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Abstract. In this paper, we consider the nonlocal Kirchhoff problem

−

(

ǫ2a+ ǫb

ˆ

R3

|∇u|2
)

∆u+ V (x)u = up, u > 0, u ∈ H1(R3),

where a, b > 0, 1 < p < 5 are constants, ǫ > 0 is a parameter. Under some assumptions on V (x),

we show the local uniqueness of positive multi-peak solutions by using the local Pohozaev identity.

1. Introduction and main results

Let a, b > 0 and 1 < p < 5. Consider the singularly perturbed Kirchhoff problem

(1.1) −

(

ǫ2a+ ǫb

ˆ

R3

|∇u|2
)

∆u+ V (x)u = up, u > 0, u ∈ H1(R3),

where ǫ > 0 is a parameter, V : R3 → R is a bounded continuous function. Under
some mild conditions on V , Luo, Peng, Wang and the last named author of the present
paper [22] proved the existence of multi-peak solutions to (1.1). As a continuation
of the work [22], this paper is devoted to establish a local uniqueness result for the
multi-peak solutions obtained there. For physical background for equation (1.1), the
readers are referred to Luo et al. [22] and the references therein.

To be precise, we first give the definition of k-peak solutions of Eq. (1.1) as usual.

Definition 1.1. Let k ∈ N, bj ∈ R
3, 1 ≤ j ≤ k. We say that uǫ ∈ H1(R3) is a

k-peak solution of (1.1) concentrated at {b1, b2, · · · , bk}, if

(i) uǫ has k local maximum points xjǫ ∈ R
3, j = 1, 2, . . . , k, satisfying

xjǫ → bj

as ǫ→ 0 for each j;
(ii) For any given τ > 0, there exists R ≫ 1, such that

|uǫ(x)| ≤ τ for x ∈ R
3\ ∪k

j=1 BRǫ(x
j
ǫ);
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(iii) There exists C > 0 such that
ˆ

R3

(ǫ2a|∇uǫ|
2 + u2ǫ) ≤ Cǫ3.

In the simplest case a = 1, b = 0, equation (1.1) is reduced to the following
perturbed Schrödinger equation:

(1.2) −ǫ2∆u+ V (x)u = up, u > 0 in R
3,

where 1 < p is subcritical. There are extensive results on the existence of solutions to
equations of type (1.2) for ǫ > 0 sufficiently small in the literature. We only mention
for instance e.g. Floer and Weinstein [8], Oh [23, 24], del Pino and Felmer [4, 5], Gui
[12], Rabinowitz [25] and the references therein.

One of our motivations of this work is from local uniqueness results for Schrödin-
ger equations (1.2). By local uniqueness, it means that if u1ǫ , u

2
ǫ are two k-peak

solutions of equation (1.2) concentrating at the same k points, then u1ǫ ≡ u2ǫ for ǫ
sufficiently small. The first result in this respect seems to be given by Glangetas
[10], where the uniqueness of solutions concentrating at one point for Dirichlet prob-
lems with critical nonlinearity on bounded domains is proved. By calculating the
number of single-peak solutions, Grossi [11] proved that there is only one solution
concentrating at any nondegenerate critical point of V (x). In fact, the uniqueness
of single-bump(single-peak) solutions concentrating at some degenerate critical point
of V (x) is true in [11] as well. Cao and Heinz [1] proved the uniqueness of multi-
peak solutions to (1.2) which concentrate at nondegenerate critical points of V (x)
by using the topological degree, see also [10]. Recently, Deng et al. [6] proved the
local uniqueness and periodicity for the solution to the prescribed scalar curvature
problem

−∆u = K(x)u
N+2
N−2 , u > 0 in R

N

by the technique of local Pohozaev identity. Their work inspired Cao, Li and Luo
[2] to establish local uniqueness of multi-peak solutions to (1.2) under some mild
conditions on the potential function V (x). In particular, V (x) is not required to be
nondegenerate at concentration points in [2]. For more local uniqueness results using
local Pohozaev identities, see e.g. Guo et al. [14] for critical polyharmonic equations
and Guo et al. [13] for fractional Laplacian equations.

Let us now recall briefly some recent progress on the problem (1.1). For the
existence of single peak solutions to equation (1.1), we refer to e.g. He and Zou
[15], Wang et al. [26], He et al. [16, 17, 18], Figueiredo and Santos Júnior [7], where
variational methods have been used. We also mention the work [21] of Li et al.,
where Lyapunov–Schmidt reduction method is applied. Very few result for multi-
peak solutions of problem (1.1) exists in the literature. The first one was obtained
by Luo et al. [22], where the authors found the right limiting problem for the first
time, and then they established some nondegeneracy result, which allows them to
apply Lyapunov–Schmidt reduction method to obtain multi- peak solutions. Another
result of multi-peak solutions for Kirchhoff equations with general nonlinearity can
be found in the quite recent work [19] of Hu and Shuai.

There are very few local uniqueness results for Kirchhoff equations. To the best
of our knowledge, the only result in this respect is given by Li et al. [21], where the
authors proved that single peak solutions of equation (1.1) obtained there is locally
unique under some mild conditions assumed on the function V (x).
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In view of the results mentioned above, a natural problem is to study the local
uniqueness of the multi-peak solutions of problem (1.1) established by Luo et al. [22].
To state our main result, it is convenience to introduce the following assumptions
and notations.

(V1) V ∈ L∞(R3) and 0 < infR3 V ≤ sup
R3 V <∞;

(V2) There exist m > 1, η > 0, k ∈ N, bj = (bj,1, bj,2, bj,3) ∈ R
3, cj,i ∈ R with

cj,i 6= 0 for each i = 1, 2, 3 and j = 1, · · · , k such that V ∈ C1(Bη(bj) and
{

V (x) = V (bj) +
∑3

i=1 cj,i|xi − bj,i|
m +O(|x− bj |

m+1), x ∈ Bη(bj),
∂V
∂xi

= mcj,i|xi − bj,i|
m−2(xi − bj,i) +O(|x− bj |

m), x ∈ Bη(bj),

where x = (x1, x2, x3) ∈ R
3.

Denote

〈u, v〉ǫ =

ˆ

R3

(

ǫ2a∇u · ∇v + V (x)uv
)

and ‖u‖2ǫ = 〈u, u〉ǫ,

Hǫ = {u ∈ H1(R3) : ‖u‖ǫ ≡ 〈u, u〉1/2ǫ <∞}.

