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Abstract. In 1991, Väisälä discussed the extension property of quasisymmetric mappings in

Banach spaces. In 2009, Haïssinsky got an extension property of quasisymmetric mappings in metric

spaces. The purpose of this paper is to establish an extension property of quasimöbius mappings

in metric spaces.

1. Introduction

1.1. Extension of quasisymmetric mappings.

Definition 1.1. Suppose that (X, d) and (Y, d1) are metric spaces and η : [0,+∞)
→ [0,+∞) is a homeomorphism with η(0) = 0. A homeomorphism f : (X, d) →
(Y, d1) is called η-quasisymmetric, briefly η-QS, if d(a, x) ≤ td(x, b) implies

d1(a
′, x′) ≤ η(t)d1(x

′, b′)

for any points a, x, b in X and any number t ≥ 0. Here and hereafter, the primes
always stand for the images of the points under the mappings. For example, a′ =
f(a).

Quasisymmetric mappings originate from the work of Beurling and Ahlfors [4],
who defined them as the boundary values of quasiconformal self-mappings of the
upper half-plane onto the real line. The general definition of quasisymmetric map-
pings, i.e., Definition 1.1, is due to Tukia and Väisälä [10]. Since its appearance, the
concept of quasisymmetric mappings has been studied by numerous authors. See, for
example, [3, 8] for the properties of this class of mappings. In 1991, Väisälä discussed
the extension property of quasisymmetric mappings in the setting of Banach spaces
and proved the following result.

Theorem A. [13, Theorem 7.39] Suppose that f : E → E1 is a homeomorphism

and E = A ∪ B such that the restrictions f |A and f |B are η-quasisymmetric, where

both E and E1 are Banach spaces with dimension at least 2, and A and B are subsets

of E. Then f is η1-quasisymmetric, where η1 depends only on η.

In [7], the author considered the extension property of quasisymmetric mappings
in metric spaces. The obtained result is as follows.
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Theorem B. [7, Theorem 3.1] Suppose X = X1∪X2 and Y = Y1∪Y2 are metric

spaces with ∠(X1, X2) > 0 and ∠(Y1, Y2) > 0. Assume that X1 ∩ X2 and Y1 ∩ Y2

are τ -uniformly perfect such that diam(X1 ∩ X2) ≥ qdiamX1 for some q ∈ (0, 1),
where “diam” means “diameter”. If f : X → Y is a homeomorphism such that for

each j ∈ {1, 2}, f(Xj) = Yj and f |Xj
is η-quasisymmetric, then f is globally η1-

quasisymmetric, where η1 depends only on η, τ , q, together with the angles ∠(X1, X2)
and ∠(Y1, Y2).

See Section 2 for the definitions of the angle ∠(X1, X2) and the uniform per-
fectness. We remark that the assumption on the uniform perfectness of Y1 ∩ Y2 in
Theorem B is redundant since the concept of uniform perfectness is an invariant
under quasisymmetric mappings (cf. [14, Lemma C]).

1.2. Extension of quasimöbius mappings. Let (X, d) be a metric space. Its
one-point extension is defined via

X̂ =

{
X, if X is bounded,

X ∪ {∞}, if X is unbounded.

Let a, b, c, d be points in X̂ with a 6= b and c 6= d. Their cross ratio rd(a, b, c, d) is
defined by the formula

rd(a, b, c, d) =
d(a, c)d(b, d)

d(a, b)d(c, d)
.

If a = c or b = d, we set rd = 0. If some of these points is ∞, then we omit the
factors containing ∞. For example,

rd(a, b, c,∞) =
d(a, c)

d(a, b)
.

Definition 1.2. Suppose that (X, d) and (Y, d1) are metric spaces and θ : [0,∞)

→ [0,∞) is a homeomorphism with θ(0) = 0. A homeomorphism f : (X̂, d) → (Ŷ , d1)
is called θ-quasimöbius, briefly θ-QM, if rd(a, b, c, d) ≤ t implies

rd1(a
′, b′, c′, d′) ≤ θ(t)

for all points a, b, c, d in X̂ and any number t ≥ 0.

QM mappings were introduced by Väisälä in 1985 [11]. We know that every QS
mapping is QM [11, Theorem 3.2] and every QM mapping between two bounded
metric spaces is QS [11, p. 222]. Moreover, if a QM mapping fixes ∞, then it is
QS [11, Theorem 3.10]. The reader is referred to [11, 12, 13] etc for more properties
concerning these two classes of mappings. Also, it has been well known that the class
of QM mappings has played an important role in the study of QC mappings (which is
the abbreviation of quasiconformal mappings), QS mappings and their relationships
(cf. [2, 9, 11, 14] etc.).

The main aim of this paper is to study the extension property of QM mappings.
Our result is an analogue of Theorem B for QM mappings, which is as follows.

