ACCESSIBLE PARTS OF THE BOUNDARY FOR DOMAINS WITH LOWER CONTENT REGULAR COMPLEMENTS

Jonas Azzam

University of Edinburgh, School of Mathematics JCMB, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JZ, Scotland; j.azzam@ed.ac.uk

Abstract. We show that if $0 < t < s \le n-1$, $\Omega \subseteq \mathbf{R}^n$ with lower s-content regular complement, and $z \in \Omega$, there is a chord-arc domain $\Omega_z \subseteq \Omega$ with center z so that $\mathscr{H}^t_{\infty}(\partial \Omega_z \cap \partial \Omega) \gtrsim_t \operatorname{dist}(z, \Omega^c)^t$. This was originally shown by Koskela, Nandi, and Nicolau with John domains in place of chord-arc domains when n = 2, s = 1, and Ω is a simply connected planar domain.

Domains satisfying the conclusion of this result support (p, β) -Hardy inequalities for $\beta by a result of Koskela and Lehrbäck; Lehrbäck also showed that$ *s* $-content regularity of the complement for some <math>s > n - p + \beta$ was necessary. Thus, the combination of these results characterizes when a domain supports a pointwise (p, β) -Hardy inequality for $\beta in terms of lower content regularity.$

1. Introduction

In this note we study how accessible the boundary of a connected domain $\Omega \subseteq \mathbf{R}^n$ is under certain nondegeneracy conditions on the boundary. By virtue of being connected, all points in the boundary are trivially accessible by a curve, but in some applications it is more important to have some non-tangential accessibility on a non-trivial portion of the boundary.

For a domain Ω , $x \in \Omega$, and c > 0, we say Ω is *c*-John with center $x \in \Omega$ if every $y \in \overline{\Omega}$ is connected to x by a curve γ so that

(1.1)
$$c \cdot \ell(y, z) \leq \delta_{\Omega}(z) := \operatorname{dist}(z, \Omega^c) \text{ for all } z \in \gamma$$

where $\ell(y, z)$ denotes the length of the subarc of γ from y to z. In this way, every point y in the domain is non-tangentially accessible from x, that is, there is a curve about which the domain does not pinch as it approaches y. We will let $v_x(c)$ denote the *c*-visual boundary, that is, the set of $z \in \partial \Omega$ for which there is a curve γ satisfying (1.1).

Of course, most domains are not John and could pinch at many points in the boundary. However, if $\partial \Omega$ is infinite, one can see that $v_x(c)$ should be infinite as well. It's natural to ask then how big the visual boundary can be.

Our main result states that, if the complement has large s-dimensional content uniformly with $s \leq n-1$, then the visual boundary also has large content with respect to any dimension less than s. In fact, we show that for any t < s, there is even a chord-arc subdomain intersecting a large t-dimensional portion of the boundary.

Theorem I. Let $0 < s \le n-1$, and suppose $\Omega \subseteq \mathbf{R}^n$ has lower s-content regular complement, meaning there is $c_0 > 0$ so that

(1.2)
$$\mathscr{H}^{s}_{\infty}(B(x,r)\backslash\Omega) \geq c_{0}r^{s} \text{ for all } x \in \partial\Omega, \quad 0 < r < \operatorname{diam} \partial\Omega.$$

https://doi.org/10.5186/aasfm.2019.4458

²⁰¹⁰ Mathematics Subject Classification: Primary 28A75, 46E35, 26D15.

Key words: Chord-arc domain, visual boundary, John domain, Hardy inequality.

Then for every 0 < t < s, Ω has big t-pieces of chord-arc subdomains (or BPCAS(t)), meaning there is $C = C(s, t, n, c_0) > 0$ so that for all $x \in \Omega$ with $dist(x, \partial \Omega) < diam \partial \Omega$, there is a C-chord-arc domain Ω_x with center x so that

$$\mathscr{H}^t_{\infty}(\partial\Omega\cap\partial\Omega_x)\geq C^{-1}\delta_{\Omega}(x)^t.$$

In particular, there is $c = c(s, t, n, c_0) > 0$ so that

(1.3)
$$\mathscr{H}^t_{\infty}(v_x(c)) \ge C^{-1}\delta_{\Omega}(x)^t$$

We will define chord-arc domains later (see Definition 4.1), but in particular, when bounded, they are John domains.

for $A \subseteq \mathbf{R}^n$, we define its *s*-dimensional Hausdorff content as

$$\mathscr{H}^{s}_{\infty}(A) := \inf \left\{ \sum (\operatorname{diam} A_{i})^{s} \colon A \subseteq \bigcup A_{i} \right\}.$$

Recently, Koskela, Nandi and Nicolau in [KNN18] showed (1.3) holds for simply connected planar domains Ω , when n = 2 and t < s = 1 using techniques from complex analysis.

The conclusion fails for t = n - 1, even when Ω has some nice geometry. Indeed, suppose $\Omega \subseteq \mathbf{R}^n$ had uniformly rectifiable boundary and the interior corkscrew condition, then (1.3) with t = n - 1 is exactly the weak local John condition introduced by Hofmann and Martell. They show that this implies the weak- A_{∞} property for harmonic measure [HM18], and in particular, that harmonic measure is absolutely continuous with respect to surface measure, although there are examples of such domains where this isn't the case [BJ90].

The theorem also does not hold for s > n - 1. The counter example is essentially the same example made by Koskela and Lehrbäck in [KL09, Example 7.3]: Let A be (see Figure 1) the self-similar fractal in **C** determined the following similarities:

$$f_1(z) = \frac{z}{2}, \quad f_2(z) = \frac{z+1}{2}, \quad f_3(z) = i\alpha z + \frac{1}{2}, \quad f_4(z) = -i\alpha z + \frac{1}{2} + i\alpha z + \frac{1$$

where $\alpha \in (0, \frac{1}{2})$ is some fixed number (for a reference on self-similar fractals, see [Fal86, Section 8.3]. Let $\Omega = \mathbb{C} \setminus A$, then A satisfies $\mathscr{H}^s(B(x, r) \cap \Omega^c) \sim r^s$ for some s > 1 and all 0 < r < 1 yet, by picking x closer and closer to the flatter side of A, a John domain with center x intersecting A in a s-dimensional portion of the boundary must wrap around to the other side of the antenna, hence the John constant will blow up as x approaches the flat part.

Figure 1. The antenna set.

We don't know about the case s = t < n - 1 and whether it should hold.

The existence of accessible portions of the boundary has been investigated previously due to its connections to Hardy-type inequalities.

