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Abstract. We show that if 0 < t < s ≤ n−1, Ω ⊆ Rn with lower s-content regular complement,
and z ∈ Ω, there is a chord-arc domain Ωz ⊆ Ω with center z so that H t

∞(∂Ωz∩∂Ω) &t dist(z,Ωc)t.
This was originally shown by Koskela, Nandi, and Nicolau with John domains in place of chord-arc
domains when n = 2, s = 1, and Ω is a simply connected planar domain.

Domains satisfying the conclusion of this result support (p, β)-Hardy inequalities for β < p −
n + t by a result of Koskela and Lehrbäck; Lehrbäck also showed that s-content regularity of
the complement for some s > n − p + β was necessary. Thus, the combination of these results
characterizes when a domain supports a pointwise (p, β)-Hardy inequality for β < p− 1 in terms of
lower content regularity.

1. Introduction

In this note we study how accessible the boundary of a connected domain Ω ⊆ Rn

is under certain nondegeneracy conditions on the boundary. By virtue of being
connected, all points in the boundary are trivially accessible by a curve, but in some
applications it is more important to have some non-tangential accessibility on a non-
trivial portion of the boundary.

For a domain Ω, x ∈ Ω, and c > 0, we say Ω is c-John with center x ∈ Ω if every
y ∈ Ω is connected to x by a curve γ so that

(1.1) c · `(y, z) ≤ δΩ(z) := dist(z,Ωc) for all z ∈ γ
where `(y, z) denotes the length of the subarc of γ from y to z. In this way, every
point y in the domain is non-tangentially accessible from x, that is, there is a curve
about which the domain does not pinch as it approaches y. We will let vx(c) denote
the c-visual boundary, that is, the set of z ∈ ∂Ω for which there is a curve γ satisfying
(1.1).

Of course, most domains are not John and could pinch at many points in the
boundary. However, if ∂Ω is infinite, one can see that vx(c) should be infinite as well.
It’s natural to ask then how big the visual boundary can be.

Our main result states that, if the complement has large s-dimensional content
uniformly with s ≤ n−1, then the visual boundary also has large content with respect
to any dimension less than s. In fact, we show that for any t < s, there is even a
chord-arc subdomain intersecting a large t-dimensional portion of the boundary.

Theorem I. Let 0 < s ≤ n−1, and suppose Ω ⊆ Rn has lower s-content regular
complement, meaning there is c0 > 0 so that

(1.2) H s
∞(B(x, r)\Ω) ≥ c0r

s for all x ∈ ∂Ω, 0 < r < diam ∂Ω.
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Then for every 0 < t < s, Ω has big t-pieces of chord-arc subdomains (or BPCAS(t)),
meaning there is C = C(s, t, n, c0) > 0 so that for all x ∈ Ω with dist(x, ∂Ω) <
diam ∂Ω, there is a C-chord-arc domain Ωx with center x so that

H t
∞(∂Ω ∩ ∂Ωx) ≥ C−1δΩ(x)t.

In particular, there is c = c(s, t, n, c0) > 0 so that

(1.3) H t
∞(vx(c)) ≥ C−1δΩ(x)t

We will define chord-arc domains later (see Definition 4.1), but in particular,
when bounded, they are John domains.

for A ⊆ Rn, we define its s-dimensional Hausdorff content as

H s
∞(A) := inf

{∑
(diamAi)

s : A ⊆
⋃

Ai

}
.

Recently, Koskela, Nandi and Nicolau in [KNN18] showed (1.3) holds for simply
connected planar domains Ω, when n = 2 and t < s = 1 using techniques from
complex analysis.

The conclusion fails for t = n− 1, even when Ω has some nice geometry. Indeed,
suppose Ω ⊆ Rn had uniformly rectifiable boundary and the interior corkscrew con-
dition, then (1.3) with t = n− 1 is exactly the weak local John condition introduced
by Hofmann and Martell. They show that this implies the weak-A∞ property for
harmonic measure [HM18], and in particular, that harmonic measure is absolutely
continuous with respect to surface measure, although there are examples of such
domains where this isn’t the case [BJ90].

