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Abstract. We show that if B ⊂ Rn and E ⊂ A(n, k) is a nonempty collection of k-dimensional
affine subspaces of Rn such that every P ∈ E intersects B in a set of Hausdorff dimension at least α
with k− 1 < α ≤ k, then dimB ≥ α+dimE/(k+1), where dim denotes the Hausdorff dimension.
This estimate generalizes the well known Furstenberg-type estimate that every α-Furstenberg set
in the plane has Hausdorff dimension at least α + 1/2. More generally, we prove that if B and E
are as above with 0 < α ≤ k, then dimB ≥ α+(dimE− (k−dαe)(n−k))/(dαe+1). We also show
that this bound is sharp for some parameters. As a consequence, we prove that for any 1 ≤ k < n,
the union of any nonempty s-Hausdorff dimensional family of k-dimensional affine subspaces of Rn

has Hausdorff dimension at least k + s
k+1 .

1. Introduction and statements of the main results

The following question arose from the work of Furstenberg [4]. Fix 0 < α ≤ 1,
and suppose that F ⊂ R2 is a compact set such that for every e ∈ S1 there is a line
Le with direction e such that dim (Le ∩ F ) ≥ α, where dim denotes the Hausdorff
dimension. What is the smallest possible value of dimF? Such sets are called
α-Furstenberg-sets. Wolff [12] gave the following partial answers to the question:
For any 0 < α ≤ 1, if F ⊂ R2 is an α-Furstenberg set, then dimF ≥ 2α, and
dimF ≥ α + 1

2
. Moreover, for any 0 < α ≤ 1 there exists a Furstenberg set with

dimF = 3α
2

+ 1
2
. In the α = 1/2 case Bourgain [1] improved the lower bound 1 to

dimF ≥ 1 + c for some absolute constant c > 0 using the work of Katz and Tao [7].
However, the smallest possible value of the Hausdorff dimension of Furstenberg-sets
is still unknown.

Molter and Rela [10] considered the problem in higher generality: Let 0 < α ≤ 1,
0 < s ≤ 1. We say that F ⊂ R2 is an (α, s)-Furstenberg set, if there is E ⊂ S1

with dimE = s such that for every e ∈ E there is a line Le with direction e with
dim (Le ∩ F ) ≥ α. In [10] it was proved that if F ⊂ R2 is an (α, s)-Furstenberg set,
then dimF ≥ 2α− 1 + s and dimF ≥ α + s

2
.

In [8] Lutz and Stull investigated the generalized Furstenberg-problem using
methods from information theory. They proved that if F ⊂ R2 is an (α, s)-Furstenberg
set, then dimF ≥ α + min{s, α}. Their new bound is better than the one obtained
in [10] whenever α, s < 1 and s < 2α.
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In [5] the authors investigated Furstenberg-type sets associated to families of
affine subspaces. For any integers 1 ≤ k < n, let A(n, k) denote the space of all
k-dimensional affine subspaces of Rn. Let 0 < α ≤ k, and 0 ≤ s ≤ (k + 1)(n − k).
We say that B ⊂ Rn is an (α, k, s)-Furstenberg set, if there is ∅ 6= E ⊂ A(n, k)
with dimE = s such that B has an at least α-dimensional intersection with each k-
dimensional affine subspace of the family E, that is, dim (B ∩ P ) ≥ α for all P ∈ E.
What is the smallest possible value of dimB (as a function of α, s, n, k)? In [5] it was
proved that if B ⊂ Rn is an (α, k, s)-Furstenberg set, then dimB ≥ 2α−k+min{s, 1}.
The method used in [5] generalizes the method of Wolff [12] yielding the lower bound
2α for classical plane α-Furstenberg-sets.

In this paper we also investigate Furstenberg-type sets associated to families of
affine subspaces. Our method generalizes the method of Wolff [12] yielding the lower
bound α + 1

2
for classical plane α-Furstenberg-sets.

The paper is organized as follows: In Section 1.2 we state our main result (Theo-
rem 1.4), and prove that the obtained bound for the Hausdorff dimension of (α, k, s)-
Furstenberg sets is sharp for some parameters. In Section 1.3 we list some results
obtained for unions of affine subspaces. Section 2 contains the introductory steps,
and Section 3 contains the main arguments of the proof of our main result. The
lengthy proofs of two important lemmas (Lemma 3.1, Lemma 3.6) are postponed
to Sections 4 and 5. Section 6 contains the proofs of some relatively easy purely
geometrical lemmas.

1.1. Notation and definitions. The open ball of center x and radius r will be
denoted by B(x, r) or Bρ(x, r) if we want to indicate the metric ρ. For a set U ⊂ Rn,
Uδ =

⋃
x∈U B(x, δ) denotes the open δ-neighborhood of U , and diam (U) denotes the

diameter of U . Let s ≥ 0, δ ∈ (0,∞] and A ⊂ Rn. By the s-dimensional Hausdorff
δ-premeasure of A we mean

Hs
δ(A) = inf

{
∞∑
i=1

(diam (Ui))
s : A ⊂

∞⋃
i=1

Ui, diam (Ui) ≤ δ (i = 1, 2, . . . )

}
.

The s-dimensional Hausdorff measure of A is defined as Hs(A) = limδ→0Hs
δ(A), and

the s-dimensional Hausdorff content of A is

Hs
∞(A) = inf

{
∞∑
i=1

(diam (Ui))
s : A ⊂

∞⋃
i=1

Ui

}
.

The Hausdorff dimension of A is defined as

dimA = sup{s : Hs(X) > 0} = sup{s : Hs
∞(X) > 0}.

For the well known properties of Hausdorff measures and dimension, see e.g. [2]. For
a finite set A, let |A| denote its cardinality. We will use the notation a .α b if a ≤ Cb
where C is a constant depending on α. If it is clear from the context what C should
depend on, we may write only a . b. For any x ∈ R, the least integer greater than
or equal to x will be denoted by dxe. For i ≥ 2 integer and z1, . . . , zi ∈ Rn, let
∆(z1, . . . , zi) denote the convex hull of the points z1, . . . , zi.

Let 1 ≤ k < n be integers, and let A(n, k) denote the space of all k-dimensional
affine subspaces of Rn. Now we introduce the concept of natural metrics on A(n, k).
Let G(n, k) denote the space of all k-dimensional linear subspaces of Rn. For Pi =
Vi + ai ∈ A(n, k), where Vi ∈ G(n, k) and ai ∈ V ⊥i , i = 1, 2, we put

m(P1, P2) = ‖πV1 − πV2‖+ |a1 − a2|,
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where πVi : Rn → Vi denotes the orthogonal projection onto Vi (i = 1, 2), and ‖ · ‖
denotes the standard operator norm. Then m is a metric on A(n, k), see [9, p. 53].

Definition 1.1. Let ρ be a metric on A(n, k). We say that ρ is a natural metric,
if ρ and m are strongly equivalent, that is, if there exist positive constants K1 and
K2 such that, for every P1, P2 ∈ A(n, k), K1 ·m(P1, P2) ≤ ρ(P1, P2) ≤ K2 ·m(P1, P2).

1.2. The main results and their sharpness. Let 1 ≤ k < n be integers, and
fix a natural metric ρ on A(n, k). Now we state one of our main results.

Theorem 1.2. Let k − 1 < α ≤ k, and 0 ≤ s ≤ (k + 1)(n − k) be any real
numbers. Suppose that B ⊂ Rn is an (α, k, s)-Furstenberg-set, that is, there exists
∅ 6= E ⊂ A(n, k) with dimE = s such that for every k-dimensional affine subspace
P ∈ E, dim (P ∩B) ≥ α. Then

(1) dimB ≥ α +
s

k + 1
.

