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Abstract. We give a fundament for Berezin’s analytic Udo considered in [4] in terms of
Bargmann images of Pilipovié¢ spaces. We deduce basic continuity results for such ¥do, especially
when the operator kernels are in suitable mixed weighted Lebesgue spaces and act on certain
weighted Lebesgue spaces of entire functions. In particular, we show how these results imply well-
known continuity results for real Wdo with symbols in modulation spaces, when acting on other
modulation spaces.

0. Introduction

The aim of the paper is to put a fundament for the theory of analytic pseudo-
differential operators, considered in [4] by Berezin. This is essentially done through
a detailed analysis of Bargmann images of the so-called Pilipovi¢ spaces of func-
tions and distributions, given in [11, 26]. More precisely, we consider kernels re-
lated to integral representations of analytic pseudo-differential operators to deduce
their continuity properties. When the corresponding symbols belong to suitable
(weighted) Lebesgue spaces of semi-conjugate analytic functions, we prove the con-
tinuity of the analytic pseudo-differential operators when acting between (weighted)
Lebesgue spaces of analytic functions. Moreover, by using the relationship between
the Bargmann transform and the short-time Fourier transform we show that our
results can be used to recover well-known (sharp) continuity properties of (real)
pseudo-differential operators with symbols in modulation spaces which act between
other modulation spaces, see [23, 25, 28]. We emphasize that our approach here
is more general, because we have relaxed the assumptions on the involved weight
functions, compared to earlier contributions.

Analytic pseudo-differential operators, considered in [4] by Berezin are well-
designed when considering several problems in analysis and its applications, e.g.
in quantum mechanics. In the context of abstract harmonic analysis it follows that
any linear and continuous operator between Fourier invariant function and (ultra-)
distribution spaces may, in a unique way, be transformed into an analytic pseudo-
differential operator by the Bargmann transform (see Section 2). An advantage of
such reformulations is that all of the involved objects are essentially entire functions
and thereby possess several strong and convenient properties.
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The definition of analytic pseudo-differential operators resembles the definition
of real pseudo-differential operators. In fact, let a(z, ) be a suitable function or (ult-
ra-)distribution on the phase space R??. Then the (real) pseudo-differential operator
Op(a) acting on suitable sets of functions or (ultra-)distributions on the configuration
space R? is given by

(0.1) fa) = (Op(af)(w) = ) | ale ) fie)e e de

Here the integral in (0.1) should be interpreted in a distributional (weak) sense, if
necessary, and we refer to [15] or Section 1 for the notation.

Suppose instead that a is a suitable semi-conjugate entire (analytic) function on
C? x C? = C% ie. (z,w) — a(z,w) is an entire (analytic) function. Then the
analytic pseudo-differential operator Opgy;(a) acting on suitable entire functions F' on
C? is given by

ol

0:2) F(2) = (Opol@) F)(2) = | ale,u) F()e™ du(w).

Here dp(w) is the Gauss measure 7 % 1“" d\(w), where dA(w) is the Lebesgue
measure on C¢, and (z,w) = Z;l:l zj - wj, when z = (21,...,24) € C% and w =
(wy, ..., wy) € CL This means that the operator kernel (with respect to du) is given
by

(0.3) K(z,w) = Ku(z,w) = a(z, w)e®®).

Evidently, (Opgy(a)F)(z) is equal to the integral operator

(0.4) (TxF)(2) = | K(z,w)F(w)dp(w)
Cd
with respect to du, when K is given by (0.3). By the analyticity properties of the
symbol a it follows that (z,w) — K(z,w) is an entire function on C?¢.
In [4, 25] several facts of analytic pseudo-differential operators are deduced. For
example, if ¢ and F' are chosen such that

2z az, - )F e

is locally uniformly bounded and analytic from C? to L!(du), then Opg(a)F in (0.2)
is a well-defined entire function on C?. In [4, 25| it is also observed that

(0.5) (Opy(2)F)(2) = 2 F(2) and  (Opy(w;)F)(2) = (0;F)(2)

when F e LY(duy) n A(CY), and duy(w) = (1 + |w|) du(w).

In such setting we study the mapping properties for complex integral operators
and pseudo-differential operators when respectively K = K, and a above belong to
suitable classes of semi-conjugate entire functions. In fact, we permit more generally
that K and a belong to suitable classes of formal semi-conjugate analytic power series
expansions. That is, K (z,w) and a(z,w) are of the forms

Dle(a, Blea(z)es(@) and Y cala, Beal(2)es(®W),  ea(z) = —,
o oB Val
respectively.

To set the stage for our study we collect the background material in Section 1.
It contains a brief account on weight functions, Gelfand—Shilov spaces, spaces of
Hermite functions and power series expansions, modulation spaces, and Bargmann
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transform and spaces of analytic functions. Especially, we recall basic facts for the
spaces

(0.6) A, (C9 (Ao,ba(Cd)), A (CY (A(),S(Cd)),
and their Bargmann duals

(0.7) A, (CY) (A,,(C),  AUC) (A,,(CY),

when s,0 > 0. The spaces in (0.6) consist of all formal power series

(0.8) F(z) = ) c(F a)ea(2),

a

with coefficients satisfying
1
[e(F,a)| < helal s, [e(F,a)| e ™,

respectively, for some (for every) h,r > 0, and the spaces in (0.7) consist of all formal
power series in (0.8) such that
1
[e(F,a)] < hlal™s, |e(FLa)|s e,

respectively, for every (for some) h,r > 0.
In Section 2 we extend the definition of (0.4) to allow the kernels K to belong to
any of the spaces

(0.9) /To%(Cm), flbU(Cm), flO,S(Czd), fls(Cm),
and their duals

(010) A{),bg<c2d)7 ﬁég<c2d)7 Ag’s(c2d)7 ﬁ;<c2d)7
where
ﬁbo(C2d) = {K; (z,w) — K(2,@) € A,,(C*")},

and similarly for the other spaces in (0.9) and (0.10). In the end we prove that if
s> 0 or s = b,, then the integral operators in (0.4),

(0.11) Tx: AfChH— A(CY when K e A(C*),
and
(0.12) Tyt Aos(CY —A (CY) when K e Af (C*),

are uniquely defined and continuous, and similarly when the roles of the non-duals
in (0.6) and (0.9), and their duals in (0.7) and (0.10) are swapped. We also prove
the opposite direction, that any linear and continuous operators between such spaces
are given by such kernel operators. These kernel results are given in Propositions 2.2
and 2.3. Due to the Bargmann transform homeomorphisms, these results are also
equivalent to Theorems 3.3 and 3.4 in [7] on kernel theorems for Pilipovi¢ spaces.
(See Subsection 1.5.)

Note that, if s > %, then the spaces of power series expansions above can be
identified with certain spaces of analytic and semi-conjugate analytic functions. For
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example we have

A, (CY = {Fe ACY: |F(z)| < ™ forsomer >0}, o >0,
A(CY) = {Fe A(CY; [F(2)] < ¥ for some r > 0}
A(CH ={FeACY; |F(2)] < 6%"2‘2”‘2‘% for every r > 0}

(€ = {Fe ACY; [F(z)| <7 forevery r > 0}, o> 1,

AL (CH) = A(CY) and  Aj,, (CY) = Ay({0}),

and similarly for A,(C??) and A’ (C??). In particular, the mappings (0.11) and (0.12)
can be formulated in terms of those function spaces.

If instead s € (0,1] and o > 0, and t € C, then K(z,w) — K(z,w)e'®") is
homeomorphic on

A, (C*),  Ap,, (C*),  A(C*) and A (C*),

see Theorem 2.6. In particular, (0.3) implies that the mappings (0.11) and (0.12)
still hold true with Opg(a) in place of Tk. (Cf. Theorems 2.7 and 2.8.)

In the case s > %, the conditions on a and its kernel K, of Opgy(a) are slightly
different. More precisely, these conditions are of the form

la(z,w)| < e%'|2*w|2+r(|z|%+|w\%)
and
|K(z,w)| < o 3 (a2 w]) (2] 35 4| 25)

in order for the mappings (0.11) and (0.12) should hold. (Cf. Theorems 2.9 and 2.10.)

In Section 3 we consider operators (0.4), where certain linear pullbacks of their
kernels obey suitable mixed and weighted Lebesgue norm estimates. We prove that
such operators are continuous between appropriate (weighted) Lebesgue spaces of
entire functions. For example, let w be a weight on C? x C¢ and w;,w, be weights
on C? such that

2 < w(zw)
wr(w)
and let
Gruw(z,w) = K,(z, 2 +w),
where

Ko (z,w) = e 2P+ | K (2 ) lw(V27, v2w).
If p,q,pj, q; € [1, 0] satisty

1 1 1 1 1 1

———=———=1-—-—- and ¢ <p,

pr P2 @1 @ p g
and Gy, € LP4(C% x C%), then it follows from Theorem 3.3 that Tk is continuous
from Az}’(m)(cd) to A%%(wz)(Cd). By slightly modifying the definition of Gk, we
also deduce another similar but different continuity result where the condition ¢ < p
above is removed (cf. Theorem 3.5).

We also present some consequences of these results. Theorem 3.4 can be con-

sidered as a special case of Theorem 3.3 formulated by analytic pseudo-differential
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operators instead of integral operators. Theorems 3.8 and 3.9 are obtained by im-
posing conditions on moderateness on w, w; and wy above and translating Theo-
rem 3.3 and 3.5 to real pseudo-differential operators via the Bargmann transform
and its inverse. These approaches show that obtained continuity results on analytic
pseudo-differential or integral operators might be suitable when investigating real
pseudo-differential operators. In fact, Theorems 3.8 and 3.9 agree with the sharp re-
sults |24, Theorem 3.3|, [27, Theorem 3.1] and |28, Theorem 2.2| in the Banach space
case. Remark 3.10 in the end of Section 3 shows that our approach can be used to
extend the latter results on real pseudo-differential operators to include situations
with non-moderate weights. We note that the moderate condition on weights may
in some situations be significantly restrictive (cf. Remark 1.14 in Section 1).