Theorem 1.1. Suppose that (X, d) and (Y, d1) are metric spaces and the fol-

lowing conditions are satisfied:

(1) X = X1 ∪X2 and Y = Y1 ∪ Y2 with ∠(X1, X2) > 0 and ∠(Y1, Y2) > 0;
(2) X1 ∩X2 is τ -uniformly perfect with τ ∈ (0, 1);
(3) There is a constant q ∈ (0, 1] such that

diam(X1 ∩X2) ≥ qmin{diam(X1), diam(X2)}
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and

diam(Y1 ∩ Y2) ≥ qmin{diam(Y1), diam(Y2)};
(4) f : X → Y is a homeomorphism such that for each i ∈ {1, 2}, f(Xi) = Yi.

Then the restrictions f |Xi
(i ∈ {1, 2}) are θ-quasimöbius if and only if f is θ1-

quasimöbius, where θ and θ1 depend on each other, and τ , q, together with the

angles ∠(X1, X2) and ∠(Y1, Y2).

Remark 1.1. By [10, Theorem 2.5], we see that the diameter condition diam(X1

∩X2) ≥ q diam(X1) in Theorem B guarantees the one diam(Y1 ∩ Y2) ≥ q1diam(Y1),
where q1 = 1

2η(1/q)
, because the corresponding mappings are QS. But for QM map-

pings, this property is no longer valid. This can be seen from Example 4.1 below.
Also, we construct three more examples to show that each of the assumptions (1) ∼
(3) in Theorem 1.1 cannot be removed. See Examples 4.2 ∼ 4.4 below.

We shall prove Theorem 1.1 by applying the inversions introduced by Buckley et
al. in [6] or [5]. The proof will be given in Section 3. Some necessary terminologies
will be introduced in Section 2, and in Section 4, four examples will be constructed.

2. Preliminaries

2.1. Inversions. Let (X, d) denote a metric space, and let p ∈ X be a base
point. For x, y ∈ Xp = X \ {p}, let

ip(x, y) =
d(x, y)

d(x, p)d(y, p)

and

dp(x, y) = inf

{
k∑

i=1

ip(xi, xi−1) : x = x0, x1, . . . , xk−1, xk = y ∈ Xp

}
.

When X is unbounded, for x ∈ Xp, we define

ip(x,∞) =
1

d(x, p)
.

Then we see that the definition of dp(x, y) using auxiliary points in Xp is the same as

the one using points in X̂p = X̂ \{p}, and so, the distance function dp on Xp extends

to X̂p.
We call

(Invp(X), dp) = (X̂p, dp)

the inversion of (X, d) with respect to the base point p. In the following, sometimes,
we only use Invp(X) to replace (Invp(X), dp).

Let us recall the following useful properties concerning the inversions.

Theorem C. [6, Lemma 3.2] Let (X, d) denote a metric space, and let p ∈ X be

a base point.

(1) For all points x, y ∈ Invp(X),

1

4
ip(x, y) ≤ dp(x, y) ≤ ip(x, y).

In particular, dp is a distance function on Invp(X);
(2) The identity mapping id : (Xp, d) → (Xp, dp) is θ0-QM, where θ0(t) = 16t;
(3) (Invp(X), dp) is bounded if and only if p is an isolated point in (X, d).
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2.2. Uniform perfectness and density.

Definition 2.1. A metric space (X, d) is called τ -uniformly perfect if there is a
constant τ ∈ (0, 1) such that for every x ∈ X and every r > 0, B(x, r)\B(x, τr) 6= ∅
provided that X\B(x, r) 6= ∅, where B(x, r) denotes the metric ball B(x, r) = {z ∈
X : d(z, x) < r}.

We remark that the τ -uniform perfectness implies the τ1-uniform perfectness
when 0 < τ1 ≤ τ < 1.

Definition 2.2. Suppose that (X, d) is a metric space, a and b ∈ X, and {xi}i∈Z
is a sequence of points in X with a 6= xi 6= b, where Z denotes the usual integer set.

(1) {xi}i∈Z is called a chain joining a and b if xi → a as i → −∞ and xi → b as
i → +∞. Further, if there is a constant σ > 1 such that for all i,

| log rd(a, xi, xi+1, b)| ≤ log σ,

then {xi}i∈Z is called a σ-chain.

(2) (X, d) is said to be σ-dense with σ > 1 if every pair of points in X can be
joined by a σ-chain.

We remark that (1) every σ-dense space does not have any isolated points, and
(2) each σ-dense space is σ1-dense if σ1 ≥ σ.

(In the rest of this paper, we make the following notational convention: Suppose
A denotes a condition with data v and B another condition with data v1. We say that
A implies B quantitatively if A implies B so that v1 depends only on v. If A and B
imply each other quantitatively, then we say that they are quantitatively equivalent.)

The next result means that the σ-density is invariant under QM mappings.

Lemma 2.1. Let f : (X, d) → (Y, d1) be θ-QM between two metric spaces. Then

(X, d) is σ-dense if and only if (Y, d1) is σ1-dense, quantitatively.

Proof. Assume that f is θ-QM. Then f−1 is θ1-QM with θ1(t) = 1/θ−1(1/t) (see
[11, p. 219]). This fact implies that, to prove this lemma, it suffices to show the
necessity. For this, we only need to show that for any u′, v′ ∈ Y , there exists a
θ(σ)-chain joining them with θ(σ) > 1.

