
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 44, 2019, 1031–1040

ON ALGEBRAIC DIFFERENTIAL EQUATIONS OF
GAMMA FUNCTION AND RIEMANN ZETA FUNCTION

Feng Lü

China University of Petroleum, College of Science
Qingdao, Shandong, 266580, P. R. China; lvfeng18@gmail.com

Abstract. Due to Voronin’s universality theorem and Riemann–von Mangoldt formula, this

paper concerns the problem of algebraic differential independence between the gamma function Γ

and the function f(ζ), where ζ is the Riemann zeta function and f is a function with at least one

zero-point. It is showed that Γ and f(ζ) cannot satisfy any nontrivial distinguished differential

equation with meromorphic coefficients φ having Nevanlinna characteristic satisfying T (r, φ) = o(r)

as r → ∞.

1. Introduction and main result

The paper is devoted to studying the question of whether the gamma function
Γ and Riemann zeta function ζ , are algebraically independent or not. In 1886,
Hölder [8] proved a profound theorem which states that the gamma function does not
satisfy any non-trivial algebraic differential equation whose coefficients are rational
functions in C. Later, Bank and Kaufman [1] generalized the above theorem to
coefficients being meromophic functions φ with Nevanlinna characteristic satisfying
T (r, φ) = o(r). The question of the differential independence of ζ was introduced by
Hilbert. He [7] conjectured that ζ and other functions of the same type do not satisfy
algebraic differential equations with rational functions. The problem was solved in
[17, 18]. It is known that ζ is associated with Γ by the Riemann functional equation

ζ(1− s) = 21−sπ−s cos(1
2
πs)Γ(s)ζ(s).

It is natural to ask whether the functions Γ and ζ are related by any nontrivial
algebraic differential equation. In 2007, Markus [15] deduced that Γ and the compo-
sition function ζ(sin(2πz)) are differential independent over C. He conjectured that
Γ is not a solution of any non-trivial algebraic differential equation-even allowing co-
efficients that are differential polynomials in ζ . Recently, Li and Ye [10, 11] have done
some efforts on this question. They proved that ζ is not a solution of any non-trivial
algebraic differential equation-even allowing coefficients that are polynomials in Γ, Γ′

and Γ′′. The special case of algebraic independent question of Γ and ζ is solved by Li
and Ye in [11], Liao and Yang in [13], respectively. They proved that Γ and ζ cannot
satisfy nonzero polynomial equation P (u, v, s) = 0. More generally, making use of
the properties of Γ and ζ , Li and Ye [12] also showed that P (s,Γ,Γ′, · · · ,Γ(n), ζ) 6≡ 0
in C for any nontrivial distinguished polynomial P whose coefficients can be allowed
to be any polynomials of ζ over C, over the ring of polynomials or, more generally,

https://doi.org/10.5186/aasfm.2019.4455
2010 Mathematics Subject Classification: Primary 34M15, 11M06, 33B15, 30D30.
Key words: Voronin’s university theorem, the Riemann zeta function, the gamma function,

algebraic differential equation.
The research was supported by NNSF of China Project No. 11601521, and the Fundamental

Research Fund for Central Universities in China Project No. 18CX02048A.



1032 Feng Lü

over the class Lδ (see [12, Definition 1]), where

P (s, u0, u1, · · · , un, v) =

m
∑

k=0

Pk(s, u0, u1, · · · , un)v
k.

Here, the distinguished polynomial P is defined as follows.

Definition 1. Let I = (i0, i1, · · · , in) be a multi-index with |I| = i0+i1+· · ·+in.
A polynomial in the variables u0, u1, · · · , un with functional coefficients aI can be
always written as

P (u0, u1, · · · , un) =
∑

I∈Λ

aI(s)u
i0
0 u

i1
1 · · ·uin

n ,

where Λ is an index set. We call P a distinguished polynomial in u0, u1, · · · , un or
simply a distinguished polynomial, if the index set Λ satisfies that |Ii| 6= |Ij| for
distinct indices Ii, Ij in Λ.