The theorem also does not hold for s > n−1. The counter example is essentially
the same example made by Koskela and Lehrbäck in [KL09, Example 7.3]: Let A be
(see Figure 1) the self-similar fractal in C determined the following similarities:

f1(z) =
z

2
, f2(z) =

z + 1

2
, f3(z) = iαz +

1

2
, f4(z) = −iαz +

1

2
+ iα

where α ∈ (0, 1
2
) is some fixed number (for a reference on self-similar fractals, see

[Fal86, Section 8.3]. Let Ω = C\A, then A satisfies H s(B(x, r) ∩ Ωc) ∼ rs for some
s > 1 and all 0 < r < 1 yet, by picking x closer and closer to the flatter side of A, a
John domain with center x intersecting A in a s-dimensional portion of the boundary
must wrap around to the other side of the antenna, hence the John constant will blow
up as x approaches the flat part.

Figure 1. The antenna set.

We don’t know about the case s = t < n− 1 and whether it should hold.
The existence of accessible portions of the boundary has been investigated pre-

viously due to its connections to Hardy-type inequalities.

Definition 1.1. A domain Ω satisfies the (p, β)-Hardy inequality ifˆ
Ω

|u(x)|pδΩ(x)β−p dx .
ˆ

Ω

|∇u(x)|pδΩ(x)β dx for all u ∈ C∞0 (Ω).
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We also say Ω satisfies a pointwise (p, β)-Hardy inequality if there is q ∈ (1, p) such
that for all x ∈ Ω and u ∈ C∞0 (Ω),

|u(x)| . δΩ(x)1−β
p

(
sup

r<2δΩ(x)

−
ˆ
B(x,r)

|∇u(y)|qδΩ(y)q
β
p dy

) 1
q

.

Koskela and Lehrbäck showed the following in [KL09, Proposition 5.1]:

Theorem 1.2. Let Ω ⊆ Rn and suppose (1.3) holds for some 0 ≤ t ≤ n. Then
Ω satisfies a pointwise (p, β)-Hardy inequality for all β < p− n+ t.

From this, they could also show that the (p, β)-Hardy inequality holds for all
β < p−n+ t as well [KL09, Theorem 1.4], however Lehrbäck later showed in [Leh14]
that (1.3) is not necessary to prove this. He also generalizes Theorem 1.2 to metric
spaces with a suitable substitute for (1.3).

What is not known is whether having lower content regular complements alone
implies pointwise Hardy inequalities without any assumptions on the visual boundary
(see the discussion at the top of [Leh14, p. 1707]). In [Leh14], Lehrbäck shows that
they do hold if β ≤ 0 and β < p− n+ t, and so the gap in our knowledge is whether
they hold when 0 < β < p − n + t. In [Leh09], however, he shows lower content
regularity is necessary:

Theorem 1.3. If Ω ⊆ Rn admits the pointwise (p, β)-Hardy inequality, then
there is s > n− p+ β so that Ω has lower s-content regular complement.

As a corollary of Theorem I and Theorem 1.2, we get that the lower content
regularity is also sufficient, and thus combined with the previous theorem, we get the
following characterization.

Corollary 1.4. Let Ω ⊆ Rn, β ∈ R and 1 < p < ∞ and β < p − 1. Then Ω
satisfies the (p, β)-pointwise Hardy inequality if and only if there is s > n− p+β for
which Ω has lower s-content regular complement.

Indeed, if Ω has lower s-content regular complement, then Theorem I says (1.3)
holds for any t < s. Theorem 1.2 implies it satisfies the pointwise (p, β)-Hardy
inequality for all β < p− n+ t, and hence (letting t ↑ s) for all β < p− n+ s.

Note that if Ω is s-content regular for some s > n−1, then it is also (n−1)-content
regular, so the above corollary yields the (p, β)-Hardy inequality for all β < p − 1.
In Theorem 1.3 in [KL09], the authors also show that for every 1 < s < 2, there is
a simply connected domain Ω ⊆ C with lower s-content regular complement yet the
(p, p−1)-Hardy inequality fails. Thus, for lower (n−1)-content regular domains, the
bound β < p− 1 is tight.

Condition (1.3) implies other Hardy-type inequalities. For example, in [ILTV14],
Ihnatsyeva, Lehrbäck, Tuominen, and Vähäkangas show that (1.3) implies certain
fractional Hardy inequalities.