Remark 1.3. The following easy example demonstrates that Theorem 1.2 can
not hold if α ≤ k − 1: Let α ≤ k − 1, and let B be an α-dimensional subset of
a fixed (k − 1)-dimensional affine subspace V . Take an s-dimensional family E of
k-dimensional affine subspaces containing V such that s > 0. Then dim (P ∩B) = α
for all P , and dimB = α < α + s

k+1
.

In the case of arbitrary α, we prove the following.

Theorem 1.4. Let 0 < α ≤ k, and 0 ≤ s ≤ (k + 1)(n − k) be any real
numbers. Suppose that B ⊂ Rn is an (α, k, s)-Furstenberg-set, that is, there exists
∅ 6= E ⊂ A(n, k) with dimE = s such that for every k-dimensional affine subspace
P ∈ E, dim (P ∩B) ≥ α. Then

(2) dimB ≥ α +
s− (k − dαe)(n− k)

dαe+ 1
.

Remark 1.5. Note that Theorem 1.4 implies Theorem 1.2, by dαe = k if k−1 <
α ≤ k.

We claim that both Theorem 1.2 and Theorem 1.4 are sharp for some pa-
rameters. Namely, for any 0 < α ≤ k, there exist families of affine subspaces
E1, E2 ⊂ A(n, k), and generalized Furstenberg-sets B1, B2 ⊂ Rn associated to them
such that dimB1, dimB2 equals the lower bound obtained from Theorem 1.2 and
Theorem 1.4, respectively. This is the content of the following two propositions.

Proposition 1.6. Let 0 < α ≤ k be any real number, and m ∈ [0, n − k]
integer. There exists an (α, k, s)-Furstenberg-set B ⊂ Rn with s = m(k + 1) such
that dimB = α +m = α + s

k+1
.

Proof. Let B ⊂ Rn be a Borel set contained in a (k + m)-dimensional affine
subspace H with 0 < Hβ(B) <∞, where β = α + m. Then the Marstrand–Mattila
slicing theorem [9] implies that for γk+m,k-almost all k-dimensional linear subspace
W of H,

Hm({a ∈ W⊥ : dim (B ∩ (W + a)) = β −m = α}) > 0,

where γk+m,k denotes the natural measure on the Grassmannian G(k + m, k). This
yields an s = (k + 1)m-dimensional family E of k-planes intersecting B in a set of
dimension α. Thus B is an (α, k, s)-Furstenberg-set, dimB = β = α +m = α + s

k+1

and we are done. �
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Proposition 1.7. Let 0 < α ≤ k be any real number. There exists an (α, k, s)-
Furstenberg-set B ⊂ Rn with s = (k − dαe)(n − k) such that dimB = α = α +
s−(k−dαe)(n−k)

dαe+1
.

Proof. If α > k − 1, then dαe = k, s = 0 so the proposition is trivial.
If α ≤ k − 1, let B ⊂ Rn be a set of dimension α contained in an m = dαe-

dimensional affine subspace V . Take E to be the family of all k-dimensional subspaces
of Rn containing V . Easy computation gives that the dimension of E equals (k −
m)(n− k) = (k − dαe)(n− k) = s. Then dim (P ∩B) = α for all P ∈ E, so B is an
(α, k, s)-Furstenberg-set with dimB = α and we are done. �

1.3. Results for unions of affine subspaces. In this section we investigate
unions B =

⋃
P∈E P ⊂ Rn of affine subspaces, where ∅ 6= E ⊂ A(n, k). We are

interested in the smallest value of dimB as a function of dimE.
The first such result for unions of affine subspaces is due to Oberlin.

Theorem 1.8. [11, Oberlin] Let ∅ 6= E ⊂ A(n, k) be compact, and put B =⋃
P∈E P ⊂ Rn. Then{

dimB ≥ 2k − k(n− k) + dimE, if dimE ≤ (k + 1)(n− k)− k,
B has positive Lebesgue-measure, if dimE > (k + 1)(n− k)− k.

Remark 1.9. It is easy to see using Howroyd’s theorem [6] that if Theorem 1.8
holds for compact E ⊂ A(n, k), then it also holds for Borel (in fact, for analytic) E.

In [5] the authors proved the following.

Theorem 1.10. [5, Héra–Keleti–Máthé] Let ∅ 6= E ⊂ A(n, k), and put B =⋃
P∈E P ⊂ Rn. Then

dimB ≥ k + min{dimE, 1}.
Note that in the k = n − 1 case Theorem 1.8 already implies the dimB ≥

n− 1 + min{dimE, 1} bound (for analytic E).

Remark 1.11. It is not hard to see [5] that for any ∅ 6= E ⊂ A(n, k) we have
dim

(⋃
P∈E P

)
≤ k+ dimE. This implies in particular that for any ∅ 6= E ⊂ A(n, k)

with dimE ∈ [0, 1], dim
(⋃

P∈E P
)

= k + dimE.

In this paper we also obtain new bounds for unions of affine subspaces as a
corollary, namely, by applying Theorem 1.2 for B =

⋃
P∈E P ⊂ Rn and α = k.

Corollary 1.12. Let ∅ 6= E ⊂ A(n, k), and put B =
⋃
P∈E P ⊂ Rn. Then

dimB ≥ k +
dimE

k + 1
.

Easy computation gives that our estimate in Corollary 1.12 is better than the
bounds obtained in Theorem 1.8 and Theorem 1.10 if

k + 1 < dimE < (k + 1)(n− k)− k − 1.

The following easy construction will show that the bound in Theorem 1.10 is sharp if
0 ≤ dimE ≤ k+1, and the bound in Theorem 1.8 is sharp if (k+1)(n−k)−k−1 ≤
dimE ≤ (k+1)(n−k)−k, so in this paper we improve the previously known bounds
in the whole region where it is possible. The next proposition will also show that our
estimate in Corollary 1.12 is not far from being sharp in general, and that it is sharp
for some parameters. Figure 1 below illustrates this situation.
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Figure 1. The figure illustrates the graphs of three functions: the dimension bound obtained
from the combination of Theorem 1.8 and Theorem 1.10 (f(s) = max{min{s−8, 8}, 2+min{s, 1}},
gray), the dimension bound obtained in Corollary 1.12 (g(s) = 2 + s

3 , blue), and the dimension

of the construction in Proposition 1.13 (h(s) =

{
s− 2d s3e+ 4 if d s3e ≥

2+s
3 ,

2 + d s3e if d s3e ≤
2+s
3 ,

red dashed) in the

k = 2, n = 8 case. The regions where the red and gray graphs coincide show the intervals in which
the bounds obtained in Theorem 1.10 and Theorem 1.8 are sharp, and the intersection points of
the blue and red graphs indicate the values for which Corollary 1.12 is sharp.

Proposition 1.13. For any 0 ≤ s ≤ (k + 1)(n− k) there exists B =
⋃
P∈E P ⊂

Rn with ∅ 6= E ⊂ A(n, k) Borel and dimE = s such that

dimB =

{
s− kd s

k+1
e+ 2k if d s

k+1
e ≥ k+s

k+1
,

k + d s
k+1
e if d s

k+1
e ≤ k+s

k+1
.

Proof. Let 0 ≤ s ≤ (k + 1)(n − k), and put m = d s
k+1
e ≤ n − k. First

assume that m ≥ k+s
k+1

, and put B = Rm+k−1 × A × {0}, where A ⊂ R Borel with
dimA = s − (k + 1)(m − 1). Then clearly, B =

⋃
P∈E P ⊂ Rn, where E ⊂ A(n, k)

consists of all k-planes of Rm+k−1 translated by the elements of A. Clearly, E is Borel
and dimE = (k + 1)(m− 1) + dimA = s. Moreover, dimB = m+ k − 1 + dimA =
s− km+ 2k, so we are done.

