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Abstract. We give a fundament for Berezin’s analytic Ψdo considered in [4] in terms of

Bargmann images of Pilipović spaces. We deduce basic continuity results for such Ψdo, especially

when the operator kernels are in suitable mixed weighted Lebesgue spaces and act on certain

weighted Lebesgue spaces of entire functions. In particular, we show how these results imply well-

known continuity results for real Ψdo with symbols in modulation spaces, when acting on other

modulation spaces.

0. Introduction

The aim of the paper is to put a fundament for the theory of analytic pseudo-
differential operators, considered in [4] by Berezin. This is essentially done through
a detailed analysis of Bargmann images of the so-called Pilipović spaces of func-
tions and distributions, given in [11, 26]. More precisely, we consider kernels re-
lated to integral representations of analytic pseudo-differential operators to deduce
their continuity properties. When the corresponding symbols belong to suitable
(weighted) Lebesgue spaces of semi-conjugate analytic functions, we prove the con-
tinuity of the analytic pseudo-differential operators when acting between (weighted)
Lebesgue spaces of analytic functions. Moreover, by using the relationship between
the Bargmann transform and the short-time Fourier transform we show that our
results can be used to recover well-known (sharp) continuity properties of (real)
pseudo-differential operators with symbols in modulation spaces which act between
other modulation spaces, see [23, 25, 28]. We emphasize that our approach here
is more general, because we have relaxed the assumptions on the involved weight
functions, compared to earlier contributions.

Analytic pseudo-differential operators, considered in [4] by Berezin are well-
designed when considering several problems in analysis and its applications, e.g.
in quantum mechanics. In the context of abstract harmonic analysis it follows that
any linear and continuous operator between Fourier invariant function and (ultra-)
distribution spaces may, in a unique way, be transformed into an analytic pseudo-
differential operator by the Bargmann transform (see Section 2). An advantage of
such reformulations is that all of the involved objects are essentially entire functions
and thereby possess several strong and convenient properties.
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The definition of analytic pseudo-differential operators resembles the definition
of real pseudo-differential operators. In fact, let apx, ξq be a suitable function or (ult-
ra-)distribution on the phase space R

2d. Then the (real) pseudo-differential operator
Oppaq acting on suitable sets of functions or (ultra-)distributions on the configuration
space R

d is given by

(0.1) fpxq ÞÑ pOppaqfqpxq “ p2πq´ d
2

ż

Rd

apx, ξq pfpξqeixx,ξy dξ.

Here the integral in (0.1) should be interpreted in a distributional (weak) sense, if
necessary, and we refer to [15] or Section 1 for the notation.

Suppose instead that a is a suitable semi-conjugate entire (analytic) function on
C

d ˆ C
d — C

2d, i.e. pz, wq ÞÑ apz, wq is an entire (analytic) function. Then the
analytic pseudo-differential operator OpVpaq acting on suitable entire functions F on
C

d is given by

(0.2) F pzq ÞÑ pOpVpaqF qpzq “
ż

Cd

apz, wqF pwqepz,wq dµpwq.

Here dµpwq is the Gauss measure π´de´|w|2 dλpwq, where dλpwq is the Lebesgue

measure on C
d, and pz, wq “ řd

j“1 zj ¨ wj, when z “ pz1, . . . , zdq P C
d, and w “

pw1, . . . , wdq P C
d. This means that the operator kernel (with respect to dµ) is given

by

(0.3) Kpz, wq “ Kapz, wq “ apz, wqepz,wq.

Evidently, pOpVpaqF qpzq is equal to the integral operator

(0.4) pTKF qpzq “
ż

Cd

Kpz, wqF pwq dµpwq

with respect to dµ, when K is given by (0.3). By the analyticity properties of the
symbol a it follows that pz, wq ÞÑ Kpz, wq is an entire function on C

2d.
In [4, 25] several facts of analytic pseudo-differential operators are deduced. For

example, if a and F are chosen such that

z ÞÑ apz, ¨ qF ¨ epz, ¨ q

is locally uniformly bounded and analytic from C
d to L1pdµq, then OpVpaqF in (0.2)

is a well-defined entire function on C
d. In [4, 25] it is also observed that

(0.5) pOpVpzjqF qpzq “ zjF pzq and pOpVpwjqF qpzq “ pBjF qpzq
when F P L1pdµ1q X ApCdq, and dµ1pwq “ p1 ` |w|q dµpwq.

In such setting we study the mapping properties for complex integral operators
and pseudo-differential operators when respectively K “ Ka and a above belong to
suitable classes of semi-conjugate entire functions. In fact, we permit more generally
that K and a belong to suitable classes of formal semi-conjugate analytic power series
expansions. That is, Kpz, wq and apz, wq are of the forms

ÿ

α,β

cKpα, βqeαpzqeβpwq and
ÿ

α,β

capα, βqeαpzqeβpwq, eαpzq “ zα?
α!

,

respectively.
To set the stage for our study we collect the background material in Section 1.

It contains a brief account on weight functions, Gelfand–Shilov spaces, spaces of
Hermite functions and power series expansions, modulation spaces, and Bargmann
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transform and spaces of analytic functions. Especially, we recall basic facts for the
spaces

A5σpCdq
`
A0,5σpCdq

˘
, AspCdq

`
A0,spCdq

˘
,(0.6)

and their Bargmann duals

A
1
5σpCdq

`
A

1
0,5σpCdq

˘
, A

1
spCdq

`
A

1
0,spCdq

˘
,(0.7)

when s, σ ą 0. The spaces in (0.6) consist of all formal power series

(0.8) F pzq “
ÿ

α

cpF, αqeαpzq,

with coefficients satisfying

|cpF, αq| À h|α|α!´
1

2σ , |cpF, αq|À e´r|α|
1
2s
,

respectively, for some (for every) h, r ą 0, and the spaces in (0.7) consist of all formal
power series in (0.8) such that

|cpF, αq| À h|α|α!`
1

2σ , |cpF, αq|À e`r|α|
1
2s
,

respectively, for every (for some) h, r ą 0.
In Section 2 we extend the definition of (0.4) to allow the kernels K to belong to

any of the spaces

uA0,5σpC2dq, uA5σpC2dq, uA0,spC2dq, uAspC2dq,(0.9)

and their duals

uA1
0,5σpC2dq, uA1

5σpC2dq, uA1
0,spC2dq, uA1

spC2dq,(0.10)

where
uA5σpC2dq “ tK ; pz, wq ÞÑ Kpz, wq P A5σpC2dq u,

and similarly for the other spaces in (0.9) and (0.10). In the end we prove that if
s ą 0 or s “ 5σ, then the integral operators in (0.4),

TK : AspCdq ÞÑ A
1
spCdq when K P uA1

spC2dq,(0.11)

and

TK : A0,spCdq ÞÑA
1
0,spCdq when K P uA1

0,spC2dq,(0.12)

are uniquely defined and continuous, and similarly when the roles of the non-duals
in (0.6) and (0.9), and their duals in (0.7) and (0.10) are swapped. We also prove
the opposite direction, that any linear and continuous operators between such spaces
are given by such kernel operators. These kernel results are given in Propositions 2.2
and 2.3. Due to the Bargmann transform homeomorphisms, these results are also
equivalent to Theorems 3.3 and 3.4 in [7] on kernel theorems for Pilipović spaces.
(See Subsection 1.5.)

Note that, if s ě 1
2
, then the spaces of power series expansions above can be

identified with certain spaces of analytic and semi-conjugate analytic functions. For



230 Nenad Teofanov and Joachim Toft

example we have

A5σpCdq “ tF P ApCdq ; |F pzq| À er|z|
2σ
σ`1

for some r ą 0 u, σ ą 0,

AspCdq “ tF P ApCdq ; |F pzq| À e
1

2
¨|z|2´r|z|

1
2s for some r ą 0 u

A
1
spCdq “ tF P ApCdq ; |F pzq| À e

1

2
¨|z|2`r|z|

1
2s for every r ą 0 u

A
1
5σpCdq “ tF P ApCdq ; |F pzq| À er|z|

2σ
σ´1

for every r ą 0 u, σ ą 1,

A
1
51pCdq “ ApCdq and A

1
0,51pCdq “ Adpt0uq,

and similarly for uAspC2dq and uA1
spC2dq. In particular, the mappings (0.11) and (0.12)

can be formulated in terms of those function spaces.
If instead s P p0, 1

2
s and σ ą 0, and t P C, then Kpz, wq ÞÑ Kpz, wqetpz,wq is

homeomorphic on

uA1
5σpC2dq, uA1

0,5σpC2dq, uA1
spC2dq and uA1

0,spC2dq,
see Theorem 2.6. In particular, (0.3) implies that the mappings (0.11) and (0.12)
still hold true with OpVpaq in place of TK . (Cf. Theorems 2.7 and 2.8.)

In the case s ě 1
2
, the conditions on a and its kernel Ka of OpVpaq are slightly

different. More precisely, these conditions are of the form

|apz, wq| À e
1

2
¨|z´w|2`rp|z|

1
2s `|w|

1
2s q

and

|Kpz, wq| À e
1

2
¨p|z|2`|w|2q`rp|z|

1
2s `|w|

1
2s q

in order for the mappings (0.11) and (0.12) should hold. (Cf. Theorems 2.9 and 2.10.)
In Section 3 we consider operators (0.4), where certain linear pullbacks of their

kernels obey suitable mixed and weighted Lebesgue norm estimates. We prove that
such operators are continuous between appropriate (weighted) Lebesgue spaces of
entire functions. For example, let ω be a weight on C

d ˆ C
d and ω1, ω2 be weights

on C
d such that

ω2pzq
ω1pwq À ωpz, wq

and let

GK,ωpz, wq “ Kωpz, z ` wq,
where

Kωpz, wq “ e´ 1

2
p|z|2`|w|2q|Kpz, wq|ωp

?
2z,

?
2wq.

If p, q, pj, qj P r1,8s satisfy

1

p1
´ 1

p2
“ 1

q1
´ 1

q2
“ 1 ´ 1

p
´ 1

q
and q ď p,

and GK,ω P Lp,qpCd ˆ C
dq, then it follows from Theorem 3.3 that TK is continuous

from A
p1

E,pω1qpCdq to A
p2

E,pω2qpCdq. By slightly modifying the definition of GK,ω we

also deduce another similar but different continuity result where the condition q ď p

above is removed (cf. Theorem 3.5).
We also present some consequences of these results. Theorem 3.4 can be con-

sidered as a special case of Theorem 3.3 formulated by analytic pseudo-differential
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operators instead of integral operators. Theorems 3.8 and 3.9 are obtained by im-
posing conditions on moderateness on ω, ω1 and ω2 above and translating Theo-
rem 3.3 and 3.5 to real pseudo-differential operators via the Bargmann transform
and its inverse. These approaches show that obtained continuity results on analytic
pseudo-differential or integral operators might be suitable when investigating real
pseudo-differential operators. In fact, Theorems 3.8 and 3.9 agree with the sharp re-
sults [24, Theorem 3.3], [27, Theorem 3.1] and [28, Theorem 2.2] in the Banach space
case. Remark 3.10 in the end of Section 3 shows that our approach can be used to
extend the latter results on real pseudo-differential operators to include situations
with non-moderate weights. We note that the moderate condition on weights may
in some situations be significantly restrictive (cf. Remark 1.14 in Section 1).

