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Abstract. We present a proof of the C' regularity of p-orthotropic functions in the plane for
1 < p < 2, based on the monotonicity of the derivatives. Moreover we achieve an explicit logarithmic
modulus of continuity.

1. Introduction

In this work we investigate the regularity of p-orthotropic functions in the plane
for 1 < p < 2. Let © C R? be an open set. A weak solution of the orthotropic

p-Laplace equation (also known as pseudo p-Laplace equation) is a function u €
WhP(Q) such that

2
(1.1) Z/Q 0P 20u 00 dez =0 for all ¢ € Wy P(Q).
i=1

Equation (1.1) arises as the Euler-Lagrange equation for the functional

(1.2) Io(v) :Z/Q%dx.

The equation is singular when either one of the derivatives vanishes, and does not fall
into the category of equations with p-Laplacian structure. It was proved by Bousquet
and Brasco in [1] that weak solutions of (1.1) for 1 < p < oo are C*(Q). A simple
proof which gives a logarithmic modulus of continuity for the derivatives is contained
in [6] for the case p > 2. The latter relies on a lemma on the oscillation of monotone
functions due to Lebesgue [5] and the fact that derivatives of solutions are monotone
(in the sense of Lebesgue). The purpose of this work is to extend this result to the
case 1 < p < 2 employing methods developed in [6]. We obtain the following:

Theorem 1.1. Let Q C R? and u € W'?(Q) be a solution of the equation (1.1)
for 1 < p < 2. Fix a ball By CC Q. Then, for all j € {1,2} and B, CC Bgj,, we

have
<][ |Vul? dx) ’ :
Br

N -
(1.3) osc (Oju) < G, <log (—))
By r
where C), is a constant depending only on p.

Notation. We indicate balls by B, = B,(a) = {x € R*: |[vt —a| < r} and
we omit the center when not relevant. Whenever two balls B, C By appear in a

statement they are implicitly assumed to be concentric. The variable z denotes the

Nl
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vector (z1,x9) and we denote the partial derivatives of a function f with respect to

xjas O;f.

2. Regularization

We will consider a regularized problem by introducing a non degeneracy param-
eter e > 0. Fix B CC Q2 C R? and consider the regularized Dirichlet problem

{ zlfB (10> +¢) "2 3u81¢d:c_0

(21> U’ —UGW (BR)

Note that u° is the unique minimizer of the regularized functional

(2.2) I (v) Z/ (|00)? + €)% dz
Br

among WY?(Bg) functions v such that v —u € Wo’p(BR). By elliptic regularity
theory, the unique solution u of (2.1) is smooth in Bg.

Fix an index j € {1,2}. Then, replacing ¢ by 0;¢ in equation (2.1) and integrat-
ing by parts, we find that the derivative d;u° satisfies the following equation

(2.3) Z/ (e+10u )2 (e + (p — 1)|0uc|?) Bi0;u Dp dz = 0
Br

for all ¢ € C§°(Bg).
We now collect some uniform estimates and convergences (see also [1]).

Lemma 2.1. Let u € W'P(Q) be a solution of (1.1) and u¢ be a solution of
(2.1) for 1 < p < 2. Then we have

(2.4) / \VuP de < C, (/ |VulP dx + eng)
Br Bpr

where C), is a constant depending only on p.
Proof. The estimate follows from Ig (u¢) < Ig, (u). O

Proposition 2.2. Let u € W(Q) be a solution of (1.1) and u¢ be a solution
of (2.1) for 1 < p < 2. Then, for all j € {1,2}, we have

(2.5) sup (e + |Vu') < (]iﬁ<e+ Vu?) d )

Bry2

(2.6) / IVou|? dr < C, (][ (|Vu|p—|—e§)d:z)p,
Bry2 Br

where C), is a constant depending only on p.

Proof. The proof of the Lipschitz bound can be found in [4] while (2.6) appears
in [1]. We provide details for completeness. Note that by a change of variables, the
function u%(x) = u(xo + Rx) satisfies the equation

2
(2.7) Z/B (|0ius|? + R%) T dus0ipde =0 for all ¢ € WIP(By).
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Introduce the notation w = eR? + |Vu§|? and a;(z) = a;(z;) = (eR* + |2:]2) %% 2 so
that equation (2.7) rewrites as

Z/ a;(Ous)0pde = 0 for all ¢ € Wy (By).
B

For j € {1 2} and a > 0 take ¢ = 9;(0;jusw2£2) so that 9;¢ = 0;(0;0;uGw? &2 +
29w w T 8juR§2) + 20;(£0i€ w? djuf). Sum in j to get
2