Ifm ≤ k+s
k+1

, put B = Rm+k−1×R×{0}. Then it is easy to see that B =
⋃
P∈E0

P ,
where E0 ⊂ A(n, k) consists of all k-planes of Rm+k−1 translated by the elements of
R, and clearly, B =

⋃
P∈E P for any E0 ⊂ E ⊂ A(m + k, k). Then dimB = m + k,

and for any (k + 1)m− k ≤ s ≤ (k + 1)m, there exists E ⊂ A(n, k) Borel with with
dimE = s such that B =

⋃
P∈E P, so we are done. �

Remark 1.14. With an easy modification of the proof, one can also construct
a suitable B =

⋃
P∈E P ⊂ Rn with E ⊂ A(n, k) compact.

Remark 1.15. Clearly, the example in Proposition 1.13 shows that for any
s ∈ [0, (k + 1)(n − k)], there exists B =

⋃
P∈E P ⊂ Rn with E ⊂ A(n, k) Borel and

dimE = s such that

dimB −
(
k +

s

k + 1

)
≤ k

k + 1
< 1,
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so our estimate in Corollary 1.12 is not far from being sharp in general, the gap is
less than 1. Also, note that if s = m(k + 1) for some integer m ∈ [0, n − k], then
dimB = k + m = k + s

k+1
in Proposition 1.13, which is exactly the bound obtained

from Corollary 1.12 for B =
⋃
P∈E P with dimE = s, so Corollary 1.12 is sharp for

these parameters.

We also formulate the following conjecture.

Conjecture 1.16. Let 0 ≤ s ≤ (k+1)(n−k), ∅ 6= E ⊂ A(n, k) with dimE = s,
and put B =

⋃
P∈E P ⊂ Rn. Then

(3) dimB ≥

{
s− kd s

k+1
e+ 2k if d s

k+1
e ≥ k+s

k+1
,

k + d s
k+1
e if d s

k+1
e ≤ k+s

k+1
.

Note that the dimension bound in (3) equals the dimension of the construction
in Proposition 1.13, so if Conjecture 1.16 is true, then it is sharp. The conjecture is
motivated by the fact that Theorem 1.10 and Theorem 1.8 imply that (3) holds if
s ∈ [0, k + 1] ∪ [(k + 1)(n− k)− k − 1, (k + 1)(n− k)].

2. The proof of Theorem 1.4, preparatory tools

Note that the statement of Theorem 1.4 is trivially true if s = 0. Let s > 0. We
introduce the following notations. Let e0 = (0, . . . , 0); let e1, . . . , en be the standard
basis vectors ofRn, and let V0 be the k-dimensional linear space spanned by e1, . . . , ek.
Put H0 = V ⊥0 , and Hi = ei + H0. Then Hi is an n − k-dimensional affine subspace
for all i = 1, . . . , k. We will use the following notation for the collection of k-planes
which are positioned close to the horizontal subspace V0:

(4) H = {P ∈ A(n, k) : P ∩Hi = {xi} for some xi ∈ [0, 1]n ∀ i = 0, 1, . . . , k}.

First we make several assumptions which do not restrict generality. The exact
same arguments as the ones used in [5, Lemma 3.3 and 3.4] imply the following.

Lemma 2.1. We can make the following assumptions in the proof of Theo-
rem 1.4:

(a) B ⊂ [0, 1]n, Hα
∞(B) ≤ 1;

(b) B is a Gδ set, that is, a countable intersection of open sets;
(c) E ⊂ A(n, k) is compact, and Hs(E) > 0;
(d) E ⊂ H;
(e) there is 0 < ε ≤ 1 such that for every P ∈ E, Hα

∞(P ∩B) ≥ ε.

Let us now fix B, E, ε with properties given by Lemma 2.1. We apply Frostman’s
lemma (see e.g. [9]) to obtain a probability measure µ on A(n, k) (for which Borel
and analytic sets are measurable) supported on E for which

(5) µ(B(P, r)) ≤ rs

for all r > 0 and all P ∈ E.
Now we turn to estimating the dimension of the set B. Our aim is to show that

Ht−γ(B) > 0 for any γ > 0, where t = α + s−(k−dαe)(n−k)
dαe+1

. For our convenience, we
will use net measures instead of Hausdorff measures. Let D denote the family of
closed dyadic cubes in Rn, that is, cubes of the form

{x ∈ Rn : mj2
−l ≤ xj ≤ (mj + 1)2−l, mj ∈ Z (j = 1, . . . , n), l ∈ Z}.
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Then for a set X ⊂ Rn, s ≥ 0 and δ > 0,

N s
δ (X) = inf

{
∞∑
i=1

(diam (Di))
s : X ⊂

∞⋃
i=1

Di, Di ∈ D, diam (Di) ≤ δ

}
and N s(X) = limδ→0N s

δ (X). It is well known (see e.g. [2]) that there exists a
constant b(n, s) 6= 0 depending only on n and s such that for everyX ⊂ Rn, Hs(X) ≤
N s(X) ≤ b(n, s)Hs(X).

We will show that

(6) N t−γ(B) > 0

for any γ > 0, where t = α + s−(k−dαe)(n−k)
dαe+1

, and this will imply

dimB ≥ α +
s− (k − dαe)(n− k)

dαe+ 1
.

Let K be a positive integer such that

(7)
∞∑
l=K

1/l2 < ε,

where ε is from (e) of Lemma 2.1, and such that

(8) k · 2k+1 · l2ϕ ≤ 2l for all l ≥ K,

where ϕ = dαe
α−(dαe−1)

. For a dyadic cube Di ∈ D, let ri denote the side length of Di.
Let B ⊂

⋃∞
i=1 Di be any countable cover consisting of dyadic cubes such that

ri ≤ 2−K for all i. For any l ≥ K, let

Jl = {i : ri = 2−l}.

Let Rl =
⋃
i∈Jl Di, and Bl = Rl ∩ B. Then B =

⋃∞
l=K Bl. Our aim is to find a big

enough subset of B which is covered by cubes of the same side length and such that
many of the affine subspaces of E have big intersection with it.

Lemma 2.2. There exists an integer l ≥ K such that

(9) µ

(
P ∈ E : Hα

∞(P ∩Bl) ≥
1

l2

)
≥ 1

l2
.

Proof. For l ≥ K, let

Al =

{
P ∈ E : Hα

∞(P ∩Bl) ≥
1

l2

}
.

We need that the sets Al are µ-measurable. It is easy to see that if B ⊂ Rn is
compact, then the sets Al are closed. Therefore, if we had the extra assumption that
B ⊂ Rn is compact, there would be no problem with the measurability.

In general, the measurability of the above sets follows from the following lemma
of Elekes and Vidnyánszky, which they have not published yet, a detailed proof can
be found in [5]. For the definition of analytic sets, see e.g. [3].

Lemma. [Elekes–Vidnyánszky] If X ⊂ Rn is bounded Gδ, then

{P ∈ A(n, k) : Hα
∞(P ∩X) > c}

is analytic for all α > 0 and c ≥ 0.
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This lemma easily implies that Al is analytic, thus it is also µ-measurable for
each l. Assume that µ(Al) < 1/l2 for all l ≥ K. Since

∑∞
l=K 1/l2 < 1, these sets

Al cannot cover E. Therefore, there exists P ∈ E such that Hα
∞(P ∩ Bl) < 1/l2 for

every l ≥ K, and thus Hα
∞(P ∩B) <

∑∞
l=K 1/l2 < ε by (7), which contradicts (e) of

Lemma 2.1. �

Fix the integer l obtained from Lemma 2.2 and put

Ẽ = Al =

{
P ∈ E : Hα

∞(P ∩Bl) ≥
1

l2

}
,(10)

J = Jl.(11)

We have

(12) µ(Ẽ) ≥ 1

l2
and Hα

∞(P ∩Bl) ≥
1

l2

for every P ∈ Ẽ by Lemma 2.2.

3. The proof of Theorem 1.4, main argument

The main idea of the proof of Theorem 1.4 is to discretize the problem in an
appropriate way, and to count the cardinality of a suitably defined finite set in two
different ways. This idea was originally used in [12] to prove the lower estimate α+ 1

2
for the Hausdorff dimension of classical α-Furstenberg-sets in the plane. We needed
to generalize the idea in [12] to fit into our context. See also [10].