1. Preliminaries

In this section we recall some facts on involved function and distribution spaces
as well as on pseudo-differential operators. In Subsection 1.1 we introduce suitable
weight classes. Thereafter we recall in Subsections 1.2–1.4 the definitions and basic
properties for Gelfand–Shilov, Pilipović and modulation spaces. Then we discuss in
Subsection 1.5 the Bargmann transform and recall some topological spaces of entire
functions or power series expansions on C

d. The section is concluded with a review
of some facts on pseudo-differential operators.

1.1. Weight functions. A weight on R
d is a positive function ω P L8

loc
pRdq

such that 1{ω P L8
loc

pRdq. The weight ω on R
d is called moderate if there is a positive

locally bounded function v on R
d such that

(1.1) ωpx ` yq ď Cωpxqvpyq, x, y P R
d,

for some constant C ě 1. If ω and v are weights on R
d such that (1.1) holds, then

ω is also called v-moderate. The set of all moderate weights on R
d is denoted by

PEpRdq.
The weight v on R

d is called submultiplicative, if it is even and (1.1) holds for
ω “ v. From now on, v always denotes a submultiplicative weight if nothing else
is stated. In particular, if (1.1) holds and v is submultiplicative, then it follows by
straight-forward computations that

ωpxq
vpyq À ωpx ` yq À ωpxqvpyq,

vpx ` yq À vpxqvpyq and vpxq “ vp´xq, x, y P R
d.

(1.2)

Here and in what follows we write Apθq À Bpθq, θ P Ω, if there is a constant c ą 0

such that Apθq ď cBpθq for all θ P Ω.
If ω is a moderate weight on R

d, then by [25] and above, there is a submulti-
plicative weight v on R

d such that (1.1) and (1.2) hold (see also [13, 25]). Moreover
if v is submultiplicative on R

d, then

(1.3) 1 À vpxq À er|x|

for some constant r ą 0 (cf. [13]). In particular, if ω is moderate, then

(1.4) ωpx ` yq À ωpxqer|y| and e´r|x| ď ωpxq À er|x|, x, y P R
d

for some r ą 0.
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1.2. Gelfand–Shilov spaces. Let 0 ă s P R be fixed. Then the (Fourier
invariant) Gelfand–Shilov space SspRdq (ΣspRdq) of Roumieu type (Beurling type)
consists of all f P C8pRdq such that

(1.5) }f}Ss,h
” sup

|xαBβfpxq|
h|α`β|pα! β!qs

is finite for some h ą 0 (for every h ą 0). Here the supremum should be taken over
all α, β P N

d and x P R
d. The semi-norms } ¨ }Ss,h

induce an inductive limit topology

for the space SspRdq and projective limit topology for ΣspRdq, and the latter space
becomes a Fréchet space under this topology.

The space SspRdq ‰ t0u (ΣspRdq ‰ t0u), if and only if s ě 1
2

(s ą 1
2
). The

Gelfand–Shilov distribution spaces S 1
spRdq and Σ1

spRdq are the dual spaces of SspRdq
and ΣspRdq, respectively. We have

(1.6)

S1{2pRdq ãÑ ΣspRdq ãÑ SspRdq ãÑ ΣtpRdq
ãÑ S pRdq ãÑ S

1pRdq ãÑ Σ1
tpRdq

ãÑ S
1
spRdq ãÑ Σ1

spRdq ãÑ S
1
1{2pRdq, 1

2
ă s ă t.

Here and in what follows we use the notation A ãÑ B when the topological spaces A
and B satisfy A Ď B with continuous embeddings.

A convenient family of functions concerns the Hermite functions

hαpxq “ π´ d
4 p´1q|α|p2|α|α!q´ 1

2 e
|x|2

2 pBαe´|x|2q, α P N
d.

The set of Hermite functions on R
d is an orthonormal basis for L2pRdq. It is also a

basis for the Schwartz space and its distribution space, and for any Σs when s ą 1
2
,

Ss when s ě 1
2

and their distribution spaces. They are also eigenfunctions to the
Harmonic oscillator H “ Hd ” |x|2 ´ ∆ and to the Fourier transform F , given by

pFfqpξq “ pfpξq ” p2πq´ d
2

ż

Rd

fpxqe´ixx,ξy dx, ξ P R
d,

when f P L1pRdq. Here x ¨ , ¨ y denotes the usual scalar product on R
d. In fact, we

have

Hdhα “ p2|α| ` dqhα.

The Fourier transform F extends uniquely to homeomorphisms on S 1pRdq,
S 1
spRdq and on Σ1

spRdq. Furthermore, F restricts to homeomorphisms on S pRdq,
SspRdq and on ΣspRdq, and to a unitary operator on L2pRdq. Similar facts hold true
when the Fourier transform is replaced by a partial Fourier transform.

Gelfand–Shilov spaces and their distribution spaces can also be characterized by
estimates of short-time Fourier transform, (see e.g. [14, 21, 26]). More precisely, let
φ P S pRdq be fixed. Then the short-time Fourier transform Vφf of f P S 1pRdq with
respect to the window function φ is the Schwartz distribution on R

2d, defined by

Vφfpx, ξq “ F pf φp ¨ ´ xqqpξq, x, ξ P R
d.

If f, φ P S pRdq, then it follows that

Vφfpx, ξq “ p2πq´ d
2

ż

Rd

fpyqφpy ´ xqe´ixy,ξy dy, x, ξ P R
d.

By [25, Theorem 2.3] it follows that the definition of the map pf, φq ÞÑ Vφf

from S pRdq ˆ S pRdq to S pR2dq is uniquely extendable to a continuous map from
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S 1
spRdqˆS 1

spRdq to S 1
spR2dq, and restricts to a continuous map from SspRdqˆSspRdq

to SspR2dq. The same conclusion holds with Σs in place of Ss, at each place.
In the following propositions we give characterizations of Gelfand–Shilov spaces

and their distribution spaces in terms of estimates of the short-time Fourier transform.
We omit the proof since the first part follows from [14, Theorem 2.7]) and the second
part from [26, Proposition 2.2]. See also [8] for related results.

Proposition 1.1. Let s ě 1
2

(s ą 1
2
), φ P SspRdqz0 (φ P ΣspRdqz0) and let f be

a Gelfand–Shilov distribution on R
d. Then the following is true:

(1) f P SspRdq (f P ΣspRdq), if and only if

(1.7) |Vφfpx, ξq| À e´rp|x|
1
s `|ξ|

1
s q, x, ξ P R

d,

for some r ą 0 (for every r ą 0).
(2) f P S 1

spRdq (f P Σ1
spRdq), if and only if

(1.8) |Vφfpx, ξq| À erp|x|
1
s `|ξ|

1
s q, x, ξ P R

d,

for every r ą 0 (for some r ą 0).

1.3. Spaces of Hermite series and power series expansions. Next we
recall the definitions of topological vector spaces of Hermite series expansions, given
in [26]. As in [26], it is convenient to use suitable extensions of R` when indexing
our spaces.

Definition 1.2. The sets R5 and R5 are given by

R5 “ R`

Ť
σą0

t5σu and R5 “ R5

Ťt0u.

Moreover, beside the usual ordering in R, the elements 5σ in R5 and R5 are ordered
by the relations x1 ă 5σ1

ă 5σ2
ă x2, when σ1, σ2, x1 and x2 are positive real numbers

such that x1 ă 1
2
, x2 ě 1

2
and σ1 ă σ2.

Definition 1.3. Let p P r1,8s, s P R5, r P R, ϑ be a weight on N
d, and let

ϑr,spαq ”
#
er|α|

1
2s , when s P R`,

r|α|pα!q 1

2σ , when s “ 5σ, α P N
d.

Then,

(1) ℓ1
0pNdq is the set of all sequences tcαuαPNd Ď C on N

d;
(2) ℓ0,0pNdq ” t0u, and ℓ0pNdq is the set of all sequences tcαuαPNd Ď C such that

cα ‰ 0 for at most finite numbers of α;
(3) ℓ

p

rϑspNdq is the Banach space which consists of all sequences tcαuαPNd Ď C

such that
}tcαuαPNd}ℓp

rϑs
” }tcαϑpαquαPNd}ℓp ă 8;

(4) ℓ0,spNdq ” Ş
rą0

ℓ
p

rϑr,sspNdq and ℓspNdq ” Ť
rą0

ℓ
p

rϑr,sspNdq, with projective respec-

tive inductive limit topologies of ℓprϑr,sspNdq with respect to r ą 0;

(5) ℓ1
0,spNdq ” Ť

rą0

ℓ
p

r1{ϑr,sspNdq and ℓ1
spNdq ” Ş

rą0

ℓ
p

r1{ϑr,sspNdq, with inductive re-

spective projective limit topologies of ℓpr1{ϑr,sspNdq with respect to r ą 0.

Let p P r1,8s, and let ΩN be the set of all α P N
d such that |α| ď N . Then the

topology of ℓ0pNdq is defined by the inductive limit topology of the sets
 

tcαuαPNd P ℓ1
0pNdq ; cα “ 0 when α R ΩN

(
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with respect to N ě 0, and whose topology is given through the semi-norms

(1.9) tcαuαPNd ÞÑ }tcαu|α|ďN}ℓppΩN q,

It is clear that these topologies are independent of p. Furthermore, the topology of
ℓ1
0pNdq is defined by the semi-norms (1.9). It follows that ℓ1

0pNdq is a Fréchet space,
and that its topology as well as the topologies of the spaces in Definition 1.3. (4) and
(5) are independent of p.

Next we introduce spaces of formal Hermite series expansions

f “
ÿ

αPNd

cαhα, tcαuαPNd P ℓ1
0pNdq.(1.10)

and power series expansions

F “
ÿ

αPNd

cαeα, tcαuαPNd P ℓ1
0pNdq.(1.11)

which correspond to

(1.12) ℓ0,spNdq, ℓspNdq, ℓ1
spNdq and ℓ1

0,spNdq.

Here

(1.13) eαpzq ” zα?
α!
, z P C

d, α P N
d.

We consider the mappings

(1.14) TH : tcαuαPNd ÞÑ
ÿ

αPNd

cαhα and TA : tcαuαPNd ÞÑ
ÿ

αPNd

cαeα

between sequences, and formal Hermite series and power series expansions.

Definition 1.4. If s P R5, then

H0,spRdq, HspRdq, H
1
spRdq and H

1
0,spRdq,(1.15)

and

A0,spCdq, AspCdq, A
1
spCdq and A

1
0,spCdq,(1.16)

are the images of TH and TA respectively in (1.14) of corresponding spaces in (1.12).
The topologies of the spaces in (1.15) and (1.16) are inherited from the corresponding
spaces in (1.12).

Since locally absolutely convergent power series expansions can be identified with
entire functions, several of the spaces in (1.16) are identified with topological vector
spaces contained in ApCdq (see Theorem 1.9 below and the introduction). Here ApΩ0q
is the set of all (complex valued) functions which are analytic in Ω0. (For Ω0 Ď C

d,
ApΩ0q “ Ť

ApΩq, where the union is taken over all open Ω Ď C
d which contain Ω0.

We also set Adpt0uq “ Apt0uq when 0 P C
d.)