Definition 1.1. A domain Ω satisfies the (p, β) -Hardy inequality if

$$\int_{\Omega} |u(x)|^p \delta_{\Omega}(x)^{\beta-p} \, dx \lesssim \int_{\Omega} |\nabla u(x)|^p \delta_{\Omega}(x)^{\beta} \, dx \quad \text{for all } u \in C_0^{\infty}(\Omega).$$

We also say Ω satisfies a *pointwise* (p, β) -Hardy inequality if there is $q \in (1, p)$ such that for all $x \in \Omega$ and $u \in C_0^{\infty}(\Omega)$,

$$|u(x)| \lesssim \delta_{\Omega}(x)^{1-\frac{\beta}{p}} \left(\sup_{r < 2\delta_{\Omega}(x)} \int_{B(x,r)} |\nabla u(y)|^q \delta_{\Omega}(y)^{q\frac{\beta}{p}} dy \right)^{\frac{1}{q}}.$$

Koskela and Lehrbäck showed the following in [KL09, Proposition 5.1]:

Theorem 1.2. Let $\Omega \subseteq \mathbb{R}^n$ and suppose (1.3) holds for some $0 \le t \le n$. Then Ω satisfies a pointwise (p, β) -Hardy inequality for all $\beta .$

From this, they could also show that the (p,β) -Hardy inequality holds for all $\beta as well [KL09, Theorem 1.4], however Lehrbäck later showed in [Leh14] that (1.3) is not necessary to prove this. He also generalizes Theorem 1.2 to metric spaces with a suitable substitute for (1.3).$

What is not known is whether having lower content regular complements alone implies pointwise Hardy inequalities without any assumptions on the visual boundary (see the discussion at the top of [Leh14, p. 1707]). In [Leh14], Lehrbäck shows that they do hold if $\beta \leq 0$ and $\beta , and so the gap in our knowledge is whether$ $they hold when <math>0 < \beta < p - n + t$. In [Leh09], however, he shows lower content regularity is necessary:

Theorem 1.3. If $\Omega \subseteq \mathbb{R}^n$ admits the pointwise (p, β) -Hardy inequality, then there is $s > n - p + \beta$ so that Ω has lower s-content regular complement.

As a corollary of Theorem I and Theorem 1.2, we get that the lower content regularity is also sufficient, and thus combined with the previous theorem, we get the following characterization.

Corollary 1.4. Let $\Omega \subseteq \mathbb{R}^n$, $\beta \in \mathbb{R}$ and $1 and <math>\beta . Then <math>\Omega$ satisfies the (p, β) -pointwise Hardy inequality if and only if there is $s > n - p + \beta$ for which Ω has lower s-content regular complement.

Indeed, if Ω has lower s-content regular complement, then Theorem I says (1.3) holds for any t < s. Theorem 1.2 implies it satisfies the pointwise (p, β) -Hardy inequality for all $\beta , and hence (letting <math>t \uparrow s$) for all $\beta .$

Note that if Ω is s-content regular for some s > n-1, then it is also (n-1)-content regular, so the above corollary yields the (p, β) -Hardy inequality for all $\beta < p-1$. In Theorem 1.3 in [KL09], the authors also show that for every 1 < s < 2, there is a simply connected domain $\Omega \subseteq \mathbf{C}$ with lower s-content regular complement yet the (p, p-1)-Hardy inequality fails. Thus, for lower (n-1)-content regular domains, the bound $\beta < p-1$ is tight.

Condition (1.3) implies other Hardy-type inequalities. For example, in [ILTV14], Ihnatsyeva, Lehrbäck, Tuominen, and Vähäkangas show that (1.3) implies certain fractional Hardy inequalities.

The structure of the proof of Theorem I goes roughly as follows. The aim is to construct a tree of tentacles emanating from x whose endpoints are a large subset of the boundary, and then we take an appropriate neighborhood of this tree. Given a point $x \in \Omega$, the boundary has large Hausdorff content near x. This means that, for a large set of directions, the orthogonal projection of the boundary has large t-content for some t < s of our choosing. We use this to construct a tree of points $\{x_{\alpha}\}$ where α is a multi-index as follows: let $\varepsilon > 0$ be small, set $x_{\emptyset} = x$ and assume without loss of generality that $\delta_{\Omega}(x) = 1$. Given a point x_{α} so that $\delta_{\Omega}(x) = \varepsilon^{|\alpha|}$, if

 $\xi_{\alpha} \in \partial\Omega$ is closest to x_{α} , find a plane V_{α} passing through x_{α} in which projection of $B(\xi_{\alpha}, \varepsilon^{|\alpha|}/4) \cap \partial\Omega$ is large in a small ball around x_{α} . We can then pick a maximally $M\varepsilon^{|\alpha|+1}$ -separated collection of points $\{y_{\alpha i}\}_i$ (where M is some large number) in the projection of $B(\xi_{\alpha}, \varepsilon^{|\alpha|}/4) \cap \partial\Omega$. For each $y_{\alpha i}$ we move up (perpendicular to P_{α}) toward the boundary until we find points $x_{\alpha i}$ with distance $\varepsilon^{|\alpha|+1}$ from $\partial\Omega$. We then repeat the process on these points, and so on so forth. The union of $\frac{1}{4}B_{\alpha} \cup \bigcup_{i} [y_{\alpha i}, x_{\alpha i}]$ over all α will be a connected subset of Ω and, choosing parameters correctly, will have closure intersecting a part of the boundary with large *t*-content. We fatten this set up by taking the union over dilated Whitney cubes intersecting this set. Then we show that this resulting domain is in fact chord-arc, the proof of which follows roughly the same procedure that has been done in several papers about harmonic measure, see for example [HM14].

We'd like to thank Riikka Korte, Pekka Koskela and Juha Lehrbäck for answering our questions and commenting on the manuscript.

2. Notation

We say $a \leq b$ if there is a constant C so that $a \leq Cb$, and $a \leq_t b$ if C depends on the parameter t. We also write $a \sim b$ if $a \leq b \leq a$ and define $a \sim_t b$ similarly. We will omit the dependence on n throughout the paper.

We will let B(x, r) denote the open ball centered at x of radius r. If B = B(x, r)and c > 0, we let cB = B(x, cr). Similarly, if a cube $Q \subseteq \mathbb{R}^n$ with sides parallel to the coordinate axes has center x, we denote its side length by $\ell(Q)$ and write cQ for the cube of same center and sides still parallel to the coordinate axes but with side length equal to $c\ell(Q)$.