1. Preliminaries

In this section we recall some facts on involved function and distribution spaces
as well as on pseudo-differential operators. In Subsection 1.1 we introduce suitable
weight classes. Thereafter we recall in Subsections 1.2-1.4 the definitions and basic
properties for Gelfand—Shilov, Pilipovi¢ and modulation spaces. Then we discuss in
Subsection 1.5 the Bargmann transform and recall some topological spaces of entire
functions or power series expansions on C?. The section is concluded with a review
of some facts on pseudo-differential operators.

1.1. Weight functions. A weight on R? is a positive function w € L¥ (R%)

loc

such that 1/w e L (R%). The weight w on R is called moderate if there is a positive

loc
locally bounded function v on R? such that

(1.1) w(z +17y) < Cw(z)v(y), z,yeR%

for some constant C' > 1. If w and v are weights on R such that (1.1) holds, then
w is also called v-moderate. The set of all moderate weights on R? is denoted by
Pr(RY).

The weight v on R? is called submultiplicative, if it is even and (1.1) holds for
w = v. From now on, v always denotes a submultiplicative weight if nothing else
is stated. In particular, if (1.1) holds and v is submultiplicative, then it follows by
straight-forward computations that

w(z)
(1.2) v(y)

v(z+y) Sv(z)v(y) and v(z) =v(-z), z,yeR%

Sw(x+y) S w(@)v(y),

Here and in what follows we write A(0) < B(6), 0 € €, if there is a constant ¢ > 0
such that A(f) < c¢B(0) for all 6 € Q2.

If w is a moderate weight on R?, then by [25] and above, there is a submulti-
plicative weight v on R such that (1.1) and (1.2) hold (see also [13, 25|). Moreover
if v is submultiplicative on R?, then

(1.3) 1 < v(z) S el
for some constant r > 0 (cf. [13]). In particular, if w is moderate, then
(1.4) w(z+y) Sw(@)e™ and el <wx) <, 2,yeR?

for some r > 0.
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1.2. Gelfand—Shilov spaces. Let 0 < s € R be fixed. Then the (Fourier
invariant) Gelfand-Shilov space S,(R%) (Z,(R%)) of Roumieu type (Beurling type)
consists of all f € C*(R?) such that

_ o 2007 f ()]
(1.5) |flls... = sup W
is finite for some h > 0 (for every h > 0). Here the supremum should be taken over
all @, 3 € N% and x € R%. The semi-norms || - |s,, induce an inductive limit topology

for the space S,(R?) and projective limit topology for ¥,(R¢), and the latter space
becomes a Fréchet space under this topology.
The space S,(R?) # {0} (X,(R%) # {0}), if and only if s = L (s > 1). The

2 2

Gelfand—Shilov distribution spaces S.(R?) and ¥, (R?) are the dual spaces of S,(R?)
and ¥,(R?), respectively. We have

SipRY) = T, (RY) — S,(RY) — 5 (RY)
(1.6) — F(RY) — .7"(R%) — ¥)(RY)
— S{(RY) = T, (RY) — & ,(RY), j<s<t.
Here and in what follows we use the notation A < B when the topological spaces A

and B satisfy A € B with continuous embeddings.
A convenient family of functions concerns the Hermite functions

d 1|z

2
ho(z) = - 3(=1)ll2lela) =32 (0% 1*1%), o e N9

The set of Hermite functions on R is an orthonormal basis for L*(R?). It is also a
1

basis for the Schwartz space and its distribution space, and for any ¥, when s > 3,

Ss when s > % and their distribution spaces. They are also eigenfunctions to the
Harmonic oscillator H = H; = |z|*> — A and to the Fourier transform %, given by

2 d

2

(F &) = f(§) = (2m)”

when f e L'(R?). Here (-, -) denotes the usual scalar product on R% In fact, we
have

f(x)e @O dx, € e RY,
Rd

Haho = (2|a| + d)hg.

The Fourier transform .# extends uniquely to homeomorphisms on .#/(R%),
S/(R?) and on Y. (RY). Furthermore, .# restricts to homeomorphisms on .%(R%),
S,(R%) and on ¥,(R?), and to a unitary operator on L?*(R%). Similar facts hold true
when the Fourier transform is replaced by a partial Fourier transform.

Gelfand—Shilov spaces and their distribution spaces can also be characterized by
estimates of short-time Fourier transform, (see e.g. [14, 21, 26]). More precisely, let
¢ € (R?) be fixed. Then the short-time Fourier transform Vyf of f € '/ (R?) with
respect to the window function ¢ is the Schwartz distribution on R??, defined by

Vof(2,8) = Z(fo(- —1))(€), x,&eR™
If f,¢ e .7(RY), then it follows that

V(@) = @m)7% | J@)oly —)e 0 dy, @6 e R

By [25, Theorem 2.3] it follows that the definition of the map (f,¢) — V,f
from . (R%) x .7 (R%) to . (R??) is uniquely extendable to a continuous map from
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S/ (RY) x SE(RY) to S,(R?), and restricts to a continuous map from S,(R?¢) x S,(R?)
to S;(R??). The same conclusion holds with Y, in place of S;, at each place.

In the following propositions we give characterizations of Gelfand—Shilov spaces
and their distribution spaces in terms of estimates of the short-time Fourier transform.
We omit the proof since the first part follows from [14, Theorem 2.7]) and the second
part from [26, Proposition 2.2|. See also [8] for related results.

Proposition 1.1. Let s = 3 (s > 3), ¢ € S{(RH)\0 (¢ € £,(R?)\0) and Iet f be
a Gelfand-Shilov distribution on R?. Then the following is true:
(1) feS,(RY) (f e B,(RY)), if and only if

(1.7) Vof (2, 6)| < el +eD) 5 ¢ c R,

for some r > 0 (for every r > 0).
(2) feS/(RY) (f e ¥ (RY)), if and only if

1 1
(1.8) Vof(w, )] s 17HED, a0, € e RY,
for every r > 0 (for some r > 0).

1.3. Spaces of Hermite series and power series expansions. Next we
recall the definitions of topological vector spaces of Hermite series expansions, given
in [26]. As in [26], it is convenient to use suitable extensions of R, when indexing
our spaces.

Definition 1.2. The sets R, and R, are given by
Rb = R+ U {ba} and E = Rb U{O}

o>0
Moreover, beside the usual ordering in R, the elements b, in R, and R, are ordered
by the relations z1 < b,, < b,, < 3, when oy, 09, x1 and x5 are positive real numbers

such that z; < %, Ty = % and o1 < 09.

Definition 1.3. Let pe [1,0], s € Ry, r € R, ¥ be a weight on N9, and let

1

rla|2s
Irs(a) = e - when se R, )
rlel(al)zs, when s=b,, a e N°

Then,

(1) €5(N9) is the set of all sequences {cy}qene S C on N
(2) €oo(N?) = {0}, and £o(IN9) is the set of all sequences {c,}qene S C such that
co # 0 for at most finite numbers of «;
(3) Ey[gﬁ](Nd) is the Banach space which consists of all sequences {c,}aene S C
such that
{cataenaller, = [{cad(@)}aeni]ler < o0;

(4) Los(N?) = TOOEI[’ ](Nd) and (,(N?) = Uﬁp ] (N9), with projective respec-
tive inductive limit topologies of Ep r,s](Nd> with respect to r > 0;

(5) €5, (N9 Uf 09,11 (N4) and E;(Nd) ﬂf [/, ](Nd), with inductive re-
spective pIOJectlve limit topologies of ¢ [/ ﬁm](N ) with respect to r > 0.

Let p € [1,0], and let Qy be the set of all a € N? such that |a| < N. Then the
topology of £o(N9) is defined by the inductive limit topology of the sets

{{Ca}aena € 0h(N?); ¢y = 0 when a ¢ Qy }
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with respect to NV > 0, and whose topology is given through the semi-norms

(1.9) {cataent = [{catiaien]m@un),

It is clear that these topologies are independent of p. Furthermore, the topology of
(,(N9) is defined by the semi-norms (1.9). It follows that ¢,(N¢) is a Fréchet space,
and that its topology as well as the topologies of the spaces in Definition 1.3. (4) and
(5) are independent of p.

Next we introduce spaces of formal Hermite series expansions

(110) f = Z Cahon {Coc}aeNd EEE)(Nd>

aeNd

and power series expansions

(1.11) F =) Caar {Cataens € lH(NY).

aeNd

which correspond to

(1.12) los(NY),  £,(N?), ((N?) and £ (N?).
Here

_ 2 d d
(1.13) eq(z) = Tar ze C% aeN~

We consider the mappings
(1.14) Ty: {Catoent = D, Caha and Tu: {Coloent = Y. Ca€a
aeNd aeNd

between sequences, and formal Hermite series and power series expansions.

Definition 1.4. If s € R,, then

(1.15) Hos(RY), H,(RY, H,(RY) and |, (RY,
and
(1.16) Ao s(CY), A (CY, A(CY and A, (CY,

are the images of Ty and T4 respectively in (1.14) of corresponding spaces in (1.12).
The topologies of the spaces in (1.15) and (1.16) are inherited from the corresponding
spaces in (1.12).

Since locally absolutely convergent power series expansions can be identified with
entire functions, several of the spaces in (1.16) are identified with topological vector
spaces contained in A(C?) (see Theorem 1.9 below and the introduction). Here A(£2)
is the set of all (complex valued) functions which are analytic in Q. (For Qy < C%,
A(Qo) = |JA(R), where the union is taken over all open 2 = C? which contain .
We also set A4({0}) = A({0}) when 0 € C%.)

We recall that f € .(R%) if and only if it can be written as (1.10) such that

[cal < <77,
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for every N = 0 (cf. e.g. [19]). In particular it follows from the definitions that the
inclusions

(1.17) Ho(RY) — Ho(R?) — H (R?) — Ho(R?)
— JL(R?) — S (R") — H,(RY) — H (RY)
— ?—[678(Rd) — Hy(RY), when s,teR,, s <t,
are dense.