Recall that

(13) Ẽ =

{
P ∈ E : Hα

∞(P ∩Bl) ≥
1

l2

}
, µ(Ẽ) ≥ 1

l2

by (10) and (12). We introduce the following notations. Put

(14) δ = 2−l, λ =
1

l2
.

Note that using (8), λ < 1, and ϕ = dαe
α−(dαe−1)

≥ 1, we have

(15) δ ≤ 1

2k+1k
· λϕ ≤ λ.

We will work with these two scales δ and λ, and their relation (15) will be important
in the proofs.

First we choose a maximal δ-separated set of affine subspaces from Ẽ. This
means, let P1, . . . , PM ∈ Ẽ with ρ(Pi, Pj) ≥ δ for every i 6= j, where ρ indicates the
given metric on A(n, k), and such that M is maximal. Then by the maximality of
M , we have

Ẽ ⊂
M⋃
i=1

Bρ(Pi, δ) ⊂ A(n, k).

Thus by (14), (12) and (5),

λ =
1

l2
≤ µ(Ẽ) ≤

M∑
1

µ(Bρ(Pi, δ)) ≤Mδs.

This implies

(16) M ≥ λδ−s.
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Fix such a maximal δ-separated set

(17) E ′ = {P1, . . . , PM}.
Put

(18) m = dαe ≤ k, ε = α− (m− 1) > 0.

We will use the following geometric lemma, which is a major element of the proof.
The orthogonal projection onto the horizontal k-plane V0 will be denoted by proj0.

Lemma 3.1. For each P ∈ Ẽ, there exist compact sets T0(P ), . . . , Tm(P ) ⊂
[0, 1]n ∩ P with the following properties:

(1) For any z0 ∈ proj0(T0(P )), . . . , zm ∈ proj0(Tm(P )), Hm(∆(z0, . . . , zm)) &n,k,α
λϕ,

(2) Hα
∞(Ti(P ) ∩Bl) &n,k,α λψ for all i = 0, . . . ,m,

where ϕ = m
ε
, ψ = 1 + mk

ε
, and ε is from (18).

We postpone the proof of Lemma 3.1 to Section 4.
Now we turn to defining a finite set A using the subsets T0(P ), . . . , Tm(P ) ⊂

[0, 1]n ∩ P . Recall from (11) that J = Jl = {i : ri = 2−l}, where ri denotes the side
length of the dyadic cube Di, and Bl ⊂

⋃
i∈J Di. Let

A =
{

(j0, j1, . . . , jm, i) ∈ J × · · · × J × {1, . . . ,M} :(19)

Tr(Pi) ∩Bl ∩Djr 6= ∅ ∀r = 0, . . . ,m
}
.

We will bound the cardinality of |A| from below and from above, this will yield
a dimension estimate for B.

3.1. Lower bound on |A|. We will prove that

(20) |A| &n,k,α δ−(s+α·(m+1)) · λ1+ψ·(m+1),

where ψ = 1 + mk
ε
. To verify (20) first we fix i ∈ {1, . . . ,M}, we will count how

many (j0, j1, . . . , jk)’s there are at least such that (j0, j1, . . . , jk, i) ∈ A. Fix r ∈
{0, . . . ,m}. We claim that there are at least ≈ δ−αλψ many dyadic δ-cubes Djr such
that Tr(Pi) ∩Bl ∩Djr 6= ∅. To verify this, put

Ar = {jr ∈ J : Tr(Pi) ∩Bl ∩Djr 6= ∅}.
Then by

Tr(Pi) ∩Bl ⊂
⋃
jr∈Ar

Djr

and (2) of Lemma 3.1 we have

λψ .n,k,α Hα
∞(Tr(Pi) ∩Bl) ≤ |Ar| · (

√
n · δ)α . |Ar| · δα,

thus |Ar| &n,k,α δ−αλψ for all r = 0, . . . ,m.
This implies

|A| ≥M

m∏
r=0

|Ar| &n,k,α M · δ−α(m+1)λψ(m+1).

Then by (16) we have

(21) |A| &n,k,α δ−(s+α(m+1))λ1+ψ(m+1),

where ψ = 1 + mk
ε
, and this proves (20).
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3.2. Upper bound on |A|. We will prove that

(22) |A| .n,k,α |J |m+1δ−(k−m)(n−k)λ−ϕ(k+1)(n−k),

where ϕ = m
ε
. Fix (j0, . . . , jm) ∈ J × · · · × J , we will bound the amount of i ∈

{1, . . . ,M} with (j0, j1, . . . , jm, i) ∈ A from above. Let c0, . . . , cm denote the centers
of the fixed dyadic cubes Dj0 , . . . , Djm , respectively, and vr = proj0(cr), r = 0, . . . ,m.
Put

(23) Aj0,...,jm =
{
i ∈ {1, . . . ,M} : Tr(Pi) ∩Bl ∩Djr 6= ∅, r = 0, . . . ,m

}
.

First we prove the following easy lemma.

Lemma 3.2. If Aj0,...,jm 6= ∅, then Hm(∆(v0, . . . , vm)) & λϕ, where ϕ = m
ε
.

Proof. Since Tr(Pi) ∩ Bl ∩ Djr 6= ∅ for all r = 0, . . . ,m, we obtain using
(1) of Lemma 3.1 that there are y0 ∈ proj0(Dj0), . . . , ym ∈ proj0(Djm) such that
Hm(∆(y0, . . . , ym)) & λϕ, where ϕ = m

ε
.

We claim that if we perturb the points yi within the k-dimensional δ-cube
proj0(Di), the measure of the m-simplex generated by them remains large. This
is the content of the next lemma.

Lemma 3.3. (Perturbation) Let f : (0, 1) → R be a function such that x ≤
m

2m+1k
· f(x) for all 0 < x < 1. Let D0, . . . , Dm ⊂ [0, 1]k be axis-parallel cubes

of side length x for some 0 < x < 1. Assume that there are y0 ∈ D0, . . . , ym ∈
Dm such that Hm(∆(y0, . . . , ym)) ≥ f(x). Then for any z0 ∈ D0, . . . , zm ∈ Dm,
Hm(∆(z0, . . . , zm)) ≥ f(x)

2m+1 .

We postpone the proof of Lemma 3.3 to Section 6.
We apply Lemma 3.3 for x = δ, the δ-cubes proj0(Dj0), . . . , proj0(Djm), for vi in

place of zi, and with f(x) = 1

log2ϕ
2 (1/x)

= λϕ. By (15), x ≤ 1
2k+1k

f(x) ≤ m
2m+1k

f(x), so
the lemma indeed can be applied. We obtain that Hm(∆(v0, . . . , vm)) &α λϕ and we
are done with the proof of Lemma 3.2. �

Now we give an upper bound on |Aj0,...,jm|. Assume that Aj0,...,jm 6= ∅. Put

(24) ∆ = ∆(v0, . . . , vm).

By Lemma 3.2, Hm(∆) & λϕ, where ϕ = m
ε
.

Let A ⊂ A(n, k) denote the set of all k-planes of H intersecting Dr for all
r = j0, . . . , jm. That is,

(25) A = {P ∈ H : Djr ∩ P 6= ∅ (r = 0, . . . ,m)}.
Remark 3.4. Note that by definition, Tr(P ) ⊂ P for each r = 1, . . . ,m, thus

{Pi : i ∈ Aj0,...,jm} ⊂ A is a finite δ-separated subset.

Remark 3.5. We remark that the condition Djr ∩Tr(P )∩Bl 6= ∅ was intention-
ally weakened to Djr ∩ P 6= ∅. We will use this weaker condition to give an upper
bound on |Aj0,...,jm|.

We will need the following geometrical lemma.