Motivated by the above results, it is natural to ask whether

P (s,Γ,Γ′, · · · ,Γ(n), ζ) 6≡ 0

in C for any nontrivial distinguished polynomial P whose meromorphic coefficients φ
satisfy T (r, φ) = o(r). The problem has been solved by the present author in [14]. In
this paper, we still pay attention to this kind of algebraically independent problem.
In fact, due to the Voronin’s universality theorem, Riemann–von Mangoldt formula
and minimum modulus theorem, we derive the following result.

Theorem 1. Let f(s) (s ∈ C) be a function with at least one zero-point and

P (s, u0, u1, · · · , un, v) =

m
∑

k=0

Pk(s, u0, u1, · · · , un)v
k,

where Pk, not all identically zero, are distinguished polynomials with meromorphic
coefficients φ satisfying T (r, φ) = o(r). Then for s ∈ C

P (s,Γ,Γ′, · · · ,Γ(n), f(ζ)) 6≡ 0.

Remark 1. It is pointed out that by the universality property of ζ (which is
defined in Lemma 2) we handle the case that f(s) has a zero c( 6= 0). Observe that

ζ (k) and
∑k

n=1 anζ
(n) with an 6= 0 have the strong universality property. Then, the

same argument of Theorem 1 can yield the conclusion of Theorem 1 still holds if the
function ζ is replaced by the function g even c = 0, where g = ζ (k) or

∑k
n=1 anζ

(n).
It means that P (s,Γ,Γ′, · · · ,Γ(n), f(g)) 6≡ 0 in C.

Remark 2. It is well-known that Dirichlet L-function L(s, χ) also has the uni-
versality property. So if f(s) has a nonzero zero-point, then the same process of
Theorem 1 yields P (s,Γ,Γ′, · · · ,Γ(n), f(L(s, χ))) 6≡ 0. We point out that the distri-
bution of zeros of ζ which lie in the line Re = 1

2
is essential to the proof of Theorem 1

when f(s) = 0 only has a root which is zero. However, we don’t know the distri-
bution of zeros of L(s, χ) which lie in the line Re = 1

2
. Therefore, we are not sure

whether the conclusion holds or not if the equation f(s) = 0 only has a root which
is zero. Similar conclusions can be obtained for the Hecke L-functions, L-functions
associated to newforms and many other L-functions.

Since a nontrivial polynomial P (s, u, v) can be written into the form P (s, u, v) =
∑m

k=0 Pk(s, u)v
k with Pk(s, u) being distinguished polynomial in one argument u, we

have the following.
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Corollary. Let f(s) (s ∈ C) be a function with at least one zero-point. Then
in C, P (s,Γ(n), f(ζ)) 6≡ 0 for any nontrivial polynomial P (s, u, v) with meromorphic
coefficients φ satisfying T (r, φ) = o(r) as r → ∞.

To prove the main result, we will employ the following results and notations.
For a meromorphic function f , we define Zf the set of all the zeros of f , counting
multiplicities. Denote by n(r, Zf) the number of the points Zf ∩ {|s| < r}. The
following lemma is called minimum modulus theorem, (see e.g. [2, p.362, 4.5.14]).

Lemma 1. Let f(s) be holomorphic in the disc B(0, 2eR) and continuous in the
closure of the disc. Assume that f(0) = 1 and let θ > 0 be such that 0 < θ < 3e

2
.

Then, in the disc |s| ≤ R, and outside a collection of closed disc O1, · · · , Op (p ≤ q =
n(R,Zf)) the sum of whose radii does not exceed 4θR, we have

log |f(s)| ≥ −
(

2 + log
3e

2θ

)

logM(2eR, f).

In the 1970’s, Voronin [21] discovered the remarkable fact that Riemann zeta
function ζ has a universality property, stated below, (which is Voronin’s university
theorem). It plays a essential role in the proof of Theorem 1.

Lemma 2. Let 0 < r < 1
4

be a real number. Let ϕ be a non-vanishing continuous
function in |s| ≤ r, that is analytic in the interior. Then, for any ǫ > 0,

lim inf
T→∞

1

T
meas{T ≤ τ ≤ 2T : max

|s|≤t
|ζ(3

4
+ iτ + s)− ϕ(s)| < ǫ} > 0,

where meas{A} is Lebesgue measure of the measurable subset A of R.

