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Abstract. We give new proofs of Hardy space estimates for fractional and singular integral

operators on weighted and variable exponent Hardy spaces. Our proofs consist of several interlocking

ideas: finite atomic decompositions in terms of L∞ atoms, vector-valued inequalities for maximal

and other operators, and Rubio de Francia extrapolation. Many of these estimates are not new,

but we give new and substantially simpler proofs, which in turn significantly simplifies the proofs

of the Hardy spaces inequalities.

1. Introduction

In this paper we give new proofs of norm inequalities for Calderón–Zygmund
singular integrals and fractional integral operators on the weighted Hardy spaces,
Hp(w), and the variable Hardy spaces, Hp(·). The theory of weighted Hardy spaces
is classical: see the monograph by Strömberg and Torchinsky [38] and the earlier
paper by García-Cuerva [15]. Variable Hardy spaces are Hardy spaces defined in the
scale of the variable Lebesgue spaces Lp(·), a generalization of the Lp spaces that
has been an active area of research for the past two decades: see the books [5, 12].
The variable Hardy spaces were introduced more recently: see [11, 31]. (Complete
definitions of these spaces will be given in Section 2 below.)

We give Hardy space estimates for three types of operators: singular integrals
of convolution type, fractional integral operators (which are also convolution opera-
tors), and singular integrals of non-convolution type. A Calderón–Zygmund singular
integral of convolution type is an operator T such that for all f ∈ C∞

c ,

Tf(x) = p.v.

ˆ

Rn

K(x− y)f(y) dy,

where the kernel K is defined on R
n \ {0} and has regularity of order N + 1:

|∂α
xK(x)| ≤ Aα

|x|n+|α|
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for all α such that |α| ≤ N +1, where N is a sufficiently large integer. For 0 < p ≤ 1,
if N > ⌊n

(

1
p
− 1
)

⌋, then T : Hp → Hp. (See Stein [37] or García-Cuerva and Rubio

de Francia [16].)
Our first two theorems extend this result to weighted and variable exponent

Hardy spaces; again, for brevity we defer some technical definitions to Section 2. For
a weight w ∈ A∞ let rw = inf{p : w ∈ Ap}.

Theorem 1.1. Given a weight w ∈ A∞ and 0 < p < ∞, suppose that T is a
Calderón–Zygmund singular integral operator of convolution type with regularity of
order N + 1, where

N >

⌊

n

(

rw
p

− 1

)⌋

.

Then T : Hp(w) → Hp(w).

Remark 1.2. Weighted Hardy space estimates for singular integrals (actually for
the more general class of multipliers) were proved by Strömberg and Torchinsky [38].
Theorem 1.1 was proved by Lu and Zhu [27] for singular integrals with C∞ kernels;
see the bibliography of their paper for earlier results.

Theorem 1.3. Given an exponent function p(·) ∈ P0, suppose 0 < p− ≤ p+ < ∞
and p(·) ∈ LH . Suppose further that T is a Calderón–Zygmund singular integral
operator of convolution type with regularity of order N + 1, where

N >

⌊

n

(

1

p−
− 1

)⌋

.

Then T : Hp(·) → Hp(·).

Remark 1.4. Theorem 1.3 was first proved independently in [11, 31].

Second, we consider the fractional integral operator, Iα. Given 0 < α < n, define

Iαf(x) =

ˆ

Rn

f(y)

|x− y|n−α
dy.

If 0 < p < n
α

and 1
p
− 1

q
= α

n
, then Iα : H

p → Hq. (See Stein [37] or Krantz [25].)

Theorem 1.5. Given 0 < α < n, 0 < p < n
α
, define q by 1

p
− 1

q
= α

n
. If a weight

w is such that wp ∈ RH q
p
, then Iα : H

p(wp) → Hq(wq).

Remark 1.6. Theorem 1.5 was first proved by Strömberg and Wheeden [39];
see also Gatto, Gutiérrez and Wheeden [17].

Theorem 1.7. Given 0 < α < n, and p(·) ∈ P0, suppose 0 < p− ≤ p+ < n
α

and

p(·) ∈ LH . Define q(·) by 1
p(·)

− 1
q(·)

= α
n
. Then Iα : H

p(·) → Hq(·).

Remark 1.8. Theorem 1.7 was first proved by Rocha and Urciuolo [32]. See
also Sawano [34, Theorem 5.1].

Third, we consider Calderón–Zygmund operators of non-convolution type, as
defined by Coifman and Meyer [4]. An operator T is a Calderón–Zygmund operator
if it is a bounded operator on L2(Rn), and if all f ∈ L∞

c and x 6∈ supp(f),

Tf(x) =

ˆ

Rn

K(x, y)f(y) dy,
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where the distributional kernel coincides with a function K defined away from the
diagonal on R

2n and satisfies the standard estimates

|K(x, y)| ≤ C

|x− y|n , x 6= y,(1.1)

|K(x, y + h)−K(x, y)|+ |K(x+ h, y)−K(x, y)| ≤ C|h|δ
|x− y|n+δ

(1.2)

for all |h| ≤ 1
2
|x− y|, where C > 0 and 0 < δ ≤ 1.

For boundedness on Hardy spaces we will also need to assume two additional
conditions on T . First, we will need that the kernel K satisfies for some N > 0 the
additional smoothness condition

(1.3) |∂β
yK(x, y + h)− ∂β

yK(x, y)| ≤ C|h|δ
|x− y|n+N+δ

for all x 6= y, |h| ≤ |x−y|
2

and all |β| = N . Second, we will need that the operator T
has L vanishing moments, in the sense that

(1.4)

ˆ

xβTa(x)dx = 0

for all (L + 1,∞) atoms a and |β| ≤ L. We note that this moment condition is
satisfied by all convolution type singular integrals (see [21, Lemma 2.1]), and is a
necessary condition for T to map into unweighted Hp (see [18, Theorem 7]).

Theorem 1.9. Given w ∈ A∞ and 0 < p < ∞, suppose that T is a Calderón–
Zygmund operator associated with a kernel K that satisfies (1.3) for all |β| = L+ 1,
and suppose T has L vanishing moments (1.4), where

L = max

(⌊

n

(

rw
p

− 1

)⌋

,−1

)

.

(If L = −1, then condition (1.4) can be omitted.) Then T : Hp(w) → Hp(w).

Remark 1.10. Norm inequalities for non-convolution Calderón–Zygmund oper-
ators have been considered by a number of authors. In the unweighted case, Alvarez
and Milman [1] show that if T is a Calderón–Zygmund operator, then T : Hp → Hp

for n
n+δ

< p ≤ 1, where δ is the exponent in (1.3). From Theorem 1.9 we get the
slightly larger range n

n+1
< p ≤ 1 but only if we assume that L = 0, so that we

require greater regularity on the operator T than they do.
Their results were generalized to the full range of 0 < p ≤ 1 in the unweighted

case by Hart and Lu [22], and to 0 < p < ∞ and w ∈ A∞ in the weighted case by
Hart and Oliveira [23]. Their results are not directly comparable to ours, though the
conditions on the weights and the range of p are roughly the same. They assume
a great deal more regularity on the kernel K: they require that a version of (1.3)
holds that involves derivatives in both x and y, whereas we only require derivatives
in y. We also note that rather than (1.4), they require that T ∗(xβ) = 0. The two are
formally equivalent, but the latter requires additional machinery to define.

Theorem 1.11. Given an exponent function p(·) ∈ P0, suppose 0 < p− ≤
p+ < ∞ and p(·) ∈ LH . Suppose further that T is a Calderón–Zygmund operator
associated with a kernel K that satisfies (1.3) for all |β| = L+ 1, and suppose T has
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L vanishing moments (1.4), where

L = max

(⌊

n

(

1

p−
− 1

)⌋

,−1

)

.

(If L = −1, then condition (1.4) can be omitted.) Then T : Hp(·) → Hp(·).

Remark 1.12. Theorem 1.11 is new. However, a slightly weaker result was
implicit as a special case of a result for multilinear Calderón–Zygmund operators
recently proved in [10].