For A and B sets, and $x \in \mathbf{R}^n$, we define

$$\operatorname{dist}(x,A) = \inf_{y \in A} |x - y|, \quad \operatorname{dist}(A,B) = \inf_{x \in B} \operatorname{dist}(x,A)$$

and

$$\operatorname{diam} A = \sup\{|x - y| \colon x, y \in A\}.$$

3. A Lemma about the Hausdorff content of projections

We will need to know that if a set has large Hausdorff content, then so does its orthogonal projection in most directions, at least with respect to a smaller dimension. Its proof follows the computations in Chapter 9 of [Mat95], the only difference being we take more care in order to make them quantitative. We recall that a measure μ is a *t*-Frostmann measure if

$$\mu(B(x,r)) \leq r^t$$
 for all $x \in \mathbf{R}^n$ and $r > 0$

and it is not hard to show that for a *t*-Frostmann measure

(3.1)
$$\mu(E) \lesssim \mathscr{H}^t_{\infty}(E) \text{ for all } E \subseteq \mathbf{R}^n$$

Also recall that G(n, m) denotes the *Grassmannian* of *m*-dimensional planes in \mathbf{R}^n and $\gamma_{n,m}$ is the Grassmannian measure on G(n, m). For a reference, see [Mat95, Chapter 3].

Lemma 3.1. Let 0 < m < n be integers, $0 < t < s \le m$ and let E be a compact set. Then for any $V_0 \in G(n,m)$ and $\delta > 0$ there is $V \in G(n,m)$ so that $d(V_0,V) < \delta$ and, if P_V is the orthogonal projection into V,

(3.2)
$$\mathscr{H}^t_{\infty}(P_V(E)) \gtrsim_{\delta,n,t,s} (\operatorname{diam} E)^{t-s} \mathscr{H}^s_{\infty}(E)$$

Proof. Let μ be a s-Frostmann measure on E so that $\mu(B(x,r)) \leq r^s$ for all $x \in \mathbf{R}^n$ and r > 0 and so that $\mu(E) \sim_n \mathscr{H}^s_{\infty}(E)$ (see [Mat95, Theorem 8.8]). Let $A = \{V: d(V, V_0) < \delta\}$. By [Mat95, Corollary 3.12],

$$\int_{G(n,m)} |P_V(x)|^{-t} \, d\gamma_{n,m}(V) \le \left(1 + \frac{2^n t}{\alpha(n)(m-t)}\right) |x|^{-t} =: \frac{|x|^{-t}}{c},$$

Let $F := P_V(E)$. Then

$$\begin{split} I_{t}(\mu) &:= \int_{E} \int_{E} |x - y|^{-t} d\mu(x) d\mu(y) \\ &\geq c \int_{A} \int_{E} \int_{E} |P_{V}(x - y)|^{-t} d\mu(x) d\mu(y) d\gamma_{n,m}(V) \\ &= c \gamma_{n,m}(A) \oint_{A} \int_{F} \underbrace{\int_{F} |x - y|^{-t} dP_{V}[\mu](x)}_{=:E(y)} dP_{V}[\mu](y) d\gamma_{n,m}(V). \end{split}$$

Hence, there is $V \in A$ so that

$$C := \frac{I_t(\mu)}{c\gamma_{n,m}(A)} \ge \int_F E(y) \, dP_V[\mu](y) = \int_0^\infty P_V[\mu](\{y \in F \colon E(y) > \lambda\}) \, d\lambda.$$

This implies there must be $\lambda \in [0, 2C/P_V[\mu](F)]$ so that

$$P_V[\mu](\{y \in F : E(y) > \lambda\}) \le P_V[\mu](F)/2.$$

Hence, if $S = \{y \in F : E(y) \le \lambda\}$, we have (3.3) $P_V[\mu](S) \ge P_V[\mu](F)/2.$

Let $\nu = P_V[\mu]|_S$. Then for $y \in S$ and r > 0,

$$\nu(B(y,r))r^{-t} \le \int_{B(y,r)\cap F} |x-y|^{-t} dP_V[\mu](x) = E(y) \le \lambda \le \frac{2C}{P_V[\mu](F)}.$$

Hence, $\frac{P_V[\mu](F)}{2C}\nu$ is a *t*-Frostmann measure on *F*. Thus, since $\nu(F) = P_V[\mu](S) \stackrel{(3.3)}{\geq} P_V[\mu](F)/2$,

(3.4)
$$C\mathscr{H}^{t}_{\infty}(F) \stackrel{(3.1)}{\gtrsim} P_{V}[\mu](F)\nu(F) \stackrel{(3.3)}{\geq} \frac{P_{V}[\mu](F)^{2}}{2} = \frac{\mu(E)^{2}}{2} \sim_{n} \mathscr{H}^{s}_{\infty}(E)^{2}.$$

Note that

$$\begin{split} \int |x-y|^{-t} d\mu(y) &= \int_0^\infty \mu(\{y \colon |x-y|^{-t} > a\}) \, da \\ &= \int_0^\infty \mu(\{y \colon |x-y| < a^{-1/t}\}) \, da = \int_0^\infty \mu(B(x, a^{-1/t})) \, da \\ &\leq \int_0^{(2 \operatorname{diam} E)^{-t}} \mu(B(x, 2 \operatorname{diam} E)) + \int_{(2 \operatorname{diam} E)^{-t}}^\infty a^{-s/t} \, da \\ &\leq \frac{\mu(E)}{(2 \operatorname{diam} E)^t} - \frac{((2 \operatorname{diam} E)^{-t})^{-s/t+1}}{-s/t+1} \\ &\leq \frac{\mu(E)}{(\operatorname{diam} E)^t} + \frac{t(2 \operatorname{diam} E)^{s-t}}{s-t} \\ &\lesssim \frac{\mathscr{H}_\infty^s(E)}{(\operatorname{diam} E)^t} + \frac{t2^{s-t}}{s-t} (\operatorname{diam} E)^{s-t}. \end{split}$$

Hence, since $\mu(\mathbf{R}^n) \sim_n \mathscr{H}^s_{\infty}(E)$, we get

$$C \sim_{\delta,n} I_t(\mu) \lesssim \mathscr{H}^s_{\infty}(E) \left(\frac{\mathscr{H}^s_{\infty}(E)}{(\operatorname{diam} E)^t} + \frac{t2^{s-t}}{s-t} (\operatorname{diam} E)^{s-t} \right)$$

Recalling that $F = P_V(E)$, we have

$$\mathcal{H}^{t}_{\infty}(P_{V}(E)) \overset{(3.4)}{\gtrsim}_{n} \gtrsim \frac{\mathcal{H}^{s}_{\infty}(E)^{2}}{C} \gtrsim_{\delta,n} \frac{\mathcal{H}^{s}_{\infty}(E)}{\frac{\mathcal{H}^{s}_{\infty}(E)}{(\operatorname{diam} E)^{t}} + \frac{t2^{s-t}}{s-t} (\operatorname{diam} E)^{s-t}}{2}$$
$$\geq \frac{\mathcal{H}^{s}_{\infty}(E)}{(\operatorname{diam} E)^{s-t} (1 + \frac{t2^{s-t}}{s-t})}$$

since $\mathscr{H}^s_{\infty}(E) \leq (\operatorname{diam} E)^s$. This finishes the proof.