Lemma 3.6. The metric space (A, ρ) possesses a finite ε-net C ⊂ A of cardinality
≈ δ−(k−m)(n−k) with ε = Kδ

Hm(∆)
, whereK is a constant depending only on n, k, α. That

is, there exists a collection of k-planes C ⊂ A with |C| ≈ δ−(k−m)(n−k) such that for
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any P ∈ H with Djr ∩ P 6= ∅ for all r = 0, . . . ,m,

P ∈
⋃
C∈C

Bρ

(
C,

Kδ

Hm(∆)

)
,

where K is a constant depending only on n, k, α.

We postpone the proof of Lemma 3.6 to Section 5.
By Remark 3.4 it is clear that

Bρ

(
Pi,

δ

3

)
∩Bρ

(
Pj,

δ

3

)
= ∅

for any i, j ∈ Aj0,...,jm with i 6= j. Moreover, Lemma 3.6 implies that

(26)
⋃

i∈Aj0,...,jm

Bρ

(
Pi,

δ

3

)
⊂
⋃
C∈C

Bρ

(
C,

K · δ
Hm(∆)

+
δ

3

)
⊂ A(n, k).

It is easy to see that there is a natural Radon measure γ on A(n, k) such that
the measure of any small enough δ-ball (in a natural metric) is comparable with
δ(k+1)(n−k), that is, there exist C1, C2 such that

C1δ
(k+1)(n−k) ≤ γ(Bρ(P, δ)) ≤ C2δ

(k+1)(n−k).

This and (26) imply

|Aj0,...,jm| · δ(k+1)(n−k) . |C| δ(k+1)(n−k)

Hm(∆)(k+1)(n−k)
,

thus

(27) |Aj0,...,jm | . |C| ·
1

Hm(∆)(k+1)(n−k)
.

1

δ(k−m)(n−k)
· 1

Hm(∆)(k+1)(n−k)
.

We obtained that for any fixed dyadic cubes Dj0 , . . . , Djm , |Aj0,...,jm | can be
bounded above as in (27), and clearly,

|A| ≤
m∏
r=0

|{jr ∈ J}| · |Aj0,...,jm|,

thus by (27) and Lemma 3.2,

|A| . |J |m+1 1

δ(k−m)(n−k)
· 1

Hm(∆)(k+1)(n−k)
≤ |J |m+1 1

δ(k−m)(n−k)
· 1

λϕ(k+1)(n−k)

with ϕ = m
ε
, which proves (22).

Now we combine (20) and (22) to obtain

δ−(s+α·(m+1))λ1+ψ·(m+1) .n,k,α |A| .n,k,α |J |m+1 · δ−(k−m)(n−k) · λ−ϕ(k+1)(n−k),

where ψ = 1 + mk
ε
, ϕ = m

ε
. Thus

(28) |J | &n,k,α δ−(
s−(k−m)(n−k)

m+1
+α)λ

1
m+1

+ψ+ϕ
(k+1)(n−k)

m+1 = δ−(
s−(k−m)(n−k)

m+1
+α)λζ

with ζ = 1
m+1

+ ψ + ϕ (k+1)(n−k)
m+1

= 1
m+1

+ 1 + mk
ε

+ m
ε

(k+1)(n−k)
m+1

.
Now we turn to estimating the u-dimensional net measure of B, where u =

α + s−(k−m)(n−k)
m+1

− γ for some fixed γ > 0. Then (28) implies that
∞∑
i=1

(diam (Di))
u ≥

∑
i∈J

(diam (Di))
u &

∑
i∈J

δu = |J |δu & δ−γλζ .
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By (14), this means,
∞∑
i=1

(diam (Di))
u & 2l·γl−2ζ .

Then we have

inf
B⊂

⋃∞
i=1Di,ri≤2−K

∞∑
i=1

(diam (Di))
u & inf

l≥K
2l·γl−2ζ &γ 1

proving that N u(B) > 0, and we are done with the proof of Theorem 1.4, subject to
Lemma 3.1, 3.3, and 3.6. The proofs of Lemma 3.1 and 3.6 are contained in the next
two sections, and the proof of Lemma 3.3 is contained in the last section.

4. The proof of Lemma 3.1

For an arbitrary k-plane P ∈ H, use the natural parametrization P = {(t, gP (t)) :
t ∈ Rk} with t = (t1, . . . , tk), gP (t) = a0(P ) + t1b

1(P ) + · · · + tkb
k(P ). It is easy to

see that for each P ∈ H, fP : Rk → P, t 7→ (t, gP (t)) is bi-Lipschitz, moreover,
the Lipschitz constants are universally bounded. This means, there exist L1, L2 > 0
(depending only on n, k) such that

(29) ∀t1, t2 ∈ Rk,∀P ∈ H, L1|t1 − t2| ≤ |fP (t1)− fP (t2)| ≤ L2|t1 − t2|.

Now we fix a k-plane P ∈ Ẽ ⊂ H, put β = Hα
∞(P ∩ Bl), and for an arbitrary

A ⊂ Rn, let ν(A) = Hα
∞(A ∩ Bl). Recall that for any points z0, . . . , zm ∈ [0, 1]n,

∆(z0, . . . , zm) denotes their convex hull, and that proj0 denotes the orthogonal pro-
jection onto the horizontal k-plane V0. Moreover, recall from (18) that m = dαe ≤ k,
and ε = α− (m− 1) > 0.

We will prove the following lemma, which is a core element of the proof. The
idea for the construction, and thus a considerable part of the proof is due to Tamás
Terpai.

Lemma 4.1. There exist compact sets T0, . . . , Tm ⊂ P∩[0, 1]n with the following
properties:

(i) proj0(Ti) is an axis-parallel cube of side length ≈ βϕ for all i = 0, . . . ,m,
(ii) ν(Ti) & βψ for all i = 0, . . . ,m,
(iii) for any z0 ∈ proj0(T0), . . . , zm ∈ proj0(Tm), Hm(∆(z0, . . . , zm)) & βϕ,

where ψ = 1 + mk
ε
, ϕ = m

ε
.

Proof. The construction of the sets T0, . . . , Tm is based on a suitable greedy
method. We will use the following easy lemma. Recall that for any V ⊂ Rn and
d > 0, Vd denotes the open d-neighborhood of V .

Lemma 4.2. For all (m − 1)-dimensional affine subspace V ⊂ Rn, ν(Vd) ≤ β
2
,

where 0 < d = β
1
εC with some constant C depending only on n, α.

Proof. Since for any d > 0 and any (m− 1)-dimensional subspace V , Vd ∩Bl can
be covered by ≈ (1

d
)m−1 many (m− 1)-dimensional cubes of side length d, we have

ν(Vd) ≤
K

dm−1
· dαnα/2 = dε ·K ′

for some constants K,K ′ depending only on n, α. We obtain ν(Vd) ≤ β
2
for d = β

1
εC,

where ε = α − (m − 1) > 0, and C is a constant depending only on n, α so we are
done. �
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Fix d from Lemma 4.2. Note that clearly, d ≤ β ≤ Hα
∞(B) which is at most 1 by

(a) of Lemma 2.1. Put

(30) d0 =
d

2L2

≤ d,

where L2 is from (29). We fix another parameter

(31) r =
dm0

2k+1 · k ·m!
≈ dm.

Divide [0, 1]n ∩ V0 into axis-parallel k-dimensional cubes of side length r, so
[0, 1]n ∩ V0 =

⋃N
j=1Kj, where Kj is an axis-parallel closed r-cube in V0, except from

a few cubes near the boundary, which might be smaller, N = (d1
r
e)k ≤ 2k

rk
by r ≤ 1.

