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Abstract. The article investigates mappings whose inverses distort the modulus of paths sim-

ilarly to the Poletsky inequality. It is proved that the classes of such mappings form equicontinuous

families if the majorant corresponding to the distortion of the module is integrable in the domain

of their definition. Under additional conditions on the geometry of the domain of definition and the

image domain these families are equicontinuous, not only at inner, but also at boundary points. In

addition, the question of removability of the isolated singularities for such mappings is resolved.

1. Introduction

In the theory of quasiconformal mappings, there are several remarkable results
relating to the equicontinuity of families of mappings. In particular, the classical
Väisälä result asserts that families of such mappings are equicontinuous if they do
not take at least two fixed values in an extended Euclidean space, see [Va1, Theo-
rem 19.2]. Many other results on this topic are also known. In particular, there are
analogues of the Väisälä theorem relating to mappings with branching, mappings
between fixed domains and mappings with unbounded characteristic, see e.g. [MRV,
Theorem 3.17], [NP1, Theorem 3.1], [NP2, Theorem 3.1], [Cr, Theorem 8.9], [GU,
Theorem A] and [MRSY2, Theorem 3.1, Corollary 3.6]. In particular, the following
result holds; see [MRV, Theorem 3.17].

Theorem. (Martio–Rickman–Väisälä) Suppose that G is a domain in R
n and

F ⊂ Rn is a compact set of a positive capacity. Then for every K > 1, the family of
all K-quasimeromorphic mappings f : G → Rn \F is equicontinuous with respect to
the chordal metric.

We also give another classical result on the global behavior of maps, see [NP1,
Theorem 3.1].

Theorem. (Näkki–Palka) Let F be a family of K-quasiconformal mappings of
a domain D 6= Rn onto a domain D ′ and let either D or D ′ be quasiconformally
collared on the boundary. Then F is uniformly equicontinuous if and only if each
f ∈ F can be extended to a continuous mapping of D onto D ′ and infF h(f(A)) > 0
for some continuum A in D.
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Here h(E) denotes the chordal diameter of the set E in the extended Euclidean
space. It is necessary to note that in the Martio–Rickman–Väisälä theorem, as well
as in the Näkki–Palka theorem, the transition to inverse mappings is possible. Of
course, we are talking about the situation of homeomorphisms in the first theorem.
Based on the analytical definition of quasiconformality, we may conclude that the
inverse of a quasiconformal mapping is also quasiconformal, see [Va1, Theorem 34.3],
and thus the aforementioned results can be applied to inverse mappings as well.

The situation will change significantly if a family of mappings with an unbounded
characteristic is considered. As we will see from the examples at the end of the article,
there are families of maps with unbounded characteristic that are not equicontinuous,
however, the inverses to them are such. A similar remark applies to the case related
to the equicontinuity of families of maps in the closure of a domain. The problem of
equicontinuity for inverse mappings has been considered in [Sev] and [SevSkv] under
more restricted conditions than here.

Now we formulate the main assumptions and results. In what follows, M denotes
the n-modulus of a family of paths, and the element dm(x) corresponds to a Lebesgue
measure in R

n, n > 2, see [Va1]. For the sets A,B ⊂ R
n we set, as usual,

diamA = sup
x,y∈A

|x− y|, dist (A,B) = inf
x∈A,y∈B

|x− y|.

For given sets E and F and a given set A in Rn = R
n∪{∞}, we denote by Γ(E, F,A)

the family of all paths γ : [0, 1] → Rn joining E and F in A, that is, γ(0) ∈ E,
γ(1) ∈ F and γ(t) ∈ A for all t ∈ [0, 1]. Everywhere below, unless otherwise stated,
the boundary and the closure of a set are understood in the sense of an extended
Euclidean space Rn. Let x0 ∈ D, x0 6= ∞,

S(x0, r) = {x ∈ R
n : |x− x0| = r}, Si = S(x0, ri), i = 1, 2,

A = A(x0, r1, r2) = {x ∈ R
n : r1 < |x− x0| < r2}.

Let Q : Rn → R
n be a Lebesgue measurable function satisfying the condition Q(x) ≡

0 for x ∈ R
n \D. The mapping f : D → Rn is called a ring Q-mapping at the point

x0 ∈ D \ {∞}, if the condition

(1.1) M(f(Γ(S1, S2, D))) 6

ˆ

A∩D

Q(x) · ηn(|x− x0|) dm(x)

holds for all 0 < r1 < r2 < d0 := supx∈D |x − x0| and all Lebesgue measurable
functions η : (r1, r2) → [0,∞] such that

(1.2)

ˆ r2

r1

η(r) dr > 1.