Remark 1.5. By the definition it follows that 73 in (1.14) is a homeomorphism
between any of the spaces in (1.12) and corresponding space in (1.15), and that T4
in (1.14) is a homeomorphism between any of the spaces in (1.12) and corresponding
space in (1.16).

The next results give some characterizations of H(R?) and H s(R?) when s is
a non-negative real number.

Proposition 1.6. Let 0 < s € R and let f € Hy(RY). Then f € H,(R?)
(f € Hos(RY)), if and only if f € C*(R?) and satisfies

(1.18) |HY fe < BYNPP,

for some h > 0 (every h > 0). Moreover, it holds
H,(RY) = S,(RY) # {0}, Hos(RY) =S, (R?) # {0} when se(
H(RY) = So(RY) # {0}, Ho(RY) # X,(RY) = {0} when s=
H(RY) # S{(RY) = {0}, Hos(RY) # S,(RY) = {0} when se(0,3),
H.(RY) # S.(RY) = {0}, Ho.(RY) =%, (RY) ={0} when s=0.

We refer to [26] for the proof of Proposition 1.6.

Due to the pioneering investigations related to Proposition 1.6 by Pilipovi¢ in
[17, 18], we call the spaces H,(R?) and Ho (R?) Pilipovié spaces of Roumieu and
Beurling types, respectively. In fact, in the restricted case s > Proposmon 1.6 was
proved already in [17, 18|.

Later on it will also be convenient for us to have the following definition. Here
we let F'(z9,%1) and F(Zs, z1) be the formal power series

(1.19) Z c(ag, a1)eq,(22)eq, (Z1) and Z c(ag, a1)éq, (Z2)ea, (21),

respectively, when F'(z9, z1) is the formal power series

(1.20) > elaz, a1)ea, (22)€a, (21).
Here z; € C%, j = 1,2, and the sums should be taken over all (ag, a;) € N x N,
Definition 1.7. Let d = dy + dy, s € R, O¢,1 and O¢ 2 be the operators
(Oc1F)(22,21) = F(22,71) and (O¢aF)(22,21) = F(Z2, 21)
between formal power series in (1.19) and (1.20), z; € C%, j = 1,2. Then
(121)  Ag,(C” x C™M), A(C* xC™M), A(CmxCM), A (C”xC™)

are the images of (1.16) under O¢;, and A(C% x C%) and Ay, 4,({0}) = Ay, .4, ({0})
are the images of A(CY) and Ag, 4, ({0}) respectively under ©¢ ;. The topologies of
the spaces in (1.21), A(C?% x C%) and Ay, 4,({0}) are inherited from the topologies
in the spaces (1.16), A(C?%) and A4({0}), respectively.
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Remark 1.8. By letting dy = d and d; = 0, it follows that A(C?) and the spaces
in (1.16) can be considered as special cases of A(C% x C%) and the spaces in (1.21).
Since A (C?) = A(C?) and Aj), (C?) = A4({0}), it follows that
(G x G = A(C% x O,
Ag),b1(cd2 X Cdl) = Ad2+d1({0})'

The following results are now immediate consequences of Theorems 4.1, 4.2, 5.2
and 5.3 in [26] and Definition 1.7. Here let

(1.22)

1
erlos) T g L
_20_
(1.23) Kirs(2) = el 5s=by, 0>0,
|Z2|277"|z|% > 1
[ 9 8 = 57
and
e
erlle Tt §s=by, o>1,
(1.24) Kors(2) = L2 )
ez Tl s > 1

Theorem 1.9. Let s1,52 € R, be such that sy > by, and let Ky, and Ky, s be
given by (1.23) and (1.24) respectively, when r > 0. Then the following is true:
(1) A, (C?% x C%) (Ay,s, (C% x CN)) consists of all K € A(C% x C™) such that
|K| < Ki,,s, for some r >0 (for every 0 < r < 1).
(2) AL (C% x Ch) (./éﬁl’o,sz((jd2 x C™)) consists of all K € A(C% x C") such that
|K| < Kays, for every r > 0 (for some r > 0).
By Remark 1.8 it follows that Theorem 1.9 remains true after the spaces in (1.21)
are replaced by corresponding spaces in (1.16).

1.4. Modulation spaces. Before giving the definition of a broad family of
modulation spaces, we make a review of mixed normed spaces of Lebesgue types,
adapted to suitable bases of the Euclidean space R%. Let E be the ordered basis
{e1,...,eq} of R Then the ordered basis E' = {€],...,¢e,} (the dual basis of E)

satisfies
lej, ey =2mdj, forevery j k=1,....d.
The corresponding parallelepiped, lattice, dual parallelepiped and dual lattice are
given by
k(E) = {xe; + - +xqeq; (v1,...,25) e R, 0<ap <1, k=1,...,d},
Ag = {jier + -+ jaea; (i, ..., ja) € 2},
'%(E/) = {516/1 ++§d6217 (51)"'>€d) ERda Oééﬂk < 1a k = 1)"'>d}a

and

ANy =Ap = {ue + - +wey; (1,... ) eZ},

respectively. Note here that the Fourier analysis with respect to general biorthogonal
bases has recently been developed in [20].

We observe that there is a matrix T such that ej,...,e; and €}, ..., €, are the
images of the standard basis under Ty and Ty = 27(T5")¢, respectively.

In the following we let

max(q) = max(q,...,qq) and min(q) = min(qy,...,qq)
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when q = (qh - '7qd) € [17oo]d'

Definition 1.10. Let E be an ordered basis of R and p = (py, ..., pq) € [1, 0%
If fe Ll (R?), then Ifllze is defined by

loc
HfHLg = HgdleLpd(R)
where g (i), zx € R9*, k=0,...,d — 1, are inductively defined as
go(x1, ..., xq) = |f(xrer + -+ x4eq)|,  (21,...,24) € RY,

and

gk(zk) = Hgk,l( '7zk>HL1’k(R)7 2L € Rdik, k=1,...,d—1.

The space LE(R?) consists of all f e L _(R?) such that | f] re is finite, and is called
E-split Lebesgue space (with respect to p).

Next we discuss suitable conditions for bases in the phase space R*. We let
0(X,Y) be the standard symplectic form on the phase space, given by

o(X,Y) =, & —(,n, X =(2,§eR™ Y =(y,n) e R
We notice that if

(1.25) {e1,...,eq, €1, -, Ea}
is the standard basis of R??, then
(1.26) O'(Qj,ek) = 0, (T(6j,€k) = —(5]',]@, and U(€j,€k) = 0,

when j,k € {1,...,d}. More generally, a basis in (1.25) for the phase space R* is
called symplectic if (1.26) holds. A symplectic basis (1.25) for R?® is called phase
split if e1,...,eq and €1, ...,e4 span

{(2,00e R*; zeR*} and {(0,¢)e R*; e R},

respectively.
Next we give the definition of our class of modulation spaces.

Definition 1.11. Let £ be an ordered basis for R??, p € [1,00]%, ¢(z) =
=i 217" and let w be a weight on R2?. Then the modulation space M}, (w)(Rd)

consists of all f € H; (R?) such that
(1.27) FAbYE:

B, (w)

=|Vof wlie
is finite.

We remark that if ¢(z) = 7 Ge 21" and f ¢ H; (RY), then (x,€) — Vyf(z,&) is
a smooth function (cf. [26]). Furthermore, by [26, Theorem 4.8] we get the following.
The proof is omitted.

Proposition 1.12. Let E be an ordered basis for R?*?, p € [1,0]? and let w be
a weight on R**. Then MY, (w)(Rd) is a Banach space with norm given by (1.27).

If the weight w in Definition 1.11 is a moderate weight, then we can say more
concerning M?¥ (w)(Rd). In what follows we let p’ € [1, 0] be the conjugate exponent
N
of pe[1,], ie. S+ =1
Proposition 1.13. Let E be an ordered basis for R*, p € [1,0]*? and let
w,v € Pr(R*) be such that w is v-moderate. Then the following is true:
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(1) %1(RY) — Mg ,(R?) — ¥ (R). If in addition max(p) < oo, then ¥ (R?)
is dense in Mg’(w)(Rd);

(2) if ¢ € M(lv)(Rd)\{O} and f € Y| (RY), then f € Mg’(w)(Rd), if and only
if the right-hand side of (1.27) is finite. Furthermore, different choices of
o€ M(lv)(Rd)\{O} in (1.27) give rise to equivalent norms;

(3) Mg’(w)(Rd) increases with pi, ..., paq and decreases with w;

(4) ifp’ = (P, ..., phy), then the restriction of the L?(R%) scalar product (-, -) to
21 (R?) is uniquely extendable to a (semi-conjugate) duality between M?, ) (R%)

and Mg:(l/w) (RY). If in addition max(p) < o, then the dual of Mgv(w)(Rd)

can be identified by Mg’(l/w)(Rd) through the form (-, -).

Proposition 1.13 follows by similar arguments as in Chapters 11 and 12 in [12]
(see also [25, 26]).

Remark 1.14. In some sense, the variable z at the weight w(z,&) in the def-
inition of modulation spaces quantify decay and possible growth properties for the
involved functions or distributions. In the same way the variable ¢ quantify regularity
or possible lack of regularity for the involved functions or distributions.

By the analysis in [26] it follows that there are no bounds on how fast V,f may

grow or decay at infinity when ¢(z) = ezl ig fixed, z € R%, and f is taken in

the class H; (R?). Since weights in #p(R*?) are bounded by exponential functions,
the restrictions of the weights in Proposition 1.13 are significantly stronger compared
to what is the case in Proposition 1.12. A question here concerns wether it is possible
to extend parts of Proposition 1.13 to larger weight classes than £g(R??) or not.

It seems that the invariance properties (2) in Proposition 1.13 concerning the
choice of weight function are not possible for weights that are not moderate. On
the other hand, (1) and (4) in Proposition 1.13 hold true for certain weights outside
P5(R?). In fact, in [25], certain weight classes which contain &5 (R??) as well as
weights of the form

when 7 > 0 and s > % are introduced. For corresponding (broader) families of

modulation spaces it is then proved that Proposition 1.13 (1) and (4) hold true (with
some modifications).