The structure of the proof of Theorem I goes roughly as follows. The aim is to
construct a tree of tentacles emanating from x whose endpoints are a large subset
of the boundary, and then we take an appropriate neighborhood of this tree. Given
a point x ∈ Ω, the boundary has large Hausdorff content near x. This means that,
for a large set of directions, the orthogonal projection of the boundary has large
t-content for some t < s of our choosing. We use this to construct a tree of points
{xα} where α is a multi-index as follows: let ε > 0 be small, set x∅ = x and assume
without loss of generality that δΩ(x) = 1. Given a point xα so that δΩ(x) = ε|α|, if
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ξα ∈ ∂Ω is closest to xα, find a plane Vα passing through xα in which projection of
B(ξα, ε

|α|/4) ∩ ∂Ω is large in a small ball around xα. We can then pick a maximally
Mε|α|+1-separated collection of points {yαi}i (where M is some large number) in the
projection of B(ξα, ε

|α|/4) ∩ ∂Ω. For each yαi we move up (perpendicular to Pα)
toward the boundary until we find points xαi with distance ε|α|+1 from ∂Ω. We then
repeat the process on these points, and so on so forth. The union of 1

4
Bα∪

⋃
i[yαi, xαi]

over all α will be a connected subset of Ω and, choosing parameters correctly, will
have closure intersecting a part of the boundary with large t-content. We fatten this
set up by taking the union over dilated Whitney cubes intersecting this set. Then
we show that this resulting domain is in fact chord-arc, the proof of which follows
roughly the same procedure that has been done in several papers about harmonic
measure, see for example [HM14].

We’d like to thank Riikka Korte, Pekka Koskela and Juha Lehrbäck for answering
our questions and commenting on the manuscript.

2. Notation

We say a . b if there is a constant C so that a ≤ Cb, and a .t b if C depends
on the parameter t. We also write a ∼ b if a . b . a and define a ∼t b similarly. We
will omit the dependence on n throughout the paper.

We will let B(x, r) denote the open ball centered at x of radius r. If B = B(x, r)
and c > 0, we let cB = B(x, cr). Similarly, if a cube Q ⊆ Rn with sides parallel to
the coordinate axes has center x, we denote its side length by `(Q) and write cQ for
the cube of same center and sides still parallel to the coordinate axes but with side
length equal to c`(Q).

For A and B sets, and x ∈ Rn, we define

dist(x,A) = inf
y∈A
|x− y|, dist(A,B) = inf

x∈B
dist(x,A)

and
diamA = sup{|x− y| : x, y ∈ A}.

3. A Lemma about the Hausdorff content of projections

We will need to know that if a set has large Hausdorff content, then so does its
orthogonal projection in most directions, at least with respect to a smaller dimension.
Its proof follows the computations in Chapter 9 of [Mat95], the only difference being
we take more care in order to make them quantitative. We recall that a measure µ
is a t-Frostmann measure if

µ(B(x, r)) ≤ rt for all x ∈ Rn and r > 0

and it is not hard to show that for a t-Frostmann measure

(3.1) µ(E) .H t
∞(E) for all E ⊆ Rn.

Also recall that G(n,m) denotes the Grassmannian of m-dimensional planes in
Rn and γn,m is the Grassmannian measure on G(n,m). For a reference, see [Mat95,
Chapter 3].

Lemma 3.1. Let 0 < m < n be integers, 0 < t < s ≤ m and let E be a compact
set. Then for any V0 ∈ G(n,m) and δ > 0 there is V ∈ G(n,m) so that d(V0, V ) < δ
and, if PV is the orthogonal projection into V ,

(3.2) H t
∞(PV (E)) &δ,n,t,s (diamE)t−sH s

∞(E)
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Proof. Let µ be a s-Frostmann measure on E so that µ(B(x, r)) ≤ rs for all
x ∈ Rn and r > 0 and so that µ(E) ∼n H s

∞(E) (see [Mat95, Theorem 8.8]). Let
A = {V : d(V, V0) < δ}. By [Mat95, Corollary 3.12],ˆ

G(n,m)

|PV (x)|−t dγn,m(V ) ≤
(

1 +
2nt

α(n)(m− t)

)
|x|−t =:

|x|−t

c
,

Let F := PV (E). Then

It(µ) :=

ˆ
E

ˆ
E

|x− y|−t dµ(x) dµ(y)

≥ c

ˆ
A

ˆ
E

ˆ
E

|PV (x− y)|−t dµ(x) dµ(y) dγn,m(V )

= cγn,m(A)−
ˆ
A

ˆ
F

ˆ
F

|x− y|−t dPV [µ](x)︸ ︷︷ ︸
=:E(y)

dPV [µ](y) dγn,m(V ).

Hence, there is V ∈ A so that

C :=
It(µ)

cγn,m(A)
≥
ˆ
F

E(y) dPV [µ](y) =

ˆ ∞
0

PV [µ]({y ∈ F : E(y) > λ}) dλ.