It follows from the density of (X, d) that there exists a σ-chain {xi}i∈Z joining u
and v. Since

| log rd(u, xi, xi+1, v)| ≤ log σ,

we see that

| log rd1(u′, x′
i, x

′
i+1, v

′)| ≤ log θ(σ),

and thus, {x′
i}i∈Z is a θ(σ)-chain joining u′ and v′. Hence the proof of the lemma is

complete. �

Theorem D. [14, Lemma E] Let (X, d) be a metric space. Then the following

are quantitatively equivalent:

(1) X is uniformly τ -perfect;

(2) X is σ-dense.

The following corollary is a direct consequence of Lemma 2.1 and Theorem D.

Corollary 2.2. Let f : (X, d) → (Y, d1) be θ-QM between two metric spaces.

Then (X, d) is uniformly τ -perfect if and only if (Y, d1) is uniformly τ1-perfect, quan-

titatively.
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The following result concerns the removable property of the uniform perfectness,
which is useful for the discussions in Section 3.

Lemma 2.3. Suppose that (X, d) is a τ -uniformly perfect metric space and S
denotes a finite sequence of points in X. Then X \ S is τ ′-uniformly perfect, where

τ ′ = τ
2
.

Proof. Assume that S = {a1, . . . ak}. To prove this lemma, it suffices to show
the following assertion.

Assertion. For any 1 ≤ i ≤ k, X \ {a1, . . . , ai} is µi-uniformly perfect, where

µi =
(
1− 2i−1

2i+1

)
τ .

We start the proof of the assertion with two claims.

Claim 2.1. X \ {a1} is µ1-uniformly perfect, where µ1 = (1− 1
4
)τ .

Assume that x ∈ X \ {a1}, r > 0 and (X \ {a1}) \ B(x, r) 6= ∅. Then it follows
from the uniform perfectness of X that there is w1 such that

w1 ∈ B(x, r) \B(x, τr).

If w1 6= a1, then w1 ∈ (X \ {a1}) ∩ (B(x, r) \B(x, τr)) ⊂ (X \ {a1}) ∩ (B(x, r) \
B(x, (1 − 1

4
)τr)). Otherwise, since X is uniformly perfect, we see that a1 is not an

isolated point of X. This implies that there is a sequence {w1,j}∞j=1 ⊂ X \ {a1} such
that

w1,j → a1 as j → ∞.

Let
ε1 =

1
2
min

{
d(a1, x)−

(
1− 1

4

)
τr, r − d(a1, x)

}
.

Then ε1 > 0. Also, we know that there is a sufficiently large N1 such that

(1− 1
4
)τr < d(a1, x)− ε1 ≤ d(w1,N1

, x) ≤ d(a1, x) + ε1 < r,

from which we get

w1,N1
∈ (X \ {a1}) ∩ (B(x, r) \B(x, (1− 1

4
)τr)).

Hence the claim is proved.

Claim 2.2. X \ {a1, a2} is µ2-uniformly perfect, where µ2 =
(
1− 3

8

)
τ .

Let x ∈ X \ {a1, a2} and r > 0. Assume that (X \ {a1, a2}) \ B(x, r) 6= ∅. It
follows from Claim 2.1 that there exists a point w2 such that

w2 ∈ (X \ {a1}) ∩ (B(x, r) \B(x, (1− 1
4
)τr)).

If w2 6= a2, then w2 ∈ (X \{a1, a2})∩(B(x, r)\B(x,
(
1− 1

4

)
τr)) ⊂ (X \{a1, a2})∩

(B(x, r) \ B(x,
(
1 − 3

8

)
τr)). Otherwise, there must exist a sequence {w2,j}∞j=1 ⊂

X \ {a1, a2} such that
w2,j → a2 as j → ∞.

Let
ε2 =

1
2
min

{
d(a2, x)−

(
1− 3

8

)
τr, r − d(a2, x)

}
.

Then ε2 > 0, and we also see that there is an integer N2 such that
(
1− 3

8

)
τr < d(a2, x)− ε2 ≤ d(w2,N2

, x) ≤ d(a2, x) + ε2 < r.

This implies that

w2,N2
∈ (X \ {a1, a2}) ∩ (B(x, r) \B(x,

(
1− 3

8

)
τr)),

from which the claim follows.
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By repeating the discussions as in Claims 2.1 and 2.2, we see that the assertion
is true, and hence, the proof of the lemma is complete. �

Remark 2.1. Let Q be the set of all rational numbers in R (the real field),
and let X = Q ∪ {

√
2,
√
3}. Then we see that X is τ -uniformly perfect for every

τ ∈ (0, 1), but X \Q = {
√
2,
√
3} is not µ-uniformly perfect for any µ ∈ (0, 1). This

fact shows that Lemma 2.3 is invalid for the case when the removed set is infinite.

Lemma 2.4. Suppose that (X, d) is a τ -uniformly perfect metric space and

diam(X) ≥ r, where r is a positive constant. Then for every a ∈ X, there exists a

point w ∈ X such that
τr

4
≤ d(w, a) ≤ r

4
.