1.5. Bargmann transform and spaces of analytic functions. The Barg-
mann transform U, is the homeomorphism from the spaces in (1.15) to respective
spaces in (1.16), given by T4 o T;', where Ty and T are given by (1.14). For
distributions in .’/(R%), this definition agrees with the original definition of the
Bargmann transform, given in [1, 2|, in view of [1, 2, 26].

In fact, if f € LP(R?) for some p € [1,00], then Uy f is the entire function given
by

Baf)(e) = | e (= 32+ ) + 2 e)) Sy, 2= C,

which can also be formulated as

Vaf)E) = | Haenf)dy. zeCt

(1.28) (BVaf)(2) = {f, Aalz, ), zeC
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where the Bargmann kernel 2, is given by
Aq(z,y) = 7Y exp ( - %(<z, 2+ |y|?) + 22z, y>), zeClyeRL
(Cf. [1, 2].) Here

(z,wy = Z zzw; and (z,w) = (z,W)

when

z=(21,...,20) € C? and w = (w,...,wg) e C
and otherwise (-, - ) denotes the duality between test function spaces and their cor-
responding duals which is clear form the context. We note that the right-hand side
in (1.28) makes sense when f € S] /Z(Rd) and defines an element in A(CY), since

y — Aq(z,y) can be interpreted as an element in S;»(R?) with values in A(CY).

It was proved by Bargmann in [1] that f — 2B, f is a bijective and isometric map
from L?(R?) to the Hilbert space A%(C?), the set of entire functions F' on C? which
fullfils

(1.29) 1Pl = ( Ld FE)Pdu() <.

Recall, du(z) = 7% 2” d\(2), where d\(z) is the Lebesgue measure on C¢, and the
scalar product on A%(C?) is given by

(1.30) (F,G)y2 = J F(2)G(2)du(z), F,Ge A*(CY).
Ca
For future references we note that the latter scalar product induces the bilinear form
(1.31) (F,G) = (F,G) a2 = (F,G) a2(cay = J , F(2)G(z)du(z)
c

on A%(C?) x A2(CH).

In [1] it was also proved that the orthonormal basis {h4}aene in L?(R?) of Her-
mite functions is mapped to the orthonormal basis {€4}aene in A%2(C?) (cf. (1.13)).
Furthermore, there is a convenient reproducing formula on A%(C?). In fact, let 11,
be the operator from L?(du) to A(C?), given by

(1.32) (IIsF)(2) = J F(w)e®™ dp(w), ze C?
Ca
Then it is proved in [1] that IT4 is an orthonormal projection from L?(du) to A%(C?).
From now on we assume that ¢ in the definition of the short-time Fourier trans-
form is given by
(1.33) d(z) = 7 We 172 4 c RY,

if nothing else is stated. For such ¢, it follows by straight-forward computations
that the relationship between the Bargmann transform and the short-time Fourier
transform is given by

(1.34) U, =UyoVy, and Uy'oB, =V,

where Uy is the linear, continuous and bijective operator on 2'(R?) ~ 2'(C?), given
by

(1.35)  (UyF)(z + i) = (2m)¥2e#P+EP 2= w8 p(9l/2 _o12¢) - 4 ¢ e R,
cf. [25].
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Definition 1.15. Let F be an ordered basis for R??, Uy be the operator in
(1.35), p e [1,0]%, ¢(z) = 7 Te~21** and let w be a weight on R4,

(1) The space Bp (Cd) consists of all F' e LL _(C?) such that

loc

|Fllpr = 1(Ug F) - wlpe

E(w)
is finite;
(2) The space AP, (w)(Cd) consists of all F € A(C%) (B, (w)(Cd) with topology
inherited from Bg’(w)(Cd).
We note that the spaces in Definition 1.15 are normed spaces.
For conveneincy we set |F/ e P = O when F ¢ BY, (w)(Cd) is measurable, and
HFHA%’( = o, when F € A(C%)\BY @) (Cd).

Remark 1.16. In Definitions 1.11 and 1.15, important cases appear when FE is

the standard basis for R2¢ and pr=-=pg=pe[l,0]and pgi1 =+ =pog =qE€
[1,00]. For such choices of E' and p we set LP4 = L%,
P.q P P D.q P
M( ) = = My (@)’ A AE (@) and B(w) BE’(W).

We also set

— p,p p _ p,p P )
=M Aw =A@ and By, = B

If in addition w = 1, then we set

P _ P P9 __ p,q P _ p
MP = ME, MPI=MPY and  MP, = MP,
and similarly for A% ) and BE () SPaces.

If instead £ = {6d+1, .., €24,€1,...,€4} where ej, ..., ey is the standard basis
for R* and p; = - - = py = qe [1,00] and pgi1 = - -+ = paa = p € [1, 0], then we set
Lp »q Lp

E»
p,q 4 p,q P _ 4
Wiy = Mewy Ao = Apw and Bl = Bp,.

We notice that the space W(’;’SI in Remark 1.16 is an example of a (weighted)
Wiener amalgam space (cf. [9, 10]). For future references we observe that the Bfw)
norm is given by

1/p
|Fllgr = 2YP(2m)~ |72 P (2)w(2%7) P dA(2)
(1.36) ) (Ld )

1/p
— 24/P(97r) =2 ( J f e~ +ED2 P (1 4 i€ )w(2V 2, —21/25)|dedg)
R2d

(with obvious modifications when p = o0). Especially it follows that the norm and
scalar product in 32 (Cd) take the forms

1/2
|Els2,, = <ch |F(z)w(21/2z)|2du(z)) ,  FeBg,C?,

(F.G)me, = |  FEIGEWE 2  dul). .G e BLy(C)

(cf. (1.29) and (1.30)).



Pseudo-differential calculus in a Bargmann setting 241

By the definitions and (1.34) it follows that the Bargmann transform is an isomet-
ric injection from M7, (R7) to A}, ) (C9). In fact, we have the following refinement.

We omit the proof since the result is a special case of Theorem 4.8 in [26].

Proposition 1.17. Let E be an ordered basis for R*, p € [1,0]*, and w
be a weight on R?*@. Then the Bargmann transform is an isometric bijection from
Mg’(w)(Rd) to Ag(w)(Cd).

Finally, the SCB transform (i.e. the Semi Conjugated Bargmann transform),
Vo dya, 1s defined as B¢y 0 Vg, 14, (cf. Definition 1.7). We also set Vo 4 = Vo a.q-
Evidently, all properties of the Bargmann transform carry over to analogous proper-

ties for the SCB transform. Assume that E is a basis for R?¥2 xR?¥ | p e [1, o0]?%2+2d1
p,q € (0,00] and that w is a weight on R?*® x R?*® Then A?, (w)(Cdﬁdl) is the image

of A%, ( (C%+1) yunder the map ©¢; with the topology defined by the norm

w)

= H@CJ@HA” a € 121%’( (Cd2+d1).

HGHAP E,(@C’lwﬂ w)

E,(w)
The spaces

ATN(C® x Ch), A (CB x CT),  AP9(C® x C),  AP(C® x CT),
their norms and the scalar product (-, -) 2 are defined analogously.

1.6. Pseudo-differential operators. Next we recall some properties in pseudo-
differential calculus. Let M(d, 2) be the set of d x d-matrices with entries in the set
Q, a € ¥1(R*), and let A € M(d,R) be fixed. Then the pseudo-differential operator
Op,(a) is the linear and continuous operator on ¥;(R?), given by

(1.37) <opA<a>f><x>=<2w>dﬂ ale — Alr —y),€)f (1) VO dydé, ze R

For general a € ¥} (R??), the pseudo-differential operator Op4(a) is defined as the
continuous operator from Y1 (R?) to ¥/ (R%) with distribution kernel

(1.38) Koa(z,y) = (27T)*d/2(§2*1a)(x —Alx —y),r—y), z,yeR%

Here .7, F is the partial Fourier transform of F(x,y) € ¥} (R??) with respect to the
y variable. This definition makes sense since the mappings

(1.39) Fy and F(z,y)— F(zr —Alx —y),x —vy)

are homeomorphisms on ¥} (R??). In particular, the map a — K, 4 is a homeomor-
phism on ¥ (R*).

The standard (Kohn-Nirenberg) representation, a(z, D) = Op(a), and the Weyl
quantization Op“(a) of a are obtained by choosing A =0 and A = %I , respectively,
in (1.37) and (1.38), where I = I, is the d x d identity matrix.

Remark 1.18. By Fourier’s inversion formula, (1.38) and the kernel theorem
[16, Theorem 2.2|, [22, Theorem 2.5| for operators from Gelfand—Shilov spaces to
their duals, it follows that the map a — Op4(a) is bijective from X} (R?®) to the set
of all linear and continuous operators from 3;(R%) to ¥/ (R9).

By Remark 1.18, it follows that for every a; € ¥} (R?*) and A;, Ay, € M(d,R),
there is a unique ay € ¥} (R??) such that Op, (a1) = Op,,(as). By Section 18.5 in
[15], the relation between a; and ay is given by

(1.40) Op, (@) = Opy,(as) <= ay = eM-42DeDog
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Here we note that the operator 4¢P+’ is homeomorphic on ¥;(R??) and its dual

(cf. [5, 6, 29]). For modulation spaces we have the following subresult of Proposi-
tion 2.8 in [28]. Here and in what follows, A* is the transpose of A € M(d,R).

Propqsition 1.19. Let s > %, AeM(d,R), p,q e (0,0], ¢,a € £;(R?*?) and
let Ty = eXAPeDa) If e P(RM) and

wa(z,&,n,y) =w(x + Ay, & + A, n,y),

then T4 from Y;(R??) to X;(R?!) extends uniquely to a homeomorphism from
M(”L;[)I(de) to M(’Z;Z)(RM), and

(141) HTACLHMp,q = HCLHMP,Q.