Most of our results are not new; however, our main contribution in this paper is
our new approach to the proofs, which we believe is significantly simpler and more
transparent than existing proofs. Therefore, before giving the actual proofs, we want
to summarize their main ideas.

The first component is a finite atomic decomposition in terms of L∞ atoms. In
the unweighted case such a decomposition was first proved by Meda, Sjögren and
Vallarino [29]. They showed that on a dense set in Hp, 0 < p < 1, it is possible to
write a function f as a finite sum of (N,∞) atoms

f =

M
∑

i=1

λiai

in such a way that

‖f‖Hp ≈
( M
∑

i=1

λp
i

)
1
p

.

The advantage of such a decomposition is that it allows the interchange of the op-
erator and the sum without having to worry about the convergence of the sum, and
reduces the problem to estimating the operator on individual atoms. In a previous
paper [10] we extended the finite atomic decomposition to weighted Hardy spaces;
here we prove it for variable Hardy spaces, generalizing a result proved in [11].

The second component of our proofs starts with a vector-valued inequality due
to Grafakos and Kalton [19]: given any collection of cubes Qk and functions gk with
supp(gk) ⊂ Qk, then for 0 < p ≤ 1,

∥

∥

∥

∥

∑

k

gk

∥

∥

∥

∥

p

.

∥

∥

∥

∥

∑

k

(

−
ˆ

Qk

gk dx

)

χQk

∥

∥

∥

∥

p

.

Their proof was quite technical, since the cubes are not assumed to be disjoint.
Though not needed, we give a very elementary proof of this inequality of Grafakos
and Kalton. More importantly, however, we prove versions that hold for p > 1 on
weighted spaces, and on variable exponent spaces. Using these, we can divide the
estimate of the operator on individual atoms into their local and global pieces and
then estimate the local piece using unweighted Lq estimates for q > max(p, 1). We
also give a new proof of a variant of the Grafakos–Kalton lemma that is used in the
off-diagonal case for the fractional integral operator and that in the weighted case is
due to Strömberg and Wheeden [39] and in the variable exponent case to Sawano [34].
Again our proofs are much simpler than the original ones.

The third component of our proofs are vector-valued inequalities for the Hardy–
Littlewood maximal operator. It is a classical result due to Fefferman and Stein [14]
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that for 1 < p, r < ∞,

∥

∥

∥

∥

(

∑

k

(Mgk)
r

)
1
r
∥

∥

∥

∥

p

.

∥

∥

∥

∥

(

∑

k

|gk|r
)

1
r
∥

∥

∥

∥

p

.

A similar inequality also holds for the fractional maximal operator, Mα, 0 < α < n,
and is due to Ruiz and Torrea [33]: if 1 < p < n

α
, 1

p
− 1

q
= α

n
, and 1 < r < ∞,

∥

∥

∥

∥

(

∑

k

(Mαgk)
r

)
1
r
∥

∥

∥

∥

q

.

∥

∥

∥

∥

(

∑

k

|gk|r
)

1
r
∥

∥

∥

∥

p

.

Both of these inequalities extend to weighted and variable Lebesgue spaces, and we
use them to estimate the global part of the operator applied to an atom.

The final component of our proofs is the theory of Rubio de Francia extrapolation.
Using the reformulation in terms of extrapolation pairs [9], the above vector-valued
inequalities for maximal operators are an immediate consequence of the correspond-
ing scalar inequalities. The variants of the Grafakos–Kalton lemma described above
also follow easily from extrapolation. For these we need to use more recent versions of
extrapolation, including limited range extrapolation [8], extrapolation with respect to
reverse Hölder weights [3], and extrapolation into variable Lebesgue spaces [5, 6, 9].
Our proofs also depend on several new extrapolation results which we prove here.

The remainder of this paper is organized as follows. In Section 2 we give the
necessary definitions and results about weighted and variable exponent Hardy spaces.
In Section 3 we give the versions of extrapolation that we use and prove the new
versions we need. In Section 4 we state and prove the vector-valued inequalities we
use. In Section 5 we prove Theorems 1.1 and 1.3; in Section 6 we prove Theorems 1.5
and 1.7; and in Section 7 we prove Theorems 1.9 and 1.11. Even though the proofs
are given in separate sections, we want to emphasize that they all have a common
structure. Finally, in Section 8 we briefly discuss generalizing our results to Hardy
spaces defined with respect to other scales of Banach function spaces.

Throughout this paper, n will denote the dimension of the underlying space, Rn.
By a cube Q we will always mean a cube whose sides are parallel to the coordinate
axes, and for τ > 0, τQ will denote the cube with the same center such that ℓ(τQ) =
τℓ(Q). Given Q, let Q∗ = 2

√
nQ and Q∗∗ = (Q∗)∗. We define the average of a

function f on Q by −
´

Q
f dx = |Q|−1

´

Q
f dx. By C, c, etc. we will mean constants

that may depend on the underlying parameters in the proof. Their values may change
at each appearance. Given two quantities A and B, we will write A . B if there
exists a constant c such that A ≤ cB. If A . B and B . A, we write A ≈ B.

2. Preliminaries

In this section we gather together some basic results about weighted and variable
exponent spaces. We begin with some information about weights. For more informa-
tion, see [9, 13, 16]. By a weight we mean a non-negative, locally integrable function
w such that 0 < w(x) < ∞ a.e. For 1 < p < ∞, a weight is in the Muckenhoupt
class Ap if for every cube Q,

−
ˆ

Q

w dx

(

−
ˆ

Q

w1−p′ dx

)p−1

≤ C,
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and when p = 1, w ∈ A1 if for every cube Q and a.e. x ∈ Q,

−
ˆ

Q

w dx ≤ Cw(x).

If 1 < p < ∞ and w ∈ Ap, then the Hardy–Littlewood maximal operator, defined by

Mf(x) = sup
Q

−
ˆ

Q

|f(y)| dy · χQ(x),

is bounded on Lp(w).
Define the set

A∞ =
⋃

p≥1

Ap.

Given a weight w ∈ A∞, recall rw = inf{r ≥ 1: w ∈ Ar}. A weight w ∈ A∞ if and
only if w ∈ RHs for some s > 1: that is, for every cube Q,

(

−
ˆ

Q

ws dx

)
1
s

≤ C−
ˆ

Q

w dx.

Furthermore, we have the property that w ∈ RHs if and only if ws ∈ A∞. The
limiting class RH∞ is defined to be all w such that for every cube Q and a.e. x ∈ Q,

w(x) ≤ C−
ˆ

Q

w dx.

Given 1 < p, q < ∞, a weight satisfies the Ap,q condition of Muckenhoupt and
Wheeden if for every cube Q,

(

−
ˆ

Q

wq dx

)
1
q
(

−
ˆ

Q

w−p′ dx

)
1
p′

≤ C.

It follows from the definition that w ∈ Ap,q if and only if wq ∈ A1+ q
p′

. When p = 1

and q > 1; we say that w ∈ A1,q if for every cube Q and almost every x ∈ Q,

−
ˆ

Q

wq dx ≤ Cw(x)q.

This is clearly equivalent to wq ∈ A1. Given 0 ≤ α < n and 1 < p < n
α
, define q by

1
p
− 1

q
= α

n
. If w ∈ Ap,q then the fractional maximal operator,

Mαf(x) = sup
Q

|Q|αn−
ˆ

Q

|f(y)| dy · χQ(x),

is bounded from Lp(wp) to Lq(wq).
We now define the weighted Hardy spaces Hp(w), 0 < p < ∞. For more infor-

mation, see [38]; also see [35]. Let S denote the Schwartz class of smooth functions.
Given a (large) integer N0, define

SN0 =

{

φ ∈ S :

ˆ

Rn

(1 + |x|)N0

(

∑

|β|≤N0

|∂βφ(x)|2
)

dx ≤ 1

}

.

Given φ ∈ SN0 , define the radial maximal operator

Mφf(x) = sup
t>0

|φt ∗ f(x)|,
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where φt(x) = t−nφ(x/t). Define the grand maximal operator

MN0f(x) = sup
φ∈SN0

Mφf(x).