4. The proof of Theorem I

Instead of constructing curves like that in the definition of a John domain, it will be more convenient to work with Harnack chains. Recall that a *Harnack chain (of length k)* is a sequence of balls $\{B_i\}_{i=1}^k$ such that for all *i*,

(1)
$$B_i \cap B_{i+1} \neq \emptyset$$

(2)
$$2B_i \subseteq \Omega$$
, and

(3) $r_{B_i} \sim \operatorname{dist}(B_i, \partial \Omega)$.

Definition 4.1. For C > 0, a domain Ω is a *C*-uniform domain if

- (1) it has *interior corkscrews*, meaning for every $x \in \partial \Omega$ and $0 < r < \operatorname{diam} \Omega$, there is a ball of radius r/C contained in $B(x,r) \cap \Omega$, and
- (2) if $\Lambda(t) = 1 + \log t$, for all $x, y \in \Omega$, there is a Harnack chain from x to y in Ω of length $C\Lambda(|x-y|/\min\{\delta_{\Omega}(x), \delta_{\Omega}(y)\})$.

A domain Ω is a *C*-chord-arc domain (or *CAD*) if it is *C*-uniform and

- (3) it has *exterior corkscrews*: for every $x \in \partial \Omega$ and r > 0, there is a ball of radius r/C contained in $B(x,r) \setminus \Omega$ and
- (4) $\partial \Omega$ is Ahlfors (n-1)-regular: for every $x \in \partial \Omega$ and $0 < r < \operatorname{diam} \partial \Omega$,

$$C^{-1}r^{n-1} \le \mathscr{H}^{n-1}(\partial \Omega \cap B(x,r)) \le Cr^{n-1}.$$

We'll say x is the *center* of Ω if

$$B(x, C^{-1}\operatorname{diam}\Omega) \subseteq \Omega \subseteq B(x, \operatorname{diam}\Omega).$$

Remark 4.2. Note that this is slightly different from the definition in [HM14]. There they allow *any* function $\Lambda: [1, \infty) \to [1, \infty)$, but one can show that it is always a constant multiple of $1 + \log x$, see [GO79]. Also, to some this definition of unifom domain may not be familiar, but it is equivalent to the common definition that is in terms of curves, see [AHM⁺17].

We now begin the proof of Theorem I. Let Ω satisfy the conditions of the theorem and let 0 < t < s. Let $x \in \Omega$. For $y \in \Omega$, set $\delta_{\Omega}(y) = \text{dist}(y, \Omega^c)$.

Below, α will denote a multi-index $\alpha = \alpha_1 \cdots \alpha_{|\alpha|}$ where $|\alpha|$ denotes the length of α and each α_j is some integer. We say $\alpha \leq \beta$ if α is an ancestor of β (that is, the first $|\alpha|$ terms of α and β are the same). We let $x = x_{\emptyset}$ where \emptyset is the empty multi-index and suppose $\delta_{\Omega}(x) = 1$. Inductively, we construct a tree of points as follows.

Let M > 0 be a large constant we will fix later, and $\varepsilon > 0$, a constant we will constantly be adjusting to make smaller but ultimately will only depend on s, t, and

894

n. Let $k \in \{0, 1, ...\}$ and suppose we have a point x_{α} with $|\alpha| = k$, and that there is $\xi_{\alpha} \in \partial \Omega$ so that

$$|x_{\alpha} - \xi_{\alpha}| = \delta_{\Omega}(x_{\alpha}) = \varepsilon^{|\alpha|}.$$

Let

$$B_{\alpha} = B(x_{\alpha}, \varepsilon^{|\alpha|}), \quad E_{\alpha} = B(\xi_{\alpha}, \varepsilon^{|\alpha|}/4) \backslash \Omega.$$

Then

$$\mathscr{H}^{s}_{\infty}(E_{\alpha}) \geq \underbrace{c_{0}4^{-s}}_{:=c_{1}} \delta_{\Omega}(x_{\alpha})^{s} = c_{1}\varepsilon^{|\alpha|s}.$$

By our assumptions, and since $\mathscr{H}^s_{\infty}(E_{\alpha}) \leq (\operatorname{diam} E_{\alpha})^s$, if $t' = \frac{t+s}{2}$,

$$(\operatorname{diam} E_{\alpha})^{t'-s} \mathscr{H}^{s}(E_{\alpha}) \geq \mathscr{H}^{s}(E_{\alpha})^{\frac{t'}{s}} \geq \left(c_{1} \varepsilon^{|\alpha|s}\right)^{\frac{t'}{s}} = c_{1}^{\frac{t'}{s}} \varepsilon^{|\alpha|t'}$$

Let $\theta > 0$ be small. By Lemma 3.1, we can find v_{α} so that

(4.1)
$$\left| v_{\alpha} - \frac{\xi_{\alpha} - x_{\alpha}}{|\xi_{\alpha} - x_{\alpha}|} \right| < \theta$$

and if V_{α} is the (n-1)-dimensional plane passing through x_{α} perpendicular to v_{α} and P_{α} is the orthogonal projection onto V_{α} , then for some constant $c_2 = c_2(s, t, n)$,

$$\mathscr{H}^{t'}_{\infty}(P_{\alpha}(E_{\alpha})) \ge c_2 \varepsilon^{|\alpha|t'} = c_2 \varepsilon^{k|t}$$

Let M > 1 and $\{y_{\alpha i}\}_{i \in I'_{\alpha}} \subseteq P_{\alpha}(E_{\alpha})$ be a maximal collection of points so that $|y_{\alpha i} - y_{\alpha j}| \geq M \varepsilon^{|\alpha|+1}$ for all $i, j \in I'_{\alpha}$. Let $n'_{\alpha} = |I'_{\alpha}|$. Then the balls $B(y_{\alpha i}, M \varepsilon^{|\alpha|+1})$ cover $P_{\alpha}(E_{\alpha})$, and so

$$(2M\varepsilon^{|\alpha|+1})^{t'}n'_{\alpha} = \sum_{i \in I'_{\alpha}} (\operatorname{diam} B(y_{\alpha i}, M\varepsilon^{|\alpha|+1}))^{t'} \ge \mathscr{H}^{t'}_{\infty}(P_{\alpha}(E_{\alpha})) \ge c_2 \varepsilon^{kt'}.$$

Recalling $k = |\alpha|$, we pick $\varepsilon > 0$ small (depending on M, t, and s) so that

$$n'_{\alpha} \ge ((2M)^{-t'}c_2)\varepsilon^{-t'} > \varepsilon^{-t}.$$

Now pick $I_{\alpha} \subseteq I_{\alpha'}$ so that, if $n_{\alpha} = |I_{\alpha}|$, then there is n_k so that

(4.2) $2\varepsilon^{-t} \ge n_{\alpha} = n_k > \varepsilon^{-t}.$

Let

$$h_{\alpha i} = \sup\{h > 0 : B(y_{\alpha i + hv_{\alpha}}, \varepsilon^{k+1}) \subseteq \Omega\}.$$

That is, $h_{\alpha i}$ is the farthest one can travel from $y_{\alpha i}$ in the direction v_{α} so that one is at least ε^{k+1} away from the boundary. These values $h_{\alpha i}$ will be the length of the tentacles we add at this stage.