The mapping of f is called a ring Q-mapping in D, if condition (1.1) is satisfied at
every point x0 ∈ D, and a ring Q-mapping in D, if the condition (1.1) holds at every
point x0 ∈ D. For the properties of such mappings see [RSY] and [MRSY2].

Estimates of the form (1.1) have a large range of applications and inequalities
of this type go back to [Va2] for quasiconformal and to [Pol] for quasiregular map-
pings. Inequality (1.1) can be also used for mappings with unbounded characteristics,
see [MRSY1, Theorems 4.6 and 6.10] and [KO, Theorem 4.1].

A domain D ⊂ R
n is called locally connected at the point x0, if for any neighbor-

hood U of point x0 there is a neighborhood V ⊂ U of the same point such that V ∩D
is connected. The domain D is called locally connected on ∂D, if this domain is such
at each point of its boundary. The boundary of the domain D is called weakly flat at
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the point x0, if for every number P > 0 and for every neighborhood U of this point
there is a neighborhood V of point x0 such that M(Γ(E, F,D)) > P for arbitrary
continua E and F, satisfying conditions F ∩ ∂U 6= ∅ 6= F ∩ ∂V . The boundary of
domain D is called weakly flat if it is such at each point of its boundary.

Let (X, d) and (X ′, d ′) be metric spaces with distances d and d ′, respectively. A
family G of mappings g : X ′ → X is said to be equicontinuous at a point y0 ∈ X ′,
if for every ε > 0 there is δ = δ(ε, y0) > 0 such that d(g(y), g(y0)) < ε for all g ∈ G

and y ∈ X ′ with d ′(y, y0) < δ. The family G is equicontinuous if G is equicontinuous
at every point y0 ∈ X ′. In what follows, unless otherwise stated, X = D and
d(x, y) = |x − y|, where D is a bounded domain of the Euclidean space R

n. The
space X ′ means either D ′ or D ′ depending on the context. In this case, D ′ is the
domain of the extended Euclidean space Rn, and h denotes the so-called chordal
metric defined by the equalities

(1.3) h(x, y) =
|x− y|√

1 + |x|2
√
1 + |y|2

, x 6= ∞ 6= y, h(x,∞) =
1√

1 + |x|2
.

For a given set E ⊂ Rn, we set

(1.4) h(E) := sup
x,y∈E

h(x, y).

The quantity h(E) in (1.4) is called the chordal diameter of the set E.
For given domains D and D ′ in Rn and given Lebesgue measurable function

Q : Rn → [0,∞], which vanishes outside D, denote by RQ(D,D ′) the family of
all homeomorphisms g of D ′ onto D such that the mapping f = g−1 is ring Q-
homeomorphism in D. The following result holds.

Theorem 1.5. Let n > 2, and let D be a bounded domain in R
n. If Q ∈ L1(D),

then the family RQ(D,D ′) is equicontinuous in D ′.

Note that Theorem 1.5 does not contain any geometric conditions on D and D ′

except that D is bounded. We also present an equicontinuity result in the closure of
a domain. For this we make the following assumptions. Let D and D ′ be domains
in Rn, A ⊂ D a continuum and Q a Lebesgue measurable function which vanishes
outside D. We let Sδ,A,Q(D,D ′) be the family of all homeomorphisms g of D ′ onto
D such that f = g−1 is a ring Q-homeomorphism in D, and the condition

h(f(A)) := sup
x,y∈f(A)

h(x, y) > δ

is fulfilled. The following assertion holds.

Theorem 1.6. Let n > 2, and let D be a bounded domain in R
n which is locally

connected at all its boundary points. Suppose that the boundary of the domain D ′ is
weakly flat; moreover, no component of ∂D ′ degenerates into a point. If Q ∈ L1(D),
then each map g ∈ Sδ,A,Q(D,D ′) has a continuous extension g : D ′ → D, such that
g(D ′) = D, while the family Sδ,A,Q(D,D ′), consisting of all extended mappings, is
equicontinuous in D ′.