Given w ∈ A∞ and 0 < p < ∞, define the weighted Hardy space to be the set of
distributions

Hp(w) = {f ∈ S ′ : MN0f ∈ Lp(w)}
with quasi-norm ‖f‖Hp(w) = ‖MN0f‖Lp(w). If p > 1 and w ∈ Ap, then Hp(w) =
Lp(w), since MN0f is dominated pointwise by Mf , where M is the Hardy–Littlewood
maximal operator. We can choose the value N0, depending only on n, p and rw, so
that f ∈ Hp(w) if and only if for any φ ∈ SN0 , Mφf ∈ Lp(w). The value of N0 chosen
will be implicit in our constants below.

Given an integer N > 0, we define an (N,∞) atom be a bounded function a such
that ‖a‖∞ ≤ 1, supp(a) ⊂ Q for some cube Q, and such that for all |β| ≤ N ,

ˆ

Rn

xβa(x) dx = 0.

Given 0 < p < ∞ and w ∈ A∞, let

sw =

⌊

N

(

rw
p

− 1

)⌋

+

.

If N > sw, then any (N,∞) atom is in Hp(w). Moreover, every element of f can
be decomposed as the sum of atoms: if f ∈ Hp(w), then there exists a sequence of
(N,∞) atoms {ai} with supports {Qi}, and λi > 0 such that

f =
∑

i

λiai

and

‖f‖Hp(w) ≈
∥

∥

∥

∥

∑

i

λiχQi

∥

∥

∥

∥

Lp(w)

.

Given N > sw, define

ON =

{

f ∈ C∞
0 :

ˆ

Rn

xβf(x) dx = 0, 0 ≤ |β| ≤ N

}

.

Each element of ON is a multiple of an (N,∞) atom, so it follows from the atomic
decomposition that ON is dense in Hp(w). Moreover, we have the following finite
atomic decomposition that was proved in [10].

Proposition 2.1. Given 0 < p < ∞ and w ∈ A∞, fix N > sw. Then if f ∈ ON ,
there exists a finite sequence {ai}Mi=1 of (N,∞) atoms with supports Qi, and a non-
negative sequence {λi}Mi=1 such that f =

∑

i λiai and
∥

∥

∥

∥

M
∑

i=1

λiχQi

∥

∥

∥

∥

Lp(w)

≤ C‖f‖Hp(w).

Remark 2.2. As an immediate consequence of Proposition 2.1 and the density
of ON in Hp(w), to prove that an operator T extends to a bounded operator from
Hp(w) to itself, it suffices to show that if f is a finite sum of (N,∞) atoms, then

‖Tf‖Lp(w) .

∥

∥

∥

∥

M
∑

i=1

λiχQi

∥

∥

∥

∥

Lp(w)

.
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We now define the variable exponent Hardy spaces. We first state some basic
results about variable Lebesgue spaces. For more information, see [5]. Let P0 be the
collection of all measurable functions p(·) : Rn → (0,∞). Define

p− = ess inf
x∈Rn

p(x), p+ = ess sup
x∈Rn

p(x).

An exponent p(·) ∈ P0 is log-Hölder continuous, denoted by p(·) ∈ LH , if

|p(x)− p(y)| ≤ C0

− log(|x− y|) , |x− y| < 1

2
,

and if there exists constants p∞ and C∞ such that

|p(x)− p∞| ≤ C∞

log(e+ |x|) .

We define Lp(·) to be the set of all measurable functions f such that

‖f‖p(·) = inf

{

λ > 0:

ˆ

Rn

( |f(x)|
λ

)p(x)

dx ≤ 1

}

< ∞.

This defines a quasi-norm and Lp(·) is a quasi-Banach function space; if p− ≥ 1, it is
a Banach space. If p(·) ∈ P0, p− > 1, and p(·) ∈ LH , then the Hardy–Littlewood
maximal operator is bounded on Lp(·). If 1 < p− ≤ p+ ≤ n

α
and q(·) is defined by

1
p(·)

− 1
q(·)

= α
n
, then the fractional maximal operator Mα maps Lp(·) to Lq(·).

Given p(·) ∈ P0, define the variable Hardy space Hp(·) to be the set of all distri-
butions f such that MN0f ∈ Lp(·). Again, we may fix N0 depending only p(·) and n
such that f ∈ Hp(·) if and only if Mφf ∈ Lp(·), where φ ∈ S. We have the following
atomic decomposition (see [11]): if

N > sp(·) =

⌊

n

(

1

p−
− 1

)⌋

+

,

then every f ∈ Hp(·) can be written as the sum of (N,∞) atoms,

f =
∑

i

λiai,

and

‖f‖Hp(·) ≈
∥

∥

∥

∥

∑

i

λiχQi

∥

∥

∥

∥

Lp(·)

.

Remark 2.3. This is a slightly different formulation of the atomic decomposition
than that given in [11]. However, the difference lies in the normalization of the atoms
and is not significant for our purposes.

Similar to the weighted theory, if we fix N > sp(·), then the atomic decomposition

implies that ON is dense in Hp(·). Furthermore, we have a finite atomic decomposition
for elements of ON . The proof of the following result is nearly the same as the proof of
Proposition 2.1; the proof can be adapted to the variable Lebesgue space setting using
the ideas used to prove a similar finite atomic decomposition in [11, Theorem 7.8].

Proposition 2.4. Given p(·) ∈ P0, suppose 0 < p− ≤ p+ < ∞ and p(·) ∈ LH .
Fix 0 < p0 < p−. Then for any N such that

N >

⌊

N

(

1

p0
− 1

)⌋

+

,
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given any f ∈ ON , there exists a finite sequence {ai}Mi=1 of (N,∞) atoms with
supports Qi, and a non-negative sequence {λi}Mi=1 such that f =

∑

i λiai and

∥

∥

∥

∥

M
∑

i=1

λiχQi

∥

∥

∥

∥

Lp(·)

. ‖f‖Hp(·).

Remark 2.5. Unless N(p−1
− − 1) is an integer, the lower bound for N in Propo-

sition 2.4 is the same as sp(·) defined above.

3. Extrapolation results

In this section we review the theory of Rubio de Francia extrapolation which is
used to prove weighted norm inequalities in weighted and variable exponent spaces.
We also prove two new variants that we will use in Section 4 below.

We begin by recalling the abstract notion of extrapolation pairs. For more infor-
mation, see [9]. We define a family of extrapolation pairs to be a family F of pairs
of non-negative, measurable functions (f, g). Whenever we write an inequality of the
form

‖f‖X . ‖g‖Y , (f, g) ∈ F ,

where ‖ · ‖X and ‖ · ‖Y are norms in a Banach or quasi-Banach space, we mean
that this inequality holds for every pair (f, g) in F such that ‖f‖X < ∞, and the
constant is independent of the pair (f, g). (If X = Y = Lp(w) for some w ∈ Aq,
then the constant can only depend on the Aq constant of w and not on w itself.
A similar restriction is assumed for off-diagonal estimates.) The assumption that
‖f‖X < ∞ is only for technical reasons in the proof; it can often be ignored. Given
any pair (f, g), we can replace it by the pairs

(

min(f,N)χB(0,N), g
)

; then by Fatou’s
lemma (which still holds in the setting of quasi-Banach function spaces) we have that
‖min(f,N)χB(0,N)‖X < ∞ and

lim
N→∞

‖min(f,N)χB(0,N)‖X = ‖f‖X .

To apply extrapolation to prove a norm inequality for an operator T , we can
define

F = {(|Tf |, |f |) : f ∈ L∞
c };

alternatively, we can replace L∞
c by C∞

c , S, or any other appropriate dense subset
of the spaces in question. To prove vector-valued inequalities for the operator T , we
can use the pairs

(( M
∑

k=1

|Tfk|r
)

1
r

,

( M
∑

k=1

|fk|r
)

1
r
)

,

where again the functions fk are taken from some appropriate dense subspace.