Let $\theta' > 0$ be small. Since $E_{\alpha} \subseteq \frac{3}{2}B_{\alpha}$ and by (4.1) for θ small enough (depending on θ')

(4.3)
$$y_{\alpha} \in P_{\alpha}(E_{\alpha}) \subseteq B(x_{\alpha}, (1+\theta')\varepsilon^{|\alpha|}/4) \subseteq \frac{2}{5}B_{\alpha} \subseteq \Omega,$$

we know that

$$h_{\alpha i} \leq \frac{1}{2} \operatorname{diam} \frac{3}{2} B_{\alpha} = \frac{3}{2} \varepsilon^{|\alpha|}.$$

Let

$$x_{\alpha i} = y_{\alpha i} + h_{\alpha i} v_{\alpha}$$

so that (see Figure 2)

$$\delta_{\Omega}(x_{\alpha i}) = \varepsilon^{|\alpha|+1}$$

Figure 2. Displayed is the point x_{α} . In some direction v_{α} , the orthogonal projection of $\partial\Omega$ has large Hausdorff content, so we can find many points $y_{\alpha i}$ that are in the projection of $\partial\Omega$ in $V_{\alpha} \cap \frac{1}{2}B_{\alpha}$ and are $M\varepsilon^{|\alpha|+1}$ -separated. We then pick points $x_{\alpha i}$ above these $y_{\alpha i}$ that are distance $\varepsilon^{|\alpha|+1}$ from $\partial\Omega$ and so that the segment $[y_{\alpha i}, x_{\alpha i}]$ is contained in Ω . These segments are the tentacles that connect $\frac{1}{2}B_{\alpha}$ to the balls $\frac{1}{2}B_{\alpha i}$ that are much closer to the boundary.

We record a few useful estimates. First, we claim that

(4.4)
$$|x_{\alpha i} - \xi_{\alpha}| < \frac{3\varepsilon^{|\alpha|}}{8}.$$

To see this, note that if $\xi_{\alpha i}$ is a point closest to $x_{\alpha i}$, then $|\xi_{\alpha i} - x_{\alpha i}| = \varepsilon^{|\alpha i|} = \varepsilon^{|\alpha|+1}$ by construction, so if $\xi_{\alpha i} \in B(\xi_{\alpha}, \varepsilon^{|\alpha|}/4)$, then (4.4) is immediate for $\varepsilon > 0$ small enough. It is also immediate if $x_{\alpha i} \in B_{\alpha i}$, so assume $\xi_{\alpha i}, x_{\alpha i} \notin B(\xi_{\alpha}, \varepsilon^{|\alpha|}/4)$. Then $x_{\alpha i} \in B_{\alpha}$ since $[y_{\alpha i}, x_{\alpha i}] \subseteq B(\xi_{\alpha}, \varepsilon^{|\alpha|}/4) \cup B_{\alpha}$ and $x_{\alpha i} \notin B(\xi_{\alpha}, \varepsilon^{|\alpha|}/4)$. Since $B_{\alpha} \subseteq \Omega$, $\xi_{\alpha i} \notin B_{\alpha}$. Let $y \in [x_{\alpha i}, \xi_{\alpha i}] \cap \partial B_{\alpha}$ and $u_{\alpha} = (\xi_{\alpha} - x_{\alpha})/|\xi_{\alpha} - x_{\alpha}|$. Then

$$\begin{aligned} \xi_{\alpha} - y|^{2} &= |\xi_{\alpha} - x_{\alpha}|^{2} + |x_{\alpha} - y|^{2} - 2(\xi_{\alpha} - x_{\alpha}) \cdot (y - x_{\alpha}) \\ &= 2\varepsilon^{2|\alpha|} \left(1 - \left| u_{\alpha} \cdot \frac{y - x_{\alpha}}{\varepsilon^{\alpha}} \right| \right) \stackrel{(4.1)}{\leq} 2\varepsilon^{2|\alpha|} \theta + 2\varepsilon^{2|\alpha|} \left(1 - \left| v_{\alpha} \cdot \frac{y - x_{\alpha}}{\varepsilon^{\alpha}} \right| \right) \\ &\leq 2\varepsilon^{2|\alpha|} \theta + 2\varepsilon^{2|\alpha|} \left(1 - \left| v_{\alpha} \cdot \frac{y - x_{\alpha}}{\varepsilon^{\alpha}} \right|^{2} \right) \\ &= 2\varepsilon^{2|\alpha|} \theta + 2\varepsilon^{2|\alpha|} \left| P_{\alpha} \left(\frac{y - x_{\alpha}}{\varepsilon^{\alpha}} \right) \right|^{2} = 2\varepsilon^{2|\alpha|} \theta + 2 \left| P_{\alpha} \left(y - x_{\alpha} \right) \right|^{2}. \end{aligned}$$

Recalling that $P_{\alpha}(x_{\alpha i}) = y_{\alpha i} \in \frac{1}{4}B_{\alpha}$, for $\varepsilon, \theta, \theta' > 0$ small enough, and since $\sqrt{2}/4 < 3/8$, we have

$$\begin{aligned} |\xi_{\alpha} - x_{\alpha i}| &\leq \varepsilon^{|\alpha|+1} + |\xi_{\alpha} - y| \leq \varepsilon^{|\alpha|+1} + \sqrt{2}\varepsilon^{|\alpha|}\sqrt{\theta} + \sqrt{2}|P_{\alpha}(y - x_{\alpha})| \\ &\leq \varepsilon^{|\alpha|+1} + \sqrt{2}\varepsilon^{|\alpha|}\sqrt{\theta} + \sqrt{2}\left(|P_{\alpha}(x_{\alpha i} - x_{\alpha})| + \varepsilon^{|\alpha|+1}\right) \\ &\stackrel{(4.3)}{\leq} \varepsilon^{|\alpha|+1} + \sqrt{2}\varepsilon^{|\alpha|}\sqrt{\theta} + \sqrt{2}\left((1 + \theta')\frac{\varepsilon^{|\alpha|}}{4} + \varepsilon^{|\alpha|+1}\right) < \frac{3\varepsilon^{|\alpha|}}{8}.\end{aligned}$$

This proves (4.4).