This implies there must be λ ∈ [0, 2C/PV [µ](F )] so that

PV [µ]({y ∈ F : E(y) > λ}) ≤ PV [µ](F )/2.

Hence, if S = {y ∈ F : E(y) ≤ λ}, we have

(3.3) PV [µ](S) ≥ PV [µ](F )/2.

Let ν = PV [µ]|S. Then for y ∈ S and r > 0,

ν(B(y, r))r−t ≤
ˆ
B(y,r)∩F

|x− y|−t dPV [µ](x) = E(y) ≤ λ ≤ 2C

PV [µ](F )
.

Hence, PV [µ](F )
2C

ν is a t-Frostmann measure on F . Thus, since ν(F ) = PV [µ](S)
(3.3)
≥

PV [µ](F )/2,

(3.4) CH t
∞(F )

(3.1)
& PV [µ](F )ν(F )

(3.3)
≥ PV [µ](F )2

2
=
µ(E)2

2
∼n H s

∞(E)2.

Note thatˆ
|x− y|−tdµ(y) =

ˆ ∞
0

µ({y : |x− y|−t > a}) da

=

ˆ ∞
0

µ({y : |x− y| < a−1/t}) da =

ˆ ∞
0

µ(B(x, a−1/t)) da

≤
ˆ (2 diamE)−t

0

µ(B(x, 2 diamE)) +

ˆ ∞
(2 diamE)−t

a−s/t da

≤ µ(E)

(2 diamE)t
− ((2 diamE)−t)−s/t+1

−s/t+ 1

≤ µ(E)

(diamE)t
+
t(2 diamE)s−t

s− t

.
H s
∞(E)

(diamE)t
+
t2s−t

s− t
(diamE)s−t.
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Hence, since µ(Rn) ∼n H s
∞(E), we get

C ∼δ,n It(µ) .H s
∞(E)

(
H s
∞(E)

(diamE)t
+
t2s−t

s− t
(diamE)s−t

)
Recalling that F = PV )(E), we have

H t
∞(PV (E))

(3.4)
& n &

H s
∞(E)2

C
&δ,n

H s
∞(E)

H s
∞(E)

(diamE)t
+ t2s−t

s−t (diamE)s−t

≥ H s
∞(E)

(diamE)s−t(1 + t2s−t

s−t )

since H s
∞(E) ≤ (diamE)s. This finishes the proof. �

4. The proof of Theorem I

Instead of constructing curves like that in the definition of a John domain, it will
be more convenient to work with Harnack chains. Recall that a Harnack chain (of
length k) is a sequence of balls {Bi}ki=1 such that for all i,

(1) Bi ∩Bi+1 6= ∅,
(2) 2Bi ⊆ Ω, and
(3) rBi ∼ dist(Bi, ∂Ω).

Definition 4.1. For C > 0, a domain Ω is a C-uniform domain if
(1) it has interior corkscrews, meaning for every x ∈ ∂Ω and 0 < r < diam Ω,

there is a ball of radius r/C contained in B(x, r) ∩ Ω, and
(2) if Λ(t) = 1 + log t, for all x, y ∈ Ω, there is a Harnack chain from x to y in Ω

of length CΛ(|x− y|/min{δΩ(x), δΩ(y)}).
A domain Ω is a C-chord-arc domain (or CAD) if it is C-uniform and
(3) it has exterior corkscrews: for every x ∈ ∂Ω and r > 0, there is a ball of

radius r/C contained in B(x, r)\Ω and
(4) ∂Ω is Ahlfors (n− 1)-regular: for every x ∈ ∂Ω and 0 < r < diam ∂Ω,

C−1rn−1 ≤H n−1(∂Ω ∩B(x, r)) ≤ Crn−1.

We’ll say x is the center of Ω if

B(x,C−1 diam Ω) ⊆ Ω ⊆ B(x, diam Ω).

Remark 4.2. Note that this is slightly different from the definition in [HM14].
There they allow any function Λ: [1,∞)→ [1,∞), but one can show that it is always
a constant multiple of 1 + log x, see [GO79]. Also, to some this definition of unifom
domain may not be familiar, but it is equivalent to the common definition that is in
terms of curves, see [AHM+17].

We now begin the proof of Theorem I. Let Ω satisfy the conditions of the theorem
and let 0 < t < s. Let x ∈ Ω. For y ∈ Ω, set δΩ(y) = dist(y,Ωc).

Below, α will denote a multi-index α = α1 · · ·α|α| where |α| denotes the length of
α and each αj is some integer. We say α ≤ β if α is an ancestor of β (that is, the first
|α| terms of α and β are the same). We let x = x∅ where ∅ is the empty multi-index
and suppose δΩ(x) = 1. Inductively, we construct a tree of points as follows.