The energy functional corresponding to Eq. (1.1) is

(1.3) Iǫ(u) =
1

2
‖u‖2ǫ +

bǫ

4

(

ˆ

R3

|∇u|2
)2

−
1

p+ 1

ˆ

R3

up+1
+

for u ∈ Hǫ, where u+ = max{u, 0}.
We call u ∈ Hǫ a (weak) solution to equation (1.1) if for any ψ ∈ Hǫ, it holds

that

〈u, ψ〉ǫ + bǫ

ˆ

R3

|∇u|2
ˆ

R3

∇u · ∇ψ =

ˆ

R3

upψ.

Recall that it was proven in [22, Proposition 2.3] that the limiting problem of Eq.
(1.1) is given by the following system

(1.4)











−(a + b
∑k

j=1

´

|∇U j |2)∆U i + V (bi)U
i = (U i)p in R

3,

U i > 0 in R
3,

U i ∈ H1(R3).

Hereafter, we denote by (U1, · · · , Uk) the unique positive radial solutions to the above
system (see [22]). Keep in mind that each U i is also nondegenerate.

Our main result is as follows:

Theorem 1.2. Assume that V (x) satisfies (V1)−(V2). If u
(1)
ǫ , u

(2)
ǫ are two k-peak

solutions concentrating at the set of k different points {b1, · · · , bk} ⊂ R
3 appeared

in the condition (V2), then for ǫ sufficiently small, we have

u(1)ǫ ≡ u(2)ǫ

and u
(j)
ǫ (j = 1, 2) is of the form

u(j)ǫ =
k
∑

i=1

U i((x− xiǫ)/ǫ) + ϕǫ(x)

with xiǫ ∈ R
3, ϕǫ ∈ Hǫ satisfying

|xiǫ − bi| = o(ǫ), ‖ϕǫ‖ǫ = O(ǫ3/2+m)

for i = 1, · · · , k.
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We first explain a characteristic of this multi-peak problem, which is different
from the case of Schrödinger equation. To construct multi-peak solutions to the
Schrödinger equation (1.2), it is very important to understand the limiting equation
as ǫ→ 0, which is known as the unperturbed Schrödinger equation −∆w + w = wq.
Denote by wi the unique (see [20]) positive radial solution to equation

−∆wi + V (bi)wi = wq
i in R

n.

Then, to construct a k-peak solution to Eq. (1.2) concentrated at {b1, . . . , bk}, natural

candidates are functions of the form uǫ =
∑k

i=1wi((x − xiǫ)/ǫ) + ϕǫ, where xiǫ → bi
and ϕǫ should be appropriately chosen such that uǫ is indeed a solution to equation
(1.2). Accordingly, to construct multi-peak solutions to (1.1), a natural idea is that
the building block of the multi-peak solution should be the unique positive radial
solution wi of the unperturbed Kirchhoff equation

(1.5) −

(

a+ b

ˆ

R3

|∇u|2
)

∆u+ V (bi)u = up, u > 0 in R
3.

while the fact is that this idea only works for the single-peak solution, as can be
seen in Li et al. [21]. That is, there is no multi-peak solutions for (1.1) of the form

uǫ =
∑k

i=1w
i((x− xiǫ)/ǫ) +ϕǫ, (see [22, Proposition 2.2]). Furthermore, during their

proof of that the blow-up point bj must be critical points of V (x), they found that
the right limiting equation of (1.1) is in fact a system of partial differential equations
(see [22, Proposition 2.3]).

We mainly use the method in [2] to prove the main result. However, the nonlocal
term

(´

R3 |∇u|
2
)

∆u causes more technical difficulties than Schrödinger equation
(1.2). Moreover, as we consider the multi-peak solution of (1.1), on the one hand,
there are many crosses between bubbles, and on the other hand, the limiting equation
of (1.1) is a system of partial differential equations (see (1.4)), which is different from
the case of single-peak solution and Schrödinger equation (1.2), the difference of these
two aspects also makes the estimate more complex.

Now, we give the main idea of the proof of Theorem 1.2. We will follow the

idea of Cao, Li and Luo [2]. More precisely, if u
(1)
ǫ , u

(2)
ǫ are two distinct solutions

as stated in Theorem 1.2, according to Proposition 2.1 in this paper, they have the
same form; We firstly get the improved estimate of |xiǫ − bi| and ‖ϕǫ‖ǫ, then for the

function ξǫ = (u
(1)
ǫ −u

(2)
ǫ )/‖u

(1)
ǫ −u

(2)
ǫ ‖L∞(R3), which obviously satisfies ‖ξǫ‖L∞(R3) = 1,

we show that ‖ξǫ‖L∞(R3) → 0 as ǫ → 0, which gives a contradiction, and thus the
uniqueness is proved. During the above process, an important tool is a type of local
Pohozaev identity (see (2.8) below) from Deng, Lin and Yan [6], which helps us to
get the rate of the maximum points xiǫ tending to bi as ǫ → 0. For the estimate
of ‖ϕǫ‖ǫ, we will derive from the nondegeneracy result of Luo et al. [22]. We will
need more careful analysis in the procedure due to the presence of the nonlocal term
(´

R3 |∇u|
2
)

∆u, which leads to the local Pohozaev identity more complicated than
the case of the Schrödinger equation (1.2).

Our notations are standard. We write
´

u to denote Lebesgue integral of u over

R
3, unless otherwise stated, and ‖u‖p =

(´

R3 u
p
)1/p

. We use BR(x) (and B̄R(x))
to denote open (and close) balls in R

3 centered at x with radius R. We will use C
and Cj (j ∈ N) to denote various positive constants, and O(t), o(t), ot(1) to mean
|O(t)| ≤ C|t|, o(t)/t→ 0 and ot(1) → 0 as t→ 0, respectively.