We recall that f P S pRdq if and only if it can be written as (1.10) such that

|cα| À xαy´N ,
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for every N ě 0 (cf. e. g. [19]). In particular it follows from the definitions that the
inclusions

(1.17) H0pRdq ãÑ H0,spRdq ãÑ HspRdq ãÑ H0,tpRdq
ãÑ S pRdq ãÑ S

1pRdq ãÑ H
1
0,tpRdq ãÑ H

1
spRdq

ãÑ H
1
0,spRdq ãÑ H

1
0pRdq, when s, t P R5, s ă t,

are dense.

Remark 1.5. By the definition it follows that TH in (1.14) is a homeomorphism
between any of the spaces in (1.12) and corresponding space in (1.15), and that TA

in (1.14) is a homeomorphism between any of the spaces in (1.12) and corresponding
space in (1.16).

The next results give some characterizations of HspRdq and H0,spRdq when s is
a non-negative real number.

Proposition 1.6. Let 0 ď s P R and let f P H1
0pRdq. Then f P HspRdq

(f P H0,spRdq), if and only if f P C8pRdq and satisfies

(1.18) }HN
d f}L8 À hNN !2s,

for some h ą 0 (every h ą 0). Moreover, it holds

HspRdq “ SspRdq ‰ t0u, H0,spRdq “ ΣspRdq ‰ t0u when s P p1
2
,8q,

HspRdq “ SspRdq ‰ t0u, H0,spRdq ‰ ΣspRdq “ t0u when s “ 1
2
,

HspRdq ‰ SspRdq “ t0u, H0,spRdq ‰ ΣspRdq “ t0u when s P p0, 1
2
q,

HspRdq ‰ SspRdq “ t0u, H0,spRdq “ ΣspRdq “ t0u when s “ 0.

We refer to [26] for the proof of Proposition 1.6.
Due to the pioneering investigations related to Proposition 1.6 by Pilipović in

[17, 18], we call the spaces HspRdq and H0,spRdq Pilipović spaces of Roumieu and
Beurling types, respectively. In fact, in the restricted case s ě 1

2
, Proposition 1.6 was

proved already in [17, 18].
Later on it will also be convenient for us to have the following definition. Here

we let F pz2, z1q and F pz2, z1q be the formal power series

(1.19)
ÿ

cpα2, α1qeα2
pz2qeα1

pz1q and
ÿ

cpα2, α1qeα2
pz2qeα1

pz1q,
respectively, when F pz2, z1q is the formal power series

(1.20)
ÿ

cpα2, α1qeα2
pz2qeα1

pz1q.
Here zj P C

dj , j “ 1, 2, and the sums should be taken over all pα2, α1q P N
d2 ˆ N

d1 .

Definition 1.7. Let d “ d2 ` d1, s P R5, ΘC,1 and ΘC,2 be the operators

pΘC,1F qpz2, z1q “ F pz2, z1q and pΘC,2F qpz2, z1q “ F pz2, z1q
between formal power series in (1.19) and (1.20), zj P C

dj , j “ 1, 2. Then

(1.21) uA0,spCd2 ˆ C
d1q, uAspCd2 ˆ C

d1q, uA1
spCd2 ˆ C

d1q, uA1
0,spCd2 ˆ C

d1q
are the images of (1.16) under ΘC,1, and uApCd2 ˆC

d1q and uAd2,d1pt0uq “ uAd2`d1pt0uq
are the images of ApCdq and Ad2`d1pt0uq respectively under ΘC,1. The topologies of
the spaces in (1.21), uApCd2 ˆ C

d1q and uAd2,d1pt0uq are inherited from the topologies
in the spaces (1.16), ApCdq and Adpt0uq, respectively.
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Remark 1.8. By letting d2 “ d and d1 “ 0, it follows that ApCdq and the spaces
in (1.16) can be considered as special cases of uApCd2 ˆC

d1q and the spaces in (1.21).
Since A1

51
pCdq “ ApCdq and A1

0,51
pCdq “ Adpt0uq, it follows that

(1.22)
uA1

51
pCd2 ˆ C

d1q “ uApCd2 ˆ C
d1q,

uA1
0,51

pCd2 ˆ C
d1q “ uAd2`d1pt0uq.

The following results are now immediate consequences of Theorems 4.1, 4.2, 5.2
and 5.3 in [26] and Definition 1.7. Here let

κ1,r,spzq “

$
’’&
’’%

erplogxzyq
1

1´2s
, s ă 1

2
,

er|z|
2σ
σ`1

, s “ 5σ, σ ą 0,

e
|z|2

2
´r|z|

1
s , s ě 1

2
,

(1.23)

and

κ2,r,spzq “
#
er|z|

2σ
σ´1

, s “ 5σ, σ ą 1,

e
|z|2

2
`r|z|

1
s , s ě 1

2
,

(1.24)

Theorem 1.9. Let s1, s2 P R5 be such that s2 ą 51, and let κ1,r,s and κ2,r,s be
given by (1.23) and (1.24) respectively, when r ą 0. Then the following is true:

(1) uAs1pCd2 ˆC
d1q ( uA0,s1pCd2 ˆC

d1q) consists of all K P uApCd2 ˆC
d1q such that

|K| À κ1,r,s1 for some r ą 0 (for every 0 ă r ă 1
2
).

(2) uA1
s2

pCd2 ˆC
d1q ( uA1

0,s2
pCd2 ˆC

d1q) consists of all K P uApCd2 ˆC
d1q such that

|K| À κ2,r,s2 for every r ą 0 (for some r ą 0).

By Remark 1.8 it follows that Theorem 1.9 remains true after the spaces in (1.21)
are replaced by corresponding spaces in (1.16).

1.4. Modulation spaces. Before giving the definition of a broad family of
modulation spaces, we make a review of mixed normed spaces of Lebesgue types,
adapted to suitable bases of the Euclidean space R

d. Let E be the ordered basis
te1, . . . , edu of Rd. Then the ordered basis E 1 “ te1

1, . . . , e
1
du (the dual basis of E)

satisfies
xej, e1

ky “ 2πδjk for every j, k “ 1, . . . , d.

The corresponding parallelepiped, lattice, dual parallelepiped and dual lattice are
given by

κpEq “ t x1e1 ` ¨ ¨ ¨ ` xded ; px1, . . . , xdq P R
d, 0 ď xk ď 1, k “ 1, . . . , d u,

ΛE “ t j1e1 ` ¨ ¨ ¨ ` jded ; pj1, . . . , jdq P Z
d u,

κpE 1q “ t ξ1e1
1 ` ¨ ¨ ¨ ` ξde

1
d ; pξ1, . . . , ξdq P R

d, 0 ď ξk ď 1, k “ 1, . . . , d u,
and

Λ1
E “ ΛE1 “ t ι1e1

1 ` ¨ ¨ ¨ ` ιde
1
d ; pι1, . . . , ιdq P Z

d u,
respectively. Note here that the Fourier analysis with respect to general biorthogonal
bases has recently been developed in [20].

We observe that there is a matrix TE such that e1, . . . , ed and e1
1, . . . , e

1
d are the

images of the standard basis under TE and TE1 “ 2πpT´1
E qt, respectively.

In the following we let

maxpqq “ maxpq1, . . . , qdq and minpqq “ minpq1, . . . , qdq
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when q “ pq1, . . . , qdq P r1,8sd.
Definition 1.10. Let E be an ordered basis of Rd and p “ pp1, . . . , pdq P r1,8sd.

If f P L1
loc

pRdq, then }f}Lp

E
is defined by

}f}Lp

E
” }gd´1}LpdpRq

where gkpzkq, zk P R
d´k, k “ 0, . . . , d ´ 1, are inductively defined as

g0px1, . . . , xdq ” |fpx1e1 ` ¨ ¨ ¨ ` xdedq|, px1, . . . , xdq P R
d,

and

gkpzkq ” }gk´1p ¨ , zkq}Lpk pRq, zk P R
d´k, k “ 1, . . . , d ´ 1.

The space L
p

EpRdq consists of all f P L1
loc

pRdq such that }f}Lp

E
is finite, and is called

E-split Lebesgue space (with respect to p).

Next we discuss suitable conditions for bases in the phase space R
2d. We let

σpX, Y q be the standard symplectic form on the phase space, given by

σpX, Y q “ xy, ξy ´ xx, ηy, X “ px, ξq P R
2d, Y “ py, ηq P R

2d.

We notice that if

(1.25) te1, . . . , ed, ε1, . . . , εdu
is the standard basis of R2d, then

(1.26) σpej , ekq “ 0, σpej , εkq “ ´δj,k, and σpεj , εkq “ 0,

when j, k P t1, . . . , du. More generally, a basis in (1.25) for the phase space R
2d is

called symplectic if (1.26) holds. A symplectic basis (1.25) for R
2d is called phase

split if e1, . . . , ed and ε1, . . . , εd span

t px, 0q P R
2d ; x P R

d u and t p0, ξq P R
2d ; ξ P R

d u,
respectively.

Next we give the definition of our class of modulation spaces.

Definition 1.11. Let E be an ordered basis for R
2d, p P r1,8s2d, φpxq “

π´ d
4 e´ 1

2
¨|x|2 and let ω be a weight on R

2d. Then the modulation space M
p

E,pωqpRdq
consists of all f P H1

51
pRdq such that

(1.27) }f}Mp

E,pωq
” }Vφf ¨ ω}Lp

E

is finite.

We remark that if φpxq “ π´ d
4 e´ 1

2
¨|x|2 and f P H1

51
pRdq, then px, ξq ÞÑ Vφfpx, ξq is

a smooth function (cf. [26]). Furthermore, by [26, Theorem 4.8] we get the following.
The proof is omitted.

Proposition 1.12. Let E be an ordered basis for R2d, p P r1,8s2d and let ω be
a weight on R

2d. Then M
p

E,pωqpRdq is a Banach space with norm given by (1.27).

If the weight ω in Definition 1.11 is a moderate weight, then we can say more
concerning M

p

E,pωqpRdq. In what follows we let p1 P r1,8s be the conjugate exponent

of p P r1,8s, i.e. 1
p

` 1
p1 “ 1.

Proposition 1.13. Let E be an ordered basis for R
2d, p P r1,8s2d and let

ω, v P PEpR2dq be such that ω is v-moderate. Then the following is true:
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(1) Σ1pRdq ãÑ M
p

E,pωqpRdq ãÑ Σ1
1pRdq. If in addition maxppq ă 8, then Σ1pRdq

is dense in M
p

E,pωqpRdq;
(2) if φ P M1

pvqpRdqzt0u and f P Σ1
1pRdq, then f P M

p

E,pωqpRdq, if and only

if the right-hand side of (1.27) is finite. Furthermore, different choices of
φ P M1

pvqpRdqzt0u in (1.27) give rise to equivalent norms;

(3) M
p

E,pωqpRdq increases with p1, . . . , p2d and decreases with ω;

(4) if p1 “ pp1
1, . . . , p

1
2dq, then the restriction of the L2pRdq scalar product p ¨ , ¨ q to

Σ1pRdq is uniquely extendable to a (semi-conjugate) duality between M
p

E,pωqpRdq
and M

p
1

E,p1{ωqpRdq. If in addition maxppq ă 8, then the dual of Mp

E,pωqpRdq
can be identified by M

p
1

E,p1{ωqpRdq through the form p ¨ , ¨ q.
Proposition 1.13 follows by similar arguments as in Chapters 11 and 12 in [12]

(see also [25, 26]).