Let M > 0 be a large constant we will fix later, and ε > 0, a constant we will
constantly be adjusting to make smaller but ultimately will only depend on s, t, and
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n. Let k ∈ {0, 1, . . .} and suppose we have a point xα with |α| = k, and that there is
ξα ∈ ∂Ω so that

|xα − ξα| = δΩ(xα) = ε|α|.

Let
Bα = B(xα, ε

|α|), Eα = B(ξα, ε
|α|/4)\Ω.

Then
H s
∞(Eα) ≥ c04−s︸ ︷︷ ︸

:=c1

δΩ(xα)s = c1ε
|α|s.

By our assumptions, and since H s
∞(Eα) ≤ (diamEα)s, if t′ = t+s

2
,

(diamEα)t
′−sH s(Eα) ≥H s(Eα)

t′
s ≥

(
c1ε
|α|s) t′s = c

t′
s
1 ε
|α|t′ .

Let θ > 0 be small. By Lemma 3.1, we can find vα so that

(4.1)
∣∣∣∣vα − ξα − xα

|ξα − xα|

∣∣∣∣ < θ

and if Vα is the (n − 1)-dimensional plane passing through xα perpendicular to vα
and Pα is the orthogonal projection onto Vα, then for some constant c2 = c2(s, t, n),

H t′

∞(Pα(Eα)) ≥ c2ε
|α|t′ = c2ε

k|t′ .

Let M > 1 and {yαi}i∈I′α ⊆ Pα(Eα) be a maximal collection of points so that |yαi −
yαj| ≥ Mε|α|+1 for all i, j ∈ I ′α. Let n′α = |I ′α|. Then the balls B(yαi,Mε|α|+1) cover
Pα(Eα), and so

(2Mε|α|+1)t
′
n′α =

∑
i∈I′α

(diamB(yαi,Mε|α|+1))t
′ ≥H t′

∞(Pα(Eα)) ≥ c2ε
kt′ .

Recalling k = |α|, we pick ε > 0 small (depending on M, t, and s) so that

n′α ≥ ((2M)−t
′
c2)ε−t

′
> ε−t.

Now pick Iα ⊆ Iα′ so that, if nα = |Iα|, then there is nk so that
(4.2) 2ε−t ≥ nα = nk > ε−t.

Let
hαi = sup{h > 0 : B(yαi+hvα , ε

k+1) ⊆ Ω}.
That is, hαi is the farthest one can travel from yαi in the direction vα so that one
is at least εk+1 away from the boundary. These values hαi will be the length of the
tentacles we add at this stage.

Let θ′ > 0 be small. Since Eα ⊆ 3
2
Bα and by (4.1) for θ small enough (depending

on θ′)

(4.3) yα ∈ Pα(Eα) ⊆ B(xα, (1 + θ′)ε|α|/4) ⊆ 2

5
Bα ⊆ Ω,

we know that
hαi ≤

1

2
diam

3

2
Bα =

3

2
ε|α|.

Let
xαi = yαi + hαivα

so that (see Figure 2)
δΩ(xαi) = ε|α|+1.
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Vα

xα
yαi

Ωc

ξα

1
2
Bα

Bα
xαi

B(ξα, ε
|α|/4)→

Figure 2. Displayed is the point xα. In some direction vα, the orthogonal projection of ∂Ω has
large Hausdorff content, so we can find many points yαi that are in the projection of ∂Ω in Vα∩ 1

2Bα

and are Mε|α|+1-separated. We then pick points xαi above these yαi that are distance ε|α|+1 from
∂Ω and so that the segment [yαi, xαi] is contained in Ω. These segments are the tentacles that
connect 1

2Bα to the balls 1
2Bαi that are much closer to the boundary.

We record a few useful estimates. First, we claim that

(4.4) |xαi − ξα| <
3ε|α|

8
.