The paper is organized as follows. In section 2 we give some preliminary esti-
mates. In section 3 we prove the local uniqueness results.
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2. Preliminaries

According to [22, Proposition 2.3], the form of k-peak solutions to (1.1) are given
by the following:

Proposition 2.1. Let k ∈ N, {b1, b2, . . . , bk} ⊂ R
3and uǫ be a k-peak solution

of Eq. (1.1) defined as in the Definition 1.1, with local maximum points at xiǫ. Then,
for ǫ > 0 sufficiently small, uǫ is of the form

(2.1) uǫ(x) =
k
∑

i=1

U i((x− xiǫ)/ǫ) + ϕǫ(x)

with

(2.2) |xiǫ − bi| = o(1), ‖ϕǫ‖ǫ = o(ǫ
3
2 ).

For simplicity in the below, we introduce the notation

wǫ,y(x) = w((x− y)/ǫ).

for any function w. The estimates given by (2.2) is not sufficient for later use. Our
aim in this section is to prove the following proposition.

Proposition 2.2. Assume that V satisfies (V1) and (V2). Let k ∈ N, {b1, . . . , bk}
⊂ R

3and uǫ be a k-peak solution of Eq. (1.1) defined as in the Definition 1.1, with
local maximum points at xiǫ. Suppose that

uǫ(x) =
k
∑

i=1

U i
ǫ,xi

ǫ
+ ϕǫ(x).

Then

(2.3) |xiǫ − bi| = o(ǫ)

for each i, 1 ≤ i ≤ k, and

(2.4) ‖ϕǫ‖ǫ = O(ǫ3/2+m).

Before proving the above proposition, we first collect some useful facts. Note that
since the unique positive solution of equation −∆u+V (bi)u = up decays exponentially
at infinity (see [9]), we infer that

(2.5) max
1≤i≤k

(

U i(x) + |∇U i(x)|
)

= O(e−σ|x|)

for some σ > 0. Let 0 < δ < min{|bi − bj |/4: i 6= j} and denote

Dδ = B̄δ(b1)× · · · × B̄δ(bk).

Note that if (x1ǫ , · · · , x
k
ǫ ) ∈ Dδ, then |xiǫ − xjǫ | ≥ |bi − bj |/2 ≥ 2δ for i 6= j, which

implies by (2.5) that

(2.6)

ˆ

∇U i
ǫ,xi

ǫ
· ∇U j

ǫ,xj
ǫ

+
(

U i
ǫ,xi

ǫ

)r (

U j

ǫ,xj
ǫ

)s

= O(e−γ/ǫ) if i 6= j

for any given r, s > 0, where γ > 0 is a constant.
We recall an inequality: For any 2 ≤ q ≤ 6 there exists a constant C > 0

depending only on n, a and q but independent of ǫ, such that

(2.7) ‖ϕ‖Lq(R3) ≤ Cǫ
3
q
− 3

2‖ϕ‖ǫ

holds for all ϕ ∈ Hǫ. For a proof, see e.g. (3.6) of Li et al. [21].
The crucial Pohozaev type identity we will use is as follows:



126 Gongbao Li, Yahui Niu and Chang-Lin Xiang

Proposition 2.3. Let u be a positive solution to Eq. (1.1). Let Ω be a bounded
smooth domain in R

3 such that V ∈ C1(Ω) holds. Then
ˆ

Ω

∂V

∂xα
u2 =

(

ǫ2a + ǫb

ˆ

|∇u|2
)
ˆ

∂Ω

(

|∇u|2να − 2
∂u

∂ν

∂u

∂xα

)

+

ˆ

∂Ω

V u2να −
2

p+ 1

ˆ

∂Ω

up+1να

(2.8)

for each α = 1, 2, 3, where ν = (ν1, ν2, ν3) is the unit outward normal of ∂Ω.

Proposition 2.3 can be proved by multiplying both sides of equation (1.1) by ∂xα
u

for each 1 ≤ α ≤ 3 and then integrating by parts. We omit the proof, see Cao, Li
and Luo [2, Proposition 2.3] for the details.

Proof of Proposition 2.2. For simplicity, write ϕ = ϕǫ in the following. Denote
Xǫ = (x1ǫ , · · · , x

k
ǫ ), Gǫ,Xǫ

=
∑k

i=1 U
i
ǫ,xi

ǫ
. Let

Lǫϕ =−

(

ǫ2a+ ǫb

ˆ

|∇Gǫ,Xǫ
|2
)

∆ϕ

− 2ǫb

(
ˆ

∇Gǫ,Xǫ
· ∇ϕ

)

∆Gǫ,Xǫ
+ V (x)ϕ− pGp−1

ǫ,Xǫ
ϕ,

for ϕ ∈ Eǫ,Xǫ
, where

Eǫ,Xǫ
=
{

u ∈ Hǫ : 〈u, ∂xi
ǫ,j
U i
ǫ,xi

ǫ
〉 = 0 for i = 1, · · · , k, j = 1, 2, 3

}

.

By Proposition 3.4 of [22], there exist ǫ, δ > 0 small enough, and ρ > 0 such that

ρ‖ϕ‖ǫ ≤ ‖Lǫϕ‖ǫ, ϕ ∈ Eǫ,Xǫ
.

Now we compute Lǫϕ. By the equation (1.4) of U i, we have

−

(

ǫ2a+ ǫb

k
∑

j=1

ˆ

|∇U j

ǫ,xj
ǫ

|2

)

∆U i
ǫ,xi

ǫ
+ V (bi)U

i
ǫ,xi

ǫ
= (U i

ǫ,xi
ǫ
)p in R

3.

Summing over i on both sides of the equation, we have

−

(

ǫ2a+ ǫb
k
∑

j=1

ˆ

|∇U j

ǫ,xj
ǫ

|2

)

∆Gǫ,Xǫ
+

k
∑

i=1

V (bi)U
i
ǫ,xi

ǫ
=

k
∑

i=1

(U i
ǫ,xi

ǫ
)p in R

3.

As uǫ is a solution of equation (1.1), we have

−

(

ǫ2a+ ǫb

ˆ

|∇Gǫ,Xǫ
+∇ϕ|2

)

∆(Gǫ,Xǫ
+ ϕ) + V (x)(Gǫ,Xǫ

+ ϕ) = (Gǫ,Xǫ
+ ϕ)p.