Remark 3. There are several extensions of Voronin’s universality theorem, for
example to domain more general than compact discs (such as any compact set K
contained in the strip 1/2 < Re(s) < 1 and with connected complement), or to more
general L-functions, such as Dirichlet L-functions, Hecke L-functions. Furthermore,
it turns out that there exist also a lot of zeta-functions with strong universality
property, where the attribute strong means that also functions having zeros can be
approximated. For a complete history of this subject, we refer the reader to [16].
Since ζ does not have strong universality property, we below try to derive a result,
which plays the same role as the Voronin’s universality theorem in the proof of
Theorem 1.

Lemma 3. For any η > 0, the set Eη(T ) is defined as

Eη(T ) = {τ ∈ [T, 4T ] ∩ [s− η, s+ η] : ζ(1
2
+ is) = 0, s > 0}.

Then

lim inf
T→∞

measEη(T )

T
> 0.

Proof of Lemma 3. Suppose, on the contrary, lim infT→∞
measEη(T )

T
= 0. Then,

there exist η > 0 and a subsequence {Tk} such that

measEη(Tk) = o(Tk) as Tk → ∞.

Set Eη(Tk) =
⋃nk

i=1[ai, ai+∆i] the disjoint intervals in [Tk, 4Tk]. Note that for T ≥ T0,

N(T ) =
T

2π
log

T

2π
− T

2π
+O(logT ),
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where N(T ) denotes the number of the zeros of ζ which lie in the domain {s : 0 <
Res < 1, 0 < Ims < T}. Suppose that Tk ≥ T0. Then,

N(ai +∆i)−N(ai) =
ai +∆i

2π
log

ai +∆i

2π
− ai +∆i

2π
+O(log ai +∆i)

−
[ ai
2π

log
ai
2π

− ai
2π

+O(log ai)
]

≤ ∆i

2π
log

ai +∆i

2π
+O(log(ai +∆i))

≤ ∆i

2π
log

ai +∆i

2π
+M log(ai +∆i) ≤

(

∆i

2π
+M

)

log 4Tk,

where M is a fixed positive constant. Define the set N0(T ) as

N0(T ) = ♯{ρ = 1/2 + iγ : 0 < γ < T, ζ(ρ) = 0, ζ ′(ρ) 6= 0},

where ♯E denotes the number of the elements in the set E. Note that nk ≤
measEη(Tk)

2η
+ 2. Thus,

N0(4Tk) ≤
nk
∑

i=1

[N(ai +∆i)−N(ai)] +N(Tk) ≤
nk
∑

i=1

[(

∆i

2π
+M

)

log 4Tk

]

+N(Tk)

≤
(

measEη(Tk))

2π
+ nkM

)

log 4Tk +N(Tk)

≤
[

measEη(Tk))

2π
+

(

measEη(Tk)

2η
+ 2

)

M

]

log 4Tk +N(Tk)

= o(Tk log 4Tk) +N(Tk) =
Tk

2π
log

Tk

2π
+ o(Tk log Tk).

On the other hand, we know that N0(T ) ≥ 2
5
N(T ) for T large enough, which is given

by Conrey in [4, Theorem 1]. Thus,

N0(4Tk) ≥
2

5
N(4Tk) =

2

5
× 4N(Tk) + o(Tk log Tk) ≥

8

5

Tk

2π
log

Tk

2π
+ o(Tk log Tk),

a contradiction. Thus, the lemma is proved. �

Proof of theorem 1. Due to the ideas in [10, 11, 12, 14], we will prove Theorem 1.
The polynomial P (s, u0, · · · , un, v) may be written as the following form