To see this, note that if ξαi is a point closest to xαi, then |ξαi−xαi| = ε|αi| = ε|α|+1

by construction, so if ξαi ∈ B(ξα, ε
|α|/4), then (4.4) is immediate for ε > 0 small

enough. It is also immediate if xαi ∈ Bαi, so assume ξαi, xαi 6∈ B(ξα, ε
|α|/4). Then

xαi ∈ Bα since [yαi, xαi] ⊆ B(ξα, ε
|α|/4) ∪ Bα and xαi 6∈ B(ξα, ε

|α|/4). Since Bα ⊆ Ω,
ξαi 6∈ Bα. Let y ∈ [xαi, ξαi] ∩ ∂Bα and uα = (ξα − xα)/|ξα − xα|. Then
|ξα − y|2 = |ξα − xα|2 + |xα − y|2 − 2(ξα − xα) · (y − xα)

= 2ε2|α|
(

1−
∣∣∣∣uα · y − xαεα

∣∣∣∣) (4.1)
≤ 2ε2|α|θ + 2ε2|α|

(
1−

∣∣∣∣vα · y − xαεα

∣∣∣∣)
≤ 2ε2|α|θ + 2ε2|α|

(
1−

∣∣∣∣vα · y − xαεα

∣∣∣∣2
)

= 2ε2|α|θ + 2ε2|α|
∣∣∣∣Pα(y − xαεα

)∣∣∣∣2 = 2ε2|α|θ + 2 |Pα (y − xα)|2 .

Recalling that Pα(xαi) = yαi ∈ 1
4
Bα, for ε, θ, θ′ > 0 small enough, and since

√
2/4 <

3/8, we have

|ξα − xαi| ≤ ε|α|+1 + |ξα − y| ≤ ε|α|+1 +
√

2ε|α|
√
θ +
√

2|Pα(y − xα)|

≤ ε|α|+1 +
√

2ε|α|
√
θ +
√

2
(
|Pα(xαi − xα)|+ ε|α|+1

)
(4.3)
≤ ε|α|+1 +

√
2ε|α|
√
θ +
√

2

(
(1 + θ′)

ε|α|

4
+ ε|α|+1

)
<

3ε|α|

8
.
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This proves (4.4).
Thus, for ε > 0 small,

(4.5) 2Bαi ⊆ B

(
ξα,

3ε|α|

8
+ 2ε|α|+1

)
⊆ B

(
xα,

11ε|α|

8
+ 2ε|α|+1

)
⊆ 4

3
Bα

where Bαi = B(xαi, ε
|αi|). Moreover, for i, j ∈ Iα distinct and M > 8,

dist(2Bαi, 2Bαj) ≥ dist(Pα(2Bαi), Pα(2Bαi)) ≥ dist(B(yαi, 2ε
k+1), B(yαj, 2ε

k+1))

≥ (M − 4)εk+1 ≥ M

2
εk+1.

By (4.5), this implies that for any α and β of possibly different lengths, if γ is the
earliest common ancestor of α and β and γ 6= α, β, then

(4.6) dist(2Bα, 2Bβ) ≥ M

2
ε|γ|+1.

In particular,

(4.7) dist(2Bα, 2Bβ) ≥ M

2
εk if |α| = |β| = k and α 6= β.

We will also need the following estimate bounding how close a ball is from the
center of its parent ball: for ε > 0 small,

dist

(
1

2
Bα, 2Bαi

)
≥ |xα − xαi| −

ε|α|

2
− 2ε|α|+1

(4.4)
≥ |xα − ξα| −

3ε|α|

8
− ε|α|

2
(1 + 4ε)

= ε|α| − 3ε|α|

8
− ε|α|

2
(1 + 4ε) >

ε|α|

9
.(4.8)

Lemma 4.3. Let E ⊆ ∂Ω be the set of points z for which there is a sequence of
multi-indices αk with |αk| = k and xαk → z. Then

H t
∞(E) & 1.

Proof. Let us define a sequence of probability measures µk as follows. We first
let µ0 be a measure so that µ0(2B∅) = 1. Inductively, and using (4.5) we let µk be a
measure so that

µk(2Bαi) =
µk−1(2Bα)

nα
< µk−1(2Bα)εt for all i ∈ Iα.

By passing to a weak limit, we obtain a measure µ supported on E so that if α′
denotes the string α minus its last term, then

µ(2Bα) =
µ(2Bα′)

nα′

(4.2)
< µ(2Bα′)ε

t < · · · < ε|α|t for all i ∈ Iα.

In particular, if B is any ball intersecting E with diamB < 1, let k be such that
M
4
εk > diamB ≥ M

4
εk+1. Then there is at most one 2Bα with |α| = k intersecting

B; otherwise, if β was another such multi-index, then

M

2
εk

(4.7)
≤ dist(2Bα, 2Bβ) ≤ diamB <

M

4
εk

which is a contradiction. Thus,

µ(B) ≤ µ(2Bα) < εtk . (diamB)t.
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If diamB ≥ 1, then
µ(B) ≤ µ(Rn) = 1 ≤ (diamB)t.