Proof. Since diam(X) ≥ r, for every a ∈ X, there must exist a point w0 ∈ X
such that

d(w0, a) ≥
r

3
,

which guarantees that X \ B(a, r
4
) 6= ∅. By the uniform perfectness of X, we know

that there exists a point w such that

w ∈ B
(
a,

r

4

)
\B

(
a,

τr

4

)
.

Hence the proof of the lemma is complete. �

2.3. Angles at seams, weak quasiconvexity and quasiconvexity. Suppose
(X, d) is a metric space. Let X1 and X2 be two closed subsets of X with X1∩X2 6= ∅.
The seam is by definition the intersection X1 ∩ X2. Following Agard and Gehring
[1], the angle ∠(X1, X2) between X1 and X2 at the seam X1 ∩X2 is by definition the
supremum over all constants c > 0 such that for any (x1, x2) ∈ X1 ×X2,

d(x1, x2) ≥ c inf
y∈X1∩X2

{
d(x1, y) + d(x2, y)

}
.

Definition 2.3. Suppose that (X, d) is a metric space, and X1 and X2 are closed
subsets of X with X = X1 ∪ X2 and X1 ∩ X2 6= ∅. Let µ > 0. X is called weakly

µ-quasiconvex relative to (X1, X2) if for each pair of points (x1, x2) ∈ (X1, X2), there
exists a point z ∈ X1 ∩X2 such that

min{d(x1, z), d(x2, z)} ≤ µd(x1, x2).

Definition 2.4. A metric space (X, d) is called ν-quasiconvex if for any x1 and
x2 ∈ X, there exists a rectifiable curve γ joining those two points such that

ℓ(γ) ≤ νd(x1, x2),

where ℓ(γ) means the arclength of γ.

The following lemma shows that quasiconvexity implies weak quasiconvexity.

Lemma 2.5. Suppose that (X, d) is ν-quasiconvex with X = X1 ∪ X2 and

X1 ∩ X2 6= ∅, where the closures are taken in X. Then X is weakly ν-quasiconvex

relative to (X1, X2).

Proof. Let x1 ∈ X1 and x2 ∈ X2. Then it follows from the assumption of the
quasiconvexity of X that there is a curve γ ⊂ X such that

ℓ(γ) ≤ νd(x1, x2).
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The lemma easily follows since min{d(z, x1), d(z, x2)} ≤ ℓ(γ) for any z ∈ γ ∩ X1 ∩
X2. �

Our next lemma demonstrates the equivalence between the positive angle and
the weak quasiconvexity.

Lemma 2.6. Suppose that (X, d) is a metric space, and X1 and X2 are closed

subsets of X with X = X1 ∪ X2 and X1 ∩ X2 6= ∅. Then the following statements

are quantitatively equivalent.

(1) ∠(X1, X2) > 0;
(2) X is weakly µ-quasiconvex relative to (X1, X2).

Proof. For the proof of the necessity, let ∠(X1, X2) = c. Then c > 0, and the
proof follows from the assertion: For any x1 ∈ X1 and x2 ∈ X2, there exists a point
u1 ∈ X1 ∩X2 such that

min{d(u1, x1), d(u1, x2)} ≤ c+ 1

2c
d(x1, x2).(2.1)

To prove this assertion, we only need to consider the case x1 6= x2. Since the
assumption c > 0 implies that

c inf
y∈X1∩X2

{d(y, x1) + d(y, x2)} ≤ d(x1, x2),

and because there exists a point y1 ∈ X1 ∩X2 such that

d(y1, x1) + d(y1, x2) ≤ inf
y∈X1∩X2

{d(y, x1) + d(y, x2)}+ d(x1, x2),

we know that

min{d(y1, x1), d(y1, x2)} ≤ d(y1, x1) + d(y1, x2)

2
≤ c + 1

2c
d(x1, x2).

By letting u1 = y1, we see that (2.1) is true.
To prove the sufficiency, we only need to show that for any x1 ∈ X1 and x2 ∈ X2,

1

2(µ+ 1)
inf

y∈X1∩X2

{d(y, x1) + d(y, x2)} ≤ d(x1, x2).(2.2)

Since X is weakly µ-quasiconvex relative to (X1, X2), there exists a point y0 ∈
X1 ∩X2 such that

max{d(y0, x1), d(y0, x2)} ≤ (µ+ 1)d(x1, x2).

Obviously, (2.2) follows from the following inequality:

inf
y∈X1∩X2

{d(y, x1) + d(y, x2)} ≤ 2max{d(y0, x1), d(y0, x2)}.

Thus the lemma is proved. �

3. Quasimöbius mappings and unions

Lemma 3.1. Suppose X1 and X2 are closed subsets of X with X = X1 ∪ X2

and X1 ∩ X2 6= ∅, where (X, d) is a metric space. If diam(X1 ∩ X2) ≥ q diam(X1)
and X1 ∩ X2 is τ -uniformly perfect with q ∈ (0, 1] and τ ∈ (0, 1), then for any x11,

x12 ∈ X1 and ξ ∈ X1 ∩X2, there exists a point ζ ∈ X1 ∩X2 such that

1

L
d(x11, x12) ≤ d(ξ, ζ) ≤ Ld(x11, x12),

where L = max{4
q
, 1
τ
}.