Below, to prove the vector-valued inequalities for the Hardy–Littlewood maximal
operator and the fractional operator, we will use extrapolation; however, these results
are more widely known and we will refer the reader to the literature. Here, we will
first state two more recent versions of extrapolation in the scale of weighted spaces,
and then prove two similar results which yield Lebesgue space inequalities.

Our first result is extrapolation in the scale of reverse Hölder weights. It was
proved independently by Martell and Prisuelos [28] and in [3].
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Theorem 3.1. Given 0 < q0 < ∞, suppose that for some p0, 0 < p0 ≤ q0 and
all w0 ∈ RH(

q0
p0

)′ ,

‖f‖Lp0(w0) . ‖g‖Lp0(w0), (f, g) ∈ F .

Then for every p, 0 < p < q0, and w ∈ RH(
q0
p
)′ ,

‖f‖Lp(w) . ‖g‖Lp(w), (f, g) ∈ F .

The second result is an off-diagonal, limited range extrapolation theorem recently
proved in [8]. (We note in passing that this result contains essentially every other
extrapolation theorem as a special case; see the discussion in the above paper for
details.)

Theorem 3.2. Suppose 0 < r < ∞ and 0 < p0, q0 < ∞ satisfy 0 < p0 ≤ r and
1
q0
− 1

p0
+ 1

r
≥ 0, and F is a family of pairs of functions (f, g). Further suppose that

we have
(
ˆ

Rn

(fw)q0 dx

)
1
q0

.

(
ˆ

Rn

(gw)p0 dx

)
1
p0

for all (f, g) ∈ F and w ∈ RH( r
p0

)′ . Then for every 0 < p < r and q such that
1
p
− 1

q
= 1

p0
− 1

q0
and every weight w such that wp ∈ RH( r

p
)′ ,

(
ˆ

Rn

(fw)q dx

)
1
q

.

(
ˆ

Rn

(gw)p dx

)
1
p

for all (f, g) ∈ F .

We now prove two extrapolation theorems into the scale of variable Lebesgue
spaces. In both proofs we use some well-known properties of the variable Lebesgue
space norm; see [5] for details. We also use the properties of the Rubio de Francia
iteration algorithm, which is an important tool in extrapolation theory. For a detailed
discussion of this operator, see [9].

The first result is a generalization of Theorem 3.1.

Theorem 3.3. Given 0 < p < q, suppose that for all w ∈ RH( q
p
)′ ,

‖f‖Lp(w) . ‖g‖Lp(w), (f, g) ∈ F .

Then for all p(·) ∈ P0 such that p < p− ≤ p+ < q and p(·) ∈ LH ,

‖f‖Lp(·) . ‖g‖Lp(·), (f, g) ∈ F .

Proof. For brevity, let τ = q
p
, and let r(·) = 1

τ ′

(

p(·)
p

)′

. Since p(·) ∈ LH ,

r(·) ∈ LH . Further, we claim that r− > 1, which would imply that the maximal
operator is bounded on Lr(·). To prove this, note that r− > 1 is equivalent to
[(p(·)/p)′]− > τ ′, which in turn is equivalent to [p(·)/p]′+ > τ ′, or [p(·)/p]+ < τ , which
in turn is the same as our assumption that p+ < q.

Therefore, given non-negative h, we can define the Rubio de Francia iteration
algorithm by

Rh =

∞
∑

k=0

Mkh

2k‖M‖Lr(·)

,

where M0h = |h|. This operator satisfies the following properties:

(1) h ≤ Rh;
(2) ‖Rh‖r(·) ≤ 2‖h‖r(·);
(3) Rh ∈ A1 and [Rh]A1 ≤ 2‖M‖Lr(·);
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(4) R(hτ ′)
1
τ ′ ∈ A1 ∩RHτ ′ .

Now fix (f, g) ∈ F such that ‖f‖p(·) < ∞. Then by duality,

‖f‖pp(·) = ‖f p‖p(·)/p .
ˆ

Rn

f ph dx,

where h ≥ 0, h ∈ L(p(·)/p)′ and ‖h‖(p(·)/p)′ = 1. Let H = R(hτ ′)
1
τ ′ . By Hölder’s

inequality in the scale of variable Lebesgue spaces and the above properties,
ˆ

f pH dx . ‖f p‖p(·)/p‖H‖(p(·)/p)′ = ‖f‖pp(·)‖R(hτ )‖r(·)
. ‖f‖pp(·)‖hτ‖r(·) = ‖f‖pp(·) < ∞.

Therefore, we can apply our hypothesis and repeat the above estimate with g in place
of f to conclude that

‖f‖pp(·) .
ˆ

Rn

f ph dx ≤
ˆ

Rn

f pH dx .

ˆ

Rn

gpH dx

. ‖gp‖p(·)/p‖H‖(p(·)/p)′ . ‖g‖pp(·).

This completes the proof. �

Our second result extends a special case of Theorem 3.2 to the variable Lebesgue
spaces.

Theorem 3.4. Given 0 < p < q < ∞, suppose that for all wp ∈ RH q
p
,

‖f‖Lq(wq) . C‖g‖Lp(wp), (f, g) ∈ F .

Then for for all p(·) ∈ P0 such that p < p− ≤ p+ < 1
1
p
− 1

q

and p(·) ∈ LH,

‖f‖Lq(·) . ‖g‖Lp(·), (f, g) ∈ F ,

where q(·) is defined by 1
p(·)

− 1
q(·)

= 1
p
− 1

q
.

Proof. The proof is very similar to the proof of Theorem 3.3, and we will omit

some details. Define r(·) = p
q

(

p(·)
p

)′

. Then r(·) ∈ LH and r− > 1 is equivalent to
1
p
− 1

q
< 1

p+
. Hence, the maximal operator is bounded on Lr(·). Define the Rubio de

Francia iteration algorithm for non-negative h by

Rh =
∞
∑

k=0

Mkh

2k‖M‖Lr(·)

.

Then R satisfies

(1) h ≤ Rh;
(2) ‖Rh‖r(·) ≤ 2‖h‖r(·);
(3) Rh ∈ A1 and [Rh]A1 ≤ 2‖M‖Lr(·);

(4) (Rh)
p
q ∈ A1 ∩ RH q

p
.

Now fix (f, g) ∈ F with ‖f‖Lq(·) < ∞. Then

‖f‖qq(·) = ‖f q‖q(·)/q .
ˆ

Rn

f qh dx,
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where h ≥ 0 and ‖h‖(q(·)/q)′ = 1. Let H = (Rh)
1
q , so that h ≤ Hq, and Hp ∈ RH q

p
.

Hence,
ˆ

Rn

f qh dx ≤
ˆ

Rn

f qHq .

(
ˆ

Rn

gpHp dx

)
q
p

. ‖gp‖
q
p

p(·)/p‖Hp‖
q
p

(p(·)/p)′ = ‖g‖qp(·)‖Hp‖(p(·)/p)′ .

Moreover, since R was bounded on Lr(·),

‖Hp‖(p(·)/p)′ = ‖(Rh)
p
q ‖(p(·)/p)′ = ‖Rh‖

p
q
p
q
(p(·)/p)′ . ‖h‖

p
q
p
q
(p(·)/p)′ .

We now claim that
p

q

(

p(·)
p

)′

=

(

q(·)
q

)′

.

To see this, observe that this is equivalent to

1

p
(

p(·)
p

)′ =
1

q
(

q(·)
q

)′ ,

which is equivalent to our assumption that

1

p(·) −
1

q(·) =
1

p
− 1

q
.

Therefore, we have that

‖h‖
p
q
p
q
(p(·)/p)′

= ‖h‖
p
q

(q(·)/q)′ . 1;

this completes the proof. �

4. Vector-valued inequalities

We begin this section by stating four vector-valued inequalities for maximal oper-
ators on weighted and variable Lebesgue spaces. The first, for the Hardy–Littlewood
maximal operator, was originally proved by Andersen and John [2]; here we want to
stress that it is an immediate consequence via extrapolation [9, Section 3.8] of the
scalar weighted norm inequalities for the maximal operator.