Thus, µ is a t-Frostmann measure, so H t
∞(E) &n µ(E) = 1. �

Fix an integer N and let W denote the Whitney cubes for Ω, which we define to
be the set of maximal dyadic cubes Q so that

NQ ⊆ Ω.

Let λ > 1. For α a multi-index, let

C (α) =

{
Q ∈ W : Q ∩

(
1

2
Bα ∪

⋃
i∈Iα

[yαi, xαi]

)
6= ∅

}
where [x, y] denotes the closed line segment between x and y, and

Ωα =
⋃
Q∈Cα

λQ.

We now pick N large enough so that by (4.5),

(4.9) Ωα ⊆
5

4
Bα

and so that

(4.10) λQ ⊆ 3

4
Bα for all Q ∈ W so that λQ ∩ 1

2
Bα 6= ∅.

Note that all the Whitney cubes Q ∈ Cα, have comparable sizes (depending on
ε), there are boundedly many such cubes. Since 1

2
Bα ∪

⋃
i∈Iα [yαi, xαi] is connected,

so is Ωα. Because of this, it is not hard to show that, for λ close enough to 1, Ωα is a
CAD with constants depending only on ε, λ, and n. Here, λ is a universal constant
depending on n and is now fixed.

Also, if
Ω(α) =

⋃
β≥α

Ωβ,

then

(4.11) Ω(α) ⊆ 2Bα.

Let C =
⋃
α C (α) and

Ω(x) =
⋃
α

Ωα =
⋃
Q∈C

λQ.

Note that by construction. E ⊆ ∂Ω(x) ∩ ∂Ω.

Lemma 4.4. The domain Ω(x) ⊆ Ω is C-uniform with C depending on ε and n
so that ∂Ω ∩ ∂Ω(x) = E.

Proof. The last part of the lemma follows from the discussion that preceded it,
so we just need to verify that Ω(x) is uniform. By construction, Ω(x) satisfies the
interior corkscrew property, and so we just need to bound the length of Harnack
chains. As in the proofs of [HM14, A.1], since the Ωα are themselves uniform, it
suffices to show that we may connect each xα and xβ by Harnack chains of the
correct length.

Let γ be the earliest common ancestor of α and β. Let kα = |α|−|γ|, kβ = |β|−|γ|,
and let αj be the ancestor of α so that |αj| = |γ|+j. Note that since δΩ(xαj) = ε|γ|+j =
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εδΩ(xαj+1
) and by construction of Ωα, we know δΩαj

(xαj) ∼ δΩαj
(xαj+1

) ∼ ε|γ|+j, and
since both xαj and xαj+1

are contained in 2Bαj , we know |xαj − xαj+1
| ≤ 2ε|γ|+j.

Thus, since Ωαj is a CAD, there is a Harnack chain in Ωαjof uniformly bounded
length (depending on the uniformity constants for Ωαj) from xαj to xαj+1

. The union
of the Harnack chains for each j gives a Harnack chain from xγ to xα of length
comparable to kα. We can find another Harnack chain from xγ to xβ of length kβ.
Now we just need to estimate the length of the total chain. By (4.9) and (4.6),

|xα − xβ| ≥
M

2
ε|γ|+1.

Also, by definition of Ωα and Ω(x), we have

δΩ(x)(xα) ∼ δΩ(xα) = ε|α|.

Thus, the length of the Harnack chain is at most a constant times

kα + kβ ≤ 2 max{kα, kβ} .ε 1 + log
ε|γ|

min{ε|α|, ε|β|}

. 1 + log
|xα − xβ|

min{δΩ(x)(xα), δΩ(x)(xβ)}
.

Thus, the conditions for being uniform hold. �

Lemma 4.5. Ω(x) has exterior corkscrews.

Proof. Let z ∈ ∂Ω(x) and r > 0. We divide into some cases:
Case 1. If r ≥ 2 diam Ω(x), then we can clearly find a corkscrew ball inB(z, r)\Ω(x)

of radius r/4.
Case 2. Assume r < 2 diam Ω. Let C > 0, we will decide its value soon.
Case 2a. Suppose 0 < r < CδΩ(z), then z ∈ ∂λQ for some Whitney cube Q ∈ C .

Note that for ρ > 0 small enough (depending on N and n), ∂Ω(x)∩B(z, ρ`(Q))\Ω(x)
is isometric to B(0, ρ`(Q))\{y : yi ≥ 0}i∈S for some subset S ⊆ {1, . . . , n}, hence we
can find a ball of radius ρ`(Q)/4 ⊆ B(z, ρ`(Q))\Ω(x).