By

Note that w = 223’:1 0;0;uf Ojufy and 0a;(0juy) > cppr72 since 1 < p < 2.
Integrate by parts in A. We get A = A; + Ay where
2

2
Ay = Z 0ia;(Oiu%) (8i8ju§3)2 w? 52 dz = ¢, Z /B v
=175

ij=17B1

Ay —caz 8a2 (0us,)D:0u5, DS, w w™> €2 da

i,j=1
—caz 8aZOuR (Dw)*w 2 §2d$>cp /w dz.
By
Now we estlmateB:Bl+Bg+Bg;
5= |3 [ atowiwtopiocad i <, [ P (VeF-+ V) ds
1,7=1 B B
a o N
| By := 52/ 8uRw28w8uR§8§dx <C'oz/B w s
<o [ w* [ vep ' an,
n JB
| Bs| := Z/ a;(Oius)w? 0;0;u; € 0;¢ d <Z/ . 1+Q|V8uR|§|V§|dzz
i,7=1
<nZ/ W Vo de + S [ (Ve d
i) ’ n JB

where we used a;(Q;u%) < w*T and Young’s inequality with a parameter 1 to be
chosen suitably small. We get

dz + cpa/ w" e |Vw|?¢? dx
(2.8) =1 Bl b

<Cyat 1)/ (IVER + [V2¢]) ™ da.
By
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Note that for o = 0 we get for all j € {1,2}
(2.9 | W Vo dr < ¢, [ (Ve + Ve wt da,
B1 B1

and since [Vw|? < ¢ [VOjug* | Vug|* we have

2
/w%wﬁédecZ/ W' | Vg | VOjuf 6 da
By j=1" b1

(2.10) < Z / UE\TARS
j=1"5
<G | (VeP+ V2¢)) w? da.
Now for o > 1, (2.8) implies 1
(2.11) /B w” e Vw2 de < C, 2 1 /B (IVER + V2] w™" da

and combining with (2.10) we get
VW OPd < O+ a) [ (V6P + V) 'S do

B1 Bl

for all & > 0. Using Sobolev’s embedding W, *(B;) < L*(B;) for a fixed ¢ > 1 we
get

e ([ eea) <G ar [ (vers v u as

Now choose a sequence of radii r; = 1/2° + (1 — 1/2%)3, cut-off functions £ between
r; and Tit1 and a; = ¢'p — p so that % = L¢'. Using these in (2.12), raising to the
power 1/¢" and iterating we get for all 1 € N

1
7

1
@t , a
/ Wi d < (Cpq2i2i)ﬁ / whe du
B By,

Tit+1

sH(Cqu)ﬁ/ w? da.

=0 B

Observe that HiO(CpqziQi)ﬁ = C(p,q) < oo so passing to the limit as i — oo we
get

supw? < C(p, q)/ w? dz

B2 By
which, after rescaling, proves (2.5). Now going back to (2.9), choosing a cut-off
function between Bg/, and Bg and using 1 < p < 2 we get

/ Vue? dz < C, sup (e + |Vucf?) 7 ][ (e + |Vu)? da.
Bry2 Bry2 Br
Using (2.5) and (2.4) we obtain (2.6). O

Next we collect some facts about the convergence of u to the solution of the
degenerate equation. These are sufficient for our purposes.

Proposition 2.3. Let u¢ be the solution of (2.1) for 1 < p < 2 and u € WH?()
the solution of (1.1). We have
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e u converges to u locally uniformly in B,
e Vuc converges to Vu in LP(Bp).

Proof. From the energy estimate (2.4) we obtain a uniform bound for the L?
norm of Vuc. Therefore (up to a subsequence) u¢ converges to some v € W1P(By)
weakly in W'?(Bg) and strongly in L?(Bg). Note that we have v — u € W, (Bjg).
By weakly lower semicontinuity we get

pale
I, (v Z/ |8v| da:<hm1an/ [0:] d
Br Br
1
glimigle/ Z(|0muc]? + )b dx<hm1an/ (|0ul® + €)% dz
€e— - BRp

—Z/B “|0ulP dz = I, (u).

Note that in the third inequality we used the minimality of u¢ subject to the boundary
condition u*—u € VVO1 ?(Bgr). By uniqueness of the minimizer of I, among functions
with boundary values u in Bg, we get v = u. By the uniform Lipschitz estimate (2.5)
and Ascoli-Arzela’ theorem we obtain that the convergence is uniform.