Lemma 4.1. Given 1 < p, r < ∞ and w ∈ Ap,
∥

∥

∥

∥

(

∑

k

(Mgk)
r

)
1
r
∥

∥

∥

∥

Lp(w)

.

∥

∥

∥

∥

(

∑

k

|gk|r
)

1
r
∥

∥

∥

∥

Lp(w)

.

The second result on variable Lebesgue spaces, is also an immediate consequence
of the scalar weighted norm inequalities and extrapolation [9, Theorem 4.25], [5,
Corollary 5.34].

Lemma 4.2. Given p(·) ∈ P0, such that p(·) ∈ LH and 1 < p− ≤ p+ < ∞, and
1 < r < ∞,

∥

∥

∥

∥

(

∑

k

(Mgk)
r

)
1
r
∥

∥

∥

∥

Lp(·)

.

∥

∥

∥

∥

(

∑

k

|gk|r
)

1
r
∥

∥

∥

∥

Lp(·)

.

The next two results are the analogues of the previous two for the fractional
maximal operator. The first follows from the scalar, weighted inequalities for Mα

and off-diagonal extrapolation [9, Theorem 3.23].
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Lemma 4.3. Given 0 < α < n, 1 < r < ∞, and 1 < p < n
α
, define q by

1
p
− 1

q
= α

n
. If w ∈ Ap,q, then

∥

∥

∥

∥

(

∑

k

(Mαgk)
r

)
1
r
∥

∥

∥

∥

Lq(wq)

.

∥

∥

∥

∥

(

∑

k

|gk|r
)

1
r
∥

∥

∥

∥

Lp(wp)

.

The final inequality follows by off-diagonal extrapolation in the variable Lebesgue
spaces [5, Theorem 5.28]. The vector-valued inequality is not explicitly proved there;
however, it can be gotten by extrapolating starting with the weighted vector-valued
inequality in [9, Theorem 3.23].

Lemma 4.4. Given 0 < α < n and p(·) ∈ P0, suppose 1 < p− ≤ p+ < n
α
. Define

q(·) by 1
p(·)

− 1
q(·)

= α
n
. Then

∥

∥

∥

∥

(

∑

k

(Mαgk)
r

)
1
r
∥

∥

∥

∥

Lq(·)

.

∥

∥

∥

∥

(

∑

k

|gk|r
)

1
r
∥

∥

∥

∥

Lp(·)

.

Remark 4.5. In applying these vector-valued inequalities, we will use two gen-
eralizations. Rather than give these as corollaries, we instead describe the underlying
ideas for adapting the above results. First, since maximal operators are positive ho-

mogeneous, we can, for example, replace (Mgk)
r by λk(Mgk)

r = (M(λ
1
r
k gk))

r on the
left-hand side and grk by λkg

r
k in the right-hand term.

Second, if we let gk = χQk
for some collection of cubes Qk, then given 0 < p < ∞,

τ > 1, and w ∈ A∞, there exists r > 1 such that w ∈ Arp, and so we have that

(4.1)

∥

∥

∥

∥

∑

k

χτQk

∥

∥

∥

∥

Lp(w)

.

∥

∥

∥

∥

(

∑

k

M(χQk
)r
)

1
r
∥

∥

∥

∥

r

Lrp(w)

.

∥

∥

∥

∥

∑

k

χQk

∥

∥

∥

∥

Lp(w)

.

We now turn to generalizations of the lemma of Grafakos and Kalton discussed
in the introduction. First, though not actually necessary for the proof of our main
results, we will show that by extrapolation we can easily prove a weighted version of
their inequality.

Lemma 4.6. For 0 < p ≤ 1, if w ∈ RH( 1
p
)′ , then for all sequences of cubes {Qk}

and non-negative functions {gk} such that supp(gk) ⊂ Qk,
∥

∥

∥

∥

∑

k

gk

∥

∥

∥

∥

Lp(w)

.

∥

∥

∥

∥

∑

k

(

−
ˆ

Qk

gk dy

)

χQk

∥

∥

∥

∥

Lp(w)

.

Proof. We first prove this for p = 1 and w ∈ RH∞. But in this case the result is
trivial:

∥

∥

∥

∥

∑

k

gk

∥

∥

∥

∥

L1(w)

=
∑

k

ˆ

Qk

gkw dy .
∑

k

ˆ

Qk

gk dy−
ˆ

Qk

w dy

=

∥

∥

∥

∥

∑

k

(

−
ˆ

Qk

gk dy

)

χQk

∥

∥

∥

∥

L1(w)

.

The proof for 0 < p < 1 and w ∈ RH( 1
p
)′ follows at once via reverse Hölder

extrapolation, Theorem 3.1. �

Below, we will use the following generalization of the lemma of Grafakos and
Kalton, which lets us eliminate the hypothesis that p ≤ 1 but replaces the L1 averages
by Lq averages.
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Lemma 4.7. Fix q > 1. If 0 < p < q and w ∈ RH( q
p
)′ , then for all sequences of

cubes {Qk} and non-negative functions {gk} such that supp(gk) ⊂ Qk,

∥

∥

∥

∥

∑

k

gk

∥

∥

∥

∥

Lp(w)

.

∥

∥

∥

∥

∑

k

(

−
ˆ

Qk

gqk dy

)
1
q

χQk

∥

∥

∥

∥

Lp(w)

.

Proof. We first prove this for p = 1 and w ∈ RHq′. But in this case the result is
trivial:

∥

∥

∥

∥

∑

k

gk

∥

∥

∥

∥

L1(w)

=
∑

k

−
ˆ

Qk

gkw dy |Qk| ≤
∑

k

(

−
ˆ

Qk

gqk dy

)
1
q
(

−
ˆ

Qk

wq′ dy

)
1
q′

|Qk|

.
∑

k

(

−
ˆ

Qk

gqk dy

)
1
q

w(Qk) =

∥

∥

∥

∥

∑

k

(

−
ˆ

Qk

gqk dy

)
1
q

χQk

∥

∥

∥

∥

L1(w)

.

The desired result for 0 < p < q and w ∈ RH( q
p
)′ follows at once from reverse

Hölder extrapolation, Theorem 3.1. �

Remark 4.8. For simplicity of statement and proof, we take q > 1 in Lemma 4.7;
but by Lemma 4.6, if 0 < p < 1, then we can take q = 1.

We can now use extrapolation to extend the previous two results to the scale of
variable Lebesgue spaces.

Lemma 4.9. Given p(·) ∈ P0, suppose 0 < p− ≤ p+ < 1 and p(·) ∈ LH . Then
for all sequences of cubes {Qk} and functions {gk} such that supp(gk) ⊂ Qk,

∥

∥

∥

∥

∑

k

gk

∥

∥

∥

∥

Lp(·)

.

∥

∥

∥

∥

∑

k

(

−
ˆ

Qk

gk dy

)

χQk

∥

∥

∥

∥

Lp(·)

.

If we only assume that p+ < ∞, then for any q such that p+ < q < ∞,

∥

∥

∥

∥

∑

k

gk

∥

∥

∥

∥

Lp(·)

.

∥

∥

∥

∥

∑

k

(

−
ˆ

Qk

gqk dy

)
1
q

χQk

∥

∥

∥

∥

Lp(·)

.

Proof. The first inequality follows from Lemma 4.6 and Theorem 3.3 with q = 1
and any p such that 0 < p < p−. The second inequality follows from Lemma 4.7 and
Theorem 3.3 with p+ < q < ∞ and 0 < p < p−. �

The following off-diagonal inequality plays a role in the proof of Hardy space
estimates for the fractional integral operator. It was first proved by Strömberg and
Wheeden [39]; here we again give an elementary proof using extrapolation.

Lemma 4.10. Suppose 0 < α < n, 0 < p < n
α
, and 1

q
= 1

p
− α

n
. If wp ∈ RH q

p
,

then for any countable collection of cubes {Qk} and λk > 0,
∥

∥

∥

∥

∥

∑

k

λk|Qk|
α
nχQk

∥

∥

∥

∥

∥

Lq(wq)

.