By the properties of Whitney cubes,

r < CδΩ(z) ∼ C`(Q) .ρ Cρ`(Q)/4,

This means the ball is a corkscrew ball for B(z, r) with respect to Ω(x).
Case 2b. Now suppose r ≥ CδΩ(z). Note that if Q ∈ C , then Q ∈ Cα for some

β, and by (4.11), if z ∈ ∂λQ,

dist(z, E) ≤ diam 2Bβ.

Also note that Q has side length comparable to every other cube in C (β) (since
Ωβ is a finite connected union of dilated Whitney cubes), so in particular, if R ∈ C (β)
is such that xβ ∈ λR,

δΩ(z) ∼ `(Q) ∼ `(R) ∼ δΩ(xβ) = |xβ − ξβ| ∼ diamBβ.

Combining the above inequalities, we get

dist(z, E) . δΩ(z) ≤ r/C,

so for C large enough,
dist(z, E) < r/2.
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Hence, we can pick w ∈ E ∩B(z, r/2). Note there is a sequence αk so that |αk| = k,
αk ≤ αk+1, and xαk → w. Let α = αk be so that

diam Ωα = max{diam Ωαk : Ωαk ⊆ B(w, r/4)}.

Since diam Ω(α) ∼ diamBα = 2ε|α| and r < 2 diam Ω(x), it follows that diam Ω(α) ∼ε
r.

Note that if α′ = αk−1 is the parent of α, then by (4.8) and (4.6), and because
the Iαj are mutually spaced apart by distance at least Mε|α|, we have for ε > 0 small
enough and M large enough (and here we fix M)

3Bα ∩ Ω(x) = Ω(α) ∪
⋃
{λQ : Q ∈ W, Q ∩ Iα′ 6= ∅}.

Hence, for ρ > 0 and N large enough depending on ρ, and as Ω(α) ⊆ 2Bα,

sup{dist(y, 2Bα ∪ Iα′) : y ∈ 3Bα ∩ Ω(x)} < ρε|α|.

For ρ small enough, this means there is Bα ⊆ 3Bα\Ω(x) of radius ε|α|/4 ∼ε r, so this
in turn will be an exterior corkscrew for Ω(x) in B(w, r/2). �

Lemma 4.6. ∂Ω(x) is Ahlfors (n− 1)-regular.

Proof. Let z ∈ ∂Ω(x) and 0 < r < diam Ω(x). The interior and exterior
corkscrew conditions imply lower regularity; this is standard, but it’s short enough
to include here: We know there are balls B(x1, cr) ⊆ B(z, r)∩Ω(x) and B(x2, cr) ⊆
B(z, r)\Ω(x) with c = c(ε, n). If U is the (n− 1)-dimensional plane perpendicular to
x1 − x2 passing through 0 and P is the orthogonal projection onto U , then

H n−1(B(z, r) ∩ ∂Ω(x)) ≥H n−1(P (B(z, r) ∩ ∂Ω(x)))

≥H n−1(P (B(x1, cr)) ∩ U)

= H n−1(B(P (x1), cr) ∩ U) &c,d r
n−1.

Now we prove upper regularity. Again, as in the proof of Lemma 4.3 if k is such
that M

4
εk > diamB ≥ M

4
εk+1, then there is at most one 2Bα with |α| = k intersecting

B. Hence, B touches only Ω(α).
Each ∂Ωα is already Ahlfors regular and H n−1(∂Ωα) . ε|α|(n−1). By (4.2) there

are n|α′| · · ·nk−1 many descendants β of α′ with |β| = k, and

n|α′| · · ·nk−1

(4.2)
< (2ε−t)k−1−|α′|+1 = (2ε−t)k−|α|+1.

Thus, for ε > 0 small enough depending on n and t,

H n−1(B(z, r) ∩ ∂Ω(x)) = H n−1(B(z, r) ∩ ∂Ω(α′)) ≤
∑
β≥α′

H n−1(∂Ωβ)

.
∑
k≥|α′|

εk(n−1) · (2ε−t)k−|α|+1

= 2−|α|+1εt(|α|−1)
∑
k≥|α′|

εk(n−1−t)2k

.ε 2−|α|εt|α| · ε|α′|(n−1−t)2|α
′| . ε|α|(n−1) . rn−1. �

The combination of the previous four lemmas prove Theorem I.
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