(@A) (@)
2. Kernel theorems and analytic pseudo-differential operators

In the first part of the section we show that there is a one to one correspondence
between linear and continuous mappings from A’ to A, (As to A.) and mappings
with kernels in A, (A’) with respect to the measure dy (cf. Propositions 2.2 and 2.3).
Thereafter we deduce in Theorems 2.7-2.10 analogous results for analytic pseudo-
differential operators based on Theorem 2.6 which deals with mapping properties of
the operator which takes a(z,w) into e®*®a(z, w).

Here and in what follows, any extension of the A%-form, (-, - )42 from Ay(C?) x
Ap(C%) to C is still called A%-form and still denoted by (-, - ) 42. Similar approaches
yield extensions of the forms (-, - )42 and (-, ) z2.

By the definitions, ¢,(N?) and ¢ (N?) are the duals of £,(N%) and fy,(N?),
respectively, through unique extensions of the (2(N9) form on /3(IN?). Since the
spaces in (1.16) are images of the spaces in (1.12) under the map 74 in (1.14), the
following lemma is an immediate consequence of these duality properties. The result
is also implicitly given in [7, 26].

Lemma 2.1. Let s € R,. Then the following is true:

(1) the form (F,G) — (F, G) z2 from Ay(C?) x Ay (C?) to C is uniquely extendable
to continuous forms from A,(C?) x A,(C?) to C, and from A (C?) x Aj ,(C?)
to C. Furthermore, the duals of A,(C?) and Ay (C?) can be identified by
A(C?) and A, ,(C?) through the form (-, -)a,;

(2) the form (F,G) — {(F,G) 42 from As(C?) x Ay(C?) to C is uniquely extendable
to continuous forms from A,(C?) x A,(C?) to C, and from Ay s(C?) x Aj ,(C?)
to C. Furthermore, the duals of A4(C?) and Ay (C?) can be identified by
A(C?) and Ajf, ,(C?) through the form (-, - )4,.

The following two propositions follow by applying Ue 4, 4, on Theorem 3.3 and
3.4 in |7], and using Lemma 2.1. The details are left for the reader.

Proposition 2.2. Let s € Ry, and let T be a linear and continuous map from
Ao (C¥) to A(C®). Then the following is true:

(1) if T is a linear and continuous map from A,(C™) to A,(C%), then there is a
unique K € A,(C% x C%) such that
(21) TF = (22 '—><K(Zg, ')>F>A2(Cd1))

holds true;
(2) if T is a linear and continuous map from A,(C%) to A.(C), then there is a
unique K € A,(C% x C%) such that (2.1) holds true.
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The same holds true if A, A, A, and A!, are replaced by Ag, Ags, Ap s and fla,s,
respectively, at each occurrence.
Proposition 2.3. Let K € A)(C® x C%), s € R, and let T be the linear and
continuous map from Ag(C™) to Aj(C®), given by
(2.2) F s TF = (20— (K(z, - ), F)a2cn)).
Then the following is true:

(1) if K € A,(C% x C%), then T extends uniquely to a linear and continuous
map from AL(C%) to A,(C%);

(2) if K e AL(C% x C%), then T extends uniquely to a linear and continuous
map from A,(C%) to AL(C®).

The same holds true if A,, A, A, and A, are replaced by Ao, Ao, Aj), and A

respectively, at each occurrence.

The operator T" in (2.2) should be interpreted as 7" in the formula
(TF, G)Az(CdQ) = (K,G@F)Az(CdQXCdl), FEAo(Cdl), GEA()(Cd2).

Next we recall the definition of analytic pseudo-differential operators. (See |25,
Definition 6.20] in the case t = 0, as well as |3, 4].)

Definition 2.4. Let a € ﬂ;l(Cd x C4). Then the analytic pseudo-differential
operator Opy(a) (A¥YDO) with symbol a is given by

Opa(@F)(:) = | alzw)Flw)e™ dutu)

= (F,CL(Z, : )6(.’2))A2(Cd), YIS Cd.

By the definition it follows that the relation between the operator kernel K and
the symbol a is given by

K(z,w) = e®a(z,w), zwe CY,

(2.3)

provided the multiplication on the right-hand side makes sense. This leads to the
question about mapping properties of T; defined by

(2.4) (Tya)(z,w) = '®Wa(z,w), zweC? teC

when a belongs to a suitable subspace of A.(C??).

First we notice that a € A(C??), if and only if Tya € A(C??), and that the inverse
of T; is T_;. Hence T; is well-defined and a homeomorphism on “‘T/bl (C24).

If T3 is the same as in (1.14) then we shall investigate the map Tp; in the

commutative diagram:
To,¢
_—

g, (N Do g ()
(2.5) Tn J lTH

~ ~

Ay, (C*) —— A, (C*).

T

Therefore, let a € “‘T/bl (C?4) with the expansion

a(z,w) = Y ela,Plea(2)es(@) = Y ela,f)

a,BeNd a,BeNd



244 Nenad Teofanov and Joachim Toft

where
(2.6) (o, B)| < rlotAly/alp!

for every r > 0. Since

thl 777
etv) = Z . z,we CY

~yeNd 7
we have
(2.7) et a(z,w) = Z Z Or-w(a, B,7), zweC? teC,
1eN4 o, BN
where
(2.8) Ot awla, B,7) = (o Yz z,weCl teC,

vl a! Bl ’
We shall prove that the series in (2.7) is locally uniformly convergent with respect
tot,z and w. If |t| < R, |z| < R and |w| < R for some fixed R > 0, then by (2.6) we
get
platBlRle+f+21 - (p R)la+Bl(g R?)N
<

7! h !

|Q0t,z,w(a> 57 7)| s

for all o, 3,7 € N?. Since the series

rR)let8l(2 R2)
3 (rR)*PI(2R)

]!

a,B,7eN¢

is convergent when 7 is chosen strictly smaller than R~!, the asserted uniform con-
vergence follows from Weierstrass’ theorem.
In particular, we may Change the order of summation in (2.7) to obtain

t\v\zaﬂwﬁﬂ

(Ta)(z,w) = BZN ZN 3
B g ()0 i
_ Q;NfTo,tc)(a, Beal2)es@), zweC, teC,
where
20 () = 3 o p- () "iee

and we have identified Ty, in the diagram (2.5).
We have now the following:

Proposition 2.5. Let K < C be compact, t € K, s,s9 € R;, be such that s < 1/2
and 0 < sy < 1/2, and let Ty; be the map on £4(N??) given by (2.9). Then Ty, is
a continuous and bijective map on (j(N??) with the inverse Ty _,. Furthermore,
Ty restricts to homeomorphism from (,(N*?) to (,(N*%), and from ¢, (N*?) to
/' (de).

0,s0
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Proof. The topology on ¢4(N??) can be defined by the family of semi-norms

pnv({c(a, B)}a,pene) = sup sup [c(a, B)[, N eN.
|a|<N |BI<N

Then, for a given c € £;(N??) we have

pv(Toae)) < sup Y. cla—v,8—7)|t" <<a> (ﬁ))lm

|a‘7‘ﬁ|<N7<a’ﬁ 7 ,}/

<pn(e) > M2V <2V(1 +[t)Vpn(c), teC, NeN,
lv|<N

and the continuity of T, on £,(IN??) follows. By straight-forward computations it
also follows that Tj _; is the inverse of Tp,, which gives asserted homeomorphism
properties of Ty, on £j(IN??).

Next we consider the case when s, sy € Ry. Assume that

1 1/2s 1/2s
(e, B)] < enllel AT o, ge N7,

() <romn

1/2
t||7|> , teC, aeN?

for some constant A > 0. Then

(Toc) (v, B) < Z o (la—[V/25+[3—|1/2)

<o,

I(a) = (Z (‘;‘) o2 (lary1/2)

r<a

where

and similarly for I(3). Since

1/2
Ta) < et (Z () u'”) _ Hel ™ (14 j)eI2, e C, ae N
7

v<a

we get
(To0)(a, B)| < entel #1872 (1 4 |¢]) (e +18D/2 < o (lal"2+B]/2)

te K, o, € N? where the last inequality follows from the fact that s < 1/2. This
gives the continuity assertions for 7j; in the case when s,s9 € Ry and s,s9 < 1/2.
For sy = 1/2 we have

[(Toc) (o, B)] < b1 ) elI82 — Dy e )0, pe N,

for some other choice of h; > 0 which only depend on ||, d and h and the continuity
of Ty, on £ , (N??) follows.
’2
It remains to consider the case when s = sg = b, for some o > 0. Assume that

(e, B)] < CrietBl (a1Bl)3e | o, B e N,
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for some constants C,r > 0. Then

(Tose)as B < € 3 71872 (= )}(8 = 7)) [t <<a> (6» :

r<a,B
<C, ) rlatd (@l B)27 |¢|"12la+A1/2
y<a,8
< G 2n) @iy N ph
IvI<la+5]
< C(2r(1+ |t]) 8 (a2, teC, a,Be N,
where C, > 0 only depends on C' and r. This shows that 7j, is continuous on
¢, (N*%) and on £, (N*9). O
We have now the following:
Theorem 2.6. Let t € C, s, 50 € R, be such that s < % and 0 < s < %, and let
T; be given by (2.4) when a € ﬂgl(CM). Then the following is true:
(1) Ty restricts to a homeomorphism from fT’OJ/Q(CQd) to fT’OJ/Q(CQd);
(2) T; from 26’1/2((32‘[) to A\()’l/z(C?d) extends uniquely to homeomorphisms from
AL(C*) to A(C*) and from A, (C*) to A, (C*).

Proof. By the commutative diagram (2.5) we have
Tia = (Tyo Ty 0Ty Ya, ae Ay, (C*?),

and letting Tya = (T} o Ty, o Ty )a for general a € Aj(C??), the continuity assertions
follow from Proposition 2.5.