∥

∥

∥

∥

∥

∑

k

λkχQk

∥

∥

∥

∥

∥

Lp(wp)

.

Proof. We will use Theorem 3.2 with r = n
α
, p0 = 1, and q0 = n

n−α
= (n

α
)′. We

will show the estimate

(4.2)

∥

∥

∥

∥

∥

∑

k

λk|Qk|
α
nχQk

∥

∥

∥

∥

∥

L
n

n−α (w
n

n−α )

.

∥

∥

∥

∥

∥

∑

k

λkχQk

∥

∥

∥

∥

∥

L1(w)
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holds for all w ∈ RH n
n−α

, all sequence of positive numbers {λk}, and sequences of

cubes {Qk}. If we assume (4.2) for the moment, then by the Theorem 3.2 we have
that for all 0 < p < n

α
, q satisfying 1

p
− 1

q
= α

n
, and w such that wp ∈ RH

(n/α
p

)′
=

RH n
n−αp

= RH q
p
,

∥

∥

∥

∥

∥

∑

k

λk|Qk|
α
nχQk

∥

∥

∥

∥

∥

Lq(wq)

.

∥

∥

∥

∥

∥

∑

k

λkχk

∥

∥

∥

∥

∥

Lp(wp)

,

which is the desired result.
To prove (4.2), let w ∈ RH n

n−α
, u = w

n
n−α , and fix g ≥ 0 in L( n

n−α
)′(w

n
n−α ) =

L
n
α (u). By duality, it will suffice to estimate the integral

ˆ

Rn

(

∑

k

λk|Qk|
α
nχQk

)

gw
n

n−α dx =
∑

k

λk|Qk|
α
n

ˆ

Qk

gu dx.

But then we have that

∑

k

λk|Qk|
α
n

ˆ

Qk

gu dx ≤
∑

k

λk|Qk|
α
n

(
ˆ

Qk

g
n
αu dx

)
α
n

u(Qk)
1−α

n

≤ ‖g‖
L

n
α (u)

∑

k

λk|Qk|
α
n

(
ˆ

Qk

w
n

n−α dx

)1−α
n

≤ C‖g‖
L

n
α (u)

∑

k

λk|Qk|
α
n

ˆ

Qk

w dx|Qk|−
α
n

= C‖g‖
L

n
α (u)

∑

k

λk

ˆ

Qk

w dx

= C‖g‖
L

n
α (u)

ˆ

Rn

(

∑

k

λkχQk

)

w dx.

This completes the proof. �

Our final estimate extends Lemma 4.10 to the variable Lebesgue spaces. It was
first proved by Sawano [34]; however, it follows immediately from Lemma 4.10 by
extrapolation, Theorem 3.4.

Lemma 4.11. Given 0 < α < n, suppose p(·) ∈ P0 is such that p(·) ∈ LH and
0 < p− ≤ p+ < n

α
. Define q(·) by 1

p(·)
− 1

q(·)
= α

n
. Then for any countable collection of

cubes {Qk} and λk > 0,
∥

∥

∥

∥

∑

k

λk|Qk|
α
nχQk

∥

∥

∥

∥

q(·)

.

∥

∥

∥

∥

∑

k

λkχQk

∥

∥

∥

∥

p(·)

.

5. Singular integral operators

In this section we prove Theorems 1.1 and 1.3. For the proof we need two lemmas;
the essential ideas in their proofs are well-known (see, for instance, [37]) but to get the
versions we need–which will be applicable to both singular integrals and fractional
integrals–we give their short proofs. Throughout this section and Sections 6 and 7
below, let φ ∈ C∞

c be a fixed function supported in B(0, 1) with
´

φ dx = 1.
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Lemma 5.1. Fix N ≥ 0 and 0 ≤ α < n. Let K be a distribution such that
|K̂(ξ)| . |ξ|−α. Suppose further that away from the origin K agrees with a function
in CN+1, and for all multi-indices β such that |β| ≤ N + 1,

|∂βK(x)| ≤ B0

|x|n−α+|β|
.

Define Kt = φt ∗K. Then Kt is a smooth function that satisfies

|∂βKt(x)| ≤ B1

|x|n−α+|β|
.

The constant B1 is independent of t.

Proof. Fix t > 0. Since φ is supported in the unit ball,

Kt(x) =

ˆ

B(0,t)

φt(y)K(x− y) dy.

Suppose first that |x| > 2t. Then on B(0, t) both functions and their derivatives are
continuous and bounded, and so we can take the derivative inside the integral to get

|∂βKt(x)| ≤
ˆ

B(0,t)

t−n|φ(y/t)||∂βK(x− y)| dy

. t−n

ˆ

B(0,t)

|x− y|−n+α−|β| dy . |x|−n+α−|β|.

If |x| ≤ 2t, then by the inverse Fourier transform

∂βKt(x) ≈
ˆ

Rn

e−2πix·ξξβK̂(ξ)φ̂(tξ) dξ,

and so

|∂βKt(x)| . tα−|β|

ˆ

Rn

|tξ|−α+|β||φ̂(tξ)| dξ

. t−n+α−|β|

ˆ

Rn

|u|−α+|β||φ̂(u)| du . |x|−n+α−|β|.

The final integral converges since α < n and since φ̂ is a Schwartz function. �

Lemma 5.2. Let N , α and K be as in Lemma 5.1 and define the operator T by
Tf = K ∗ f . Let a be any (N,∞) atom with supp(a) ⊂ Q. Then for all x ∈ (Q∗)c,

(5.1) Mφ(Ta)(x) . Mατ (χQ)(x)
τ ,

where τ = n+N+1
n

and ατ = α/τ .

Proof. Fix x ∈ (Q∗)c and t > 0. Then it will suffice to show that

|φt ∗ Ta(x)| . Mατ (χQ)(x)
τ ,

with a constant independent of x and t. Define Kt = φt ∗K as before. Since

Ta(x) =

ˆ

Q

K(x− y)a(y) dy

and this integral converges absolutely, by taking the Fourier transform we see that
φt ∗Ta(x) = Kt ∗a(x). Let PN be the Taylor polynomial of degree N of the function
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y → Kt(x− y) centered at cQ. Then

PN(y) =
∑

|β|≤N

∂βKt(x− cQ)

β!
(y − cQ)

β,

so by the moment condition on a,
ˆ

Q

PN(y)a(y) dy = 0.

Moreover, the remainder RN (y) satisfies

RN (y) = Kt(x− y)− PN(y) =
∑

|β|=N+1

Rβ(y)(y − cQ)
β,

where

Rβ(y) =

ˆ 1

0

(1− s)N∂βKt(x− cQ − s(y − cQ)) ds.

Therefore, by Lemma 5.1 we have that

|Kt ∗ a(x)| ≤
ˆ

Q

|Kt(x− y)− PN(y)||a(y)| dy

.
1

|x− cQ|n−α+N+1

ˆ

Q

|y − cQ|N+1 dy .
ℓ(Q)n+N+1

|x− cQ|n−α+N+1
.

To complete the proof, note that for x ∈ (Q∗)c, if P is the smallest cube containing
x and Q, then

Mατ (χQ)(x)
τ ≈

[

|P |ατ
n −
ˆ

P

χQ dy

]τ

≈
[

ℓ(Q)n

|x− cQ|n−ατ

]τ

=
ℓ(Q)n+N+1

|x− cQ|n−α+N+1
.

If we combine these estimates we get the desired inequality. �

Proof of Theorem 1.1. By the finite atomic decomposition, Proposition 2.1, it
will suffice to fix a finite sum of (N,∞) atoms,

f =

M
∑

i=1

λiai,

with supp(ai) ⊂ Qi and ci = cQi
, and prove that

‖MφTf‖Lp(w) .

∥

∥

∥

∥

M
∑

i=1

λiχQi

∥

∥

∥

∥

Lp(w)

.

By the linearity of T and the sublinearity of Mφ,

‖MφTf‖Lp(w) ≤
∥

∥

∥

∥

M
∑

i=1

λiMφT (ai)χQ∗

i

∥

∥

∥

∥

Lp(w)

+

∥

∥

∥

∥

M
∑

i=1

λiMφT (ai)χ(Q∗

i )
c

∥

∥

∥

∥

Lp(w)

= I1 + I2.