Remark 1.14. In some sense, the variable x at the weight ωpx, ξq in the def-
inition of modulation spaces quantify decay and possible growth properties for the
involved functions or distributions. In the same way the variable ξ quantify regularity
or possible lack of regularity for the involved functions or distributions.

By the analysis in [26] it follows that there are no bounds on how fast Vφf may

grow or decay at infinity when φpxq “ π´ d
4 e´ 1

2
¨|x|2 is fixed, x P R

d, and f is taken in
the class H1

51
pRdq. Since weights in PEpR2dq are bounded by exponential functions,

the restrictions of the weights in Proposition 1.13 are significantly stronger compared
to what is the case in Proposition 1.12. A question here concerns wether it is possible
to extend parts of Proposition 1.13 to larger weight classes than PEpR2dq or not.

It seems that the invariance properties (2) in Proposition 1.13 concerning the
choice of weight function are not possible for weights that are not moderate. On
the other hand, (1) and (4) in Proposition 1.13 hold true for certain weights outside
PEpR2dq. In fact, in [25], certain weight classes which contain PEpR2dq as well as
weights of the form

ωpx, ξq “ e˘rp|x|
1
s `|ξ|

1
s q, x, ξ P R

d,

when r ą 0 and s ą 1
2

are introduced. For corresponding (broader) families of
modulation spaces it is then proved that Proposition 1.13 (1) and (4) hold true (with
some modifications).

1.5. Bargmann transform and spaces of analytic functions. The Barg-
mann transform Vd is the homeomorphism from the spaces in (1.15) to respective
spaces in (1.16), given by TA ˝ T´1

H
, where TH and TA are given by (1.14). For

distributions in S 1pRdq, this definition agrees with the original definition of the
Bargmann transform, given in [1, 2], in view of [1, 2, 26].

In fact, if f P LppRdq for some p P r1,8s, then Vdf is the entire function given
by

pVdfqpzq “ π´d{4

ż

Rd

exp
´

´ 1

2
pxz, zy ` |y|2q ` 21{2xz, yy

¯
fpyq dy, z P C

d,

which can also be formulated as

pVdfqpzq “
ż

Rd

Adpz, yqfpyq dy, z P C
d,

or

(1.28) pVdfqpzq “ xf,Adpz, ¨ qy, z P C
d,
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where the Bargmann kernel Ad is given by

Adpz, yq “ π´d{4 exp
´

´ 1

2
pxz, zy ` |y|2q ` 21{2xz, yy

¯
, z P C

d, y P R
d.

(Cf. [1, 2].) Here

xz, wy “
dÿ

j“1

zjwj and pz, wq “ xz, wy

when
z “ pz1, . . . , zdq P C

d and w “ pw1, . . . , wdq P C
d,

and otherwise x ¨ , ¨ y denotes the duality between test function spaces and their cor-
responding duals which is clear form the context. We note that the right-hand side
in (1.28) makes sense when f P S 1

1{2pRdq and defines an element in ApCdq, since

y ÞÑ Adpz, yq can be interpreted as an element in S1{2pRdq with values in ApCdq.
It was proved by Bargmann in [1] that f ÞÑ Vdf is a bijective and isometric map

from L2pRdq to the Hilbert space A2pCdq, the set of entire functions F on C
d which

fullfils

(1.29) }F }A2 ”
´ ż

Cd

|F pzq|2dµpzq
¯1{2

ă 8.

Recall, dµpzq “ π´de´|z|2 dλpzq, where dλpzq is the Lebesgue measure on C
d, and the

scalar product on A2pCdq is given by

(1.30) pF,GqA2 ”
ż

Cd

F pzqGpzq dµpzq, F, G P A2pCdq.

For future references we note that the latter scalar product induces the bilinear form

(1.31) pF,Gq ÞÑ xF,GyA2 “ xF,GyA2pCdq ”
ż

Cd

F pzqGpzq dµpzq

on A2pCdq ˆ A2pCdq.
In [1] it was also proved that the orthonormal basis thαuαPNd in L2pRdq of Her-

mite functions is mapped to the orthonormal basis teαuαPNd in A2pCdq (cf. (1.13)).
Furthermore, there is a convenient reproducing formula on A2pCdq. In fact, let ΠA

be the operator from L2pdµq to ApCdq, given by

(1.32) pΠAF qpzq “
ż

Cd

F pwqepz,wq dµpwq, z P C
d.

Then it is proved in [1] that ΠA is an orthonormal projection from L2pdµq to A2pCdq.
From now on we assume that φ in the definition of the short-time Fourier trans-

form is given by

(1.33) φpxq “ π´d{4e´|x|2{2, x P R
d,

if nothing else is stated. For such φ, it follows by straight-forward computations
that the relationship between the Bargmann transform and the short-time Fourier
transform is given by

(1.34) Vd “ UV ˝ Vφ, and U´1
V

˝ Vd “ Vφ,

where UV is the linear, continuous and bijective operator on D 1pR2dq » D 1pCdq, given
by

(1.35) pUVF qpx ` iξq “ p2πqd{2ep|x|2`|ξ|2q{2e´ixx,ξyF p21{2x,´21{2ξq, x, ξ P R
d,

cf. [25].
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Definition 1.15. Let E be an ordered basis for R
2d, UV be the operator in

(1.35), p P r1,8s2d, φpxq “ π´ d
4 e´ 1

2
¨|x|2 and let ω be a weight on R

2d.

(1) The space B
p

E,pωqpCdq consists of all F P L1
loc

pCdq such that

}F }Bp

E,pωq
” }pU´1

V
F q ¨ ω}Lp

E

is finite;
(2) The space A

p

E,pωqpCdq consists of all F P ApCdqŞB
p

E,pωqpCdq with topology

inherited from B
p

E,pωqpCdq.
We note that the spaces in Definition 1.15 are normed spaces.
For conveneincy we set }F }Bp

E,pωq
“ 8, when F R B

p

E,pωqpCdq is measurable, and

}F }Ap

E,pωq
“ 8, when F P ApCdqzBp

E,pωqpCdq.
Remark 1.16. In Definitions 1.11 and 1.15, important cases appear when E is

the standard basis for R2d and p1 “ ¨ ¨ ¨ “ pd “ p P r1,8s and pd`1 “ ¨ ¨ ¨ “ p2d “ q P
r1,8s. For such choices of E and p we set Lp,q “ L

p

E ,

M
p,q

pωq “ M
p

E,pωq, A
p,q

pωq “ A
p

E,pωq and B
p,q

pωq “ B
p

E,pωq.

We also set

M
p

pωq “ M
p,p

pωq, A
p

pωq “ A
p,p

pωq and B
p

pωq “ B
p,p

pωq.

If in addition ω “ 1, then we set

M
p

E,pωq “ M
p

E , M
p,q

pωq “ Mp,q and M
p

pωq “ Mp,

and similarly for Ap

E,pωq and B
p

E,pωq spaces.

If instead E “ ted`1, . . . , e2d, e1, . . . , edu where e1, . . . , e2d is the standard basis
for R2d and p1 “ ¨ ¨ ¨ “ pd “ q P r1,8s and pd`1 “ ¨ ¨ ¨ “ p2d “ p P r1,8s, then we set
L
p,q
˚ “ L

p

E ,

W
p,q

pωq “ M
p

E,pωq, A
p,q

˚,pωq “ A
p

E,pωq and B
p,q

˚,pωq “ B
p

E,pωq.

We notice that the space W
p,q

pωq in Remark 1.16 is an example of a (weighted)

Wiener amalgam space (cf. [9, 10]). For future references we observe that the B
p

pωq

norm is given by

}F }Bp

pωq
“ 2d{pp2πq´d{2

ˆż

Cd

|e´|z|2{2F pzqωp21{2zq|p dλpzq
˙1{p

“ 2d{pp2πq´d{2

ˆĳ

R2d

|e´p|x|2`|ξ|2q{2F px ` iξqωp21{2x,´21{2ξq|p dxdξ
˙1{p

(1.36)

(with obvious modifications when p “ 8). Especially it follows that the norm and
scalar product in B2

pωqpCdq take the forms

}F }B2

pωq
“
ˆż

Cd

|F pzqωp21{2zq|2 dµpzq
˙1{2

, F P B2
pωqpCdq,

pF,GqB2

pωq
“
ż

Cd

F pzqGpzqωp21{2zq2 dµpzq, F, G P B2
pωqpCdq

(cf. (1.29) and (1.30)).
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By the definitions and (1.34) it follows that the Bargmann transform is an isomet-
ric injection from M

p

E,pωqpRdq to A
p

E,pωqpCdq. In fact, we have the following refinement.

We omit the proof since the result is a special case of Theorem 4.8 in [26].

Proposition 1.17. Let E be an ordered basis for R
2d, p P r1,8s2d, and ω

be a weight on R
2d. Then the Bargmann transform is an isometric bijection from

M
p

E,pωqpRdq to A
p

E,pωqpCdq.
Finally, the SCB transform (i.e. the Semi Conjugated Bargmann transform),

VΘ,d2,d1 is defined as ΘC,1 ˝ Vd2`d1 (cf. Definition 1.7). We also set VΘ,d “ VΘ,d,d.
Evidently, all properties of the Bargmann transform carry over to analogous proper-
ties for the SCB transform. Assume that E is a basis for R2d2ˆR

2d1 , p P r1,8s2d2`2d1 ,
p, q P p0,8s and that ω is a weight on R

2d2 ˆ R
2d1 Then uAp

E,pωqpCd2`d1q is the image

of Ap

E,pωqpCd2`d1q under the map ΘC,1 with the topology defined by the norm

}a} uAp

E,pωq
” }ΘC,1a}Ap

E,pΘC,1ωq
, a P uAp

E,pωqpCd2`d1q.

The spaces

uAp,q

pωqpCd2 ˆ C
d1q, uAp

pωqpCd2 ˆ C
d1q, uAp,qpCd2 ˆ C

d1q, uAppCd2 ˆ C
d1q,

their norms and the scalar product p ¨ , ¨ q uA2 are defined analogously.

1.6. Pseudo-differential operators. Next we recall some properties in pseudo-
differential calculus. Let Mpd,Ωq be the set of d ˆ d-matrices with entries in the set
Ω, a P Σ1pR2dq, and let A P Mpd,Rq be fixed. Then the pseudo-differential operator
OpApaq is the linear and continuous operator on Σ1pRdq, given by

(1.37) pOpApaqfqpxq “ p2πq´d

ĳ
apx ´ Apx ´ yq, ξqfpyqeixx´y,ξy dy dξ, x P R

d.

For general a P Σ1
1pR2dq, the pseudo-differential operator OpApaq is defined as the

continuous operator from Σ1pRdq to Σ1
1pRdq with distribution kernel

(1.38) Ka,Apx, yq “ p2πq´d{2pF ´1
2 aqpx ´ Apx ´ yq, x ´ yq, x, y P R

d.