It remains to prove the uniqueness. Let a € A} (C??), b e Ay(C??), with the corre-
sponding expansion coefficients ¢, («, ), and ¢, (v, 3), respectively, and let cz,4(cv, 5)
be the coefficients of Tya € A (C??), a, B € N¢. Then

<a7 b)fp = 2 ca(a,ﬁ)cb(a,ﬁ),

la+B|<N

for some N € N depending on b. Now choose a sequence a; € Ap(C?%) such that
(2.10) lim (aj,b) 22 = (a,b) 52, for every be Ay(C*).

j—0
If ¢, (a, ) denote the coefficients in the expansion of a;, j € N, then it follows
from (2.10) that
(2.11) lim ¢, (a, B) = ca(, B), forevery «,fe N¢

j—

by taking b(z, w) = e, (2)es(w). The uniqueness follows if we prove that

(2.12) lim ((Tya;),b) 22 = ((Tya),b) 42, for every b e Ay(C*).
J—00

Let the coefficients of Tya; be denoted by ¢, 4, (v, ), o, € N9 By (2.9) and
(2.11) we get ¢y q,(a, B) — cra(a, B) as j — oo, for every (o, ) € N2 and (2.12)
follows since

(Ta;),b)az = . cra, (e, B)as(a, B),

la+B|<N
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and

(Ta),0) a2 = ) crale, B)as(a, B),  be Ay(C™),

|a+B|<N

where N depends on b only. ([l

The following two theorems now follows by combining Propositions 2.2 and 2.3
with Theorem 2.6. The details are left for the reader.

Theorem 2.7. Let s € R, be such that s < % and let T' be a linear and continuous
map from A,(C?) to A.(C?%. Then there is a unique a € A,(C% x C%) such that
T = Opg(a). The same holds true if s < 3, A, Al and A, are replaced by s < 1,
Aos, Ay, and Aj ,, respectively, at each occurrence.

Theorem 2.8. Let a € A)(C? x C%) and s € R, be such that s < %. If
a e A(C% x C%), then Opy(a) extends uniquely to a linear and continuous map
from A(C?) to AL(C?). The same holds true if s < 1, A,, A, and A, are replaced
by s < %, Aos, Ay and ﬁ{],s, respectively, at each occurrence.

The analogous results to Theorems 2.7 and 2.8 for larger s are equivalent to
kernel theorems for Fourier invariant Gelfand—Shilov spaces.

Theorem 2.9. Let s > % (s > 1). Then the following is true:

(1) If T is a linear and continuous map from A,(C%) to A,(C?) (from Aj ,(C%)
to Ags(C?)), then there is a unique a € A(C? x C?) such that

1 1
(2.13) la(z, w)| < ez lFwlPrl=ls+l=) e o

for some (for every) r > 0 and T = Opy(a);
(2) If T is a linear and continuous map from A,(C?) to AL(C?) (from A, ¢(C?)
to Aj ,(C?)), then there is a unique a € A(C? x C%) such that

1 1
(2.14) la(z,w)| < g3 el (el +wl=) e od

for every (for some) r > 0 and T' = Opy(a).

Theorem 2.10. Let s > 5 (s > 1). Then the following is true:

(1) If a € A(C? x C9) satisfies (2.13) for some (for every) r > 0, then Opgy(a)
from Ay(C?) to AL(C?) is uniquely extendable to a linear and continuous
map from A,(C?) to A,(C?) (from A} ,(C?) to Ag(C?));

(2) If a € A(C? x C9) satisfies (2.14) for every (for some) r > 0, then Opgy(a)

from Ay(C?) to AL(C?) is uniquely extendable to a linear and continuous
map from A;(C%) to A, (C?) (from Ay (C?) to Aj (CY)).

Proof. We only prove the results for mappings between Ay and A/, spaces. The
case when Ay, and Aj , spaces are involved follows by similar arguments and is left
for the reader. 7

If T is the same as in (2.2) for some K € A(C? x C%), then T = Opy(a) when
a(z,w) = e MK (z,w), (z,w) e C* x C% Since

_ 10,2 2 Lo, _wl?
e~ (=) e (=Pl — cxle—wl® ) e O,
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Theorem 1.9 gives

KeA(Clx CY = |K(z,w)| < e (R —r(el% +ul?)

1 1
lz—w[?)—r(|2[3 Huwlz)

— la(z,w)| < ez z,we CY

for some r > 0. In the same way,
~ 1001
KeA(C'xCY «— la(z,w)| < ez (Fwlr(zls4w®) e Cf,

for every r > 0. The results now follows from these relations and Propositions 2.2
and 2.3 U

Remark 2.11. For strict subspaces of flg’l /2(Cd) in Definition 1.7, the estimates
imposed on their elements are given by (1.23) or by (1.24) for suitable assumptions
on r > 0. It is evident that in all such cases, these conditions are violated under the
action of T; in Theorem 2.6 when ¢ # 0. Hence, Theorem 2.6 cannot be extended to
other spaces in Definition 1.7.

In particular, the conditions (2.13) and (2.14) in Theorems 2.9 and 2.10 can not
be replaced by the convenient condition that a should belong to e. g.

(215) A, (C*x CY), A(C'xCY), A (C'xCY or A, (C'xCY

when s € R,, 51 > % and sy > % On the other hand, the conditions on a in
Theorems 2.9 and 2.10 mean exactly that (z,w) — e*%a(z, w) belongs to the spaces
in (2.15), depending on the choice between (2.13) and (2.14), and the condition on

T.

Remark 2.12. Let s € R, be such that s < % By similar arguments as in the
proofs of Theorems 2.9 and 2.10, one may also characterize linear and continuous
operators from A,(C?) to A (C?), and from Aj ,(C?) to Ay ;(C?) as operators of the

form Opgy(a) for suitable conditions on a. The details are left for the reader.

3. Operators with kernels and symbols
in mixed weighted Lebesgue spaces

In this section we focus on operators in the previous section, whose kernels should
belong to A(C? x C?) and obey certain mixed norm estimates of Lebesgue types.
We deduce continuity properties of such operators when acting between suitable
Lebesgue spaces of analytic functions. (See Theorems 3.3-3.5.) Thereafter we show
that our results can be used to regain well-known and sharp continuity results in [27]
for pseudo-differential operators with symbols in modulation spaces when acting on
other modulation spaces. (See Theorems 3.8 and 3.9.) A key step here is to deduce
an explicit formula which relates the short-time Fourier transform of the symbol to
a real pseudo-differential operator Op(a) with the Bargmann transform of the kernel
to Op(a). (See Lemma 3.7.)

We shall consider Lebesgue norm conditions of matrix pull-backs of the involved
kernels. Let

1 2
Cl e M(d,R), Cj = (gggk gik) e M(2d,R),
(3.1) PRk

~(Cu Cp .
C = <021 022> e M(4d,R), j.kleZ.,
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and let
Ug(x + i) = (7,£) e R*,
Uga(z1 + i1, 12 + i&) = (w1, &1, 22, &) € RY,
(3.2) Ko (z,w) = e 2077+ K (2 w)| - w(v27,V2w),
Grow=K,o0 U;j oCoUgg,
x,7,§,& € R, zweCd j=1,2.

We will consider continuity of operators from A%l’ (1) (C9) to A’;?’ (w2) (C%), when Gk c,,
fullfils suitable LP9(C??) estimates, where the weights fullfil

wo(2)
w1 (’UJ)

Here and in what follows we let LP9(C??) and L (C??) be the sets of all G € LL (C??)
such that

(3.3)

Sw(z,w), zweC

HGHLWI(CM) =|Go Ud7dHLP"1(R4d) and HGHLQQ(CM) =|Go Ud,dHLf;’Q(RM),

respectively, are finite. (See also Remark 1.16.)
The involved Lebesgue exponents should satisfy

(3.4) o b 1 o <py<p, pgell,x], p,pye[l,0]*
We need that C' and C};, above should satisty

(3.5) det(C') det(C11C21) # 0

or

(3.6) det(C) det(C12Ca2) # 0.

In (3.4) and in what follows we use the convention
1 ( 1 1 )
— =\ ") DPo
p D1 Da

p:(p17"'7pd)7 q:(Qh---anl)a T:<T17"'7rd)
belong to [1,0]¢ and p, q, 7, po, qo, 7o € [1, 0] satisfy

N

D, pgpv 9o < g, q<4q and r=r,

when

Po <Pk, Dk<D, Q<G aq<gq and m,=r, ke{l, ... d}.

Remark 3.1. We notice that (3.1)—(3.6) implies that C is invertible and that
at least one of the following conditions hold true:

(1) both C1; and Cs are invertible;
(2) both C15 and Cyy are invertible.

If (1) holds, then
Cn Ci2\ _ Ly CH'Chy _ Irq Ci'Cha
det ( > = det (]2d 0511022 = det 0 0511022 . Cﬂlclg
= det(C’z_lngg — Cl_llclg).
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Here recall that I = I; is the d x d identity matrix. From these computations it
follows that

Cﬂlcm — 05110227 Cﬂlcm — 02205117
012Cf11 — 0511022> 012Cf11 — 0220511

are invertible when (1) holds, and

Cfglcn — 05210217 Cfglcn — C2105217
Ci1iC' — 5y Cor, C1iCrt — Cn O
are invertible when (2) holds.

Remark 3.2. Let Cy € M(d,C) and let U; be the same as in (3.2). Then the
matrix Uy o Cy o U; ' which corresponds to Cy is given by

Re(Cy) —Im(Cy)
(3.7) (Im(Co) Re(Co))'

Obviously, the map which takes Cy € M(d, C) into the matrix (3.7) in M(2d,R)
is injective, but not bijective. In this way we identify M(d, C) with the set of all
matrices in M(2d, R) which are given by (3.7) for some Cy € M(d, C).

If Cj, e M(2d,R) and T}, = UJI o Cji o Uy, then G ¢y, in (3.2) is given by

GK,CM(Z,’UJ) = Kw(TH(Z) + T12(UJ),T21(Z) + TQQ(UJ)), Z,WE Cd.