Thus, for $\varepsilon > 0$ small,

(4.5)
$$2B_{\alpha i} \subseteq B\left(\xi_{\alpha}, \frac{3\varepsilon^{|\alpha|}}{8} + 2\varepsilon^{|\alpha|+1}\right) \subseteq B\left(x_{\alpha}, \frac{11\varepsilon^{|\alpha|}}{8} + 2\varepsilon^{|\alpha|+1}\right) \subseteq \frac{4}{3}B_{\alpha}$$

where $B_{\alpha i} = B(x_{\alpha i}, \varepsilon^{|\alpha i|})$. Moreover, for $i, j \in I_{\alpha}$ distinct and M > 8,

$$\operatorname{dist}(2B_{\alpha i}, 2B_{\alpha j}) \geq \operatorname{dist}(P_{\alpha}(2B_{\alpha i}), P_{\alpha}(2B_{\alpha i})) \geq \operatorname{dist}(B(y_{\alpha i}, 2\varepsilon^{k+1}), B(y_{\alpha j}, 2\varepsilon^{k+1}))$$
$$\geq (M-4)\varepsilon^{k+1} \geq \frac{M}{2}\varepsilon^{k+1}.$$

By (4.5), this implies that for any α and β of possibly different lengths, if γ is the earliest common ancestor of α and β and $\gamma \neq \alpha, \beta$, then

(4.6)
$$\operatorname{dist}(2B_{\alpha}, 2B_{\beta}) \ge \frac{M}{2} \varepsilon^{|\gamma|+1}$$

In particular,

(4.7)
$$\operatorname{dist}(2B_{\alpha}, 2B_{\beta}) \ge \frac{M}{2} \varepsilon^{k} \quad \text{if } |\alpha| = |\beta| = k \text{ and } \alpha \neq \beta.$$

We will also need the following estimate bounding how close a ball is from the center of its parent ball: for $\varepsilon > 0$ small,

(4.8)

$$\operatorname{dist}\left(\frac{1}{2}B_{\alpha}, 2B_{\alpha i}\right) \geq |x_{\alpha} - x_{\alpha i}| - \frac{\varepsilon^{|\alpha|}}{2} - 2\varepsilon^{|\alpha|+1}$$

$$\stackrel{(4.4)}{\geq} |x_{\alpha} - \xi_{\alpha}| - \frac{3\varepsilon^{|\alpha|}}{8} - \frac{\varepsilon^{|\alpha|}}{2}(1+4\varepsilon)$$

$$= \varepsilon^{|\alpha|} - \frac{3\varepsilon^{|\alpha|}}{8} - \frac{\varepsilon^{|\alpha|}}{2}(1+4\varepsilon) > \frac{\varepsilon^{|\alpha|}}{9}.$$

Lemma 4.3. Let $E \subseteq \partial \Omega$ be the set of points z for which there is a sequence of multi-indices α_k with $|\alpha_k| = k$ and $x_{\alpha_k} \to z$. Then

$$\mathscr{H}^t_{\infty}(E) \gtrsim 1.$$

Proof. Let us define a sequence of probability measures μ_k as follows. We first let μ_0 be a measure so that $\mu_0(2B_{\emptyset}) = 1$. Inductively, and using (4.5) we let μ_k be a measure so that

$$\mu_k(2B_{\alpha i}) = \frac{\mu_{k-1}(2B_{\alpha})}{n_{\alpha}} < \mu_{k-1}(2B_{\alpha})\varepsilon^t \quad \text{for all } i \in I_{\alpha}.$$

By passing to a weak limit, we obtain a measure μ supported on E so that if α' denotes the string α minus its last term, then

$$\mu(2B_{\alpha}) = \frac{\mu(2B_{\alpha'})}{n_{\alpha'}} \stackrel{(4.2)}{<} \mu(2B_{\alpha'})\varepsilon^t < \dots < \varepsilon^{|\alpha|t} \quad \text{for all } i \in I_{\alpha}.$$

In particular, if B is any ball intersecting E with diam B < 1, let k be such that $\frac{M}{4}\varepsilon^k > \operatorname{diam} B \geq \frac{M}{4}\varepsilon^{k+1}$. Then there is at most one $2B_{\alpha}$ with $|\alpha| = k$ intersecting B; otherwise, if β was another such multi-index, then

$$\frac{M}{2}\varepsilon^{k} \stackrel{(4.7)}{\leq} \operatorname{dist}(2B_{\alpha}, 2B_{\beta}) \leq \operatorname{diam} B < \frac{M}{4}\varepsilon^{k}$$

which is a contradiction. Thus,

$$\mu(B) \le \mu(2B_{\alpha}) < \varepsilon^{tk} \lesssim (\operatorname{diam} B)^t.$$

If diam $B \geq 1$, then

$$\mu(B) \le \mu(\mathbf{R}^n) = 1 \le (\operatorname{diam} B)^t.$$

measure, so $\mathscr{H}^t_{\infty}(E) \ge_n \mu(E) = 1.$

Thus, μ is a *t*-Frostmann measure, so $\mathscr{H}^t_{\infty}(E) \gtrsim_n \mu(E) = 1$.

Fix an integer N and let W denote the Whitney cubes for Ω , which we define to be the set of maximal dyadic cubes Q so that

$$NQ \subseteq \Omega.$$

Let $\lambda > 1$. For α a multi-index, let

$$\mathscr{C}(\alpha) = \left\{ Q \in W \colon Q \cap \left(\frac{1}{2} B_{\alpha} \cup \bigcup_{i \in I_{\alpha}} [y_{\alpha i}, x_{\alpha i}] \right) \neq \emptyset \right\}$$

where [x, y] denotes the closed line segment between x and y, and

$$\Omega_{\alpha} = \bigcup_{Q \in \mathscr{C}_{\alpha}} \lambda Q.$$

We now pick N large enough so that by (4.5),

(4.9)
$$\Omega_{\alpha} \subseteq \frac{5}{4}B_{\alpha}$$

and so that

(4.10)
$$\lambda Q \subseteq \frac{3}{4} B_{\alpha} \text{ for all } Q \in W \text{ so that } \lambda Q \cap \frac{1}{2} B_{\alpha} \neq \emptyset.$$

Note that all the Whitney cubes $Q \in \mathscr{C}_{\alpha}$, have comparable sizes (depending on ε), there are boundedly many such cubes. Since $\frac{1}{2}B_{\alpha} \cup \bigcup_{i \in I_{\alpha}}[y_{\alpha i}, x_{\alpha i}]$ is connected, so is Ω_{α} . Because of this, it is not hard to show that, for λ close enough to 1, Ω_{α} is a CAD with constants depending only on ε , λ , and n. Here, λ is a universal constant depending on n and is now fixed.

Also, if

$$\Omega(\alpha) = \bigcup_{\beta \ge \alpha} \Omega_{\beta},$$

then

(4.11)
$$\Omega(\alpha) \subseteq 2B_{\alpha}$$

Let $\mathscr{C} = \bigcup_{\alpha} \mathscr{C}(\alpha)$ and

$$\Omega(x) = \bigcup_{\alpha} \Omega_{\alpha} = \bigcup_{Q \in \mathscr{C}} \lambda Q.$$

Note that by construction. $E \subseteq \partial \Omega(x) \cap \partial \Omega$.