206 Tiantian Guan, Manzi Huang and Xiantao Wang

Proof. If diam(X1 ∩X2) <
1
τ
d(x11, x12), since there is a point ζ ∈ X1 ∩X2 such

that
1
4
diam(X1 ∩X2) ≤ d(ζ, ξ) ≤ diam(X1 ∩X2),

it follows from the assumption diam(X1 ∩X2) ≥ qdiam(X1) of the lemma that

(3.1) q
4
d(x11, x12) ≤ d(ζ, ξ) ≤ 1

τ
d(x11, x12).

Now, we assume that diam(X1∩X2) ≥ 1
τ
d(x11, x12). Then Lemma 2.4 guarantees

that there exists ζ ∈ X1 ∩X2 such that

(3.2) 1
4
d(x11, x12) ≤ d(ζ, ξ) ≤ 1

4τ
d(x11, x12).

Easily, the lemma follows from (3.1) and (3.2). �

Lemma 3.2. Suppose that (X, d) is a metric space and the following conditions

are satisfied:

(1) X1 and X2 are closed subsets of X with X = X1 ∪X2 and X1 ∩X2 6= ∅;
(2) X is weakly µ-quasiconvex relative to (X1, X2) with µ > 0;
(3) There is a constant q ∈ (0, 1] such that

diam(X1 ∩X2) ≥ qmin{diam(X1), diam(X2)};
(4) X1 ∩X2 is τ -uniformly perfect with τ ∈ (0, 1).

Then for any p ∈ X1 ∩X2, the following hold:

(i) Xp is weakly µ1-quasiconvex relative to ((X1)p, (X2)p) with respect to the

metric dp, where µ1 = 16L(µ+ 1)(L+ 1) and L is the constant from Lemma

3.1;

(ii) diamp((Xi)p) = diamp((X1 ∩X2)p) for i ∈ {1, 2};
(iii) (X1 ∩ X2)p is τ1-uniformly perfect with respect to the metric dp, where τ1

depends only on τ .

Here diamp(M) denotes the diameter of a set M with respect to the metric dp.

Proof. By the assumption (4) of the lemma, we see that X1 ∩X2 has no isolated
point. Then Theorem C(3) ensures that all the quantities diamp((Xi)p) (i ∈ {1, 2})
and diamp((X1 ∩X2)p) are ∞, and so, the statement (ii) of the lemma is true.

Again, the assumption (4) of the lemma along with Lemma 2.3 guarantees that
(X1 ∩ X2)p is τ ′-uniformly perfect, where τ ′ = τ

2
. Then the statement (iii) of the

lemma follows from Theorem C(2), Theorem D and Lemma 2.1.
To complete the proof, it remains to prove the statement (i) of the lemma. We

are going to prove that for any x1 ∈ (X1)p and x2 ∈ (X2)p, there exists ζ ∈ (X1∩X2)p
such that

min{dp(x1, ζ), dp(x2, ζ)} ≤ µ1dp(x1, x2),(3.3)

where µ1 = 16L(µ+ 1)(L+ 1).
If x1 ∈ (X1∩X2)p (resp. x2 ∈ (X1∩X2)p), by taking ζ = x1 (resp. ζ = x2), (3.3)

follows.
If x1 ∈ (X1)p \ ((X1)p ∩ (X2)p) and x2 ∈ (X2)p \ ((X1)p ∩ (X2)p), it follows from

the assumption (2) of the lemma that there exists z0 ∈ X1 ∩X2 such that

max{d(x1, z0), d(x2, z0)} ≤ (µ+ 1)d(x1, x2).(3.4)

Without loss of generality, we may assume that

min{diam(X1), diam(X2)} = diam(X1).

We divide the discussions into two cases: d(z0, p) ≤ 3d(x1, z0) and d(z0, p) > 3d(x1, z0).
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For the former case, we see from (3.4) that

max{d(x1, p), d(x2, p)} ≤ max{d(x1, z0), d(x2, z0)}+ d(z0, p)

≤ 4(µ+ 1)d(x1, x2).

By replacing x11, x12 and ξ in Lemma 3.1 by x1, p, p, respectively, it follows from
Lemma 3.1 that there exists z1 ∈ X1 ∩X2 such that

1

L
d(x1, p) ≤ d(z1, p) ≤ Ld(x1, p),(3.5)

and so, (3.5) gives

d(z1, p) ≤ 4L(µ+ 1)d(x1, x2).

Thus the assumption of this case and (3.4) lead to

d(x2, z1) ≤ d(x2, z0) + d(z0, p) + d(z1, p) ≤ 4(µ+ 1)(L+ 1)d(x1, x2).

Thus we deduce from Theorem C(1) and (3.5) that

(3.6) dp(x2, z1) ≤
d(x2, z1)

d(x2, p)d(z1, p)
≤ 16L(µ+ 1)(L+ 1)dp(x1, x2).

Since x1 6= p, again, it follows from (3.5) that z1 6= p. By taking ζ = z1, (3.3)
follows.

