n)2 |ϕ̃|2
n+1

)1/2

∈ Y.

Proof. Suppose that a quasi-Banach lattice Y is p-convex for some p ∈ (0,∞).
Combining monotonicity of the quasi-norm and its p-convexity with the Khintchin
inequality (consult the proof of Theorem 1.d.6 in [15]) we get that for any choice of
finite set of elements y1, . . . , yn ∈ Y the following inequalities hold

Ap

∥∥∥∥∥∥

(
n∑

k=1

|yk|
2

)1/2
∥∥∥∥∥∥
Y

≤

∥∥∥∥∥∥

(
ˆ 1

0

∣∣∣∣∣

n∑

k=1

rk(t)yk

∣∣∣∣∣

p

Y

dt

)1/p
∥∥∥∥∥∥
Y

≤M (p)(Y )

(
ˆ 1

0

∥∥∥∥∥

n∑

k=1

rk(t)yk

∥∥∥∥∥

p

Y

dt

)1/p

.
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Since Y is maximal and ft ∈ Xφ for every t ∈ [0, 1] by Lemma 3.2, we obtain

‖C̃ϕ‖ sup
t∈[0,1]

‖ft‖Xφ
≥

(
ˆ 1

0

∥∥C̃ϕft
∥∥p dt

)1/p

=

(
ˆ 1

0

∥∥∥∥∥

∞∑

n=0

rn(t)ψ(2
n) ϕ̃2n

∥∥∥∥∥

p

Y

dt

)1/p

≥ ApM
(p)(Y )−1

∥∥∥∥∥∥

(
∞∑

n=0

ψ(2n)2 |ϕ̃|2
n+1

)1/2
∥∥∥∥∥∥
Y

.

This completes the proof. �

We are ready to prove the main theorem of this section, where we characterize
the order bounded composition operator on the growth spaces Xφ.

Theorem 3.4. Let Y be a quasi-Banach lattice on T with non-trivial convexity.

Assume that ψ ∈ P∞ is normalized function with αψ > 0. Let ϕ ∈ Φ̃ and φ : [0, 1] →
R be given by φ(r) = ψ∗(1− r), r ∈ [0, 1]. The following statements are equivalent:

(i) ψ
(
(1− |ϕ̃|)−1

)
∈ Y.

(ii) C̃ϕ defines an order bounded operator from Xφ into Y.

(iii) C̃ϕ defines a bounded operator from Xφ into Y.

Proof. For every f ∈ BXφ
we have

|f(z)| ≤ ψ
(
(1− |z|)−1

)
, z ∈ D

and so
C̃ϕ(f) ≤ ψ

(
(1− |ϕ̃|)−1

)
.

This shows that (i) implies (ii). The implication (ii) =⇒ (iii) is trivial.
(iii) =⇒ (i). We claim that for every quasi-concave function ψ : [0,∞) → [0,∞)

the following inequality holds
(

∞∑

n=0

ψ(2n)2 r2
n+1

)1/2

≥
1

16
ψ
(
(1− r)−1

)
, r ∈ [1/2, 1).

To see this fix 1/2 ≤ r < 1 and pick an integer k ≥ 2 such that 2k−1 ≤ 1/(1−r) < 2k.
Then we have

r2
k

≥

(
1−

2

2k

)2k

≥ C = inf
x≥4

(
1−

2

x

)x
.

Standard calculus shows that the function (2,∞) ∋ x 7→
(
1 − 2

x

)x
is an increasing

function and so C = 1/16. Since ψ is non-decreasing,
(

∞∑

n=0

ψ(2n)2 r2
n+1

)1/2

≥ ψ(2k)r2
k

≥
1

16
ψ
(
(1− r)−1

)
.

Now observe that the constant function 1 belongs to Xφ and C̃φ1 = 1. Thus if C̃φ
defines a bounded operator from Xφ into Y , then 1 belongs to Y , and so L∞ ⊂ Y by
the fact that Y is a lattice. To finish the proof we use Lemma 3.3 to conclude that

ψ
(
(1− |ϕ̃|)−1

)
χ{|ϕ̃|>1/2} ∈ Y.