Lemma 4.4. The domain $\Omega(x) \subseteq \Omega$ is *C*-uniform with *C* depending on ε and *n* so that $\partial \Omega \cap \partial \Omega(x) = E$.

Proof. The last part of the lemma follows from the discussion that preceded it, so we just need to verify that $\Omega(x)$ is uniform. By construction, $\Omega(x)$ satisfies the interior corkscrew property, and so we just need to bound the length of Harnack chains. As in the proofs of [HM14, A.1], since the Ω_{α} are themselves uniform, it suffices to show that we may connect each x_{α} and x_{β} by Harnack chains of the correct length.

Let γ be the earliest common ancestor of α and β . Let $k_{\alpha} = |\alpha| - |\gamma|, k_{\beta} = |\beta| - |\gamma|,$ and let α_j be the ancestor of α so that $|\alpha_j| = |\gamma| + j$. Note that since $\delta_{\Omega}(x_{\alpha_j}) = \varepsilon^{|\gamma|+j} = \varepsilon^{|\gamma|+j}$

 $\varepsilon \delta_{\Omega}(x_{\alpha_{j+1}})$ and by construction of Ω_{α} , we know $\delta_{\Omega_{\alpha_j}}(x_{\alpha_j}) \sim \delta_{\Omega_{\alpha_j}}(x_{\alpha_{j+1}}) \sim \varepsilon^{|\gamma|+j}$, and since both x_{α_j} and $x_{\alpha_{j+1}}$ are contained in $2B_{\alpha_j}$, we know $|x_{\alpha_j} - x_{\alpha_{j+1}}| \leq 2\varepsilon^{|\gamma|+j}$. Thus, since Ω_{α_j} is a CAD, there is a Harnack chain in Ω_{α_j} of uniformly bounded length (depending on the uniformity constants for Ω_{α_j}) from x_{α_j} to $x_{\alpha_{j+1}}$. The union of the Harnack chains for each j gives a Harnack chain from x_{γ} to x_{α} of length comparable to k_{α} . We can find another Harnack chain from x_{γ} to x_{β} of length k_{β} . Now we just need to estimate the length of the total chain. By (4.9) and (4.6),

$$|x_{\alpha} - x_{\beta}| \ge \frac{M}{2} \varepsilon^{|\gamma| + 1}$$

Also, by definition of Ω_{α} and $\Omega(x)$, we have

$$\delta_{\Omega(x)}(x_{\alpha}) \sim \delta_{\Omega}(x_{\alpha}) = \varepsilon^{|\alpha|},$$

Thus, the length of the Harnack chain is at most a constant times

$$\begin{aligned} k_{\alpha} + k_{\beta} &\leq 2 \max\{k_{\alpha}, k_{\beta}\} \lesssim_{\varepsilon} 1 + \log \frac{\varepsilon^{|\gamma|}}{\min\{\varepsilon^{|\alpha|}, \varepsilon^{|\beta|}\}}\\ &\lesssim 1 + \log \frac{|x_{\alpha} - x_{\beta}|}{\min\{\delta_{\Omega(x)}(x_{\alpha}), \delta_{\Omega(x)}(x_{\beta})\}}.\end{aligned}$$

Thus, the conditions for being uniform hold.

Lemma 4.5. $\Omega(x)$ has exterior corkscrews.

Proof. Let $z \in \partial \Omega(x)$ and r > 0. We divide into some cases:

Case 1. If $r \ge 2 \operatorname{diam} \Omega(x)$, then we can clearly find a corkscrew ball in $B(z, r) \setminus \Omega(x)$ of radius r/4.

Case 2. Assume $r < 2 \operatorname{diam} \Omega$. Let C > 0, we will decide its value soon.

Case 2a. Suppose $0 < r < C\delta_{\Omega}(z)$, then $z \in \partial \lambda Q$ for some Whitney cube $Q \in \mathscr{C}$. Note that for $\rho > 0$ small enough (depending on N and n), $\partial \Omega(x) \cap B(z, \rho \ell(Q)) \setminus \Omega(x)$ is isometric to $B(0, \rho \ell(Q)) \setminus \{y : y_i \ge 0\}_{i \in S}$ for some subset $S \subseteq \{1, \ldots, n\}$, hence we can find a ball of radius $\rho \ell(Q)/4 \subseteq B(z, \rho \ell(Q)) \setminus \Omega(x)$.

By the properties of Whitney cubes,

$$r < C\delta_{\Omega}(z) \sim C\ell(Q) \lesssim_{\rho} C\rho\ell(Q)/4,$$

This means the ball is a corkscrew ball for B(z, r) with respect to $\Omega(x)$.

Case 2b. Now suppose $r \geq C\delta_{\Omega}(z)$. Note that if $Q \in \mathscr{C}$, then $Q \in \mathscr{C}_{\alpha}$ for some β , and by (4.11), if $z \in \partial \lambda Q$,

$$\operatorname{dist}(z, E) \leq \operatorname{diam} 2B_{\beta}.$$

Also note that Q has side length comparable to every other cube in $\mathscr{C}(\beta)$ (since Ω_{β} is a finite connected union of dilated Whitney cubes), so in particular, if $R \in \mathscr{C}(\beta)$ is such that $x_{\beta} \in \lambda R$,

$$\delta_{\Omega}(z) \sim \ell(Q) \sim \ell(R) \sim \delta_{\Omega}(x_{\beta}) = |x_{\beta} - \xi_{\beta}| \sim \operatorname{diam} B_{\beta}.$$

Combining the above inequalities, we get

$$\operatorname{dist}(z, E) \lesssim \delta_{\Omega}(z) \leq r/C,$$

so for C large enough,

$$\operatorname{dist}(z, E) < r/2.$$

Hence, we can pick $w \in E \cap B(z, r/2)$. Note there is a sequence α_k so that $|\alpha_k| = k$, $\alpha_k \leq \alpha_{k+1}$, and $x_{\alpha_k} \to w$. Let $\alpha = \alpha_k$ be so that

diam
$$\Omega_{\alpha} = \max\{\operatorname{diam} \Omega_{\alpha_k} : \Omega_{\alpha_k} \subseteq B(w, r/4)\}.$$

Since diam $\Omega(\alpha) \sim \operatorname{diam} B_{\alpha} = 2\varepsilon^{|\alpha|}$ and $r < 2 \operatorname{diam} \Omega(x)$, it follows that diam $\Omega(\alpha) \sim_{\varepsilon} r$.