Here F2F is the partial Fourier transform of F px, yq P Σ1
1pR2dq with respect to the

y variable. This definition makes sense since the mappings

(1.39) F2 and F px, yq ÞÑ F px ´ Apx ´ yq, x ´ yq
are homeomorphisms on Σ1

1pR2dq. In particular, the map a ÞÑ Ka,A is a homeomor-
phism on Σ1

1pR2dq.
The standard (Kohn–Nirenberg) representation, apx,Dq “ Oppaq, and the Weyl

quantization Opwpaq of a are obtained by choosing A “ 0 and A “ 1
2
I, respectively,

in (1.37) and (1.38), where I “ Id is the d ˆ d identity matrix.

Remark 1.18. By Fourier’s inversion formula, (1.38) and the kernel theorem
[16, Theorem 2.2], [22, Theorem 2.5] for operators from Gelfand–Shilov spaces to
their duals, it follows that the map a ÞÑ OpApaq is bijective from Σ1

1pR2dq to the set
of all linear and continuous operators from Σ1pRdq to Σ1

1pRdq.
By Remark 1.18, it follows that for every a1 P Σ1

1pR2dq and A1, A2 P Mpd,Rq,
there is a unique a2 P Σ1

1pR2dq such that OpA1
pa1q “ OpA2

pa2q. By Section 18.5 in
[15], the relation between a1 and a2 is given by

(1.40) OpA1
pa1q “ OpA2

pa2q ðñ a2 “ eixpA1´A2qDξ ,Dxya1.
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Here we note that the operator eixADξ,Dxy is homeomorphic on Σ1pR2dq and its dual
(cf. [5, 6, 29]). For modulation spaces we have the following subresult of Proposi-
tion 2.8 in [28]. Here and in what follows, A˚ is the transpose of A P Mpd,Rq.

Proposition 1.19. Let s ě 1
2
, A P Mpd,Rq, p, q P p0,8s, φ, a P Σ1pR2dq and

let TA “ eixADξ,Dxy. If ω P PEpR4dq and

ωApx, ξ, η, yq “ ωpx ` Ay, ξ ` A˚η, η, yq,
then TA from Σ1pR2dq to Σ1pR2dq extends uniquely to a homeomorphism from
M

p,q

pωqpR2dq to M
p,q

pωAqpR2dq, and

(1.41) }TAa}Mp,q

pωAq
— }a}Mp,q

pωq
.

2. Kernel theorems and analytic pseudo-differential operators

In the first part of the section we show that there is a one to one correspondence
between linear and continuous mappings from A1

s to As (As to A1
s) and mappings

with kernels in uAs ( uA1
s) with respect to the measure dµ (cf. Propositions 2.2 and 2.3).

Thereafter we deduce in Theorems 2.7–2.10 analogous results for analytic pseudo-
differential operators based on Theorem 2.6 which deals with mapping properties of
the operator which takes apz, wq into epz,wqapz, wq.

Here and in what follows, any extension of the A2-form, p ¨ , ¨ qA2 from A0pCdq ˆ
A0pCdq to C is still called A2-form and still denoted by p ¨ , ¨ qA2. Similar approaches
yield extensions of the forms x ¨ , ¨ yA2 and p ¨ , ¨ q uA2.

By the definitions, ℓ1
spNdq and ℓ1

0,spNdq are the duals of ℓspNdq and ℓ0,spNdq,
respectively, through unique extensions of the ℓ2pNdq form on ℓ0pNdq. Since the
spaces in (1.16) are images of the spaces in (1.12) under the map TA in (1.14), the
following lemma is an immediate consequence of these duality properties. The result
is also implicitly given in [7, 26].

Lemma 2.1. Let s P R5. Then the following is true:

(1) the form pF,Gq ÞÑ pF,GqA2 from A0pCdqˆA0pCdq to C is uniquely extendable
to continuous forms from AspCdqˆA1

spCdq to C, and from A0,spCdqˆA1
0,spCdq

to C. Furthermore, the duals of AspCdq and A0,spCdq can be identified by
A1

spCdq and A1
0,spCdq through the form p ¨ , ¨ qA2

;

(2) the form pF,Gq ÞÑ xF,GyA2 from A0pCdqˆA0pCdq to C is uniquely extendable

to continuous forms from AspCdqˆA1
spCdq to C, and from A0,spCdqˆA1

0,spCdq
to C. Furthermore, the duals of AspCdq and A0,spCdq can be identified by
A1

spCdq and A1
0,spCdq through the form x ¨ , ¨ yA2

.

The following two propositions follow by applying VΘ,d2,d1 on Theorem 3.3 and
3.4 in [7], and using Lemma 2.1. The details are left for the reader.

Proposition 2.2. Let s P R5, and let T be a linear and continuous map from
A0pCd1q to A1

0pCd2q. Then the following is true:

(1) if T is a linear and continuous map from A1
spCd1q to AspCd2q, then there is a

unique K P uAspCd2 ˆ C
d1q such that

(2.1) TF “
`
z2 ÞÑ xKpz2, ¨ q, F yA2pCd1 q

˘

holds true;
(2) if T is a linear and continuous map from AspCd1q to A1

spCd2q, then there is a
unique K P uA1

spCd2 ˆ C
d1q such that (2.1) holds true.
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The same holds true if As, uAs, A
1
s and uA1

s are replaced by A0,s, uA0,s, A
1
0,s and uA1

0,s,
respectively, at each occurrence.

Proposition 2.3. Let K P uA1
0pCd2 ˆ C

d1q, s P R5 and let T be the linear and
continuous map from A0pCd1q to A1

0pCd2q, given by

(2.2) F ÞÑ TF “
`
z2 ÞÑ xKpz2, ¨ q, F yA2pCd1 q

˘
.

Then the following is true:

(1) if K P uAspCd2 ˆ C
d1q, then T extends uniquely to a linear and continuous

map from A1
spCd1q to AspCd2q;

(2) if K P uA1
spCd2 ˆ C

d1q, then T extends uniquely to a linear and continuous
map from AspCd1q to A1

spCd2q.
The same holds true if As, uAs, A

1
s and uA1

s are replaced by A0,s, uA0,s, A
1
0,s and uA1

0,s,
respectively, at each occurrence.

The operator T in (2.2) should be interpreted as T in the formula

pTF,GqA2pCd2 q “ pK,G b F qA2pCd2ˆCd1 q, F P A0pCd1q, G P A0pCd2q.
Next we recall the definition of analytic pseudo-differential operators. (See [25,

Definition 6.20] in the case t “ 0, as well as [3, 4].)

Definition 2.4. Let a P uA1
51

pCd ˆ C
dq. Then the analytic pseudo-differential

operator OpVpaq (AΨDO) with symbol a is given by

pOpVpaqF qpzq “
ż

Cd

apz, wqF pwqepz,wq dµpwq

“ pF, apz, ¨ qep ¨ ,zqqA2pCdq, z P C
d.

(2.3)

By the definition it follows that the relation between the operator kernel K and
the symbol a is given by

Kpz, wq “ epz,wqapz, wq, z, w P C
d,

provided the multiplication on the right-hand side makes sense. This leads to the
question about mapping properties of Tt defined by

(2.4) pTtaqpz, wq “ etpz,wqapz, wq, z, w P C
d, t P C

when a belongs to a suitable subspace of uA1
spC2dq.

First we notice that a P uApC2dq, if and only if Tta P uApC2dq, and that the inverse
of Tt is T´t. Hence Tt is well-defined and a homeomorphism on uA1

51
pC2dq.

If TH is the same as in (1.14) then we shall investigate the map T0,t in the
commutative diagram:

(2.5)

ℓ1
51

pN2dq T0,tÝÝÝÑ ℓ1
51

pN2dq
TH

§§đ
§§đTH

uA51pC2dq ÝÝÝÑ
Tt

uA51pC2dq.

Therefore, let a P uA1
51

pC2dq with the expansion

apz, wq “
ÿ

α,βPNd

cpα, βqeαpzqeβpwq “
ÿ

α,βPNd

cpα, βq z
αwβ

?
α!β!

, z, w P C
d,
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where

(2.6) |cpα, βq| À r|α`β|
a

α!β!

for every r ą 0. Since

etpz,wq “
ÿ

γPNd

t|γ|zγwγ

γ!
, z, w P C

d,

we have

(2.7) etpz,wqapz, wq “
ÿ

γPNd

ÿ

α,βPNd

ϕt,z,wpα, β, γq, z, w P C
d, t P C,

where

(2.8) ϕt,z,wpα, β, γq “ cpα, βqt|γ|zα`γwβ`γ

γ!
?
α!β!

, z, w P C
d, t P C,

We shall prove that the series in (2.7) is locally uniformly convergent with respect
to t, z and w. If |t| ă R, |z| ă R and |w| ă R for some fixed R ą 0, then by (2.6) we
get

|ϕt,z,wpα, β, γq| À r|α`β|R|α`β`2γ|

γ!
ď prRq|α`β|pdR2q|γ|

|γ|!
for all α, β, γ P N

d. Since the series

ÿ

α,β,γPNd

prRq|α`β|p2R2q|γ|

|γ|!

is convergent when r is chosen strictly smaller than R´1, the asserted uniform con-
vergence follows from Weierstrass’ theorem.

In particular, we may change the order of summation in (2.7) to obtain

pTtaqpz, wq “
ÿ

α,βPNd

ÿ

γPNd

cpα, βqt|γ|zα`γwβ`γ

γ!
?
α!β!

“
ÿ

α,βPNd

ÿ

γPNd

cpα, βqt|γ|

ˆˆ
α ` γ

γ

˙ˆ
β ` γ

γ

˙˙1{2

eα`γpzqeβ`γpwq

“
ÿ

α,βPNd

pT0,tcqpα, βqeαpzqeβpwq, z, w P C
d, t P C,

where

(2.9) pT0,tcqpα, βq “
ÿ

γďα,β

cpα ´ γ, β ´ γqt|γ|

ˆˆ
α

γ

˙ˆ
β

γ

˙˙1{2

, t P C,

and we have identified T0,t in the diagram (2.5).
We have now the following:

Proposition 2.5. Let K Ď C be compact, t P K, s, s0 P R5 be such that s ă 1{2
and 0 ă s0 ď 1{2, and let T0,t be the map on ℓ1

0pN2dq given by (2.9). Then T0,t is
a continuous and bijective map on ℓ1

0pN2dq with the inverse T0,´t. Furthermore,
T0,t restricts to homeomorphism from ℓ1

spN2dq to ℓ1
spN2dq, and from ℓ1

0,s0
pN2dq to

ℓ1
0,s0

pN2dq.
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Proof. The topology on ℓ1
0pN2dq can be defined by the family of semi-norms

pN ptcpα, βquα,βPNdq “ sup
|α|ďN

sup
|β|ďN

|cpα, βq|, N P N.