For the latter case, i.e., d(z0, p) > 3d(x1, z0), we know that z0 6= p and

d(x1, p) ≤ d(z0, p) + d(x1, z0) ≤ 4
3
d(z0, p).

Then Theorem C(1) and (3.4) lead to

dp(x2, z0) ≤
d(x2, z0)

d(x2, p)d(z0, p)
≤ 16

3
(µ+ 1)dp(x1, x2).

By taking ζ = z0, we know that (3.3) is true. Hence the lemma is proved. �

Proof of Theorem 1.1. The sufficiency is obvious. To prove the necessity, for
convenience, let fi = f |Xi

for i = 1, 2. Now, we assume that both f1 and f2 are
θ-QM. Let p ∈ X1 ∩X2, and let

(3.7) g = id2 ◦f ◦ id−1
1 : (Xp, dp) → (Yp′, d1,p′),

where p′ = f(p), both id1 : (Xp, d) → (Xp, dp) and id2 : (Yp′, d1) → (Yp′, d1,p′) are the
identity mappings. Also, we use x (resp. y) to denote both x and its image id1(x)
for any x ∈ Xp (resp. both y and its image id2(y) for any y ∈ Yp′). Furthermore, for
i = 1, 2, let

gi = g|(Xi)p
.

Then gi(x) = x′ for all x ∈ (Xi)p, where x′ = f(x).
To finish the proof, we need the following claim.

Claim 3.1. (a) gi is θ1-QS, where θ1(t) = 16θ(16t);
(b) g is η2-QS, where η2 depends on θ, τ , q, together with the angles ∠(X1, X2)

and ∠(Y1, Y2).

First, we prove (a). We see from Theorem C(2) that for each i ∈ {1, 2}, gi is
θ1-QM. Without loss generality, we may assume that i = 1. To prove this statement,
we only need to show that for every triple {x, a, b} in (X1)p,

(3.8)
d1,p′(g1(x), g1(a))

d1,p′(g1(x), g1(b))
≤ 16θ

(
16

dp(x, a)

dp(x, b)

)
.
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By the uniform perfectness of X1 ∩X2, we know that there is a sequence {pn} ⊂
(X1 ∩ X2)p such that d(pn, p) → 0 as n → ∞. Obviously, {p′n} ⊂ (Y1 ∩ Y2)p′ and
d1(p

′
n, p

′) → 0 as n → ∞, where p′n = f(pn). Since g1 is θ1-QM, we have

(3.9)
d1,p′(g1(x), g1(a))d1,p′(g1(b), g1(pn))

d1,p′(g1(x), g1(b))d1,p′(g1(x), g1(pn))
≤ 16θ

(
16

dp(x, a)dp(b, pn)

dp(x, b)dp(x, pn)

)
.

Moreover, it follows from Theorem C(1) that all the quantities

dp(x, pn), dp(b, pn), d1,p′(g1(x), g1(pn)) and d1,p′(g1(b), g1(pn))

tend to ∞ as n → ∞. Thus (3.8) follows from (3.9) by letting n tend to ∞.
Next, we shall apply Theorem B to prove (b). For this, we need to check that

all the assumptions in Theorem B are satisfied. Since Corollary 2.2 guarantees that
Y1 ∩ Y2 is τ2-uniformly perfect, where τ2 depends only on θ and τ , we see from
Lemmas 2.6 and 3.2, together with the statement (a) of the claim, that all the
assumptions in Theorem B are satisfied. By Theorem B, we know that the statement
(b) of the claim is true, and thus, the claim is proved.

We are ready to finish the proof of the theorem. Since Claim 3.1(b) implies that
f |Xp

= id−1
2 ◦g ◦ id1 is θ2-QM, where θ2 depends only on η2, and since p is not an

isolated point of X, we see from the homeomorphism of f that f is also θ2-QM. Now,
the proof of the theorem is complete.

4. Some examples

Throughout this section, C denotes the complex plane and z = x+ iy stands for
a point in C, where x and y ∈ R, O denotes the coordinate origin in C, and the
metric d = | · | is the usual Euclidean metric.

In this section, our purpose is to construct four examples. The first example
shows that the diameter condition in Theorem B is not invariant with respect to QM
mappings. The remaining three examples demonstrate that each of the first three
assumptions in Theorem 1.1 cannot be removed.

Example 4.1. Let

X = X1 ∪X2,

where X1 = (I1 ∪ I2) \ {O}, X2 = (I3 ∪ I4) \ {O},
I1 = {z ∈ C : x2 + y2 ≤ 4, x ≥ 0, y ≥ 0},

I2 = {z ∈ C : 1 ≤ x2 + y2 ≤ 4, x ≤ 0, y ≤ 0},
I3 = {z ∈ C : x2 + y2 ≤ 4, x ≤ 0, y ≤ 0}

and

I4 = {z ∈ C : 1 ≤ x2 + y2 ≤ 4, x ≥ 0, y ≥ 0}
(see Figure 1), and let

f : X → Y

with f(z) = z
|z|2

and Y = f(X). Then we have the following conclusions.