Thus the required statement ψ
(
(1 − |ϕ̃|)−1

)
∈ Y follows from L∞ ⊂ Y and the

inequality

ψ
(
(1− |ϕ̃|)−1

)
χ{|ϕ̃|≤a} ≤ ψ

(
(1− a)−1

)
χT ∈ Y, 0 < a < 1. �
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4. Abstract summing composition operators

In their remarkable paper [21] Shapiro and Taylor proved that the composition
operator Cϕ is a Hilbert–Schmidt operator on H2 if and only if (1− |ϕ̃|)−1 ∈ L1(T).
They also showed that from the mentioned integrability condition it follows that
Cϕ is absolutely p-summing on Hp for all p ∈ [1,∞). Note that if Cϕ : H

p → Hp,
p ∈ [2,∞), is absolutely p-summing, then (1 − |ϕ̃|)−1 ∈ L1(T). These results raise
a problem of possible characterization of absolutely summing composition operators
if p ∈ [1, 2). In this section we provide some results related to this question, namely
we study the general summing property in the framework of abstract Hardy spaces.
We show also application to the study of absolutely summing and order bounded
composition operators on Hardy–Orlicz and Hardy–Lorentz spaces.

Let (Ω,Σ, µ) be a measure space. Throughout this section φ will denote an
Orlicz function, that is a convex mapping φ : [0,∞) → [0,∞) such that φ(0) = 0 and
φ(t) > 0 for all t > 0. Given an Orlicz function φ, the Orlicz space Lφ = Lφ(Ω) is
the set of all functions f ∈ L0(Ω) satisfying

Iφ(λf) =

ˆ

Ω

φ
(
λ|f |

)
dµ <∞ for some λ > 0.

It is well known that Lφ is a Banach lattice equipped with the norm

‖f‖φ = inf
{
λ > 0: Iφ

(
f
λ

)
≤ 1
}
.

The Orlicz space defined on a purely atomic measure (Ω, µ), where Ω = Z+ or Ω = N

is denoted by ℓφ. For a given Orlicz space Lφ on T we define the Hardy–Orlicz space
Hφ by Hφ := HLφ.

Let E and F be Banach sequence spaces with E →֒ F (i.e., E is a linear subspace
of F and the embedding is continuous). For every operator T : X → Y between
Banach spaces and each n ∈ N we define

πnF,E(T ) = sup

{∥∥∥∥∥

n∑

k=1

‖Txk‖Y ek

∥∥∥∥∥
F

: sup
‖x∗‖X∗≤1

∥∥∥∥∥

n∑

k=1

〈xk, x
∗〉ek

∥∥∥∥∥
E

≤ 1

}
,

where ek are the standard unit vectors. If πF,E(T ) := sup{πnF,E(T ) : n ∈ N} < ∞,
then T is called (F,E)-summing. For F = ℓq and E = ℓp, with p, q ∈ [1,∞), p ≤ q,
we obtain the well-known notion of (q, p)-summing operators (resp., p-summing in
the case when p = q).

The following result provides sufficient conditions for a composition operator
Cϕ to be (ℓφ0 , ℓφ1)-summing on Hardy–Orlicz spaces. We recall that a function
f : [0,∞) → [0,∞) is called super-mutiplicative if f(s)f(t) ≤ f(st) for all s, t ≥ 0.

Proposition 4.1. Let φ0 and φ1 be normalized Orlicz functions such that φ0 is

super-mutiplicative and there exists a constantK ≥ 1 such that φ0(st) ≤ Kφ0(s)φ1(t)
for all s > 0 and t ∈ (0, 1]. If (1 − |ϕ̃|)−1 ∈ L1(T), then the composition operator

Cϕ : H
φ0 → Hφ0 is (ℓφ0, ℓφ1)-summing.

Proof. We let X := Lφ0(T). Then we have ϕX(t) = 1/φ−1
0 (1/t), t ∈ (0, 1]. Our

hypothesis implies that there is a subset A ⊂ T with m(A) = 0 such that |ϕ̃(eit)| < 1
for all t ∈ Ac, where Ac denotes the complement of A in T. It follows from [17,
Lemma 1.2(ii)] that

∣∣Cϕ̃f(eit)
∣∣ ≤ 2

ϕX(1− |ϕ̃(eit)|)
‖f‖HX



610 Mieczysław Mastyło and Paweł Mleczko

for all t ∈ Ac and all f ∈ HX. Let g be given by

g(eit) =
2

ϕX(1− |ϕ̃(eit)|)
, t ∈ Ac.