If more restricted, Cj, can be identified as matrices in M(d, C) as above, for
g,k € {1,2}, then Gk ¢, in (3.2) is given by

G[gcw(z, w) = Kw(CHZ + me, 0212 + CQQ’UJ), Z,W € Cd,

for such choices of C.

Theorem 3.3. Let E be an ordered basis for R*?, w; and wy be weights on C,

w be a weight on C? x C¢ such that (3.3) holds, and let p,, p,, p and q be as in (3.4).

Also let C'€ M(4d,R) be such that (3.1) holds, K € A(C? x C%), and let G ¢, be
as in (3.2). Then the following is true:

(1) if (3.5) holds and Gk ¢, (z,w) € LP4(C??), then Tk in (2.1) from A,, (C?) to

A(C?) is uniquely extendable to a continuous mapping from Ai{(wl)(cd) to

A%%(W)(Cd), and

(3.8) TPl < |Grculmal Fla . Fe AR (C;

(2) if (3.6) holds and G ¢, € LIP(C?), then Ty in (2.1) from A, (C?) to
A(C?) is uniquely extendable to a continuous mapping from Ag(m)(cd) to
A’];f(m)(cd), and

(3.9) |Tx F Az, 102) S |G cwlogr|[Flam o Fe AR ) (C9).

1)

Proof. We only prove (1). The assertion (2) follows by similar arguments and is
left for the reader. Let

GK,vavp(w) = HGK,C,w( : ’w)HLP(Cd)a w e Cd.
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Then |Gr.cwliracray = [|Grpwlrocs. Also let K, be as in (3.2), F e AF,,(CY)
and H € B, (C?), and set

F (w) = |F(w)|e 20, (V2w), we C
and

Hoy(2) = |H(2) e 2 fun(v27), 2 € GO,
By Hoélder’s inequality we get

(TF, H) 2| = J (TF)(2)H(2)e I d\(2)
J c2dK 2, w) Fyy (w) Hoy (2) dA(z)dA (w)
- f C2dGch(Z w)(I)(z w) d)‘(Z)CD\(U» S HGK,C,WHLP,‘IH(I)HLP'»fllv
where

O(x + i€,y +1in)
= le(Ud_l(Czl(Ia ) + Coa(y, n)))sz(Ud_l(Cll(Ia §) +Cia(y,m)), z,y,&ne R*.

Here we identify (z,¢) € R? by corresponding 2d x 1-matrix (f), as usual.

We need to estimate ||®|;,.,, and start with reformulating ||®(-,w)|, . For
|D( -, w)| . we take

(2,8) = Co((2,€) + Coy' Ca(y, )
as new variables of integration, and get
|2(- ) = | Foy - Hoy (U (Bi(- = Baly,m)) |, w =y + i,
where B, and B, are the matrices
By = ;105 e M(2d,R) and By = 0y C'Cra — Cop € M(2d, R),

which are invertible due to Remark 3.1 and the assumptions. Hence, for Fgl =
F,,(U;' ) and HY = H,, o U;" o (—B;) we have

L
I’y

(310) (- w)l = ((IFS P« [HLY) (Balym)™ . w =y +in
If ry = p,/p" and 7y = pi/p/, then it follows from (3.4) that
1 1 / /
—+—=1+]i/, and frl,rg,q—/>1.
Ty T2 q p

L
7

Hence, by (3.10), ¢'/p’ = 1, the fact that By is invertible, and Holder’s and Young’s
(181" < 1H, ") (B2))”

inequalities we obtain
=
= (| < rmp
o

P
L‘IE’/P’
0 (p 0 |p
< (ES T VE P L) = Nl |

and the right-hand side of (3.8) follows by taking the supremum over all such H with
|H| » <1
B 2

E,(1/wg)

(NI PRERS

L
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The existence of extension now follows from Hahn-Banach’s theorem. By these
estimates it also follows that

(z,w) = K(2,w)F, (w)Hy,(2)
belongs to L'(C? x C%), and the uniqueness is a straight-forward application of
Lebesgue’s theorem. 0

For corresponding pseudo-differential operator with symbol a, the kernel is given
by K(z,w) = e®%a(z,w). By straight-forward computations it follows that G ¢,
takes the form

Grcwp(w) = |au(- aw)HLP(Cd)a we CY,

when Cll = 012 = ng = Igd and Cgl = 0, or CH = Clg = 021 = Igd and 022 = 0,

where

(3.11) au(z,w) = e 2170z + w, w)w(V2 (7 F w), V2 w)
(3.12) au(z,w) = e 21 a(z 4w, )w(V2 (Z T w), V2 2).

Hence, Theorem 3.3 gives the following.

Theorem 3.4. Let w;, and w, be weights on C?, w be a weight on C? x C? such
that (3.3) holds, p,, p,, p and ¢ be as in (3.4). Also let a € A(C? x C%) and let a,, be
given by (3.11) or by (3.12) for z,w € C¢. Ifa,, € LP4(C??), then the operator Opy(a)
in (2.4) from A,, (C%) to A(C?) is uniquely extendable to a continuous mapping from
Agl(w (CY) to A%(w (C9).

We also have the following result related to Theorem 3.3. Here the matrix C' is

given by (3.1) with

0 0 I; 0
(313) Cll = 021 = Igd, 012 = (O [d) and 022 = ((;l 0>

which obviously satisfies (3.5). Also again recall Remark 1.16 for notations.

Theorem 3.5. Let C' be given by (3.1) with Cj given by (3.13), wy and ws be
weights on C?, w be a weight on C? x C¢ such that (3.3) holds, and let p,q € [1,©].
Also let K € A(C? x C%) and Gk ¢, be as in (3.2). If Gx.c. € LX(C??), then Tk in
(2.1) from Ay, (C?) to A(C?) is uniquely extendable to a continuous mapping from
AT2(CY) to TP (C), and

(3.14) ITicF sz S |Grculigs| Fllya, FeALNCY.
#(w2) * A(W1) (@1)

Proof. Let F,,, F0 H,, and HY, be the same as in the proof of Theorem 3.3,

w17

and let K, be as in ( . Then
(T F, H) e < /// Kou(, &, y,m) FS, (y, ) HO, (1, ) dr € dy iy
_ / // G, €.y, ) F, (1 + 1, €)HO, (1, € + 1) dx d€ dy

< |Gr.owllye ] Poll Lo,
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(HI (@ +y, ) HY, (x, & + )| dydn)

)HLq H ( >')HLq’a f,feRd-

where

L
4

Hence,
HCDOHLP’ = HFw1 HLQ’ v H wzHLp .

The continuity assertion now follows from these estimates, an application of Hahn—
Banach’s theorem and Lebesgue’s theorem (cf. the end of the proof of Theorem 3.3).
O

Remark 3.6. In Theorem 3.5, the matrix C' is chosen only as (3.1) and (3.13),
while Theorem 3.3 is valid for a whole family of matrices with the only restriction
(3.5) or (3.6). On the other hand, by similar arguments, it follows that the conclusions
in Theorem 3.5 are still true when, more generally, C' € M(4d, R) is of the form

+I, 0 +I, 0 +I, 0 0 0
0 +I, 0 0 0 +I, 0 +I,
4, 0 0 0 | +I, 0 +I, 0 |
0 i]d 0 i]d 0 i]d 0 0
+I, 0 +I, 0 0 0 +I, 0
0 0 0 +I 0 +I;, 0 +I,
0 0 +I; 0  l+r, o +1, o |’
0 +I; 0 +I, 0 0 0 =+

for any choice of + at each place, provided the mixed Lebesgue conditions on Gk ¢
are slightly modified.

In order to apply Theorem 3.3 to real pseudo-differential operators we have the
following.

Lemma 3.7. Let ¢(z,&) = n2el@©e 22+ 1 ¢ e R q e H; (R*') and
let K, be the kernel of Op(a). Then

e3Py K (2, w)
= (2m)Fe @2 (V0) (V2z, —v/ 2, V2(1 — €),V2(y — x))
when z = x + i€ € C? and w = y + in € C%.

Proof. Let ¢o(x, &) = n2e 32+ — e=i@&p(x ). By formal computations
and Fourier’s inversion formula we get

(2m)er (@O-wm) e=alPH Py K, (2/7/2, w/V/2)

- Jffﬁl(iﬁ, &)e" T gy (g — 2, yy — y)e " WHTELO) day dy, dg
_ (%)%eﬂ'@m ff a(a:l, 51)%(3;1 —x,& + n)ei@cl,§1>€*i(<y,51>*<w1,§>) dxy d&;

= (QW)%€i<x_y’n> ff a(r1,&)p(x) — 2, & + n)e EmOTWTEE)) dyy de,

= (27) % VD (Vya) (2, =1, — €,y — ). O
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We can now use the previous lemma and theorems to obtain mapping properties
for pseudo-differential operators with symbols in modulation spaces. For example,
we may combine Lemma 3.7 and Theorem 3.3 to deduce the following result, which is
the same as |28, Theorem 2.2|. Hence our kernel results on the Bargmann transform
side can be used to regain classical mapping properties pseudo-differential operators
when acting on modulation spaces.

Theorem 3.8. Let E be an ordered basis of R*, A e M(R,d), p,q € [1,%] and
D1, Py € [1,0]* be as in (3.4), wp € Zr(R*) and wy,wy € P(R??) be such that
wy(r — Ay, §+ (I = A")n) _ d
R
@t (= Ay A ~ wo(z,§,m.y), ,y,§&neR,

and let a € Ma‘é)(de). Then Op,(a) from 21 (R )d to ¥} (R?) extends uniquely to
), and

(3.15)

continuous operator from M gl(w (RY) to M gz(w (R

<
|Opa@ gz arze ) < lalag

Proof. By (1.40) and Proposition 1.19 we may assume that A = 0. Let
Cii=0Cyn=Cp=1Iy Cp=0
and let w be given by
W@, & y,m) = wolz, =, E+m,y — ), x,y,§n€R
which we identify with
w(z,w), z=z+ifeChw=y+ineCL

Then it follows by straight-forward computations that (3.15) is the same as (3.3).
Furthermore, let Ky = Ug 4/K,, where K, is the kernel of the operator Op(a). Then
it follows from Lemma 3.7 and straight-forward computations that if

Hy oo (,€,m,y) = [Voa(, &0, 9)] - wo(z. & m,y),, 2,y,& € R
then
(3 16) Ha,w()(\/ixu _\/5(5 + 77)7 \/5777 \/Ey) = GKQ,C,w(Zv ’UJ),
. z=x+i£eC? w=y+ine CL

By first applying the LP-norm on (3.16) with respect to = and £, and thereafter
applying the L?-norm with respect to y and n, we get

G ool maiesy = | Husnll racgy = lallagps < 0.