(1) The homeomorphism f is θ3-QM, where θ3(t) = 81t;
(2) diam(X1) = diam(X2) = diam(X1 ∩X2) = 4;
(3) diam(f(X1)) = diam(f(X2)) = ∞, but diam(f(X1) ∩ f(X2)) = 2.

Proof. The first assertion follows from [11, p. 220], and the rest two assertions
are obvious. �
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I1 I4

I3
I2

O

y

i

2i

-i

-2i

x1 2

−1−2

Figure 1. Example 4.1.

The following example shows that the assumption (1) in Theorem 1.1 cannot be
removed.

Example 4.2. Let

X = X1 ∪X2,

where X1 = J1 ∪ J3, X2 = J2 ∪ J3, J1 = {z ∈ C : 1
64

< x2 + y2 < 1, x > 0, y > 0},

J2 = {z ∈ C : x2 + y2 < 1, x > 0, y < 0} and J3 = {z ∈ C : x2 + y2 = 1, x > 0}

(see Figure 2), and let

f : X → Y,

where f |X1
(z) = z

|z|2
, f |X2

(z) = z and Y = f(X). Then the following statements

hold.

(a) X = X1 ∪X2 is not weakly µ-quasiconvex relative to (X1, X2) for any µ > 0;
(b) Both X1 ∩X2 and f(X1) ∩ f(X2) are connected;
(c) diam(X1 ∩ X2) = diam(X1) = diam(X2) = 2, diam(f(X1) ∩ f(X2)) =

diam(f(X2)) = 2 and diam(f(X1)) = 8
√
2;

(d) Both f |X1
and f |X2

are θ3-QM, where θ3(t) = 81t;
(e) The homeomorphism f is not θ-QM for any homeomorphism θ.

J1

J2

J3

O

y

i

8

i

-i

x1

8

1

Figure 2. Example 4.2.

Proof. To prove the first statement, let z1 = 1
2
+ is and z2 = 1

2
− is, where

0 < s < 1
2
. Then we have

|z1 − z2| = 2s.



210 Tiantian Guan, Manzi Huang and Xiantao Wang

Moreover, for any z ∈ X1 ∩X2 = J3, we have

min{|z1 − z|, |z2 − z|} ≥ 2−
√
1 + 4s2

2
.

By letting s → 0, we see that X is not weakly µ-quasiconvex relative to (X1, X2) for
any µ > 0.

The second and the third statements are obvious, and the forth one easily follows
from [11, p. 220]. Now, we remain to show the last statement. For this, let

z3 =
1

4
− is, z4 =

1

2
− is, z5 =

1

4
+ is and z6 =

1

2
+ is,

where 0 < s < 1
2
. By elementary computations, we obtain

r =
|z3 − z5||z4 − z6|
|z3 − z4||z5 − z6|

= 64s2 and r1 =
|z′3 − z′5||z′4 − z′6|
|z′3 − z′4||z′5 − z′6|

=
2λ1(s)λ2(s)√

(1 + 16s2)(1 + 4s2)
,

where

λ1(s) =

√
(15
4

− 4s2
)2

+ (17 + 16s2)2s2 and λ2(s) =

√
(3
2
− 2s2

)2
+ (5 + 4s2)2s2.

Since 0 < s < 1
2
, we see that

r1 ≥
9

8

√
10,

and thus, the fact r → 0 as s → 0 implies that f is not θ-QM for any homeomorphism
θ. �

The purpose of our next example is to illustrate that the assumption (2) in
Theorem 1.1 cannot be removed.

Example 4.3. Let

X = X1 ∪X2,

where X1 = {z ∈ C : x2 + y2 ≤ 1, x ≤ 0} ∪ {p0}, p0 denotes the point (1, 0) and
X2 = {z ∈ C : x ≥ 0, y = 0} (see Figure 3), and let

f : X → X,

where f |X1
(z) = z and f |X2

(z) = z2. Then the following statements hold.

(I) f(Xi) = Xi for each i = 1, 2;
(II) X = X1 ∪X2 is weakly 1-quasiconvex relative to (X1, X2);

(III) X1 ∩X2 is not τ -uniformly perfect for any τ ∈ (0, 1);
(IV) diam(X1 ∩X2) = qmin{diam(X1), diam(X2)} = 1, where q = 1

2
;

(V) f |X1
and f |X2

are θ4-QM, where

θ4(t) = 4t3 + 8t2
√
t+ 135t2 + 8t

√
t+ 90t+ 16

√
t;

(VI) The homeomorphism f is not θ-QM for any homeomorphism θ.



An extension property of quasimöbius mappings in metric spaces 211

X1

X2

O

y

i

-i

x−1 1

p0

Figure 3. Example 4.3.