Then, for a given c P ℓ1
0pN2dq we have

pN pT0,tpcqq ď sup
|α|,|β|ďN

ÿ

γďα,β

cpα ´ γ, β ´ γq|t||γ|

ˆˆ
α

γ

˙ˆ
β

γ

˙˙1{2

ď pNpcq
ÿ

|γ|ďN

|t||γ|2N ď 2Np1 ` |t|qNpN pcq, t P C, N P N,

and the continuity of T0,t on ℓ1
0pN2dq follows. By straight-forward computations it

also follows that T0,´t is the inverse of T0,t, which gives asserted homeomorphism
properties of T0,t on ℓ1

0pN2dq.
Next we consider the case when s, s0 P R`. Assume that

|cpα, βq| À e
1

h
p|α|1{2s`|β|1{2sq, α, β P N

d,

for some constant h ą 0. Then

pT0,tcqpα, βq À
ÿ

γďα,β

e
1

h
p|α´γ|1{2s`|β´γ|1{2sq|t||γ|

ˆˆ
α

γ

˙ˆ
β

γ

˙˙1{2

ď IpαqIpβq,

where

Ipαq “
˜
ÿ

γďα

ˆ
α

γ

˙
e

2

h
p|α´γ|1{2sq|t||γ|

¸1{2

, t P C, α P N
d,

and similarly for Ipβq. Since

Ipαq ď e
1

h
|α|1{2s

˜
ÿ

γďα

ˆ
α

γ

˙
|t||γ|

¸1{2

“ e
1

h
|α|1{2sp1 ` |t|q|α|{2, t P C, α P N

d,

we get

|pT0,tcqpα, βq| À e
1

h
p|α|1{2s`|β|1{2sqp1 ` |t|qp|α|`|β|q{2 À e

2

h
p|α|1{2s`|β|1{2sq,

t P K, α, β P N
d, where the last inequality follows from the fact that s ă 1{2. This

gives the continuity assertions for T0,t in the case when s, s0 P R` and s, s0 ă 1{2.
For s0 “ 1{2 we have

|pT0,tcqpα, βq| À e
1

h
p|α|`|β|qp1 ` |t|qp|α|`|β|q{2 “ e

1

h1
p|α|`|β|q

, t P K, α, β P N
d,

for some other choice of h1 ą 0 which only depend on |t|, d and h and the continuity
of T0,t on ℓ1

0, 1
2

pN2dq follows.

It remains to consider the case when s “ s0 “ 5σ for some σ ą 0. Assume that

|cpα, βq| ď Cr|α`β| pα!β!q
1

2σ , α, β P N
d,
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for some constants C, r ą 0. Then

|pT0,tcqpα, βq| ď C
ÿ

γďα,β

r|α`β´2γ| ppα ´ γq!pβ ´ γq!q
1

2σ |t||γ|

ˆˆ
α

γ

˙ˆ
β

γ

˙˙1{2

ď Cr

ÿ

γďα,β

r|α`β| pα!β!q 1

2σ |t||γ|2|α`β|{2

ď Crp2rq|α`β| pα!β!q
1

2σ

ÿ

|γ|ď|α`β|

|t||γ|

ď Crp2rp1 ` |t|qq|α`β| pα!β!q
1

2σ , t P C, α, β P N
d,

where Cr ą 0 only depends on C and r. This shows that T0,t is continuous on
ℓ1

5σ
pN2dq and on ℓ1

0,5σ
pN2dq. �

We have now the following:

Theorem 2.6. Let t P C, s, s0 P R5 be such that s ă 1
2

and 0 ă s0 ď 1
2
, and let

Tt be given by (2.4) when a P uA1
51

pC2dq. Then the following is true:

(1) Tt restricts to a homeomorphism from uA1
0,1{2pC2dq to uA1

0,1{2pC2dq;
(2) Tt from uA1

0,1{2pC2dq to uA1
0,1{2pC2dq extends uniquely to homeomorphisms from

uA1
spC2dq to uA1

spC2dq and from uA1
0,s0

pC2dq to uA1
0,s0

pC2dq.
Proof. By the commutative diagram (2.5) we have

Tta “ pT1 ˝ T0,t ˝ T´1
1 qa, a P uA51pC2dq,

and letting Tta “ pT1 ˝ T0,t ˝ T´1
1 qa for general a P uA1

0pC2dq, the continuity assertions
follow from Proposition 2.5.

It remains to prove the uniqueness. Let a P uA1
0pC2dq, b P uA0pC2dq, with the corre-

sponding expansion coefficients capα, βq, and cbpα, βq, respectively, and let cTtapα, βq
be the coefficients of Tta P uA1

0pC2dq, α, β P N
d. Then

pa, bq uA2 “
ÿ

|α`β|ďN

capα, βqcbpα, βq,

for some N P N depending on b. Now choose a sequence aj P uA0pC2dq such that

(2.10) lim
jÑ8

paj , bq uA2 “ pa, bq uA2 , for every b P uA0pC2dq.

If caj pα, βq denote the coefficients in the expansion of aj, j P N, then it follows
from (2.10) that

(2.11) lim
jÑ8

caj pα, βq “ capα, βq, for every α, β P N
d

by taking bpz, wq “ eαpzqeβpwq. The uniqueness follows if we prove that

(2.12) lim
jÑ8

ppTtajq, bq uA2 “ ppTtaq, bq uA2 , for every b P uA0pC2dq.

Let the coefficients of Ttaj be denoted by ct,aj pα, βq, α, β P N
d. By (2.9) and

(2.11) we get ct,aj pα, βq Ñ ct,apα, βq as j Ñ 8, for every pα, βq P N
2d, and (2.12)

follows since

ppTtajq, bq uA2 “
ÿ

|α`β|ďN

ct,aj pα, βqcbpα, βq,
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and

ppTtaq, bq uA2 “
ÿ

|α`β|ďN

ct,apα, βqcbpα, βq, b P uA0pC2dq,

where N depends on b only. �

The following two theorems now follows by combining Propositions 2.2 and 2.3
with Theorem 2.6. The details are left for the reader.

Theorem 2.7. Let s P R5 be such that s ă 1
2

and let T be a linear and continuous

map from AspCdq to A1
spCdq. Then there is a unique a P uA1

spCd ˆ C
dq such that

T “ OpVpaq. The same holds true if s ă 1
2
, As, A

1
s and uA1

s are replaced by s ď 1
2
,

A0,s, A
1
0,s and uA1

0,s, respectively, at each occurrence.

Theorem 2.8. Let a P uA1
0pCd ˆ C

dq and s P R5 be such that s ă 1
2
. If

a P uA1
spCd ˆ C

dq, then OpVpaq extends uniquely to a linear and continuous map
from AspCdq to A1

spCdq. The same holds true if s ă 1
2
, As, A

1
s and uA1

s are replaced

by s ď 1
2
, A0,s, A

1
0,s and uA1

0,s, respectively, at each occurrence.

The analogous results to Theorems 2.7 and 2.8 for larger s are equivalent to
kernel theorems for Fourier invariant Gelfand–Shilov spaces.

Theorem 2.9. Let s ě 1
2

(s ą 1
2
). Then the following is true:

(1) If T is a linear and continuous map from A1
spCdq to AspCdq (from A1

0,spCdq
to A0,spCdq), then there is a unique a P uApCd ˆ C

dq such that

(2.13) |apz, wq| À e
1

2
¨|z´w|2´rp|z|

1
s `|w|

1
s q, z, w P C

d,

for some (for every) r ą 0 and T “ OpVpaq;
(2) If T is a linear and continuous map from AspCdq to A1

spCdq (from A0,spCdq
to A1

0,spCdq), then there is a unique a P uApCd ˆ C
dq such that

(2.14) |apz, wq| À e
1

2
¨|z´w|2`rp|z|

1
s `|w|

1
s q, z, w P C

d,

for every (for some) r ą 0 and T “ OpVpaq.
Theorem 2.10. Let s ě 1

2
(s ą 1

2
). Then the following is true:

(1) If a P uApCd ˆ C
dq satisfies (2.13) for some (for every) r ą 0, then OpVpaq

from A0pCdq to A1
0pCdq is uniquely extendable to a linear and continuous

map from A1
spCdq to AspCdq (from A1

0,spCdq to A0,spCdq);
(2) If a P uApCd ˆ C

dq satisfies (2.14) for every (for some) r ą 0, then OpVpaq
from A0pCdq to A1

0pCdq is uniquely extendable to a linear and continuous
map from AspCdq to A1

spCdq (from A0,spCdq to A1
0,spCdq).

Proof. We only prove the results for mappings between As and A1
s spaces. The

case when A0,s and A1
0,s spaces are involved follows by similar arguments and is left

for the reader.
If T is the same as in (2.2) for some K P uApCd ˆ C

dq, then T “ OpVpaq when
apz, wq “ e´pz,wqKpz, wq, pz, wq P C

d ˆ C
d. Since

|e´pz,wq|e 1

2
p|z|2`|w|2q “ e

1

2
¨|z´w|2, z, w P C

d,
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Theorem 1.9 gives

K P uAspCd ˆ C
dq ðñ |Kpz, wq| À e

1

2
¨p|z|2`|w|2q´rp|z|

1
s `|w|

1
s q

ðñ |apz, wq| À e
1

2
¨p|z´w|2q´rp|z|

1
s `|w|

1
s q, z, w P C

d.

for some r ą 0. In the same way,

K P uA1
spCd ˆ C

dq ðñ |apz, wq| À e
1

2
¨p|z´w|2q`rp|z|

1
s `|w|

1
s q, z, w P C

d,

for every r ą 0. The results now follows from these relations and Propositions 2.2
and 2.3 �

Remark 2.11. For strict subspaces of uA1
0,1{2pCdq in Definition 1.7, the estimates

imposed on their elements are given by (1.23) or by (1.24) for suitable assumptions
on r ą 0. It is evident that in all such cases, these conditions are violated under the
action of Tt in Theorem 2.6 when t ‰ 0. Hence, Theorem 2.6 cannot be extended to
other spaces in Definition 1.7.

In particular, the conditions (2.13) and (2.14) in Theorems 2.9 and 2.10 can not
be replaced by the convenient condition that a should belong to e. g.

(2.15) uA0,spCd ˆ C
dq, uAspCd ˆ C

dq, uA1
s1

pCd ˆ C
dq or uA1

0,s2
pCd ˆ C

dq

when s P R5, s1 ě 1
2

and s2 ą 1
2
. On the other hand, the conditions on a in

Theorems 2.9 and 2.10 mean exactly that pz, wq ÞÑ epz,wqapz, wq belongs to the spaces
in (2.15), depending on the choice between (2.13) and (2.14), and the condition on
r.

Remark 2.12. Let s P R5 be such that s ď 1
2
. By similar arguments as in the

proofs of Theorems 2.9 and 2.10, one may also characterize linear and continuous
operators from A1

spCdq to AspCdq, and from A1
0,spCdq to A0,spCdq as operators of the

form OpVpaq for suitable conditions on a. The details are left for the reader.

3. Operators with kernels and symbols

in mixed weighted Lebesgue spaces

In this section we focus on operators in the previous section, whose kernels should
belong to uApCd ˆ C

dq and obey certain mixed norm estimates of Lebesgue types.
We deduce continuity properties of such operators when acting between suitable
Lebesgue spaces of analytic functions. (See Theorems 3.3–3.5.) Thereafter we show
that our results can be used to regain well-known and sharp continuity results in [27]
for pseudo-differential operators with symbols in modulation spaces when acting on
other modulation spaces. (See Theorems 3.8 and 3.9.) A key step here is to deduce
an explicit formula which relates the short-time Fourier transform of the symbol to
a real pseudo-differential operator Oppaq with the Bargmann transform of the kernel
to Oppaq. (See Lemma 3.7.)