As a result, ϕ must satisfy

(2.9) Lǫϕ =
3
∑

j=1

rj +
3
∑

j=1

fj

with

r1 = ǫb

(
ˆ

|∇ϕ|2
)

∆uǫ, r2 = 2ǫb

(
ˆ

∇Gǫ,Xǫ
· ∇ϕ

)

∆ϕ,

r3 = ǫb

(

ˆ

|∇Gǫ,Xǫ
|2 −

k
∑

i=1

ˆ

|∇U i
ǫ,xi

ǫ
|2

)

∆Gǫ,Xǫ
,
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f1 =

(

k
∑

i=1

U i
ǫ,xi

ǫ
+ ϕ

)p

−

(

k
∑

i=1

U i
ǫ,xi

ǫ

)p

− p

(

k
∑

i=1

U i
ǫ,xi

ǫ

)p−1

ϕ,

f2 =

(

k
∑

i=1

U i
ǫ,xi

ǫ

)p

−

k
∑

i=1

(

U i
ǫ,xi

ǫ

)p

,

f3 =

k
∑

i=1

(V (bi)− V (x))U i
ǫ,xi

ǫ
.

Hence1

(2.10) ρ‖ϕ‖2ǫ ≤ 〈Lǫϕ, ϕ〉 =
3
∑

j=1

ˆ

rjϕ+
3
∑

j=1

ˆ

fjϕ.

By the fact that

(2.11)

ˆ

|∇ϕ|2 = O(ǫ−2‖ϕ‖2ǫ),

we have
ˆ

r1ϕ = ǫb

(
ˆ

|∇ϕ|2
)
ˆ

∇(Gǫ,Xǫ
+ ϕ) · ∇ϕ

= O(ǫ−1‖ϕ‖2ǫ)
(

ǫ−
1
2‖ϕ‖ǫ + ǫ−2‖ϕ‖2ǫ

)

= O(ǫ−
3
2‖ϕ‖3ǫ + ǫ−3‖ϕ‖4ǫ),

ˆ

r2ϕ = 2ǫb

(
ˆ

∇Gǫ,Xǫ
· ∇ϕ

)
ˆ

|∇ϕ|2 = O(ǫ · ǫ
1
2 · ǫ−1‖ϕ‖ǫ · ǫ

−2‖ϕ‖2ǫ) = O(ǫ−
3
2‖ϕ‖3ǫ)

and
ˆ

r3ϕ = ǫb

(

ˆ

|∇Gǫ,Xǫ
|2 −

k
∑

i=1

ˆ

|∇U i
ǫ,xi

ǫ
|2

)

ˆ

∇Gǫ,Xǫ
∇ϕ

= ǫb

ˆ

∑

i 6=j

∇U i
ǫ,xi

ǫ
∇U j

ǫ,xj
ǫ

ˆ

∇Gǫ,Xǫ
∇ϕ = O(e−

γ
ǫ ‖ϕ‖ǫ),

where γ > 0 is a constant.
Similar to the proof of (5.14) and (5.15) in [2], we have, for j = 1 and j = 3,

ˆ

fjϕ = ǫ
3
2O(ǫm + |xiǫ − bi|

m)‖ϕ‖ǫ.

Since each U i decays exponentially, we also derive that
ˆ

f2ϕ = O(ǫγ)‖ϕ‖ǫ

for any γ > 0. Combining the above estimate with (2.10), we have

‖ϕ‖ǫ = O(ǫ−
3
2‖ϕ‖2ǫ + ǫ−3‖ϕ‖3ǫ) + ǫ

3
2O(ǫm + |xiǫ − bi|

m).

As a result,

(2.12) ‖ϕ‖ǫ = ǫ
3
2O(ǫm + |xiǫ − bi|

m).

1Here we apply an additional property that ρ‖ϕ‖2ǫ ≤ 〈Lǫϕ, ϕ〉 holds for ϕ ∈ Eǫ,Xǫ
. As the proof

is standard (see e.g. [3]), we omit the details.
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Next we prove (2.3) for fix i ∈ {1, · · · , k}. It suffices to choose i such that

|xiǫ − bi| = max{|xjǫ − bj | : 1 ≤ j ≤ k}.

Applying the Pohozaev-type identity (2.8) to u = uǫ with Ω = Bd(x
i
ǫ), where 0 <

d < δ is chosen in such a way (see [2, Lemma 4.5] for details) that

(2.13)

ˆ

∂Bd(xi
ǫ)

(ǫ2|∇ϕ|2 + V (x)|ϕ|2 + |ϕ|p) = O

(

‖ϕ‖2ǫ +

ˆ

|ϕ|p
)

for any ϕ ∈ Hǫ. We have

(2.14)

ˆ

Bd(xi
ǫ)

∂V (x)

∂xα
u2ǫ =

(

ǫ2a+ ǫb

ˆ

|∇uǫ|
2

)
ˆ

∂Bd(xi
ǫ)

(

|∇uǫ|
2να − 2

∂uǫ
∂ν

∂uǫ
∂xα

)

+

ˆ

∂Bd(xi
ǫ)

V (x)u2ǫνα −
2

p+ 1

ˆ

∂Bd(xi
ǫ)

up+1
ǫ να.

We estimate each side of (2.14) as follows. By Proposition 2.1, we know ‖ϕ‖ǫ = o(ǫ
3
2 ).

Thus, a straightforward computation gives

(2.15) ‖uǫ‖ǫ = O(ǫ
3
2 ).

So

(2.16) ǫ2a+ ǫb

ˆ

|∇uǫ|
2 = O(ǫ2).

By an elementary inequality, we have

|∇uǫ|
2 ≤ C

k
∑

i=1

|∇U i
ǫ,xi

ǫ
|2 + C|∇ϕ|2.

From (2.5), we know
ˆ

∂Bd(xi
ǫ)

k
∑

i=1

|∇U i
ǫ,xi

ǫ
|2 = O(e−

λ
ǫ )

holds for some λ > 0 independent of ǫ. As a result,

(2.17)

(

ǫ2a + ǫb

ˆ

|∇uǫ|
2

)
ˆ

∂Bd(xi
ǫ)

(

|∇uǫ|
2να − 2

∂uǫ
∂ν

∂uǫ
∂xα

)

= O(ǫγ + ‖ϕ‖2ǫ)

for any γ > 0. Using similar arguments and choosing a suitable d if necessary, we
also derive

ˆ

∂Bd(xi
ǫ)

V (x)u2ǫνα = O(ǫγ + ‖ϕ‖2ǫ),

since V (x) is bounded. Furthermore, from (2.7) and (2.13), we have
ˆ

∂Bd(xi
ǫ)

up+1
ǫ να = O(ǫγ + (ǫ

3
p+1

− 3
2‖ϕ‖ǫ)

p+1) = O(ǫγ + ‖ϕ‖2ǫ).