For each Kj we denote its center with cj. Put

(32) Qj = fP (Kj) ⊂ P

for j = 1, . . . , N .
We will choose T0 = Qj0 , . . . , Tm = Qjm from the set of Qj’s in an appropriate

greedy way with the following properties:
(I) ν(Ti) ≥ β rk

2·2k for all i = 0, . . . ,m,
(II) for each i = 2, . . . ,m, d(pi, Hi−1) ≥ d0, whereHi−1 denotes the affine subspace

generated by the centers p0, . . . , pi−1 of Kj0 , . . . , Kji−1
.

We will define T0 to be Qj0 = fP (Kj0) with the largest ν-measure (which might be
infinite). Let

a0 = max{ν(Qj) : j ∈ {1, . . . , N}},
where we use the convention that max{n1, . . . , nk,∞} = ∞ for any real numbers
{ni}ki=1. Let Kj0 be a cube such that ν(Qj0) = a0, where Qj0 = fP (Kj0) defined
in (32), and put T0 = Qj0 . Note that proj0(T0) = Kj0 . The center of Kj0 will be
denoted with p0. Clearly, ν(T0) = a0 ≥ β r

k

2k
, otherwise we would get

ν([0, 1]n ∩ P ) = ν(fP ([0, 1]n ∩ V0)) ≤
N∑
j=1

ν(fP (Kj)) <
2k

rk
· β r

k

2k
= β,

which is a contradiction. Then (I) is clear for i = 0.
In the next step we will choose T1 to be Qj1 which has the largest ν-measure of

those Qj’s whose projections are at least d0-away from p0. Let

a1 = max{ν(Qj) : j ∈ {1, . . . , N}, d(cj, p0) ≥ d0},

choose a cube Kj1 with ν(Qj1) = a1, and put T1 = Qj1 . The center of Kj1 will be
denoted with p1. We claim that ν(T1) = a1 ≥ β rk

2·2k .
Let D denote the k-dimensional ball B(p0, 2d0) ∩ V0. By (29) and (30), fP (D)

is contained in the ball B(fP (p0), d) ∩ P , thus also contained in the d-neighborhood
of some (m − 1)-dimensional subspace V , so ν(fP (D)) ≤ ν(Vd) ≤ β

2
by Lemma 4.2.

Clearly,

ν([0, 1]n ∩ P ) ≤ ν(fP (([0, 1]n ∩ V0) \D)) + ν(fP (D)).

We claim that

(33) ([0, 1]n ∩ V0) \D ⊂
⋃

j : d(cj ,p0)≥d0

Kj.
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Indeed, by (31), we have r < d0√
k
, which implies that

B(p0, d0 +
√
kr) ∩ V0 ⊂ D,

and it is easy to see that this implies the above claim.
Then a1 < β rk

2·2k would imply that

ν([0, 1]n ∩ P ) ≤
∑

j : d(cj ,p0)≥d0

ν(fP (Kj)) + ν(fP (D)) <
2k

rk
· β rk

2 · 2k
+
β

2
= β,

which is a contradiction. So we verified (I) for i = 1.
We proceed using induction on i ∈ {0, 1, . . . ,m}. Assume that T0, . . . , Ti−1 are

defined, ν(Tl) ≥ β rk

2·2k for each l = 0, . . . , i− 1, and d(pl, Hl−1) ≥ δ for each l =
2, . . . , i− 1, where pl denotes the center of Kjl , and Hl−1 denotes the affine subspace
generated by the centers p0, . . . , pl−1 of Kj0 , . . . , Kjl−1

. Let Hi−1 denote the affine
subspace generated by p0, . . . , pi−1. Then we put

ai = max{ν(Qj) : j ∈ {1, . . . , N}, d(cj, Hi−1) ≥ d0},
choose a cube Kji with ν(Qji) = ai, and put Ti = Qji . We claim that ν(Ti) =

ai ≥ β rk

2·2k . Indeed, by i ≤ m, by (29), the fP -image of the 2d0-neighborhood of
Hi−1 is contained in the d-neighborhood of some (m − 1)-dimensional subspace V ,
so ν((Hi−1)2d0) ≤ ν(Vd) ≤ β

2
by Lemma 4.2. Clearly,

ν([0, 1]n ∩ P ) ≤ ν(fP (([0, 1]n ∩ V0) \ (Hi−1)2d0)) + ν(fP ((Hi−1)2d0).

and similarly as in (33), we obtain that

([0, 1]n ∩ V0) \ (Hi−1)2d0 ⊂
⋃

j : d(cj ,Hi−1)≥d0

Kj,

thus ai+1 < β rk

2·2k would imply that

ν([0, 1]n ∩ P ) ≤
∑

j : d(cj ,Hi−1)≥d0

ν(fP (Kj)) + ν(fP ((Hi−1)2d0)) <
2k

rk
· β rk

2 · 2k
+
β

2
= β,

which is a contradiction. So (I) holds for i.
Property (II) is also clearly satisfied by the definition of Ti.
Now we proceed with the proof of Lemma 4.1. We claim that T0, . . . , Tm defined

above are suitable for Lemma 4.1. Clearly, since Tr is the Lipschitz image of a closed
cube, it is compact for each r = 0, . . . ,m. Recall that d = β

1
εC with some constant

C depending only on n, α.
The side length of proj0(Ti) is r ≈ dm ≈ βϕ with ϕ = m

ε
for each i = 0, . . . ,m,

so property (i) of Lemma 4.1 is clear. By (I),

ν(Ti) ≥ β
rk

2 · 2k
≈ β · dmk ≈ βψ

with ψ = 1 + mk
ε

for each i = 0, . . . ,m, so property (ii) of Lemma 4.1 is also clear.
Now we verify property (iii) of Lemma 4.1. By construction, it is clear that

Hm(∆(p0, . . . , pm)) ≥ dm0
m!

, where pi denotes the center of the cube Kji for each i. Now
we apply Lemma 3.3 for x = r, f(x) =

dm0
m!

, and the axis-parallel r-cubes Kj0 , . . . , Kjm .
By (31), we have x ≤ 1

2k+1k
f(x) ≤ m

2m+1k
f(x), so the lemma indeed can be applied,

and then for any z0 ∈ Kj0 , . . . , zm ∈ Kjm , Hm(∆(z0, . . . , zm)) ≥ dm0
2m+1m!

& dm.
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That is, for any z0 ∈ Kj0 = proj0(T0), . . . , zm ∈ Kjm = proj0(Tm),

Hm(∆(z0, . . . , zm)) & dm & βϕ

with ϕ = m
ε
and property (iii) of Lemma 4.1 is verified, so we are done with the proof

of Lemma 4.1. �

Now we finish the proof of Lemma 3.1. Take T0 = T0(P ), . . . , Tm = Tm(P )
obtained from Lemma 4.1. By (12), (14), and (ii) of Lemma 4.1,

ν(Ti(P )) = Hα
∞(Bl ∩ Ti(P )) & βψ & λψ

for each i = 0, . . . ,m, where ψ = 1 + mk
ε
, so (2) of Lemma 3.1 is verified. By (iii) of

Lemma 4.1, we also have that for any z0 ∈ proj0(T0), . . . , zm ∈ proj0(Tm),

Hm(∆(z0, . . . , zm)) & βϕ ≥ λϕ,

where ϕ = m
ε
, so (1) of Lemma 3.1 is also verified.

This means, we are done with the proof of Lemma 3.1.

5. The proof of Lemma 3.6

Recall that e0 = (0, . . . , 0); e1, . . . , en are the standard basis vectors of Rn, V0

is the k-dimensional linear space generated by e1, . . . , ek, H0 = V ⊥0 , Hi = ei + H0,
i = 1, . . . , k, and

H = {P ∈ A(n, k) : P ∩Hi = {xi} for some xi ∈ [0, 1]n ∀ i = 0, 1, . . . , k}.