P (s, u0, · · · , un, v) = vm
∑

I∈Λm

am,Iu
i0
0 u

i1
1 · · ·uin

n + vm−1
∑

I∈Λm−1

am−1,Iu
i0
0 u

i1
1 · · ·uin

n +

· · ·+ v
∑

I∈Λ1

a1,Iu
i0
0 u

i1
1 · · ·uin

n +
∑

I∈Λ0

a0,Iu
i0
0 u

i1
1 · · ·uin

n ,

where m is the highest power of v in the polynomial P and Λj’s are index sets. Obvi-
ously, all the coefficients ai,I are either identically zero in C or nonzero meromorphic
functions with T (r, ai,I) = o(r). On the contrary, suppose that Γ,Γ′, · · · ,Γ(n), f(ζ)
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satisfy P (s, u0, · · · , un, f(ζ)) = 0 in C. That is

(1.1)

P (s,Γ,Γ′, · · · ,Γ(n), f(ζ)) = f(ζ)m
∑

I∈Λm

am,IΓ
i0(Γ′)i1 · · · (Γ(n))in

+ f(ζ)m−1
∑

I∈Λm−1

am−1,IΓ
i0(Γ′)i1 · · · (Γ(n))in+

· · ·+ f(ζ)
∑

I∈Λ1

a1,IΓ
i0(Γ′)i1 · · · (Γ(n))in

+
∑

I∈Λ0

a0,IΓ
i0(Γ′)i1 · · · (Γ(n))in = 0.

We will prove that all the coefficients ai,I in (1.1) are identically zero in C for all
possible i, I. This, of course, contradicts to the assumption of the theorem.

Firstly, we will show a0,I ≡ 0 in the last sum of (1.1). Suppose that the index set
Λ0 contains t indices I1, I2, · · · , It. Based on the increasing order, we list all these
indices as |I1| < |I2| < · · · < |It|. So, the last sum of (1.1) can be written as

(1.2)

t
∑

j=1

a0,IjΓ
i0(Γ′)i1 · · · (Γ(n))in.

Suppose that a0,I1 6≡ 0. We will derive a contradiction below. By the assumption, we
know that f(s) has a zero, say c. Suppose that there exists a sequence {sl = xl+ iyl}
such that xl ∈ [0, 1], yl → +∞ and ζ(sl) = c. Meanwhile, assume sl is not the pole
and zero of the coefficients of the differential polynomial P . By taking a subsequence
if necessary, we may assume that xl → u0 ∈ [0, 1] as l → ∞.

Note that f(ζ(sl)) = 0 and sl is not the pole and zero of the coefficients of the
differential polynomial P . We obtain, from (1.1) and (1.2), that

(1.3)

t
∑

j=1

a0,IjΓ
i0(Γ′)i1 · · · (Γ(n))in(sl) = 0.

In view of a0,I1 6≡ 0, one can rewrite the above equation as

(1.4)

t
∑

j=2

a0,Ij
a0,I1

(

Γ′

Γ

)i1

· · ·
(

Γ(n)

Γ

)in

Γ|Ij|−|I1|(sl) = −
(

Γ′

Γ

)i1

· · ·
(

Γ(n)

Γ

)in

(sl).

Suppose that φ is a coefficient of the differential polynomial P . Then, T (r, φ) = o(r).
Clearly, N(r, φ) ≤ T (r, φ) = o(r), where N(r, φ) is the Nevanlinna counting function
of the zeros of φ and defined as

N(r, φ) =

ˆ r

0

n(t, Zφ)− n(0, Zφ)

t
dt+ n(0, Zφ) log r.

Therefore, for any ε > 0, there exists a positive constant r1 such that N(r, φ) ≤ εr
for r > r1. Furthermore,

ε(2r) ≥ N(2r, φ) ≥
ˆ 2r

r

n(t, Zφ)

t
dt ≥ n(r, Zφ)

2r
r =

n(r, Zφ)

2
,

which implies that n(r, Zφ) = o(r). Similarly, one has that n(r, Z 1
φ
) = o(r). Here,

n(r, Z 1
φ
) denotes the number of the poles of φ in the disc |s| < r, counting multiplic-

ities.
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Now, assume that G is the set of the poles and zeros of all the coefficients aj,I of
the polynomial P . Then, it follows from the above discussions that

(1.5) n(r, G) = o(r).