Proof. The first statement is obvious. To prove the second statement, it suffices
to show that for any z1 ∈ X1 and z2 ∈ X2, there exists z∗ ∈ X1∩X2(= {O, p0}) such
that

(4.1) min{|z1 − z∗|, |z2 − z∗|} ≤ |z1 − z2|.
If z1 ∈ X1 ∩X2 (resp. z2 ∈ X1 ∩ X2), let z∗ = z1 (resp. z∗ = z2). Then (4.1) is

obvious.
If z1 ∈ X1 \ (X1 ∩ X2) and z2 ∈ X2 \ (X1 ∩ X2), then we easily know that the

angle formed by the vectors
−−→
Oz1 and

−−→
Oz2 is at least π

2
. By letting z∗ = O, we see

that (4.1) is true.
The third and forth statements are obvious. For the fifth one, obviously, f |X1

is
θ1-QM, where θ5(t) = t. Hence it is θ4-QM, where

θ4(t) = 4t3 + 8t2
√
t+ 135t2 + 8t

√
t+ 90t+ 16

√
t.

About f |X2
, we first show that f |X2

is η-QS, where

η(t) = t(t + 2).

Let z1 = (x1, 0), z2 = (x2, 0), z3 = (x3, 0) ∈ X2 with z1 6= z3. Then

|f(z1)− f(z2)|
|f(z1)− f(z3)|

=
|x2

1 − x2
2|

|x2
1 − x2

3|
=

(x1 + x2)|z1 − z2|
(x1 + x3)|z1 − z3|

.

Since
x1 + x2

x1 + x3

≤ 2 +
|z1 − z2|
|z1 − z3|

,

we see that f |X2
is η-QS, where η(t) = t(t+ 2). Thus the similar reasoning as in the

proof of [11, Theorem 3.2] ensures that f |X2
is θ4-QM.

To finish the proof, it remains to show the last statement. For this, let

z4 = 0, z5 = s, z6 = −s and z7 = −2s,

where 0 < s < 1. By elementary computations, we obtain

r =
|z4 − z6||z5 − z7|
|z4 − z5||z6 − z7|

= 3 and r1 =
|z′4 − z′6||z′5 − z′7|
|z′4 − z′5||z′6 − z′7|

=
s+ 2

s
.

Now, it follows from the fact r1 → +∞ as s → 0 that f is not θ-QM for any
homeomorphism θ. Hence the proof of the example is complete. �
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By the next example, we know that the assumption (3) in Theorem 1.1 cannot
be removed.

Example 4.4. Let

X = X1 ∪X2,

where X1 = {z ∈ C : x2 + y2 ≥ 1, x ≥ 0, y ≥ 0}, X2 = K1 ∪ K2, K1 = {z ∈
C : x2 + y2 = 1, x ≥ 0, y ≥ 0} and K2 = {z ∈ C : x = 1, y ≤ 0} (see Figure 4), and
let

f : X → Y,

where f |X1
(z) = z

|z|2
, f |X2

(z) = z and Y = f(X). Then the following statements

hold.

(i) X = X1 ∪X2 is weakly 1-quasiconvex relative to (X1, X2) and Y = f(X1) ∪
f(X2) is weakly 1-quasiconvex relative to (f(X1), f(X2));

(ii) Both X1 ∩X2 and f(X1) ∩ f(X2) are connected;
(iii) diam(X1) = diam(X2) = ∞, diam(X1 ∩ X2) =

√
2, and diam(f(X1) ∩

f(X2)) = min{diam(f(X1)), diam(f(X2))} =
√
2;

(iv) Both f |X1
and f |X2

are θ3-QM, where θ3(t) = 81t;
(v) f is not θ-QM for any homeomorphism θ.

O

y

i

x1

K1

K2

p0

X1

Figure 4. Example 4.4.

Proof. To prove the first statement, we only need to illustrate the relatively weak
quasiconvexity of X since the proof of that of Y is similar. To reach this goal, it
suffices to show that for any z1 ∈ X1 and z2 ∈ X2, there exists z0 ∈ X1 ∩X2(= K1)
such that

(4.2) min{|z1 − z0|, |z2 − z0|} ≤ |z1 − z2|.

If z1 ∈ K1 (resp. z2 ∈ K1), let z0 = z1 (resp. z0 = z2). Then (4.2) is obvious.
If z1 ∈ X1 \K1 and z2 ∈ X2 \K1, then we easily know that the angle formed by

the vectors −−→p0z1 and −−→p0z2 is at least π
2

( we recall that p0 denotes the point (1, 0) in
C). This fact guarantees that (4.2) holds by letting z0 = p0.

The second and third statements are obvious, and the forth one follows from [11,
p. 220]. To finish the proof, it remains to show the last statement. For this, let

z3 =
1 + i

2
t, z4 = (1 + i)t, z5 = 1− 10i and z6 = 1− ti,
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where t > 10 is an integer. By elementary computations, we obtain

r =
|z3 − z5||z4 − z6|
|z3 − z4||z5 − z6|

=

√
(t− 2)2 + (t+ 20)2

√
(t− 1)2 + 4t2√

2t(t− 10)

and

r1 =
|z′3 − z′5||z′4 − z′6|
|z′3 − z′4||z′5 − z′6|

=

√
(t− 1)2 + (10t+ 1)2

√
(2t− 1)2 + (2t2 + 1)2√

2t(t− 10)
.

Now, it follows from the fact r →
√
5 and r1 → +∞ as t → +∞ that f is not θ-QM

for any homeomorphism θ. Hence the proof of the example is complete. �
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