For our convenience, we define a new metric onH. For P ∈ H, let P = {(t, gP (t)) : t ∈
Rk} with t = (t1, . . . , tk), gP (t) = a0(P ) + t1b

1(P ) + · · · + tkb
k(P ) be the standard

parametrization.
Note that by definition, P ∩ H0 = {(0, a0(P ))}, where 0 ∈ Rk, a0(P ) ∈ Rn−k,

and if P ∩ Hi = {(1i, ai(P ))}, where 1i = projRk(ei) ∈ Rk, ai(P ) ∈ Rn−k, then
bi(P ) = ai(P )− a0(P ) ∈ Rn−k for each i = 1, . . . , k Put

x(P ) = (a0(P ), b1(P ), . . . , bk(P )) = (a(P ), b(P )) ∈ R(k+1)(n−k).

Clearly, P → x(P ) is well defined and injective on H. We say that x(P ) is the “code”
of P , and R(k+1)(n−k) is the “code space”.

We will use the maximum metric on R(k+1)(n−k). This means, let

‖x(P )− x(P ′)‖ = max(‖a(P )− a(P ′)‖, ‖b(P )− b(P ′)‖),

where

‖a(P )− a(P ′)‖ = max
j=1,...,n−k

|a0
j(P )− a0

j(P
′)|,

‖b− b′‖ = max
j=1,...,n−k

(
max
i=1,...,k

|bij(P )− bij(P ′)|
)
.(34)

Put

(35) d(P, P ′) = ‖x(P )− x(P ′)‖.

We will prove the following lemma, which easily implies Lemma 3.6.

Lemma 5.1. The metric space (A, d) possesses a finite ε-net C ⊂ A of cardinality
≈ δ−(k−m)(n−k) with ε = Kδ

Hm(∆)
, whereK is a constant depending only on n, k, α. That
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is, there exists a collection of k-planes C ⊂ A with |C| ≈ δ−(k−m)(n−k) such that for
any P ∈ A,

x(P ) ∈
⋃
C∈C

B‖·‖

(
x(C),

Kδ

Hm(∆)

)
,

where K is a constant depending only on n, k, α.

Remark 5.2. It is easy to check that there exists a positive constant K ′ such
that, for every P, P ′ ∈ H, ρ(P, P ′) ≤ K ′ · d(P, P ′), where d is defined in (35).
Lemma 5.1 implies that for any P ∈ H with Djr ∩ P 6= ∅ for all r = 0, . . . ,m,

P ∈
⋃
C∈C

Bρ

(
C,
K ′ ·Kδ
Hm(∆)

)
,

thus Lemma 5.1 indeed implies Lemma 3.6.

Proof. Recall that cr denotes the center of the dyadic cube Djr , vr = proj0 cr
(r = 0, . . . ,m), and ∆ = ∆(v0, . . . , vm). We define a collection of k-planes C ⊂
A(n, k) with |C| ≈ δ−(k−m)(n−k) such that each C ∈ C contains {cr}mr=0, and if any
k-plane P intersects Djr for all r = 0, . . . ,m, then P must be contained in the
Kδ
Hm(∆)

-neighborhood of C for some C ∈ C.
Put

(36) U = δ · Zn−k ∩ [0, 1]n−k,

that is, U is a δ-net for the usual metric in [0, 1]n−k. We will define the ε-net C using
copies of the δ-net U contained in ei + ({0}× [0, 1]n−k) for some suitably chosen ei’s.

We will need the following easy lemma.

Lemma 5.3. Let e0 = 0, and e1, . . . , ek denote the standard unit vectors of Rk.
Let 1 ≤ m ≤ k be integer, fix v0, . . . , vm ∈ [0, 1]k, and assume thatHm(∆(v0, . . . , vm))
= a > 0. Then there are i1, . . . , ik−m ∈ {0, 1, . . . , k} such that

Hk(∆(v0, . . . , vm, ei1 , . . . , eik−m
)) &k,m a.

We postpone the proof of Lemma 5.3 to Section 6.
Fix i1, . . . , ik−m obtained from Lemma 5.3 for the projections v0, . . . , vm of the

centers of the cubes Dj0 , . . . , Djm . We can assume without loss of generality that
i1 = 1, . . . , ik−m = k−m. Put ∆′ = ∆(v0, . . . , vm, e1, . . . , ek−m). Then by Lemma 5.3,

(37) Hk(∆′) &k,m Hm(∆) > 0,

where ∆ = ∆(v0, . . . , vm) defined in (24).
Define Cu1,...,uk−m to be the k-dimensional affine subspace containing c0, . . . , cm,

as well as (e1, u
1), . . . , (ek−m, u

k−m) ∈ [0, 1]n for some uω ∈ U , ω = 1, . . . , k − m,
where U is defined in (36). Put

(38) C = {Cu1,...,uk−m : uω ∈ U, ω = 1, . . . , k −m}.

Then we have |C| ≈ ( 1
δn−k )k−m = δ−(k−m)(n−k), and by definition, C ⊂ A.

We claim that C is an ε-net for the metric space (A, d) with ε = Kδ
Hm(∆)

for some
constant K depending only on n, k, α. For an arbitrary k-plane P ∈ H, put the
parametrization

(39) P = {(t, gP (t)) : t = (t1, . . . , tk) ∈ Rk},
where

(40) gP (t) = a0(P ) + t1b
1(P ) + · · ·+ tkb

k(P ).
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Note that (a0(P ), b1(P ), . . . , bk(P )) is precisely the code point of P defined at the
beginning of this section.

We will need the following geometrical lemma. For an arbitrary vector x ∈ Rn−k,
let xj denote its j’th coordinate, j = 1, . . . , n− k.

Lemma 5.4. Let s0, . . . , sk ∈ [0, 1]k, 0 < δ < 1, and P,Q ∈ H, where H is
defined in (4), such that

Hk(Ω) > 0, where Ω = ∆(s0, . . . , sk),

|pij − qij| .n,k δ (j = 1, . . . , n− k, i = 0, . . . , k),(41)

where pi = gP (si), qi = gQ(si), and gP , gQ denote the parametrization of P,Q from
(40), respectively. Then

|a0
j(P )− a0

j(Q)|, |bij(P )− bij(Q)| .n,k
δ

Hk(Ω)
(j = 1, . . . , n− k, i = 1, . . . , k),

where a0(P ), a0(Q), b1(P ), b1(Q), . . . , bk(P ), bk(Q) are the coefficients from (40).

We postpone the proof of Lemma 5.4 to Section 6.
Let cr = (vr, w

r) ∈ [0, 1]k × [0, 1]n−k denote the center of Djr for r = 0, . . . ,m.
For i = 0, . . . ,m, put si = vi, and for i = m + 1, . . . , k, put si = ei−m. Fix P ∈ A,
and put

(42) zr(P ) = gP (vr) ∈ [0, 1]n−k, r = 0, . . . ,m,

where gP is defined in (40). It is easy to see by the definition of A, see (25), that

(43) |zrj (P )− wrj | .n,k δ (j = 1, . . . , n− k).

Put

(44) hω(P ) = gP (eω) ∈ [0, 1]n−k, ω = 1, . . . , k −m,
where gP is defined in (40). By the definition of U (36), for any P ∈ A we can choose
C = Cu1,...,uk−m ∈ C such that

(45) |hωj (P )− uωj | ≤ δ (ω = 1, . . . , k −m, j = 1, . . . , n− k),

where uω ∈ U .
We will apply Lemma 5.4 for s0, . . . , sk, P ∈ A, and the above C ∈ C in place of

Q. Note that using the notations from Lemma 5.4 and from (42), (44), we have

pi = zi(P ), qi = wi for i = 0, . . . ,m, and

pi = hi−m(P ), qi = ui−m for i = m+ 1, . . . , k.

Clearly, using the notations from Lemma 5.4, (43) means that

|pij − qij| .n,k δ (j = 1, . . . , n− k) for i = 0, . . . ,m,

and (45) means that

|pij − qij| ≤ δ (j = 1, . . . , n− k) for i = m+ 1, . . . , k.

By (37), we also have Hk(Ω) > 0, where

Ω = ∆(s0, . . . , sk) = ∆(v0, . . . , vm, e1, . . . , ek−m) = ∆′.