Now we show LP(Bpg) convergence of the gradient. Use ¢ = u® —u as a test

function in (2.1), add and subtract the term (|0;ul? + €)=z = Oyu to get

2
Z/ <(|8iu6|2 + E)p%zﬁiuE — (|0l + e)g&u) (O — Oju) dx
— JBg

—Z/ (|0sul® + €)= 8u(8u—8u)
Br

Since d;u — J;u® converges to 0 weakly in LP(Bpg), the integral in the right hand side
converges to 0. We can minorize the integral in the left hand side using the inequality

la — b2 (e + |af* + [B2)F < Cyl(e + [af*) T a— (e + [b]*) 7 b)(a — b)
valid for 1 < p < 2, and obtain that

(2.13) / (6+\8u|2+|8u\) |8u — Qu*dr — 0
Br
as € — 0, for ¢ = 1, 2. Finally by Holder’s inequality

/ |0;u¢ — QjulP dx
Br
—p)

p(p—2) p(2
— / 0u — Oul? (e + [Ou]? + |0u]®) 2 (e+ |0 + [0ul?) * da
Br

(SIS}

< (/ 0iu’ — Oul® (e + [Ouc]? + |Oul?) = dz)
Bpgr

p

: (/ (e +[Ou|” + |0,~u|2)% dz) :
Br

Since the last integral is uniformly bounded in €, using (2.13) we get that 0;u¢ con-
verges to O;u in LP(Bg). O
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3. Monotone functions and Lebesgue’s lemma

A continuous function v: 2 — R is monotone (in the sense of Lebesgue) if

maxv = maxv and minv = minov
D oD D 8D

for all subdomains D CC Q. Monotone functions are further discussed in [7].
The next Lemma is due to Lebesgue [5].

Lemma 3.1. Let Bg C R? and v € C(Bgr)NW?(Bg) be monotone in the sense
of Lebesgue. Then

(oscv)?log (E) < 7r/ V()] dx
Br T BR\BT'

for every r < R.

Proof. Assume v is smooth. Let (7, () be the center of Bg. Let x; and x5 be two
points on the circle of radius ¢, and let v: [0,27] — R?, v(s) = (n + tcos(s),( +
tsin(s)) be a parametrization of the circle such that vy(a) = z; and v(b) = 9. Then
we have

b b b
o) = oas) = [ o0 ds = [ (To(e) (6 ds < [ HTula(s)]ds

Taking the supremum on angles a and b such that |a — b| < 7 and using Holder’s
inequality, we get

(oscv)? < 7Tt2/0 ' |Vu(y(s))|* ds.

0By

Now diving by ¢, integrating from r to R, and using polar coordinates we get

R 2 R pr2m
[ g <n [ [ ovetnepasa=x [ [wu@Par
; t r 0 BR\BT

Thanks to the monotonicity of v, for t > r we have

0SCU > 0SCU > 0OSCU

OBt By B
and we get the result for a smooth function. The general statement follows by
approximation. 0]

The following is credited to [1] (see Lemma 2.14 for the minimum principle).

Lemma 3.2. (Minimum and Maximum principles for the derivatives) Let u® be
the solution of (2.1). Then

s a € < a € < a €
min §;u° < Oju*(x) < max Oju
for all x € B,, B, CC Bg and j =1, 2. In particular, 0;u® is monotone in the sense
of Lebesgue.

Proof. We are going to show that given a constant C, if 9;u® < C' (resp. d;u® >
C) in 9B, then d;u¢ < C (resp. d;u¢ > C) in B,. Let ¢* = 1p (9u* — C)* =
1, max{£(0;u¢ — C), 0} in the equation satisfied by the derivative (2.3). Since u is
smooth and d;u¢ > C (resp. d;u < C) on OB, we have ¢ € W, (), so they are
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admissible functions. We get

2
0= Z/ (e + 10w ) = (e + (p = DI ) [0,(05u° — O)F* dr
1=1 r

2
> EZ/ (e + |Vu5|2)p%4|8,~(8ju6 — OV P da
i=1 "/ Br

—c [ (e [Vu)F V@ - € d
This implies (9;u‘—C)* is constant in B,, and since it is 0 in 9B, then (9;u‘—C)* =0
in B,. Ol

4. Proof of the main theorem

Proof of Theorem 1.1. Applying Lemma (3.1) and estimate (2.6) we get for all
r<R/2

€ R €
(41) (OBSTC 8ju )2 IOg (?) S C ||V8Ju Hiz(BRm) S C <][B

and hence for all r < R/2

R
R\\~ N
(4.2) oscOjuc < C (log (—)) <][ |Vul|P dz + ez) ,
Br r Br
where C' is a constant independent of e.

Thanks to Proposition (2.3) we can pass to the limit and get (1.3). O

D\ 7
|\VulPdr +€2 )

N
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