Combing the above estimate and (2.14), we obtain

(2.18)

ˆ

Bd(xi
ǫ)

∂V

∂xα
u2ǫ = O(ǫγ + ‖ϕ‖2ǫ)

for any γ > 0.
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Next we estimate the left hand side of (2.18). Substitute the form of uǫ into the
integral, and recall (2.6). We obtain

(2.19)

ˆ

Bd(xi
ǫ)

∂V

∂xα
u2ǫ =

ˆ

Bd(xi
ǫ)

∂V

∂xα

(

U i
ǫ,xi

ǫ

)2

+ 2

ˆ

Bd(xi
ǫ)

∂V

∂xα
U i
ǫ,xi

ǫ
ϕ+O(‖ϕ‖2ǫ + ǫγ)

for any given constant γ > 0. By the assumption (V2) and Hölder’s inequality, there
holds

(2.20)

ˆ

Bd(xi
ǫ)

∂V

∂xα
U i
ǫ,xi

ǫ
ϕ = ǫ

3
2O(ǫm−1 + |xiǫ − bi|

m−1)‖ϕ‖ǫ.

Applying the assumption (V2), we have
ˆ

Bd(xi
ǫ)

∂V

∂xα

(

U i
ǫ,xi

ǫ

)2

= mci,α

ˆ

Bd(xi
ǫ)

|xα − bi,α|
m−2(xα − bi,α)

(

U i
ǫ,xi

ǫ

)2

+O

(
ˆ

Bd(xi
ǫ)

|xα − bi,α|
m
(

U i
ǫ,xi

ǫ

)2
)

= mci,αǫ
3

ˆ

B d
ǫ
(0)

|ǫxα + xiǫ,α − bi,α|
m−2(ǫxα + xiǫ,α − bi,α)

(

U i
)2

+ ǫ3O(ǫm + |xiǫ − bi|
m),

(2.21)

where xiǫ,α is the αth exponent of xiǫ.
Therefore, combining (2.18)-(2.21) and (2.12) yields

(2.22)

ˆ

B d
ǫ
(0)

|ǫxα + xiǫ,α − bi,α|
m−2(ǫxα + xiǫ,α − bi,α)

(

U i(x)
)2

= O(ǫm + |xiǫ − bi|
m).

Note that, for a, b ∈ R, m > 1, m∗ = min{m, 2}, we have the following inequality

(2.23) ||a+ b|m − |a|m −m|a|m−2ab| ≤ C(|a|m−m∗

|b|m
∗

+ bm)

where the constant C is independent of a, b.
Applying (2.23) to a = ǫxα + xiǫ,α − bi,α and b = −ǫxα, we have

(2.24)

|xiǫ,α − bi,α|

∣

∣

∣

∣

∣

∣

ˆ

B d
ǫ
(0)

|ǫxα + xiǫ,α − bi,α|
m−2(ǫxα + xiǫ,α − bi,α)

(

U i(x)
)2

∣

∣

∣

∣

∣

∣

≥
1

m
|xiǫ,α − bi,α|

m

ˆ

B d
ǫ
(0)

(

U i(x)
)2

−
C

m

ˆ

B d
ǫ
(0)

(

|ǫxα|
m + |ǫxα|

m∗

|xiǫ,α − bi,α|
m−m∗

) (

U i(x)
)2
.

Take α = i0 ∈ {1, 2, 3} such that |xiǫ,i0 − bi,i0 | ≥
|xi

ǫ−bi|√
3

. Note also that |xiǫ,i0 − bi,i0 | ≤

|xiǫ − bi|. Thus, combining with (2.22) and (2.24), we have

|xiǫ − bi|
m = |xiǫ − bi|O(ǫ

m + |xiǫ − bi|
m) +O(ǫm + |xiǫ − bi|

m−m∗

ǫm
∗

)

= |xiǫ − bi|O(ǫ
m + |xiǫ − bi|

m) +O(ǫm) +
1

2
|xiǫ − bi|

m,
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which implies
|xiǫ − bi| = O(ǫ).

Then, from (2.22), we have
ˆ

B d
ǫ
(0)

∣

∣

∣

∣

xα +
xiǫ,α − bi,α

ǫ

∣

∣

∣

∣

m−2(

xα +
xiǫ,α − bi,α

ǫ

)

(

U i(x)
)2

= O(ǫ).

From |xiǫ − bi| = O(ǫ), we suppose xi
ǫ−bi
ǫ

→ t as ǫ→ 0. Then we have
ˆ

B d
ǫ
(0)

|xα + tα|
m−2 (xα + tα)

(

U i(x)
)2

= 0,

where tα is the αth component of t for α = 1, 2, 3.
As U i(x) is radially symmetric decreasing, we get t = 0. This yields (2.3). Then,

combining (2.3) and (2.12) yields (2.4). The proof of Proposition 2.2 is complete. �

3. Local uniqueness results

In this section, we prove the local uniqueness results. We use a contradiction

argument as that of Cao, Li and Luo [2]. Assume u
(i)
ǫ =

∑k
j=1 U

j

ǫ,x
j(i)
ǫ

+ ϕ(i), i = 1, 2,

are two distinct solutions concentrating on {b1, · · · , bk} ⊂ R
3. Set

ξǫ =
u
(1)
ǫ − u

(2)
ǫ

‖u
(1)
ǫ − u

(2)
ǫ ‖L∞(R3)

and
ξ̄ǫ(x) = ξǫ(ǫx+ xi0(1)ǫ )

for an arbitrary i0 ∈ {1, · · · , k}. In the below, i0 will be fixed always. It is clear that

‖ξ̄ǫ‖L∞(R3) = 1.

To obtain a contradiction, in the rest of this section, we prove

(3.1) ‖ξ̄ǫ‖L∞(R3) = o(1).

To prove (3.1), we will first prove that |ξ̄ǫ| → o(1) holds locally uniformly, and then
prove that it holds at infinity. To this end, we will establish a series of results. First
we have

Proposition 3.1. There holds

‖ξǫ‖ǫ = O(ǫ3/2).