To estimate I1, we apply Lemma 4.7. Since w ∈ A∞, w ∈ RHs for some s > 1.
Fix q > max(p, 1) such that ( q

p
)′ ≤ s. Then w ∈ RH( q

p
)′ , and so by Lemma 4.7 and
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the fact that T and Mφ are bounded on Lq,

I1 .

∥

∥

∥

∥

M
∑

i=1

λi

(

−
ˆ

Qi

MφT (ai)
q dx

)
1
q

χQ∗

i

∥

∥

∥

∥

Lp(w)

.

∥

∥

∥

∥

M
∑

i=1

λi

(

−
ˆ

Qi

|ai|q dx
)

1
q

χQ∗

i

∥

∥

∥

∥

Lp(w)

.

∥

∥

∥

∥

M
∑

i=1

λiχQ∗

i

∥

∥

∥

∥

Lp(w)

.

∥

∥

∥

∥

M
∑

i=1

λiχQi

∥

∥

∥

∥

Lp(w)

;

the last inequality follows by Lemma 4.1 and Remark 4.5.
To estimate I2, first note that by our assumption on N ,

N + 1 > n

(

rw
p

− 1

)

,

or equivalently,

pτ = p

(

n+N + 1

n

)

> rw.

Therefore, w ∈ Apτ , and so by Lemma 5.2 and Lemma 4.1,

I2 .

∥

∥

∥

∥

M
∑

i=1

λiM(χQi
)τ
∥

∥

∥

∥

Lp(w)

=

∥

∥

∥

∥

( M
∑

i=1

λiM(χQi
)τ
)

1
τ
∥

∥

∥

∥

τ

Lpτ (w)

.

∥

∥

∥

∥

( M
∑

i=1

λiχQi

)
1
τ
∥

∥

∥

∥

τ

Lpτ (w)

=

∥

∥

∥

∥

M
∑

i=1

λiχQi

∥

∥

∥

∥

Lpτ (w)

.

This completes the proof. �

Proof of Theorem 1.3. The proof of this result is nearly identical to the above
proof. By Proposition 2.4 we may again consider finite sums of atoms. We decompose
as before into I1 and I2. To estimate I1 we fix q > max(p+, 1) and apply Lemma 4.9.
We then use Lemma 4.2 and argue as in Remark 4.5. To estimate I2, we note that
p−τ > 1, and so we can again apply Lemma 4.2. �

6. Fractional integral operators

In this section we prove Theorems 1.5 and 1.7. The proof of Theorem 1.5 is very
similar to the proof of Theorem 1.1 and so we will omit those details that are the
same and concentrate on the differences. And again, the proof of Theorem 1.7 is a
straightforward variation of the the proof of Theorem 1.5.

Proof of Theorem 1.5. We need to show that if f is a finite sum of (N,∞)
atoms,

f =
M
∑

i=1

λiai,

where the exact value of N will be chosen below, then

‖MφIαf‖Lq(wq) .

∥

∥

∥

∥

M
∑

i=1

λiχQi

∥

∥

∥

∥

Lp(wp)

.

As before we dominate the left-hand side by the sume of two terms:
∥

∥

∥

∥

M
∑

i=1

λiMφIα(ai)χQ∗

i

∥

∥

∥

∥

Lq(wq)

+

∥

∥

∥

∥

M
∑

i=1

λiMφIα(ai)χ(Q∗

i )
c

∥

∥

∥

∥

Lq(wq)

= J1 + J2.
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To estimate J1, fix q0 > max
(

q, n
n−α

)

and define p0 > 1 by 1
p0

− 1
q0

= α
n
. Since

wp ∈ RH q
p
, wq ∈ A∞, so arguing as before we may assume that q0 is such that wq ∈

RH(
q0
p
)′ . Then by Lemma 4.7, and since Mφ is bounded on Lq0 and Iα : Lp0 → Lq0 ,

J1 .

∥

∥

∥

∥

M
∑

i=1

λi

(

−
ˆ

Qi

MφIα(ai)
q0 dx

)
1
q0

χQ∗

i

∥

∥

∥

∥

Lq(wq)

.

∥

∥

∥

∥

M
∑

i=1

λi|Qi|
α
n

(

−
ˆ

Qi

|ai|p0 dx
)

1
p0

χQ∗

i

∥

∥

∥

∥

Lq(wq)

.

∥

∥

∥

∥

M
∑

i=1

λi|Q∗
i |

α
nχQ∗

i

∥

∥

∥

∥

Lq(wq)

.

By Lemma 4.10, since wp ∈ A∞, by Lemma 4.1 we can continue this estimate, getting

J1 .

∥

∥

∥

∥

M
∑

i=1

λi|Q∗
i |

α
nχQ∗

i

∥

∥

∥

∥

Lq(wq)

.

∥

∥

∥

∥

M
∑

i=1

λiχQ∗

i

∥

∥

∥

∥

Lp(wp)

.

∥

∥

∥

∥

M
∑

i=1

λiχQi

∥

∥

∥

∥

Lp(wp)

.

To estimate J2 we will apply Lemma 5.2, but first we need to fix N . For Iα, our
kernel is K(x) = |x|α−n, and so the desired estimates on the derivative of K hold for
all N > 0. We now fix N as follows: since wq ∈ A∞, choose N so that

(

n− α +N + 1

n

)

q > rwq .

As before, let τ = n+N+1
n

. Then, since 1
τp

− 1
τq

= α
τn

, we have that

1 +
τq

(τp)′
= τq

(

1− α

τn

)

=

(

n− α +N + 1

n

)

q.

Hence, if we let v = w
1
τ , we have that vτq = wq ∈ A1+ τq

(τp)′
. Equivalently, we have

that v ∈ Aτp,τq. Therefore, by Lemma 5.2 and by Lemma 4.3 applied to the fractional
maximal operator Mατ ,

J2 .

∥

∥

∥

∥

( M
∑

i=1

λiMατ (χQi
)τ
)

1
τ
∥

∥

∥

∥

τ

Lqτ (vτq)

.

∥

∥

∥

∥

( M
∑

i=1

λiχQi

)
1
τ
∥

∥

∥

∥

τ

Lpτ (vτp)

=

∥

∥

∥

∥

M
∑

i=1

λiχQi

∥

∥

∥

∥

Lp(wp)

.

This completes the proof. �

Proof of Theorem 1.7. The proof is essentially the same as the proof of Theo-
rem 1.5. To estimate J1 we use Lemma 4.9 with q0 > max

(

q+,
n

n−α

)

, and Lemma 4.11.
To estimate J2 we choose N so large that p−τ > 1 so that we can apply Lemma 4.4
to Mατ acting from Lτp(·) to Lτq(·). �

7. Non-convolution operators

The proofs of Theorems 1.9 and 1.11 for non-convolution Calderón–Zygmund
operators are essentially identical to the proofs for convolution type singular integrals
in Theorems 1.1 and 1.3. Fix such an operator T . Since it satisfies the standard kernel
estimates (1.1) and (1.2), it is bounded on Lq, 1 < q < ∞. Therefore, the estimate
of the local piece is identical. To prove the estimate for the global piece, we need a
maximal operator estimate for the action of T on atoms, which is the substance of
Lemma 7.2 below. The rest of the proof is identical.
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Remark 7.1. Our results can be generalized to a larger class of operators. An
examination of the proof shows that to apply Lemma 4.7 and estimate the local
piece, we need to assume that the operator T is such that there exists q > max(p, 1)

such that w ∈ RH( q
p
)′ (in the weighted case) and T satisfies ‖Ta‖q . |Q| 1q (in either

the weighted or variable exponent case). To estimate the global piece we again need
that T has a kernel K representation such that (1.3) holds for all |β| ≤ L + 1 and
T satisfies (1.4) for all |β| ≤ L, where L is defined as before in Theorem 1.9 (for a
weighted estimate) or Theorem 1.11 (for the variable exponent case). In particular,
we do not assume that the operator is bounded on L2 or that it satisfies the standard
kernel estimates (1.1) and (1.2). We leave the details to the interested reader.