It is quite natural that in Theorem 1.6 there are more conditions than in The-
orem 1.5. Indeed, in order for the family of mappings to be equicontinuous in the
closure of an domain, at least a continuous extension to its boundary is required.
However, even for conformal mappings of the unit disk, this property can be violated
if the boundary of the image domain is “too bad”.
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2. Preliminaries

We need the following topological lemma and refer to [SevSkv] for the proof.
Recall that a path will be called a continuous mapping γ : I → R

n of a segment,
interval or half-interval I ⊂ R into n-dimensional Euclidean space R

n. As usual, the
following set is called the locus of a path γ : I → R

n:

|γ| = {x ∈ R
n : ∃ t ∈ I : γ(t) = x}.

We also say that the paths γ1 and γ2 do not intersect each other if their loci do
not intersect as sets in R

n. A path γ : I → R
n is called a Jordan arc, if γ is a

homeomorphism of I onto |γ|.

Lemma 2.1. Let n > 2, and let D be a domain in R
n that is locally connected

on its boundary. Then every two pairs of points a ∈ D, b ∈ D and c ∈ D, d ∈ D
such that a 6= c and b 6= d can be joined by non-intersecting paths γ1 : [0, 1] → D and
γ2 : [0, 1] → D so that γi(t) ∈ D for all t ∈ (0, 1) and all i = 1, 2, while γ1(0) = a,
γ1(1) = b, γ2(0) = c and γ2(1) = d.

The following statement is a simple consequence of the well-known Väisälä the-
orem on the lower estimate of the modulus of families of paths joining two continua
that intersect the plates of a spherical ring.

Lemma 2.2. (Väisälä’s lemma on the weak flatness of inner points) Let n >

2, let D be a domain in Rn, and let x0 ∈ D. Then for each P > 0 and each
neighborhood U of point x0 there is a neighborhood V ⊂ U of the same point such
that M(Γ(E, F,D)) > P for any continua E, F ⊂ D intersecting ∂U and ∂V.

Proof. Fix a neighborhood U of a point x0. Without loss of generality, using
auxiliary inversion ϕ(x) = x/|x|2, if necessary, we may assume that x0 6= ∞. Choose

now ε0 > 0 so that B(x0, ε0) ⊂ D ∩ U . Let cn be a positive Väisälä constant
defined in [Va1, (10.11)], and let ε ∈ (0, ε0) be so small that cn · log ε0

ε
> P . Let

V := B(x0, ε), and let E, F be arbitrary continua intersecting ∂U and ∂V . Then
also E and F intersect S(x0, ε0) and ∂V, see [Ku, Theorem 1.I.5.46]. Therefore, the
desired conclusion follows from [Va1, Section 10.12], because

M(Γ(E, F,D)) > cn · log
ε0
ε

> P. �

3. Proof of Theorem 1.5

We prove the theorem 1.5 by contradiction. Suppose that the conclusion of this
theorem does not hold, that is, the family of maps RQ(D,D ′) is not equicontinuous
at some point y0 ∈ D ′. Then there is y0 ∈ D ′ with the following property: for
each m ∈ N there are ym ∈ D ′ and a homeomorphism gm ∈ RQ(D,D ′), such that
h(ym, y0) < 1/m, however,

(3.1) |gm(ym)− gm(y0)| > ε0 .

Consider a straight line

r = rm(t) = gm(y0) + (gm(ym)− gm(y0))t, −∞ < t < ∞,

passing through points gm(ym) and gm(y0), see Figure 1.
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Figure 1. To the proof of the theorem 1.5.

Since the domain D is bounded, in view of [Ku, Theorem 1.I.5.46] the above
line r = rm(t) intersects ∂D for some value of the parameter t > 1. In this case,
there is tm1 > 1 such that rm(t

m
1 ) = xm

1 ∈ ∂D. Without loss of generality, we
may assume that rm(t) ∈ D for all t ∈ [1, tm1 ). In this case, the segment γm

1 (t) =
gm(y0) + (gm(ym)− gm(y0))t, t ∈ [1, tm1 ], belongs to the domain D for all t ∈ [1, tm1 ),
γm
1 (tm1 ) = xm

1 ∈ ∂D and γm
1 (1) = gm(ym). Similarly, there are tm2 < 0 and a segment

γm
2 (t) = gm(y0) + (gm(ym) − gm(y0))t, t ∈ [tm2 , 0], such that γm

2 (tm2 ) = xm
2 ∈ ∂D,

γm
2 (0) = gm(y0) and γm

2 (t) ∈ D for all t ∈ (tm2 , 0]. Set fm := g−1
m and fix m ∈ N.