Proof. Since both u
(i)
ǫ , i = 1, 2, are assumed to be solutions to Eq. (1.1), we

obtain

(3.2)

−

(

ǫ2a+ ǫb

ˆ

|∇u(1)ǫ |2
)

∆ξǫ + V (x)ξǫ

− ǫb

(
ˆ

∇(u(1)ǫ + u(2)ǫ ) · ∇ξǫ

)

∆u(2)ǫ = Cǫ(x)ξǫ

and

(3.3)

−

(

ǫ2a + ǫb

ˆ

|∇u(2)ǫ |2
)

∆ξǫ + V (x)ξǫ

− ǫb

(
ˆ

∇(u(1)ǫ + u(2)ǫ ) · ∇ξǫ

)

∆u(1)ǫ = Cǫ(x)ξǫ,
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where

Cǫ(x) = p

ˆ 1

0

(

tu(1)ǫ (x) + (1− t)u(2)ǫ (x)
)p−1

.

Adding (3.2) and (3.3) together gives

(3.4)

−

(

2ǫ2a+ ǫb

ˆ

|∇u(1)ǫ |2 + |∇u(2)ǫ |2
)

∆ξǫ + 2V (x)ξǫ

− ǫb

(
ˆ

∇(u(1)ǫ + u(2)ǫ ) · ∇ξǫ

)

∆
(

u(1)ǫ + u(2)ǫ

)

= 2Cǫ(x)ξǫ.

Multiply ξǫ on both sides of (3.4) and integrate over R
3. As the terms containing b

are positive, we can throw away them. So

‖ξǫ‖
2
ǫ ≤

ˆ

Cǫξ
2
ǫdx.

As |ξǫ| ≤ 1, for i = 1, 2, direct computation gives
ˆ

(

U j

ǫ,x
j(i)
ǫ

)p−1

ξ2ǫ ≤ Cǫ3

and
ˆ

(

ϕ(i)
)p−1

ξ2ǫ ≤ ‖ϕ(i)‖p−1
p+1‖ξǫ‖

2
p+1 ≤ C

(

ǫ
3

p+1
− 3

2‖ϕ(i)‖ǫ

)p−1 (

ǫ
3

p+1
− 3

2‖ξǫ‖ǫ

)2

= oǫ(1)‖ξǫ‖
2
ǫ ,

where we have used (2.7) and Proposition 2.1. Hence

‖ξǫ‖
2
ǫ ≤

ˆ

Cǫξ
2
ǫdx ≤

ˆ

C

(

2
∑

i,j=1

(

U j

ǫ,x
j(i)
ǫ

)p−1

+
2
∑

i=1

(

ϕ(i)
)p−1

)

ξ2ǫdx

= O(ǫ3) + oǫ(1)‖ξǫ‖
2
ǫ ,

which implies the desired estimate. The proof is complete. �

Next we study the asymptotic behavior of ξ̄ǫ.

Proposition 3.2. There exist dβ ∈ R, β = 1, 2, 3, such that (up to a subse-
quence)

ξ̄ǫ →
3
∑

β=1

dβ
∂U i0

∂xβ
in C1

loc
(R3)

as ǫ→ 0. Here i0 is the index used in the definition of ξ̄ǫ.

Proof. We will prove that the limiting function of ξ̄ǫ belongs to the kernel of a
linear operator associated to U i0 . It is straightforward to deduce from (3.2) that ξ̄ǫ
solves

(3.5)

−

(

a+ ǫ−1b

ˆ

|∇u(1)ǫ |2
)

∆ξ̄ǫ + V (ǫx+ xi0(1)ǫ )ξ̄ǫ

− ǫ−1b

(
ˆ

∇(u(1)ǫ + u(2)ǫ ) · ∇ξǫ

)

∆u(2)ǫ (ǫx+ xi0(1)ǫ ) = Cǫ(ǫx+ xi0(1)ǫ )ξ̄ǫ.

Thus, in view of ‖ξ̄ǫ‖L∞(R3) = 1, the elliptic regularity theory implies that ξ̄ǫ is

locally uniformly bounded with respect to ǫ in C1,θ
loc

(R3) for some θ ∈ (0, 1). As a
consequence, we assume (up to a subsequence) that

ξ̄ǫ → ξ̄ in C1
loc
(R3).
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We claim that ξ̄ ∈ KerLi0 , that is,

−

(

a + b
k
∑

j=1

ˆ

|∇U j |2

)

∆ξ̄ − 2b

(
ˆ

∇U i0 · ∇ξ̄

)

∆U i0 + V (bi0)ξ̄

= p(U i0)p−1ξ̄.

(3.6)

Then by the fact that U i0 is nondegenerate, we have ξ̄ =
∑3

β=1 dβ
∂U i0

∂xβ
for some

dβ ∈ R (β = 1, 2, 3), and thus Proposition 3.2 is proved.
To deduce (3.6), we only need to show that (3.6) is the limiting equation of

Eq. (3.5). Observing that

ǫ−1

ˆ

|∇u(1)ǫ |2 = ǫ−1

ˆ

∣

∣

∣

∣

∣

k
∑

j=1

∇U j(
x− x

j(1)
ǫ

ǫ
) +∇ϕ(1)

∣

∣

∣

∣

∣

2

= ǫ−1

ˆ

∣

∣

∣

∣

∣

k
∑

j=1

∇U j(
x− x

j(1)
ǫ

ǫ
)

∣

∣

∣

∣

∣

2

+ 2ǫ−1

ˆ k
∑

j=1

∇U j

(

x− x
j(1)
ǫ

ǫ

)

· ∇ϕ(1) + ǫ−1

ˆ

|∇ϕ(1)|2

= ǫ−1

ˆ k
∑

j=1

|∇U j(
x− x

j(1)
ǫ

ǫ
)|2

+ ǫ−1
∑

i 6=j

ˆ

∇U j(
x− x

j(1)
ǫ

ǫ
) · ∇U i(

x− x
i(1)
ǫ

ǫ
) +O(ǫ−

3
2‖ϕ‖ǫ)

=

ˆ k
∑

j=1

|∇U j |2 +
∑

i 6=j

ˆ

∇U j(z) · ∇U i(z +
x
j(1)
ǫ − x

i(1)
ǫ

ǫ
) dz +O(ǫ−

3
2‖ϕ‖ǫ)