Set

g(s) =
∏

ρ∈G

(

1− s2

ρ2

)

and fj(s) =
a0,Ij
a0,I1

, j = 2, · · · , t.

It is easy to check that the infinite product g(s) converges to an entire function (this
will be showed in (1.8) below). Then, multiplying e

π
4
ylg(sl) on both sides of (1.4)

yields

(1.6)

e
π
4
yl

t
∑

j=2

g(sl)fj(sl)

(

Γ′

Γ

)i1

· · ·
(

Γ(n)

Γ

)in

Γ|Ij |−|I1|(sl)

= −e
π
4
ylg(sl)

(

Γ′

Γ

)i1

· · ·
(

Γ(n)

Γ

)in

(sl).

In the following, we will estimate the growths of some terms in (1.6) such as

Γ(q)(s)

Γ(s)
, g(s), and g(s)fj(s),

where q is a positive integer. We consider the next steps.

Step 1. Estimate the modulus of Γ(q)(s)
Γ(s)

. We employ the following asymptotic

formula (see e.g. 151 in [20]), which is called Stirling formula,

|Γ(s)| = |Γ(x+ iy)| =
√
2π|x|y−1/2e−

π
2
|y|[1 +O( 1

y
)], (|y| → ∞, σ1 ≤ Res ≤ σ2),

where σ1 and σ2 are two real constants. In [12], we know that for any positive integer
q,

Γ(q)(s) = (1 + o(1))(log s)qΓ(s)

uniformly for all s ∈ C\{s : | arg s− π| ≤ ǫ} with any small ǫ > 0.

Step 2. Estimate the growths of g(s) and g(s)fj(s). With the same way in [14],
we can deduce that

(1.7) |g(s)| ≤ eAε|s|, |fj(s)g(s)| ≤ eBε|s|,

where A and B are two positive constants. For the completeness of the process, we
give the proof below.

Observing the fact (1.5), for arbitrary small ε > 0, we below assume that
n(r, G) ≤ εr for r ≥ r0, where r0 is a positive constant. By making use of the
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method in [9], one has,

(1.8)

log |g(s)| = log

∣

∣

∣

∣

∣

∏

ρ∈G

(

1− s2

ρ2

)

∣

∣

∣

∣

∣

≤
∑

ρ∈G

log

(

1 +

∣

∣

∣

∣

s2

ρ2

∣

∣

∣

∣

)

=

ˆ ∞

0

log

(

1 +

∣

∣

∣

∣

s2

r2

∣

∣

∣

∣

)

d(n(r, G))

= log

(

1 +

∣

∣

∣

∣

s2

r2

∣

∣

∣

∣

)

n(r, G)|∞0 + 2|s|2
ˆ ∞

0

n(r, G)

r(r2 + |s|2) dr

= 2|s|2
[
ˆ r0

0

n(r, G)

r(r2 + |s|2) dr +
ˆ ∞

r0

n(r, G)

r(r2 + |s|2) dr
]

≤ 2|s|2
{

1

|s|2
ˆ r0

0

n(r, G)

r
dr +

ˆ ∞

r0

εr

r(r2 + |s|2) dr
}

≤ Aε|s|,

where A is a positive constant. Thus,

(1.9) logM(r, g) ≤ Aε|s|,
where M(r, g) = max|s|=r{|g(s)|}, the maximum modulus of g on |s| = r. Set
E = {ς : |g(reiς)| > 1}. Then,

(1.10)

T (r, g) = m(r, g) =
1

2π

ˆ 2π

0

log+ |g(reiς)| dς

=
1

2π

ˆ

ς∈E

log+ |g(reiς)| dς = 1

2π

ˆ

ς∈E

log |g(reiς)| dς

≤ 1

2π

ˆ

ς∈E

Aε|reiς| dς ≤ Aεr.

Applying the first main theorem in Nevanlinna theory to the function a0,Ij , one
has

T (r, fj(s)) = T

(

r,
a0,Ij
a0,I1

)

≤ T (r, a0,Ij) + T

(

r,
1

a0,I1

)

+O(1)

≤ T (r, a0,Ij) + T (r, a0,I1) +O(1) = o(r).