We shall consider Lebesgue norm conditions of matrix pull-backs of the involved
kernels. Let

(3.1)

C l
jk P Mpd,Rq, Cjk “

ˆ
C1

j,k C2
j,k

C3
j,k C4

j,k

˙
P Mp2d,Rq,

C “
ˆ
C11 C12

C21 C22

˙
P Mp4d,Rq, j, k, l P Z`,
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and let

Udpx ` iξq “ px, ξq P R
2d,

Ud,dpx1 ` iξ1, x2 ` iξ2q “ px1, ξ1, x2, ξ2q P R
4d,

Kωpz, wq ” e´ 1

2
p|z|2`|w|2q|Kpz, wq| ¨ ωp

?
2 z,

?
2wq,

GK,C,ω “ Kω ˝ U´1
d,d ˝ C ˝ Ud,d,

x, xj , ξ, ξj P R
d, z, w P C

d, j “ 1, 2.

(3.2)

We will consider continuity of operators from A
p1

E,pω1qpCdq to A
p2

E,pω2qpCdq, when GK,C,ω

fullfils suitable Lp,qpC2dq estimates, where the weights fullfil

(3.3)
ω2pzq
ω1pwq À ωpz, wq, z, w P C

d.

Here and in what follows we let Lp,qpC2dq and L
p,q
˚ pC2dq be the sets of all G P L1

loc
pC2dq

such that

}G}Lp,qpC2dq ” }G ˝ Ud,d}Lp,qpR4dq and }G}Lp,q
˚ pC2dq ” }G ˝ Ud,d}Lp,q

˚ pR4dq,

respectively, are finite. (See also Remark 1.16.)
The involved Lebesgue exponents should satisfy

(3.4)
1

p1

´ 1

p2

“ 1 ´ 1

p
´ 1

q
, q ď p2 ď p, p, q P r1,8s, p1,p2 P r1,8s2d.

We need that C and Cjk above should satisfy

detpCq detpC11C21q ‰ 0(3.5)

or

detpCq detpC12C22q ‰ 0.(3.6)

In (3.4) and in what follows we use the convention

1

p
“
ˆ

1

p1
, . . . ,

1

pd

˙
, p0 ď p, p ď p, q0 ă q, q ă q and r “ r,

when

p “ pp1, . . . , pdq, q “ pq1, . . . , qdq, r “ pr1, . . . , rdq
belong to r1,8sd and p, q, r, p0, q0, r0 P r1,8s satisfy

p0 ď pk, pk ď p, q0 ă qk, qk ă q and rk “ r, k P t1, . . . , du.
Remark 3.1. We notice that (3.1)–(3.6) implies that C is invertible and that

at least one of the following conditions hold true:

(1) both C11 and C21 are invertible;
(2) both C12 and C22 are invertible.

If (1) holds, then

det

ˆ
C11 C12

C21 C22

˙
— det

ˆ
I2d C´1

11 C12

I2d C´1
21 C22

˙
“ det

ˆ
I2d C´1

11 C12

0 C´1
21 C22 ´ C´1

11 C12

˙

“ detpC´1
21 C22 ´ C´1

11 C12q.
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Here recall that I “ Id is the d ˆ d identity matrix. From these computations it
follows that

C´1
11 C12 ´ C´1

21 C22, C´1
11 C12 ´ C22C

´1
21 ,

C12C
´1
11 ´ C´1

21 C22, C12C
´1
11 ´ C22C

´1
21

are invertible when (1) holds, and

C´1
12 C11 ´ C´1

22 C21, C´1
12 C11 ´ C21C

´1
22 ,

C11C
´1
12 ´ C´1

22 C21, C11C
´1
12 ´ C21C

´1
22

are invertible when (2) holds.

Remark 3.2. Let C0 P Mpd,Cq and let Ud be the same as in (3.2). Then the
matrix Ud ˝ C0 ˝ U´1

d which corresponds to C0 is given by

(3.7)

ˆ
RepC0q ´ ImpC0q
ImpC0q RepC0q

˙
.

Obviously, the map which takes C0 P Mpd,Cq into the matrix (3.7) in Mp2d,Rq
is injective, but not bijective. In this way we identify Mpd,Cq with the set of all
matrices in Mp2d,Rq which are given by (3.7) for some C0 P Mpd,Cq.

If Cjk P Mp2d,Rq and Tjk “ U´1
d ˝ Cjk ˝ Ud, then GK,C,ω in (3.2) is given by

GK,C,ωpz, wq “ KωpT11pzq ` T12pwq, T21pzq ` T22pwqq, z, w P C
d.

If more restricted, Cjk can be identified as matrices in Mpd,Cq as above, for
j, k P t1, 2u, then GK,C,ω in (3.2) is given by

GK,C,ωpz, wq “ KωpC11z ` C12w,C21z ` C22wq, z, w P C
d,

for such choices of C.

Theorem 3.3. Let E be an ordered basis for R2d, ω1 and ω2 be weights on C
d,

ω be a weight on C
d ˆC

d such that (3.3) holds, and let p1, p2, p and q be as in (3.4).
Also let C P Mp4d,Rq be such that (3.1) holds, K P uApCd ˆ C

dq, and let GK,C,ω be
as in (3.2). Then the following is true:

(1) if (3.5) holds and GK,C,ωpz, wq P Lp,qpC2dq, then TK in (2.1) from A51pCdq to
ApCdq is uniquely extendable to a continuous mapping from A

p1

E,pω1qpCdq to

A
p2

E,pω2qpCdq, and

(3.8) }TKF }Ap2

E,pω2q
À }GK,C,ω}Lp,q}F }Ap1

E,pω1q
, F P A

p1

E,pω1qpCdq;

(2) if (3.6) holds and GK,C,ω P L
q,p
˚ pC2dq, then TK in (2.1) from A51pCdq to

ApCdq is uniquely extendable to a continuous mapping from A
p1

E,pω1qpCdq to

A
p2

E,pω2qpCdq, and

(3.9) }TKF }Apω2,L
p2 q À }GK,C,ω}Lq,p

˚
}F }Ap1

E,pω1q
, F P A

p1

E,pω1qpCdq.

Proof. We only prove (1). The assertion (2) follows by similar arguments and is
left for the reader. Let

GK,C,ω,ppwq ” }GK,C,ωp ¨ , wq}LppCdq, w P C
d.
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Then }GK,C,ω}Lp,qpC2dq — }GK,p,ω}LqpCdq. Also let Kω be as in (3.2), F P A
p1

E,pω1qpCdq
and H P B

p2

E,p1{ω2qpCdq, and set

Fω1
pwq ” |F pwq|e´|w|2{2ω1p

?
2wq, w P C

d

and

Hω2
pzq ” |Hpzq|e´|z|2{2{ω2p

?
2 zq, z P C

d.

By Hölder’s inequality we get

|pTF,HqB2| —
ˇ̌
ˇ̌
ż

Cd

pTF qpzqHpzqe´|z|2 dλpzq
ˇ̌
ˇ̌

ď
ĳ

C2d

Kωpz, wqFω1
pwqHω2

pzq dλpzqdλpwq

“
ĳ

C2d

GK,C,ωpz, wqΦpz, wq dλpzqdλpwq À }GK,C,ω}Lp,q}Φ}Lp1,q1 ,

where

Φpx ` iξ, y ` iηq
“ Fω1

pU´1
d pC21px, ξq ` C22py, ηqqqHω2

pU´1
d pC11px, ξq ` C12py, ηqqq, x, y, ξ, η P R

d.

Here we identify px, ξq P R
2d by corresponding 2d ˆ 1-matrix

`x
ξ

˘
, as usual.

We need to estimate }Φ}Lp1,q1 , and start with reformulating }Φp ¨ , wq}Lp1 . For
}Φp ¨ , wq}Lp1 we take

px, ξq ÞÑ C21ppx, ξq ` C´1
21 C22py, ηqq

as new variables of integration, and get

}Φp ¨ , wq}Lp1 — }Fω1
¨ Hω2

pU´1
d pB1p ¨ ´ B2py, ηqqq}Lp1 , w “ y ` iη,

where B1 and B2 are the matrices

B1 “ C11C
´1
21 P Mp2d,Rq and B2 “ C21C

´1
11 C12 ´ C22 P Mp2d,Rq,

which are invertible due to Remark 3.1 and the assumptions. Hence, for F 0
ω1

“
Fω1

pU´1
d ¨ q and H0

ω2
“ Hω2

˝ U´1
d ˝ p´B1q we have

(3.10) }Φp ¨ , wq}Lp1 —
´´

|F 0
ω1

|p1 ˚ |H0
ω2

|p1
¯

pB2py, ηqq
¯ 1

p1

, w “ y ` iη.

If r1 “ p1{p1 and r2 “ p
1
2{p1, then it follows from (3.4) that

1

r1

` 1

r2

“ 1 ` p1

q1
, and r1, r2,

q1

p1
ě 1.

Hence, by (3.10), q1{p1 ě 1, the fact that B2 is invertible, and Hölder’s and Young’s
inequalities we obtain

}Φ}Lp1,q1 À
››››
´´

|F 0
ω1

|p1 ˚ |H0
ω2

|p1
¯

pB2 ¨ q
¯ 1

p1

››››
Lq1

—
ˆ›››|F 0

ω1
|p1 ˚ |H0

ω2
|p1
›››
L
q1{p1

E

˙ 1

p1

ď
´

}|F 0
ω1

|p1}Lr1

E
}|H0

ω2
|p1}Lr2

E

¯ 1

p1 — }Fω1
}Lp1

E
}Hω2

}
L
p

1
2

E

and the right-hand side of (3.8) follows by taking the supremum over all such H with
}H}

B
p

1
2

E,p1{ω2q

ď 1.
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The existence of extension now follows from Hahn–Banach’s theorem. By these
estimates it also follows that

pz, wq ÞÑ Kωpz, wqFω1
pwqHω2

pzq
belongs to L1pCd ˆ C

dq, and the uniqueness is a straight-forward application of
Lebesgue’s theorem. �

For corresponding pseudo-differential operator with symbol a, the kernel is given
by Kpz, wq “ epz,wqapz, wq. By straight-forward computations it follows that GK,C,ω,p

takes the form

GK,C,ω,ppwq “ }aωp ¨ , wq}LppCdq, w P C
d,

when C11 “ C12 “ C22 “ I2d and C21 “ 0, or C11 “ C12 “ C21 “ I2d and C22 “ 0,
where

aωpz, wq “ e´ 1

2
¨|z|2apz ` w,wqωp

?
2 pz ` wq,

?
2wq(3.11)

or

aωpz, wq “ e´ 1

2
¨|w|2apz ` w, zqωp

?
2 pz ` wq,

?
2 zq.(3.12)

Hence, Theorem 3.3 gives the following.

Theorem 3.4. Let ω1 and ω2 be weights on C
d, ω be a weight on C

d ˆC
d such

that (3.3) holds, p1, p2, p and q be as in (3.4). Also let a P uApCd ˆC
dq and let aω be

given by (3.11) or by (3.12) for z, w P C
d. If aω P Lp,qpC2dq, then the operator OpVpaq

in (2.4) from A51pCdq to ApCdq is uniquely extendable to a continuous mapping from
A

p1

E,pω1qpCdq to A
p2

E,pω2qpCdq.
We also have the following result related to Theorem 3.3. Here the matrix C is

given by (3.1) with

(3.13) C11 “ C21 “ I2d, C12 “
ˆ
0 0

0 Id

˙
and C22 “

ˆ
Id 0

0 0

˙

which obviously satisfies (3.5). Also again recall Remark 1.16 for notations.