We checked that the conditions in Lemma 5.4 are satisfied, so the lemma can be
applied. We obtain that

(46) |a0
j(P )−a0

j(C)|, |bij(P )− bij(C)| .n,k
δ

Hk(∆′)
(j = 1, . . . , n−k, i = 1, . . . , k),
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where a0(P ), b1(P ), . . . , bk(P ) are the coefficients from (40), and similarly,
a0(C), b1(C), . . . , bk(C) are the coefficients from the parametrization

C = {(t, gC(t)) : t = (t1, . . . , tk) ∈ Rk}, gC(t) = a0(C) + t1b
1(C) + · · ·+ tkb

k(C).

By (46) and (37), we have

|a0
j(P )− a0

j(C)|, |bij(P )− bij(C)| .n,k,α
δ

Hm(∆)
(j = 1, . . . , n− k, i = 1, . . . , k).

By the definition of ‖ · ‖, this is equivalent to

x(P ) ∈ B‖·‖
(
x(C),

Kδ

Hm(∆)

)
,

where K is a constant depending only on n, k, α. Thus we are done with the proof
of Lemma 5.1 (subject to Lemma 5.3, and 5.4), and so with the proof of Lemma 3.6
as well. �

6. The proofs of some purely geometrical lemmas

The proof of Lemma 3.3. First we prove that if there are y0 ∈ D0, . . . , ym ∈ Dm

such that

(47) Hm(∆(y0, . . . , ym)) ≥ f(x),

then

(48) ∀ z0 ∈ D0, Hm(∆(z0, y1, . . . , ym)) ≥ f(x)

2
.

Let H denote the (m − 1)-dimensional affine subspace containing y1, . . . , ym.
Clearly,

Hm(∆(y0, . . . , ym)) =
Hm−1(∆(y1, . . . , ym)) · d(y0, H)

m
,

which implies by ∆(y1, . . . , ym) ⊂ [0, 1]k, Hm−1(∆(y1, . . . , ym)) ≤
√
k, and (47) that

(49) d(y0, H) ≥ f(x)
m√
k
.

We also have

Hm(∆(z0, y1, . . . , ym)) =
Hm−1(∆(y1, . . . , ym)) · d(z0, H)

m
.

Since z0, y0 ∈ D0,
d(z0, H) ≥ d(y0, H)−

√
k · x.

We claim that d(y0, H)−
√
k ·x ≥ d(z0, H)/2. Indeed, by x ≤ m

2m+1k
·f(x) ≤ m

2k
·f(x)

and (49), we obtain
√
k · x ≤ f(x)

m

2
√
k
≤ d(y0, H)

2
,

so the claim is verified, and d(z0, H) ≥ d(y0,H)
2

. Then clearly,

Hm(∆(z0, y1, . . . , ym)) ≥ H
m−1(∆(y1, . . . , ym)) · d(y0, H)

2m
≥ f(x)

2
and we are done with the first step of the proof. Note that the role of the cube in
the above proof is independent of the choice 0 ∈ {0, . . . ,m}.

Let z1 ∈ D1. We repeat the first step using (48) in place of (47). We use that
x ≤ m

2m+1k
· f(x) ≤ m

4k
· f(x), and we obtain by exactly the same argument as above
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that d(z1, H) ≥ d(y1,H)
2

, where H denotes the (m − 1)-dimensional affine subspace
containing z0, y2, . . . , ym. Thus

Hm(∆(z0, z1, y2 . . . , ym)) ≥ H
m−1(∆(z0, y2, . . . , ym)) · d(y1, H)

2m
≥ f(x)

4
.

We continue the process, choosing each zi ∈ Di, i ∈ {0, 1, . . . ,m} after another, using
induction,

Hm(∆(z0, . . . , zi−1, yi, . . . , ym)) ≥ f(x)

2i
,

and x ≤ m
2m+1k

· f(x) ≤ m
2i+1k

· f(x) to obtain that

Hm(∆(z0, . . . , zi−1, zi, yi+1, . . . , ym)) ≥ f(x)

2i+1
.

For i = m we obtain that for any z0 ∈ D0, . . . , zm ∈ Dm,

Hm(∆(z0, . . . , zm)) ≥ f(x)

2m+1
,

and we are done. �

The proof of Lemma 5.3. Assume first that m = k − 1. Let Q denote the m-
dimensional hyperplane containing v0, . . . , vm, and let W0 be the hyperplane parallel
to Q going through the origin. Put Wi = W0 + ei for i = 0, 1, . . . , k. Let w denote
the unit vector generating the orthogonal complement of W0. Clearly, we have

d(W0,Wi) = |〈ei, w〉| = |wi|,

where 〈·, ·〉 denotes the standard scalar product in Rk. Moreover, since w is a unit
vector, there exists i ∈ {1, . . . , k} such that d(W0,Wi) = |wi| ≥ 1√

k
. Since Q is

parallel toWi for all i, this also implies that there exists j ∈ {0, i} such that d(Q, ej) =
d(Q,Wj) ≥ 1

2
√
k
.

Take ei1 = ej, then clearly, Hk(∆(v0, . . . , vm, ei1)) &k a and we are done.
Ifm < k−1, let P denote them-dimensional affine subspace containing v0, . . . , vm,

take an arbitrary hyperplane Q containing P , and repeat the process described above
for Q. This yields an ei1 with d(P, ei1) ≥ d(Q, ei1) ≥ 1

2
√
k
, so clearly, Hm+1(∆(v0, . . . ,

vm, ei1)) &k a. Then we repeat the process starting with v0, . . . , vm, ei1 to obtain a
good ei2 , and so on. Clearly, the process yields ei1 , . . . , eik−m

with Hk(∆(v0, . . . , vm,
ei1 , . . . , eik−m

)) &k,m a, so we are done. �

The proof of Lemma 5.4. First we reformulate the equations pi = gP (si),
qi = gQ(si) as matrix equations. Recall that for x ∈ Rn−k, xj denotes its j’th
coordinate (j = 1, . . . , n− k). We have

(50) M · yj(P ) = pj, M · yj(Q) = qj (j = 1, . . . , n− k),

where

(51) M =


1 s0

1 . . . s0
k

1 s1
1 . . . s1

k
...

... . . . ...
1 sk1 . . . skk

 , yj(P ) =


a0
j(P )
b1
j(P )
...

bkj (P )

 , yj(Q) =


a0
j(Q)
b1
j(Q)
...

bkj (Q)

 ,
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and

pj =


p0
j

p1
j
...
pkj

 , qj =


q0
j

q1
j
...
qkj

 .

It is easy to see that

(52) det(M) ≈k Hk(∆(s0, . . . , sk)) = Hk(Ω) > 0.

Then we obtain using detM > 0 and Cramer’s rule that

(53) a0
j(P ) =

detM(1|pj)
detM

, bij(P ) =
detM(i+ 1|pj)

detM
(i = 1, . . . , k),

where M(i|pj) denotes the matrix formed by replacing the i’th column of M by
the column vector pj. Similarly, we obtain the analog formulas for a0

j(Q) and bij(Q)
(i = 1, . . . , k).

It follows easily with cofactor expansion, using (53), and that si ∈ [0, 1]k (i =
0, . . . , k), that

|a0
j(P )− a0

j(Q)| =
∣∣∣∣detM(1|pj)− detM(1|qj)

detM

∣∣∣∣ .k
∑k

i=0 |pij − qij|
detM

.

Then we use (41) and (52) to obtain that

|a0
j(P )− a0

j(Q)| .k
∑k

i=0 |pij − qij|
detM

.n,k
δ

detM
.n,k

δ

Hk(Ω)

and similarly

|bij(P )− bij(Q)| .n,k
δ

Hk(Ω)
for each j = 1, . . . , n− k, i = 1, . . . , k, and we are done. �
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