Note that if $\alpha' = \alpha_{k-1}$ is the parent of α , then by (4.8) and (4.6), and because the I_{α_j} are mutually spaced apart by distance at least $M\varepsilon^{|\alpha|}$, we have for $\varepsilon > 0$ small enough and M large enough (and here we fix M)

$$3B_{\alpha} \cap \Omega(x) = \Omega(\alpha) \cup \bigcup \{ \lambda Q \colon Q \in W, \ Q \cap I_{\alpha'} \neq \emptyset \}.$$

Hence, for $\rho > 0$ and N large enough depending on ρ , and as $\Omega(\alpha) \subseteq 2B_{\alpha}$,

$$\sup\{\operatorname{dist}(y, 2B_{\alpha} \cup I_{\alpha'}) \colon y \in 3B_{\alpha} \cap \Omega(x)\} < \rho \varepsilon^{|\alpha|}.$$

For ρ small enough, this means there is $B^{\alpha} \subseteq 3B_{\alpha} \setminus \Omega(x)$ of radius $\varepsilon^{|\alpha|}/4 \sim_{\varepsilon} r$, so this in turn will be an exterior corkscrew for $\Omega(x)$ in B(w, r/2).

Lemma 4.6. $\partial \Omega(x)$ is Ahlfors (n-1)-regular.

Proof. Let $z \in \partial \Omega(x)$ and $0 < r < \operatorname{diam} \Omega(x)$. The interior and exterior corkscrew conditions imply lower regularity; this is standard, but it's short enough to include here: We know there are balls $B(x_1, cr) \subseteq B(z, r) \cap \Omega(x)$ and $B(x_2, cr) \subseteq$ $B(z, r) \setminus \Omega(x)$ with $c = c(\varepsilon, n)$. If U is the (n-1)-dimensional plane perpendicular to $x_1 - x_2$ passing through 0 and P is the orthogonal projection onto U, then

$$\mathcal{H}^{n-1}(B(z,r) \cap \partial \Omega(x)) \geq \mathcal{H}^{n-1}(P(B(z,r) \cap \partial \Omega(x)))$$
$$\geq \mathcal{H}^{n-1}(P(B(x_1,cr)) \cap U)$$
$$= \mathcal{H}^{n-1}(B(P(x_1),cr) \cap U) \gtrsim_{c,d} r^{n-1}.$$

Now we prove upper regularity. Again, as in the proof of Lemma 4.3 if k is such that $\frac{M}{4}\varepsilon^k > \operatorname{diam} B \geq \frac{M}{4}\varepsilon^{k+1}$, then there is at most one $2B_{\alpha}$ with $|\alpha| = k$ intersecting B. Hence, B touches only $\overline{\Omega(\alpha)}$.

Each $\partial \Omega_{\alpha}$ is already Ahlfors regular and $\mathscr{H}^{n-1}(\partial \Omega_{\alpha}) \leq \varepsilon^{|\alpha|(n-1)}$. By (4.2) there are $n_{|\alpha'|} \cdots n_{k-1}$ many descendants β of α' with $|\beta| = k$, and

$$n_{|\alpha'|} \cdots n_{k-1} \stackrel{(4.2)}{<} (2\varepsilon^{-t})^{k-1-|\alpha'|+1} = (2\varepsilon^{-t})^{k-|\alpha|+1}.$$

Thus, for $\varepsilon > 0$ small enough depending on n and t,

$$\mathcal{H}^{n-1}(B(z,r) \cap \partial\Omega(x)) = \mathcal{H}^{n-1}(B(z,r) \cap \partial\Omega(\alpha')) \leq \sum_{\beta \geq \alpha'} \mathcal{H}^{n-1}(\partial\Omega_{\beta})$$
$$\lesssim \sum_{k \geq |\alpha'|} \varepsilon^{k(n-1)} \cdot (2\varepsilon^{-t})^{k-|\alpha|+1}$$
$$= 2^{-|\alpha|+1} \varepsilon^{t(|\alpha|-1)} \sum_{k \geq |\alpha'|} \varepsilon^{k(n-1-t)} 2^{k}$$
$$\lesssim_{\varepsilon} 2^{-|\alpha|} \varepsilon^{t|\alpha|} \cdot \varepsilon^{|\alpha'|(n-1-t)} 2^{|\alpha'|} \lesssim \varepsilon^{|\alpha|(n-1)} \lesssim r^{n-1}. \square$$

The combination of the previous four lemmas prove Theorem I.

References

- [AHM⁺17] AZZAM, J., S. HOFMANN, J. M. MARTELL, K. NYSTRÖM, and T. TORO: A new characterization of chord-arc domains. - J. Eur. Math. Soc. (JEMS) 19:4, 2017, 967– 981.
- [BJ90] BISHOP, C. J., and P. W. JONES: Harmonic measure and arclength. Ann. of Math.
 (2) 132:3, 1990, 511–547.
- [Fal86] FALCONER, K. J.: The geometry of fractal sets. Cambridge Tracts in Math. 85, Cambridge Univ. Press, Cambridge, 1986.
- [GO79] GEHRING, F. W., and B. G. OSGOOD: Uniform domains and the quasihyperbolic metric. - J. Anal. Math. 36, 1979, 50–74.
- [HM14] HOFMANN, S., and J. M. MARTELL: Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in L^p . - Ann. Sci. Éc. Norm. Supér. (4) 47:3, 2014, 577–654.
- [HM18] HOFMANN, S., and J. M. MARTELL: Harmonic measure and quantitative connectivity: geometric characterization of the L^p-solvability of the Dirichlet problem. Part I. -Preprint, arXiv:1712.03696, 2018.
- [ILTV14] IHNATSYEVA, L., J. LEHRBÄCK, H. TUOMINEN, and A. V. VÄHÄKANGAS: Fractional Hardy inequalities and visibility of the boundary. - Studia Math. 224:1, 2014, 47–80.
- [KL09] KOSKELA, P., and J. LEHRBÄCK: Weighted pointwise Hardy inequalities. J. Lond. Math. Soc. (2) 79:3, 2009, 757–779.
- [KNN18] KOSKELA, P., D. NANDI, and A. NICOLAU: Accessible parts of boundary for simply connected domains. Proc. Amer. Math. Soc. 146:8, 2018, 3403–3412.
- [Leh09] LEHRBÄCK, J.: Necessary conditions for weighted pointwise Hardy inequalities. Ann. Acad. Sci. Fenn. Math. 34:2, 2009, 437–446.
- [Leh14] LEHRBÄCK, J.: Weighted Hardy inequalities beyond Lipschitz domains. Proc. Amer. Math. Soc. 142:5, 2014, 1705–1715.
- [Mat95] MATTILA, P.: Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. - Cambridge Stud. Adv. Math. 44, Cambridge Univ. Press, Cambridge, 1995.

Received 20 August 2018 • Accepted 21 December 2018