=

ˆ k
∑

j=1

|∇U j |2 +O(e−
γ
ǫ ) + O(ǫm),

where we have used (2.5), (2.6) and (2.4), so

(3.7) ǫ−1

ˆ

|∇u(1)ǫ |2 −

ˆ k
∑

j=1

|∇U j|2 = O(e−
γ
ǫ ) +O(ǫm) → 0

as ǫ→ 0. For convenience, we introduce

ū(i)ǫ (x) = u(i)ǫ (ǫx+ xi0(1)ǫ ) and ϕ̄(i)
ǫ = ϕ(i)

ǫ (ǫx+ xi0(1)ǫ )

for i = 1, 2. Similarly, we have

ǫ−1

ˆ

∇(u(1)ǫ + u(2)ǫ ) · ∇ξǫ − 2

ˆ

∇U i0 · ∇ξ̄ǫ

=

ˆ

(

∇ū(1)ǫ +∇ū(2)ǫ − 2∇U i0
)

· ∇ξ̄ǫ

=

ˆ

(

∑

j 6=i0

∇U j(z +
x
i0(1)
ǫ − x

j(1)
ǫ

ǫ
) +

∑

j 6=i0

∇U j(z +
x
i0(1)
ǫ − x

j(2)
ǫ

ǫ
)

+∇U i0(z) +∇U i0(z +
x
i0(1)
ǫ − x

i0(2)
ǫ

ǫ
)− 2∇U i0(z)

)

· ∇ξ̄ǫ +

ˆ

(

∇ϕ̄(1) +∇ϕ̄(2)
)

· ∇ξ̄ǫ

= O(e−
γ
ǫ + ǫm− 1

2 )‖ξ̄ǫ‖ǫ → 0
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as ǫ→ 0, and that, for any Φ ∈ C∞
0 (R3),

ˆ

∇
(

u(2)ǫ (ǫx+ xi0(1)ǫ )− U i0
)

· ∇Φ

=

ˆ

∇

(

U i0(z +
x
i0(1)
ǫ − x

i0(2)
ǫ

ǫ
) +

∑

j 6=i0

U j(z +
x
i0(1)
ǫ − x

j(2)
ǫ

ǫ
)− U i0(z)

)

· ∇Φ

+

ˆ

∇ϕ̄(2) · ∇Φ = O(e−
γ
ǫ + ǫm− 1

2 )‖Φ‖ǫ → 0.

Here, we have used (2.3), which implies

x
i0(1)
ǫ − x

i0(2)
ǫ

ǫ
= o(1),

and used
x
i0(1)
ǫ − x

j(i)
ǫ

ǫ
→ ∞ for i = 1, 2 and j 6= i0.

as ǫ → 0. Combining the above two formulas and ξ̄ǫ → ξ̄ in C1
loc
(R3), we conclude

that

ǫ−1b

(
ˆ

∇(u(1)ǫ + u(2)ǫ ) · ∇ξǫ

)

∆u(2)ǫ (ǫx+ xi0(1)ǫ )

→ 2b

(
ˆ

∇U i0 · ∇ξ̄

)

∆U i0

(3.8)

in H−1(R3). Since V (ǫx+ x
i0(1)
ǫ ) → V (bi0) holds locally uniformly, we have

V (ǫx+ xi0(1)ǫ )ξ̄ǫ → V (bi0)ξ̄.

Also, similar to Cao et. al. [2, proof of (3.11)], we have for any Φ ∈ C∞
0 (R3),

(3.9)

ˆ

Cǫ(ǫx+ xi0(1)ǫ )ξ̄ǫΦ →

ˆ

p(U i0)p−1ξ̄Φ.

Finally, combining (3.7) (3.8) (3.9), we obtain (3.6). The proof is complete. �

Now we prove

Proposition 3.3. Let dβ be defined as in Proposition 3.2. Then

dβ = 0 for β = 1, 2, 3.

Proof. We will combine Proposition 2.2 and the Pohozaev-type identity (2.8) to
prove that

(3.10) dβ

ˆ

|xα|
m−2xαU

i0(x)
∂U i0

∂xβ
= 0.

Applying (2.8) to u
(1)
ǫ and u

(2)
ǫ with Ω = Bd(x

i0(1)
ǫ ), where d is chosen in the same

way as that of Proposition 2.2, which combine with (2.4), (2.13) and Proposition 3.1
implies

(3.11)

ˆ

∂Bd(x
i0(1)
ǫ )

(ǫ2|∇ϕ(i)|2 + V (x)|ϕ(i)|2) = O
(

‖ϕ(i)‖2ǫ
)

= O
(

ǫ3+2m
)

for i = 1, 2 and

(3.12)

ˆ

∂Bd(x
i0(1)
ǫ )

(ǫ2|∇ξǫ|
2 + V (x)|ξǫ|

2) = O
(

ǫ3
)

.
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We obtain

(3.13)

ˆ

Bd(x
i0(1)
ǫ )

∂V

∂xα

(

u(1)ǫ + u(2)ǫ

)

ξǫ

=

(

ǫ2a+ ǫb

ˆ

|∇u(1)ǫ |2
)
ˆ

∂Bd(y
(1)
ǫ )

(

∇u(1)ǫ +∇u(2)ǫ

)

· ∇ξǫνα

+

(

ǫ2a + ǫb

ˆ

|∇u(2)ǫ |2
)
ˆ

∂Bd(y
(1)
ǫ )

(

∂ξǫ
∂xα

∂u
(2)
ǫ

∂ν
−
∂ξǫ
∂ν

∂u
(1)
ǫ

∂xα

)

+ ǫb

(
ˆ

∇
(

u(1)ǫ + u(2)ǫ

)

· ∇ξǫ

)
ˆ

∂Bd(y
(1)
ǫ )

(

|∇u(2)ǫ |2να − 2∂νu
(1)
ǫ ∂αu

(1)
ǫ

)

+

ˆ

∂Bd(x
i0(1)
ǫ )

V (x)
(

u(1)ǫ + u(2)ǫ

)

ξǫνα − 2

ˆ

∂Bd(x
i0(1)
ǫ )

Aǫξǫνα,

where 1 ≤ α ≤ 3 and

Aǫ =

ˆ 1

0

(

tu(1)ǫ + (1− t)u(2)ǫ

)p
.