Lemma 7.2. Given L ≥ −1, suppose T is a Calderón–Zygmund operator asso-
ciated with a kernel K that satisfies (1.3) for all |β| = L+1, and suppose T satisfies
(1.4) for all (L+ 1,∞) atoms and |β| ≤ L. (If L = −1 we disregard this condition.)
Then given any (L + 1,∞) atom a, supp(a) ⊂ Q, then for all x ∈ (Q∗∗)c, and φ as
defined in Section 5,

(7.1) Mφ(Ta)(x) . M(χQ)(x)
n+L+1

n .

Remark 7.3. As with Lemma 5.2, the ideas in the following proof are well-
known; for instance, in the multilinear case see [20, Lemma 3.3]. We include the
details for completeness.

Proof. Fix x ∈ (Q∗∗)c; then to prove (7.1) it will suffice to prove that for all
t > 0,

(7.2)
∣

∣φt ∗ Ta(x)
∣

∣ .
ℓ(Q)n+L+1

|x− c|n+L+1
,

where the implicit constant is independent of t, x and Q. We will consider two cases:

0 < t ≤ |x−c|
2

and t > |x−c|
2

.
First, however, we will estimate the decay of Ta(y) when y ∈ (Q∗)c. Let N = L+1

and let c be the center of Q. By our assumption on the atom a we have that
´

zβa(z)dz = 0 for all |β| ≤ N . Hence, we can apply Taylor’s theorem with integral
remainder to get

|Ta(y)| =
∣

∣

∣

∣

ˆ

Q

K(y, z)a(z) dz

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

Q

[

K(y, z)−
∑

|β|≤N−1

∂β
zK(y, c)

β!
(z − c)β

]

a(z) dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

|β|=N

|β|
β!

ˆ

Q

(
ˆ 1

0

(1− θ)N−1∂β
zK(y, ζz,θ)dθ

)

(z − c)βa(z) dz

∣

∣

∣

∣

,

where ζz,θ = c + θ(z − c). We again apply the vanishing moment condition of a and
(1.3) with |β| = N to get

=

∣

∣

∣

∣

∑

|β|=N

|β|
β!

ˆ 1

0

(1− θ)N−1

ˆ

(

∂β
zK(y, ζz,θ)− ∂β

zK(y, c)

)

(z − c)βa(z) dzdθ

∣

∣

∣

∣

(7.3)

.

ˆ |z − c|δ
|y − c|n+N+δ

|z − c|N |a(z)| dz .
ℓ(Q)n+N+δ

|y − c|n+N+δ
.
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We now consider the two cases given above. First, suppose 0 < t ≤ |x−c|
2

. Then
we have that if |x− y| ≤ t,

|y − c| ≥ |x− c| − |x− y| ≥ |x− c| − t ≥ 1

2
|x− c|,

which, since x ∈ (Q∗∗)c, implies that y ∈ (Q∗)c. Therefore, by (7.3) we have that

|φt ∗ Ta(x)| ≤
ˆ

|x−y|≤t

|φt(x− y)||Ta(y)| dy .
ℓ(Q)n+N+δ

|x− c|n+N+δ
≤ ℓ(Q)n+L+1

|x− c|n+L+1
.

The last inequality holds since δ > 0 and ℓ(Q) ≤ |x − c|. This gives us (7.2) in the
first case.

Now suppose that t > |x−c|
2

. Then by the moment condition for Ta (1.4), and
again by Taylor’s theorem, we have that

|φt ∗ Ta(x)| =
∣

∣

∣

∣

ˆ

Q

t−nφ
(

t−1(x− y)
)

Ta(y) dy

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

Rn

t−n

[

φ
(

t−1(x− y)
)

−
∑

|β|≤L

∂βφ(x−c
t
)

β!

(

c− y

t

)β]

Ta(y) dy

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

Rn

∑

|β|=N

|β|
tnβ!

(
ˆ 1

0

(1− θ)L∂βφ
(ζx,y,θ

t

)

dθ

)(

c− y

t

)β

Ta(y) dy

∣

∣

∣

∣

,

where ζx,y,θ = x− c + θ(c− y). If we replace the inner integral by the supremum of
the integrand, we get

|φt ∗ Ta(x)| .
∑

|β|=N

t−n−N

ˆ

Rn

sup
0≤θ≤1

∣

∣∂βφ
(ζx,y,θ

t

)
∣

∣|c− y|N |Ta(y)| dy

. |x− c|−n−N

ˆ

Rn

|y − c|N |Ta(y)| dy.

To estimate the final integral we split the domain. On (Q∗)c we use (7.3) to get

ˆ

(Q∗)c
|y − c|N |Ta(y)| dy .

ˆ

(Q∗)c

ℓ(Q)n+N+δ

|y − c|n+δ
dy . ℓ(Q)n+N .

On the other hand, to estimate the integral on Q∗ we use the fact that T is bounded
on Lr for r > 1. Then by Hölder’s inequality we have that

ˆ

Q∗

|y − c|N |Ta(y)| dy . ℓ(Q)n/r
′+N‖Ta‖Lr . ℓ(Q)n+N .

If we combine all of these estimates, we see that for t > |x−c|
2

,

∣

∣φt ∗ Ta(x)
∣

∣ .
ℓ(Q)n+L+1

|x− c|n+L+1
,

which give us (7.2) in this case. This completes the proof. �
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8. Extensions to other Banach function spaces

In this section we conclude by briefly considering the extension of our approach
to Hardy spaces defined with respect to other quasi-Banach function spaces. Our
starting point is the observation that we were able to prove results for the vari-
able Hardy spaces because we could prove vector-valued inequalities in the variable
Lebesgue spaces in Section 4 via extrapolation from the corresponding weighted norm
inequalities.

Therefore, to extend our results to other scales of spaces we need a theory of
extrapolation. In [9], motivated by the extrapolation results to the scale of variable
Lebesgue spaces in [6], the authors considered the general problem of extrapolating
from weighted norm inequalities into quasi-Banach function spaces. Their approach
was the following: given a quasi-Banach function space X, define a scale of spaces
Xr, 0 < r < ∞, where f ∈ Xr if |f |r ∈ X, and the “norm” on Xr is given by

‖f‖Xr = ‖|f |r‖
1
r
X .

In order to use extrapolation to prove results in X, it is necessary to assume that there
exists r > 1 such that Xr is a Banach function space, and that the Hardy–Littlewood
maximal operator is bounded on the associate space (Xr)′. (See [9, Remark 4.7].)
Thus, for example, in the scale of variable Lebesgue spaces, given p(·) ∈ P0, we would
fix 0 < p < p− and use the fact that if p(·) ∈ LH , the maximal operator is bounded
on the Banach function space L(p(·)/p)′.

Given a quasi-Banach space X, we can define a Hardy space HX to be the set
of all distributions f such that MN0f ∈ X, with quasi-norm ‖f‖HX = ‖MN0f‖X .
The question is then whether we can prove that singular and fractional integrals
are bounded on the spaces HX . The proof would require two components. First, we
would need the theory of extrapolation to prove the various vector-valued inequalities
required. Second, we would need the basics of Hardy space theory: in particular,
the equivalence of the various definitions of a Hardy space in terms of the radial and
grand maximal operators, and the finite atomic decomposition.

We could, for instance, apply these ideas to the Hardy–Orlicz spaces introduced
by Janson [24], and considered earlier in the case of analytic functions on the unit
disk by Leśniewicz [26]. An atomic decomposition for these spaces was given by
Viviani [40]. Another, more recent example of spaces that would be amenable to our
approach are the Musielak–Orlicz Hardy spaces. These are based on the Musielak–
Orlicz spaces introduced in [30]; see [41] for a comprehensive treatment, including
an atomic decomposition. (We note in passing that extrapolation into the scale of
Musielak–Orlicz spaces was considered separately in [7].) Additional examples Hardy
spaces where our approach might be applicable are given in [36].
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