The above estimate shows that for every t ∈ Ac the linear functional x∗t defined by

x∗t (f) = Cϕf(e
it)/g(eit), f ∈ HX

is bounded on HX with norm less than or equal to 1. Now we choose finitely many
elements f1,. . . ,fn in HX such that

sup





∥∥∥∥∥

n∑

k=1

x∗(fk)ek

∥∥∥∥∥
ℓφ1

: ‖x∗‖(HX)∗ ≤ 1



 ≤ 1.

Then for every bounded functional x∗ on HX with ‖x∗‖ ≤ 1, we have
n∑

k=1

φ1

(
|x∗(fk)|

)
≤ 1.

Since φ0 is super-multiplicative, then φ0 satisfies also ∆2-condition (i.e., there exists
c > 0 such that φ0(2t) ≤ c φ0(t) for all t > 0) and so g ∈ Lφ0 . Combining with our
hypothesis on φ0 and φ1 we have with λ = ‖g‖X ,

n∑

k=1

φ0

(
|Cϕfk(e

it)/Kλ|
)
=

n∑

k=1

φ0

(
g(eit)|x∗t (fk)|/Kλ

)
≤ φ0

(
g(eit)/λ

)

for all t ∈ Ac. Integrating both sides of the above inequality over T yields
n∑

k=1

ˆ

T

φ0

(
|Cϕfk|/Kλ

)
dm ≤ 1.

Since φ0 is super-multiplicative, φ0(‖f‖X) ≤
´

T
φ0(|f |) dm for all f ∈ X. This

implies that
∑n

k=1 φ0

(
‖Cϕfk‖X/Kλ

)
≤ 1 and so

∥∥∥∥∥

n∑

k=1

‖Cϕfk‖HXek

∥∥∥∥∥
ℓφ0

≤ K‖g‖φ0.

This completes the proof. �

We will study summing properties of composition operators in the general frame-
work of abstract Hardy spaces. To do this we need the notion of Hausdorff–Young
pair. Let X be a symmetric space on T and let E be a Banach sequence lattice on
Z+. A pair of spaces (X,E) is said to be a Hausdorff–Young pair on Z+, if there

exists a constant C > 0 such that the following holds: if f ∈ X, then {f̂(n)}n≥0 ∈ E

and ‖{f̂(n)}‖E ≤ C‖f‖X. We refer the reader to the article [16] for wider context
and general examples of Hausdorff–Young pairs.

Note also that in the following lemma F (Y ) denotes the Banach space of se-
quences {xn} in Y equipped with the norm

‖{xn}‖F (Y ) :=
∥∥{‖xn‖Y

}∥∥
F
.

Lemma 4.2. Let X, Y be Banach lattices on T and assume that X is an order

continuous and maximal symmetric space such that (X ′, E) is a Hausdorff–Young

pair on Z+. If ϕ ∈ Φ and C̃ϕ : HX → Y is (F,E)-summing, then
{
|ϕ̃|n

}
∈ F (Y ).
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Proof. Let x∗ be a bounded linear functional on HX with ‖x∗‖ ≤ 1. We

recall that the linear map HX ∋ f 7→ f̃ is a linear isometric isomorphism onto
a closed subspace of X. Thus a natural identification of the dual X∗ with the Köthe
dual combined with the Hahn–Banach theorem yields that there exists g ∈ X ′ with
‖g‖X′ = ‖x∗‖ ≤ 1 such that

x∗(f) =

ˆ

T

f̃ g dm, f ∈ HX.

This implies that for {un} given by un(z) = zn for all z ∈ T, we get that for some
g ∈ X ′,

x∗(un) = ĝ(n), n ∈ Z+.

From the assumption that (X ′, E) is a Hausdorff–Young pair on Z+, it follows that
∥∥{x∗(un)

}∥∥
E
≤ C‖g‖X′

and so {‖C̃ϕ(un)‖Y } ∈ F . Since ‖C̃ϕ(un)‖Y = ‖|ϕ̃|n‖Y for each n ∈ Z+, the required
statement follows. �

Corollary 4.3. Let X be an order continuous and maximal symmetric space

on T such that (X ′, E) is a Hausdorff–Young pair on Z+. Assume that a maximal

Banach lattice Y on T is p-convex for some 1 < p <∞. If ϕ ∈ Φ and C̃ϕ : HX → Y
is an (ℓp, E)-absolutely summing operator, then

(
1− |ϕ̃|

)−1/p
∈ Y.

Proof. From Lemma 4.2 it follows that {|ϕ̃|n
}
∈ ℓp(Y ). Thus p-convexity of Y

implies that there exists a constant C such that
∥∥{‖|ϕ̃|n‖Y

}∥∥
ℓp
≥ C

∥∥∥∥{|ϕ̃|n
}∥∥

ℓp

∥∥
Y
.