We estimate (3.13) term by term. By (2.16), (3.11) and (3.12), we have
(

ǫ2a + ǫb

ˆ

|∇u(1)ǫ |2
)
ˆ

∂Bd(y
(1)
ǫ )

∣

∣∇
(

u(1)ǫ + u(2)ǫ

)

· ∇ξǫνα
∣

∣

≤ C

(

ǫ2
ˆ

∂Bd(y
(1)
ǫ )

|∇u(1)ǫ |2
)

1
2
(

ǫ2
ˆ

∂Bd(y
(1)
ǫ )

|∇ξǫ|
2

)
1
2

= O(ǫγ + ‖ϕǫ‖ǫ)O(ǫ
3
2 ) = O(ǫ3+m)

by choosing γ sufficiently large. Similarly, we obtain

(

ǫ2a+ ǫb

ˆ

|∇u(2)ǫ |2
)
ˆ

∂Bd(y
(1)
ǫ )

(

∂ξǫ
∂xα

∂u
(2)
ǫ

∂ν
−
∂ξǫ
∂ν

∂u
(1)
ǫ

∂xα

)

= O(ǫ3+m)

and

ǫb

(
ˆ

∇
(

u(1)ǫ + u(2)ǫ

)

· ∇ξǫ

)
ˆ

∂Bd(y
(1)
ǫ )

(

|∇u(2)ǫ |2να − 2∂νu
(1)
ǫ ∂iu

(1)
ǫ

)

= O(ǫ3+m).

By (3.11) and (3.12), we have
ˆ

∂Bd(x
i0(1)
ǫ )

V (x)
(

u(1)ǫ + u(2)ǫ

)

ξǫνα

≤ C
2
∑

i=1

(
ˆ

∂Bd(x
i0(1)
ǫ )

|u(i)ǫ |2
)

1
2
(
ˆ

∂Bd(x
i0(1)
ǫ )

|ξǫ|
2

)
1
2

= O(ǫ
3
2
+m · ǫ

3
2 ) = O(ǫ3+m).

As to Aǫ, we have

Aǫ = O(ǫγ +

2
∑

i=1

|ϕ(i)|p) on ∂Bd(x
i0(1)
ǫ )
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for any given γ > 0, since U j , j = 1, · · · , k, decay exponentially at infinity. Hence
we can deduce that

ˆ

∂Bd(x
i0(1)
ǫ )

Aǫξǫνα ≤ Cǫγ
(
ˆ

∂Bd(x
i0(1)
ǫ )

|ξǫ|
2

)
1
2

+ C

2
∑

i=1

(
ˆ

∂Bd(x
i0(1)
ǫ )

|ϕ(i)|p
)

|ξǫ|

≤ Cǫγ+
3
2 +O

(

2
∑

i=1

(ǫ
3

p+1
− 3

2‖ϕ(i)‖ǫ)
p(ǫ

3
p+1

− 3
2‖ξǫ‖ǫ)

)

= O(ǫ3+pm),

by choosing γ > 3
2
+ pm.

Hence by the above estimate, there holds

(3.14)

ˆ

Bd(x
i0(1)
ǫ )

∂V

∂xα

(

u(1)ǫ + u(2)ǫ

)

ξǫ = O(ǫ3+m).

Next we estimate the left hand side of (3.14). By the assumption (V2), we have
ˆ

Bd(x
i0(1)
ǫ )

∂V

∂xα

(

u(1)ǫ + u(2)ǫ

)

ξǫ

= mci0,α

ˆ

Bd(x
i0(1)
ǫ )

|xα − bi0,α|
m−2(xα − bi0,α)

(

u(1)ǫ + u(2)ǫ

)

ξǫ

+O

(
ˆ

Bd(x
i0(1)
ǫ )

|x− bi0 |
m
(

u(1)ǫ + u(2)ǫ

)

ξǫ

)

=: I1 + I2.

Note that

I2 = O



ǫ3+m

ˆ

B d
ǫ
(0)

∣

∣

∣

∣

∣

x+
x
i0(1)
ǫ − bi0

ǫ

∣

∣

∣

∣

∣

m(

U i0 + U i0

(

x+
x
i0(1)
ǫ − x

i0(2)
ǫ

ǫ

)

+ e

)

ξ̄ǫ(x)



 ,

where

e =

2
∑

i=1

∑

j 6=i0

U j

(

x+
x
i0(1)
ǫ − xj(i)

ǫ

)

+

2
∑

i=1

ϕi
ǫ(ǫx+ xi0(1)ǫ ).

Using the estimates (2.3) and (2.4) and the exponential decay of U j (j = 1, . . . , k),
and the fact that ‖ξ̄ǫ‖∞ = 1 we deduce that

I2 = O(ǫ3+m).

Combining the above estimate with (3.14) yields

I1 = O(ǫ3+m).

By the same arguments as that of I2, and using the assumption that ci,α 6= 0 for
every i, α and using Proposition 3.2, we deduce

dα

ˆ

B d
ǫ
(0)

|xα + oǫ(1)|
m−2 (xα + oǫ(1))

(

U i0 + U i0

(

x+
x
i0(1)
ǫ − x

i0(2)
ǫ

ǫ

)

+ e

)

ξ̄ǫ(x)

=O(ǫ)

which implies
3
∑

β=1

dβ

ˆ

|xα|
m−1xαU

i0(x)
∂U i0

∂xβ
(x) = 0.

Thus dα = 0 for α = 1, 2, 3. The proof is complete. �
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Now we can complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Propositions 3.2 and 3.3 imply that

‖ξ̄ǫ‖L∞(BR(0)) = oǫ(1),

so we have

‖ξǫ‖L∞

(

⋃k
i=1 BRǫ(x

i(1)
ǫ )

) = oǫ(1).

In the domain R
3\
⋃k

i=1BRǫ(x
i(1)
ǫ ), we can apply the same argument as that of [2,

Proposition 3.5] to conclude that

‖ξǫ‖L∞

(

R3\
⋃k

i=1 BRǫ(x
i(1)
ǫ )

) = oǫ(1).

Thus ‖ξǫ‖L∞(R3) = oǫ(1) holds, which is in contradiction with ‖ξǫ‖L∞(R3) = 1. The
proof is complete. �
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