Theorem 3.5. Let C be given by (3.1) with Cjk given by (3.13), ω1 and ω2 be
weights on C

d, ω be a weight on C
d ˆC

d such that (3.3) holds, and let p, q P r1,8s.
Also let K P uApCd ˆC

dq and GK,C,ω be as in (3.2). If GK,C,ω P L
p,q
˚ pC2dq, then TK in

(2.1) from A51pCdq to ApCdq is uniquely extendable to a continuous mapping from

A
p1,q1

pω1qpCdq to A
q,p

˚,pω2qpCdq, and

(3.14) }TKF }Aq,p

˚,pω2q
À }GK,C,ω}Lp,q

˚
}F }

A
p1,q1

pω1q

, F P A
p1,q1

pω1qpCdq.

Proof. Let Fω1
, F 0

ω1
, Hω2

and H0
ω2

be the same as in the proof of Theorem 3.3,
and let Kω be as in (3.2). Then

|pTKF,HqB2 | ď
˘

Kωpx, ξ, y, ηqF 0
ω1

py, ηqH0
ω2

px, ξq dx dξ dy dη

“
˘

GK,C,ωpx, ξ, y, ηqqF 0
ω1

px ` y, ξqH0
ω2

px, ξ ` ηq dx dξ dy dη

ď }GK,C,ω}Lp,q
˚

}Φ0}Lp1 ,
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where

Φ0px, ξq “
ˆĳ

|F 0
ω1

px ` y, ξqH0
ω2

px, ξ ` ηq|q1

dydη

˙ 1

q1

“ }F 0
ω1

p ¨ , ξq}Lq1 }H0
ω2

px, ¨ q}Lq1 , x, ξ P R
d.

Hence,

}Φ0}Lp1 “ }Fω1
}Lq1,p1 }Hω2

}
L
p1,q1

˚
.

The continuity assertion now follows from these estimates, an application of Hahn–
Banach’s theorem and Lebesgue’s theorem (cf. the end of the proof of Theorem 3.3).

�

Remark 3.6. In Theorem 3.5, the matrix C is chosen only as (3.1) and (3.13),
while Theorem 3.3 is valid for a whole family of matrices with the only restriction
(3.5) or (3.6). On the other hand, by similar arguments, it follows that the conclusions
in Theorem 3.5 are still true when, more generally, C P Mp4d,Rq is of the form

¨
˚̊
˝

˘Id 0 ˘Id 0

0 ˘Id 0 0

˘Id 0 0 0

0 ˘Id 0 ˘Id

˛
‹‹‚,

¨
˚̊
˝

˘Id 0 0 0

0 ˘Id 0 ˘Id
˘Id 0 ˘Id 0

0 ˘Id 0 0

˛
‹‹‚,

¨
˚̊
˝

˘Id 0 ˘Id 0

0 0 0 ˘Id
0 0 ˘Id 0

0 ˘Id 0 ˘Id

˛
‹‹‚ or

¨
˚̊
˝

0 0 ˘Id 0

0 ˘Id 0 ˘Id
˘Id 0 ˘Id 0

0 0 0 ˘Id.

˛
‹‹‚,

for any choice of ˘ at each place, provided the mixed Lebesgue conditions on GK,C,ω

are slightly modified.

In order to apply Theorem 3.3 to real pseudo-differential operators we have the
following.

Lemma 3.7. Let φpx, ξq “ π´ d
2 eixx,ξye´ 1

2
p|x|2`|ξ|2q, x, ξ P R

d, a P H1
51

pR2dq and
let Ka be the kernel of Oppaq. Then

e´ 1

2
p|z|2`|w|2q

VΘ,dKapz, wq
“ p2πq d

2 e´ipxx,ξ´2ηy`xy,ηyqpVφaqp
?
2x,´

?
2η,

?
2pη ´ ξq,

?
2py ´ xqq

when z “ x ` iξ P C
d and w “ y ` iη P C

d.

Proof. Let φ0px, ξq “ π´ d
2 e´ 1

2
p|x|2`|ξ|2q “ e´ixx,ξyφpx, ξq. By formal computations

and Fourier’s inversion formula we get

p2πqde i
2

¨pxx,ξy´xy,ηyqe´ 1

4
p|z|2`|w|2q

VΘ,dKapz{
?
2, w{

?
2q

“
¡

apx1, ξ1qeixx1´y1,ξ1yφ0px1 ´ x, y1 ´ yqe´ipxy1,ηy´xx1,ξyq dx1 dy1 dξ1

“ p2πq d
2 e´ixy,ηy

ĳ
apx1, ξ1qφ0px1 ´ x, ξ1 ` ηqeixx1,ξ1ye´ipxy,ξ1y´xx1,ξyq dx1 dξ1

“ p2πq d
2 eixx´y,ηy

ĳ
apx1, ξ1qφpx1 ´ x, ξ1 ` ηqe´ipxx1,η´ξy`xy´x,ξ1yq dx1 dξ1

“ p2πq 3d
2 eixx´y,ηypVφaqpx,´η, η ´ ξ, y ´ xq. �
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We can now use the previous lemma and theorems to obtain mapping properties
for pseudo-differential operators with symbols in modulation spaces. For example,
we may combine Lemma 3.7 and Theorem 3.3 to deduce the following result, which is
the same as [28, Theorem 2.2]. Hence our kernel results on the Bargmann transform
side can be used to regain classical mapping properties pseudo-differential operators
when acting on modulation spaces.

Theorem 3.8. Let E be an ordered basis of R2d, A P MpR, dq, p, q P r1,8s and
p1,p2 P r1,8s2d be as in (3.4), ω0 P PEpR4dq and ω1, ω2 P PEpR2dq be such that

(3.15)
ω2px ´ Ay, ξ ` pI ´ A˚qηq
ω1px ` pI ´ Aqy, ξ ´ A˚ηq À ω0px, ξ, η, yq, x, y, ξ, η P R

d,

and let a P M
p,q

pω0qpR2dq. Then OpApaq from Σ1pRdq to Σ1
1pRdq extends uniquely to

continuous operator from M
p1

E,pω1qpRdq to M
p2

E,pω2qpRdq, and

}OpApaq}Mp1

E,pω1q
ÑM

p2

E,pω2q
À }a}Mp,q

pω0q
.

Proof. By (1.40) and Proposition 1.19 we may assume that A “ 0. Let

C11 “ C21 “ C22 “ I2d, C12 “ 0

and let ω be given by

ωpx, ξ, y, ηq “ ω0px,´η, ξ ` η, y ´ xq, x, y, ξ, η P R
d,

which we identify with

ωpz, wq, z “ x ` iξ P C
d, w “ y ` iη P C

d.

Then it follows by straight-forward computations that (3.15) is the same as (3.3).
Furthermore, let K0 “ VΘ,dKa, where Ka is the kernel of the operator Oppaq. Then
it follows from Lemma 3.7 and straight-forward computations that if

Ha,ω0
px, ξ, η, yq “ |Vφapx, ξ, η, yq| ¨ ω0px, ξ, η, yq, , x, y, ξ, η P R

d,

then

Ha,ω0
p
?
2x,´

?
2pξ ` ηq,

?
2 η,

?
2 yq — GK0,C,ωpz, wq,

z “ x ` iξ P C
d, w “ y ` iη P C

d.
(3.16)

By first applying the Lp-norm on (3.16) with respect to x and ξ, and thereafter
applying the Lq-norm with respect to y and η, we get

}GK0,C,ω}Lp,qpC2dq — }Ha,ω0
}Lp,qpR4dq — }a}Mp,q

pω0q
ă 8.

Hence, the assumptions in Theorem 3.3 are fullfiled, and we conclude that the oper-
ator TK0

with kernel K0 is continuous from A
p1

E,pω1qpCdq to A
p2

E,pω2qpCdq. The asserted

continuity for Oppaq is now a consequence of the commutative diagram

(3.17)

M
p1

E,pω1qpRdq OppaqÝÝÝÑ M
p2

E,pω2qpRdq
Vd

§§đ
§§đVd

A
p1

E,pω1qpCdq ÝÝÝÑ
TK0

A
p2

E,pω2qpCdq.

�

The next result extends [24, Theorem 3.3] and follows by similar arguments as in
the previous proof, using Theorem 3.5 instead of Theorem 3.3. The details are left
for the reader.
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Theorem 3.9. Let ω1 and ω2 P PEpR2dq, ω P PEpR4dq be such that

ω2px, ξ ` ηq
ω1px ` y, ξq À ω0px, ξ, η, yq, x, y, ξ, η P R

d,

let p, q P r1,8s, and let a P W
p,q

pω0qpR2dq. Then Op0paq from Σ1pRdq to Σ1
1pRdq is

uniquely extendable to a continuous mapping from M
q1,p1

pω1q pRdqq to W
p,q

pω2qpRdqq, and

}Oppaqf}W p,q

pω2q
À }a}W p,q

pω0q
}f}

M
q1,p1

pω1q

, f P M
q1,p1

pω1q pRdqq.

Remark 3.10. Let E, p, q, pj , φ0 and φ be the same as in Lemma 3.7, The-

orem 3.8 and their proofs. Also let A P MpR, dq and let φA “ eixADξ,Dxyφ. Then
the condition on a in Theorem 3.8 is that }Vφ0

a ¨ ω0}Lp,q ă 8. In view of [5, 6, 29]
and Proposition 1.13 (2), the previous condition is the same as }VφA

a ¨ ω0}Lp,q ă 8
because ω0 is moderate.

We observe that all weights in Theorem 3.8 are moderate, while there are no such
assumptions or other restrictions on the involved weight functions in Theorem 3.3.
Since the latter result is used to prove the former one, a natural question is wether
Theorem 3.8 can be extended to broader classes of weight functions. In view of
Remark 1.14, it is evident that the imposing moderate conditions on weights might
in some context be considered as strong restrictions.

The answer on this question is affirmative in the sense that for suitable modifi-
cations, the moderate conditions on the weights in Theorem 3.8 can be removed.

In fact, let HA
51

pR2dq be the modification of H51pR2dq, given by

H
A
51pR2dq “ t eixADξ ,Dxypeixx,ξyaq ; a P H51pR2dq u,

pHA
51

q1pR2dq be the dual of HA
51

pR2dq, ω1, ω2 be weights on R
2d and let ω0 be a weight

on R
4d such that (3.15) holds. Then it follows from the proof of Theorem 3.8 that

the following is true:

‚ if a P pHA
51

q1pR2dq, then VφA
a makes sense as a smooth function;

‚ if a P pHA
51

q1pR2dq satisfies }VφA
a ¨ ω0}Lp,q ă 8, then OpApaq from H51pRdq

to H1
51

pRdq extends uniquely to a continuous operator from M
p1

E,pω1qpRdq to

M
p2

E,pω2qpRdq.
In similar ways, Theorem 3.9 can be extended to permit more general weight

classes.
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