Recall the well-known result (see, e.g., [6]) in Nevanlinna theory

log+max
|s|=r

{|f(s)|} ≤ R + r

R − r
T (R, f)

for R > r > 0, if f is entire. Obviously, fj(s)g(s) is an entire function. Then, we
have for |s| = r and R = 2r

log |fj(s)g(s)| ≤ logmax
|s|=r

{|fjg|} ≤ log+ max
|s|=r

{|fjg|} ≤ R + r

R− r
T (R, fjg)

≤ 3T (2r, fjg) ≤ 3[T (2r, fj) + T (2r, g) +O(1)] ≤ Bε|s|,
where B is a positive constant. It shows (for j = 2, · · · , t) that

(1.11) |fj(s)g(s)| ≤ eBε|s|.

Step 3. We shall prove the following proposition.

Proposition. For ε > 0 small enough, there exist a sequence {sl} in the domain
D := {s : 1

2
≤ Re s ≤ 1, IM s > 0} such that

ζ(sl) = c and g(sl) > e−Cε|sl|,
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where C is a fixed positive constant. Meanwhile, sl is not the pole and zero of the
coefficients of the differential polynomial P .

Proof of Proposition. We will employ the lemmas 1–3 to deal with this proposi-
tion. Set h ≥ 0 be an integer. Note that g(0) = 1. Then, for 2h ≤ |s| = r ≤ R = 2h+2

and h large enough, applying Lemma 1 to the function g, one has, that

(1.12)

log |g(s)| ≥ −
(

2 + log
3e

2θ

)

logM(2eR, g) ≥ −
(

2 + log
3e

2θ

)

Aε2e2h+2

= −
(

2 + log
3e

2θ

)

Aε2e · 2h4 ≥ −
(

2 + log
3e

2θ

)

Aε8e · r,

outside a collections of closed p disks
⋃p

l=1Ol (p ≤ q = n(R,Zg)) whose radii add up
to at most 4θR = 4θ2h+2. Next, we split into two cases.

Case 1. c 6= 0. Some ideas are based on [5]. Suppose that K := {s : |s− 3
4
| < t}

and t(< |c|) is a fixed positive number. Define the function ϕ(s) = c + (s − 3
4
)

in K. Obviously, ϕ(s) is a non-vanishing analytic function in K. For h (which is
large enough) and t

2
, it follows from Lemma 2 (Voronin’s universality theorem) that

measE0 > ω2h where

(1.13) E0 = {2h ≤ τ ≤ 2h+2 = R : max
s∈K

|ζ(3
4
+ iτ + s)− ϕ(s)| < t

2
},

and ω is a fixed positive constant. We define the set E1 as

E1 = {τ : 0 < τ < R = 2h+2 and d(3
4
+ iτ,

⋃p
l=1Ol) < 2t},

where d(, ) is the distant between a point and a set. Then, an elementary calculation
yields

(1.14) measE1 ≤ 4θR + 4tp ≤ 4θR + 4tn(R,Zg) ≤ 16(θ + 2tε)2h.

Note that θ and ε can be small enough. So take θ and ε such that 16(θ + 2tε) < ω.
Thus, there exists at lease one point τ1 ∈ E0\E1. Furthermore,

max
s∈K

|ζ(3
4
+ iτ1 + s)− ϕ(s)| < t

2
.

Thus,

max
s∈∂K

|ζ(3
4
+ iτ1 + s)− c− (ϕ(s)− c)| < t

2
< t = max

s∈∂K
|ϕ(s)− c|,

and an application of Rouché’s theorem gives the existence of a c-point of ζ(s) inside
K+ iτ1 = {s+ iτ1 : s ∈ K}, say sh. Obviously, sh 6∈ ∪p

l=1Ol, since τ1 6∈ E1. Therefore,
by (1.12), one gives

log |g(sh)| > −Cε|sh|, with C = −
(

2 + log
3e

2θ

)

A8e.

Letting the integer h increase to ∞, one can get a sequence {sh}. Rewrite sh by sl.
Thus, we derive the desired conclusion of the proposition.