In particular this yields |ϕ̃(eit)| < 1 for almost all t ∈ T, and
(
1− |ϕ̃|p

)−1/p
∈ Y.

Since 1− rp ≤ p(1− r) for all r ∈ [0, 1], the required statement follows. �

Now we show applications of the obtained results to p-summing operators C̃ϕ.

Corollary 4.4. Let X be an order continuous and maximal symmetric space

on T with fundamental function ϕX(t) ≍ t1/p, p ∈ [1,∞). Assume that (X ′, ℓp) is

a Hausdorff–Young pair and ϕ ∈ Φ. Then the following statements are equivalent:

(i) C̃ϕ defines order bounded operator from HX into Lp(T).
(ii) (1− |ϕ̃|)−1 ∈ L1(T).

(iii) C̃ϕ defines p-summing operator from HX into Lp(T).

Proof. The conditions (i) and (ii) are equivalent by Proposition 3.1. The im-
plication (ii) =⇒ (iii) is a consequence of easily verified fact, that if an operator
T : X → Lp is order bounded, then T is p-summing. Finally, the implication (iii)
=⇒ (ii) follows from Corollary 4.3. �

We finish with applications to Hardy–Lorentz spaces. Given p ∈ [1,∞) and
q ∈ [1,∞) the Lorentz space Lp,q on T consists of those f ∈ L0(T) for which

‖f‖p,q :=

(
ˆ 1

0

(
t1/pf ∗(t)

)q dt

t

)1/q
<∞,
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(with usual interpretation when q = ∞). Here f ∗ denotes the decreasing rearrange-
ment of f .

It is well known (see, e.g., [1]) that for 1 ≤ q ≤ p < ∞, the above formula
defines a separable, maximal symmetric space. In the case 1 < p < q ≤ ∞ its defines
a quasi-norm on Lp,q which is known to be equivalent to the norm, say ‖ · ‖∗p,q given

by ‖f‖∗p,q = ‖f ∗∗‖p,q for all f ∈ Lp,q, where f ∗∗(t) = 1
t

´ t

0
f ∗(s) ds for every t ∈ [0, 1).

We also recall the definition of the sequence Lorentz space ℓp,q (on Z+) given by

ℓp,q =

{
x = {xn} : ‖x‖p,q =

(
∞∑

n=0

(
n1/px∗n

)q 1
n

)1/q

<∞

}
.

It is well known the above functionals ‖ · ‖p,q are quasi-norms equivalent to norms
under which Lp,q and ℓp,q are symmetric spaces (see [1]). If X = Lp,q is the Lorentz
space defined on T, then the Hardy space HX is denoted by Hp,q and is called
Hardy–Lorentz space.

Theorem 4.5. Let 2 < p < ∞ and 1/p + 1/p′ = 1. For every ϕ ∈ Φ, the

following statements are equivalent:

(i) C̃ϕ defines order bounded operator from Hp,p′ into Lp(T).
(ii) (1− |ϕ̃|)−1 ∈ L1(T).

(iii) C̃ϕ defines p-summing operator from Hp,p′ into Lp(T).

Proof. We will use the “real interpolation theorem” (see [2, Theorem 5.3.1]) from
which it follows that if p0, p1 ∈ [1,∞] and p0 6= p1, then

(Lp0 , Lp1)θ,q = Ls,q,
1

s
=

1− θ

p0
+

θ

p1
, θ ∈ (0, 1)

with equivalent norms. This formula also holds if L is substituted for ℓ.
Now applying the above interpolation formula to the Fourier transform F : (L1,

L2) → (ℓ∞, ℓ2) given by

F(f) :=
{
f̂(n)

}
, f ∈ L1(T)

yields that (Ls,q, ℓs
′,q) is a Hausdorff–Young pair on Z+ for all s ∈ (1, 2), q ∈ [1,∞].

In particular (Lp
′,p, ℓp) is a Hausdorff–Young pair.

We use the well-known Köthe duality formulae (Lr,q)′ = Lr
′,q′ (which holds up to

the equivalence of norms) and hence it follows that ((Lp,p
′

)′, ℓp) is a Hausdorff–Young
pair. Note that the fundamental function of Lp,p

′

is equivalent to t1/p. To finish the
proof it suffices to apply Corollary 4.4. �
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