Hence, the assumptions in Theorem 3.3 are fullfiled, and we conclude that the oper-
ator T, with kernel K is continuous from A% 1) (Cd) to A’;? (w2) (Cd). The asserted

continuity for Op(a) is now a consequence of the commutative diagram

Op(a)

MP1 (Rd) M§2(w2 (Rd)
(3.17) Wdl l‘ﬁd
AR o (C) o AR @) (CY).

O

The next result extends [24, Theorem 3.3| and follows by similar arguments as in
the previous proof, using Theorem 3.5 instead of Theorem 3.3. The details are left
for the reader.
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Theorem 3.9. Let w; and wy € Zp(R*), w e Z5(RM) be such that
w2(ll§',€ + 77)
w1 ($ + Y, 5)
let p,q € [1,0], and let a € W(’Z;g)(RM). Then Opy(a) from %;(R?) to ¥ (RY) is
uniquely extendable to a continuous mapping from M(‘Z;’S,(Rd)) to W&Z)(Rd)), and

SWQ(ZE’,&,’)],'{I/), x>y>€>77€Rd>

| Op(a)flwrs < lalwrs [ £l aws  fe MET(RY).
(w2) (w1)

(o) (w1)
Remark 3.10. Let E, p, q, p;, ¢o and ¢ be the same as in Lemma 3.7, The-

orem 3.8 and their proofs. Also let A € M(R,d) and let ¢4 = eX4PePe)¢p Then
the condition on a in Theorem 3.8 is that |Vy,a - wo|rre < 00. In view of [5, 6, 29|
and Proposition 1.13 (2), the previous condition is the same as ||V, a - wo| pra < o0
because wy is moderate.

We observe that all weights in Theorem 3.8 are moderate, while there are no such
assumptions or other restrictions on the involved weight functions in Theorem 3.3.
Since the latter result is used to prove the former one, a natural question is wether
Theorem 3.8 can be extended to broader classes of weight functions. In view of
Remark 1.14, it is evident that the imposing moderate conditions on weights might
in some context be considered as strong restrictions.

The answer on this question is affirmative in the sense that for suitable modifi-
cations, the moderate conditions on the weights in Theorem 3.8 can be removed.

In fact, let H;} (R*®) be the modification of H,, (R*®), given by

Hy, (R™) = {10005 a) ; a e Hy, (R™)

(H;}) (R?) be the dual of H! (R*®), wy, w, be weights on R** and let wy be a weight
on R* such that (3.15) holds. Then it follows from the proof of Theorem 3.8 that
the following is true:

e if a e (H;)'(R*), then V,,a makes sense as a smooth function;

e if a € (H;})(R*) satisfies |V,a - wolra < 0, then Op,4(a) from Hy, (RY)
to M (R?) extends uniquely to a continuous operator from M g?(m)(Rd) to
Mg?(wz) <Rd>

In similar ways, Theorem 3.9 can be extended to permit more general weight
classes.

References

[1] BARGMANN, V.: On a Hilbert space of analytic functions and an associated integral transform.
- Comm. Pure Appl. Math. 14, 1961, 187-214.

[2] BARGMANN, V.: On a Hilbert space of analytic functions and an associated integral transform.
Part I1. A family of related function spaces. Application to distribution theory. - Comm. Pure
Appl. Math. 20, 1967, 1-101.

[3] BAUER, W.: Berezin—Toeplitz quantization and composition formulas. - J. Funct. Anal. 256,
2007, 3107-3142.

[4] BEREZIN, F. A.: Wick and anti-Wick symbols of operators. - Mat. Sb. (N.S.) 86, 1971, 578-610.

[5] CaPPIELLO, M., and J. TOFT: Pseudo-differential operators in a Gelfand—Shilov setting. -
Math. Nachr. 290, 2017, 738-755.



256

[6]

7]
18]

19]

[10]

[11]

12)
13]
14
15]
[16]
17)

[18]
[19]

[20]

[21]

[22]
[23]

[24]

[25]

Nenad Teofanov and Joachim Toft

CARYPIS, E., and P. WAHLBERG: Propagation of exponential phase space singularities for
Schrodinger equations with quadratic Hamiltonians. - J. Fourier Anal. Appl. 23, 2017, 530
571.

CHEN, Y., M. SIGNAHL, and J. TOFT: Factorizations and singular value estimates of operators
with Gelfand—Shilov and Pilipovi¢ kernels. - J. Fourier Anal. Appl. 24, 2018, 666—698.

CORDERO, E., S. PiLipoviC, L. RobpINO, and N. TEOFANOV: Quasianalytic Gelfand—Shilov
spaces with applications to localization operators. - Rocky Mountain J. Math. 40, 2010, 1123—
1147.

FEICHTINGER, H.G.: Banach spaces of distributions of Wiener’s type and interpolation. -
In: Proc. Conf. Oberwolfach, Functional Analysis and Approximation, August 1980 (edited by
P. Butzer, B.Sz. Nagy and E. Gorlich), Int. Ser. Num. Math. 69, Birkh&user Verlag, Basel,
Boston, Stuttgart, 1981, 153-165.

FEICHTINGER, H. G.: Modulation spaces on locally compact abelian groups. - Technical report,
University of Vienna, Vienna, 1983; also in: Wavelets and their applications (edited by M.
Krishna, R. Radha and S. Thangavelu), Allied Publishers Private Limited, NewDehli Mumbai
Kolkata Chennai Hagpur Ahmedabad Bangalore Hyderbad Lucknow, 2003, 99-140.

FERNANDEZ, C., A. GALBIS, and J. TOFT: The Bargmann transform and powers of harmonic
oscillator on Gelfand—Shilov subspaces. - Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat.
RACSAM 111, 2017, 1-13.

GROCHENIG, K.: Foundations of time-frequency analysis. - Birkhauser, Boston, 2001.

GROCHENIG, K.: Weight functions in time-frequency analysis - In: Pseudodifferential opera-
tors: Partial differential equations and time-frequency analysis (edited by L. Rodino and M. W.
Wong), Fields Inst. Commun. 52, 2007, 343-366.

GROCHENIG, K., and G. ZIMMERMANN: Spaces of test functions via the STFT. - J. Funct.
Spaces Appl. 2, 2004, 25-53.

HORMANDER, L.: The analysis of linear partial differential operators, vol. I-III. - Springer-
Verlag, Berlin Heidelberg NewYork Tokyo, 1983, 1985.

Lozanov CRVENKOVIC, Z., and D. PERISIC: Hermite expansions of elements of Gelfand Shilov
spaces in quasianalytic and non quasianalytic case. - Novi Sad J. Math. 37, 2007, 129-147.

PiLipovIC, S.: Generalization of Zemanian spaces of generalized functions which have or-
thonormal series expansions. - SIAM J. Math. Anal. 17, 1986, 477-484.

PiLipovic, S.: Tempered ultradistributions. Boll. Unione Mat. Ital. 7, 1988, 235-251.

REED, M., and B. SIMON: Methods of modern mathematical physics. - Academic Press,
London New York, 1979.

RuzHANSKY, M., and N. TOKMAGAMBETOV: Nonharmonic analysis of boundary value prob-
lems. - Int. Math. Res. Notices 12, 2016, 3548-3615.

TEOFANOV, N.: Ultradistributions and time-frequency analysis. - In: Pseudo-differential oper-
ators and related topics (edited by P. Boggiatto, L. Rodino, J. Toft and M. W. Wong), Oper.
Theory Adv. Appl. 164, Birkh&user, Basel, 2006, 173-192.

TEOFANOV, N.: Gelfand—Shilov spaces and localization operators. - Funct. Anal. Approx.
Comput. 7, 2015, 135-158.

TorT, J.: Continuity properties for modulation spaces with applications to pseudo-differential
calculus, II. - Ann. Global Anal. Geom. 26, 2004, 73-106.

TorT, J.: Pseudo-differential operators with symbols in modulation spaces. - In: Pseudo-
Differential operators: Complex analysis and partial differential equations (edited by B.-W.
Schulze and M. W. Wong), Oper. Theory Adv. Appl. 205, Birkh&user Verlag, Basel, 2010,
223-234.

TorT, J.: The Bargmann transform on modulation and Gelfand—Shilov spaces, with appli-
cations to Toeplitz and pseudo-differential operators. - J. Pseudo-Differ. Oper. Appl. 3, 2012,
145-227.



Pseudo-differential calculus in a Bargmann setting 257

[26] ToFT, J.: Images of function and distribution spaces under the Bargmann transform. - J.
Pseudo-Differ. Oper. Appl. 8, 2017, 83-139.

[27] ToFT, J.: Continuity and compactness for pseudo-differential operators with symbols in quasi-
Banach spaces or Hérmander classes. - Anal. Appl. 15, 2017, 353-389.

[28] ToFT, J.: Matrix parameterized pseudo-differential calculi on modulation spaces - In: Gener-
alized functions and Fourier analysis (edited by M. Oberguggenberger, J. Toft, J. Vindas and P.
Wahlberg), Oper. Theory Adv. Appl. 260, Birkhduser, Basel Heidelberg New York Dordrecht
London, 215-235.

[29] TRANQUILLI, G.: Global normal forms and global properties in function spaces for second
order Shubin type operators. - PhD Thesis, 2013.

Received 12 February 2019 e Accepted 22 March 2019