Case 2. c = 0. Let η = t in Lemma 3. Set

E2 = {τ : 0 < τ < R = 2h+2 and d(1
2
+ iτ,

⋃p
l=1Ol) < 2t}.

Then, the same argument of Case 1 gives that there exists at least one point τh ∈
Et(2

h) \ E2. Thus, by the definition of Et(2
h), there exist a zero sh = 1

2
+ iyh of ζ

such that yh ∈ [τh − η, τh + η] = [τh − t, τh + t]. Obviously, sh 6∈
⋃p

l=1Ol. Similarly as
Case 1, we get the conclusion of this proposition. �



On algebraic differential equations of gamma function and Riemann zeta function 1039

Step 4. We will finish the proof of Theorem 1. The above discussion yields
that sl is not the zero and pole of the coefficients of differential polynomial P . Still
substitute sl in (1.4). Choosing the point ε such that π

4
− Bε > 0 and π

4
− Cε > 0.

Then, the left side of (1.4) can be estimated as

e
π
4
yl|g(sl)fj(sl)|

∣

∣

∣

∣

∣

(

Γ′

Γ

)i1

· · ·
(

Γ(n)

Γ

)in

Γ|Ij |−|I1|(sl)

∣

∣

∣

∣

∣

≤ e
π
4
yleBε|sl||(1 + o(1))(log s)i1+2i2+···+ninΓ|Ij |−|I1|(sl)|

≤ (1 + o(1))(
√
2π)|Ij |−|I1|e

π
4
yleBε|yl||(log sl)i1+2i2+···+nin |

· |xl|(yl−1/2)(|Ij |−|I1|)e−
π
2
yl

[

1 +O

(

1

yl

)]

≤ (1 + o(1))(
√
2π)|Ij |−|I1|e−(π

4
−Bε)yl

· |(log sl)i1+2i2+···+nin |u(yl−1/2)(|Ij |−|I1|)
0

[

1 +O

(

1

yl

)]

→ 0, as l → ∞.

So, the right side of (1.4) satisfies

(1.15)

∣

∣

∣

∣

∣

−e
π
4
ylg(sl)

(

Γ′

Γ

)i1

· · ·
(

Γ(n)

Γ

)in

(sl)

∣

∣

∣

∣

∣

→ 0, as l → ∞.

On the other hand, by π
4
− Cε > 0, one has

∣

∣

∣

∣

∣

−e
π
4
ylg(sl)

(

Γ′

Γ

)i1

· · ·
(

Γ(n)

Γ

)in

(sl)

∣

∣

∣

∣

∣

≥ e
π
4
yle−Cε|sl|(1 + o(1))|(log sl)i1+2i2+···+nin|

= e(
π
4
−Cε)|yl|(1 + o(1))|(log sl)i1+2i2+···+nin| → ∞, as l → ∞.

This contradicts (1.15). Therefore,

a0,I1 ≡ 0.

Note that a0,I1 is identically zero, the expression (1.2) reduces to

t
∑

j=2

a0,IjΓ
i0(Γ′)i1 · · · (Γ(n))in(sl) = 0.

This is the same form as (1.2), except that j starts from 2 now. The exact same
argument as above shows that a0,I2 is identically zero. Repeating this argument, we
get all the coefficients a0,Ij are identically zero. Therefore, (1.1) becomes

P (s,Γ,Γ′, · · · ,Γ(n), f(ζ)) = f(ζ)m−1
∑

I∈Λm

am,IΓ
i0(Γ′)i1 · · · (Γ(n))in

+ f(ζ)m−2
∑

I∈Λm−1

am−1,IΓ
i0(Γ′)i1 · · · (Γ(n))in+

· · ·+
∑

I∈Λ1

a1,IΓ
i0(Γ′)i1 · · · (Γ(n))in

which is the same form as (1.1), except that the highest power of f(ζ) is m− 1 now.
Thus, repeating the above process, one has all the coefficients of the polynomial
identically zero, which contradicts the assumption.
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This completes the proof of Theorem 1. �
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