Since fm is a homeomorphism, the limit sets C(fm, x
m
1 ) and C(fm, x

m
2 ) are in the set

∂D ′ (see [MRSY3, Proposition 13.5]), where, as usual, we use the notation

C(f, x) := {y ∈ Rn : ∃ xk ∈ D : xk → x, f(xk) → y, k → ∞}.

Therefore, there is a point zm1 ∈ D ∩ |γm
1 | such that h(fm(z

m
1 ), ∂D ′) < 1/m. Since

the space Rn is compact, we may assume that fm(z
m
1 ) → p1 ∈ ∂D ′ as m → ∞.

Using similar reasoning, we also conclude that there is a sequence zm2 ∈ D ∩ |γm
2 |

such that h(fm(z
m
2 ), ∂D ′) < 1/m and fm(z

m
2 ) → p2 ∈ ∂D ′ as m → ∞. Denote by

Pm the part of the segment γm
1 , located between points gm(ym) and zm1 , and by Qm

the corresponding part of the segment γm
2 , located between the points gm(y0) and

zm2 . Put
Am := A(zm1 , εm1 , ε

m
2 ) = {x ∈ R

n : εm1 < |x− zm1 | < εm2 },

where
εm1 := |gm(ym)− zm1 |, εm2 := |gm(y0)− zm1 |.

Let Γm = Γ(Pm, Qm, D). Let us show that

(3.2) Γm > Γ(S(zm1 , εm1 ), S(zm1 , εm2 ), Am ∩D).

Indeed, let γ ∈ Γm, in other words, γ = γ(s) : [0, 1] → R
n, γ(0) ∈ Pm, γ(1) ∈ Qm

and γ(s) ∈ D for 0 < s < 1. Let qm > 1 be a number for which

zm1 = gm(y0) + (gm(ym)− gm(y0))qm.



264 Evgeny Sevost’yanov and Sergei Skvortsov

Since γ(0) ∈ Pm, there is 1 6 tm 6 qm such that

γ(0) = gm(y0) + (gm(ym)− gm(y0))tm.

Therefore,

|γ(0)− zm1 | = |(gm(ym)− gm(y0))(qm − tm)|

≤ |(gm(ym)− gm(y0))(qm − 1)|

= |(gm(ym)− gm(y0))qm + gm(y0)− gm(ym))|

= |gm(ym)− zm1 | = εm1 .

(3.3)

On the other hand, since γ(1) ∈ Qm, then there exists pm 6 0 such that

γ(1) = gm(y0) + (gm(ym)− gm(y0))pm.

In this case, we obtain that

|γ(1)− zm1 | = |(gm(ym)− gm(y0))(qm − pm)|

≥ |(gm(ym)− gm(y0))qm|

= |(gm(ym)− gm(y0))qm + gm(y0)− gm(y0)|

= |gm(y0)− zm1 | = εm2 .

(3.4)

Note that

|gm(y0)− gm(ym)|+ εm1 = |gm(y0)− gm(ym)|+ |gm(ym)− zm1 |

= |zm1 − gm(y0)| = εm2 ,
(3.5)

and, therefore, εm1 < εm2 . Then we obtain from relation (3.4) that

(3.6) |γ(1)− zm1 | > εm1 .

If γ(0) 6∈ S(zm1 , εm1 ), then from the relations (3.3) and (3.6) it follows that |γ| ∩
B(zm1 , εm1 ) 6= ∅ 6= (D \ B(zm1 , εm1 )) ∩ |γ|. Then, in view of [Ku, Theorem 1.I.5.46],
there is t1 ∈ (0, 1) such that γ(t1) ∈ S(zm1 , εm1 ). Without loss of generality, we may
assume that γ(t) 6∈ B(zm1 , εm1 ) for t ∈ (t1, 1). Put γ1 := γ|[t1,1].

On the other hand, since εm1 < εm2 and γ1(t1) ∈ S(zm1 , εm1 ), we obtain that
|γ1| ∩ B(zm1 , εm2 ) 6= ∅. By (3.4), we obtain (D \ B(zm1 , εm2 )) ∩ |γ1| 6= ∅. Therefore,
by [Ku, Theorem 1.I.5.46] there is t2 ∈ [t1, 1) such that γ1(t2) ∈ S(zm1 , εm2 ).

Without loss of generality, we may assume that γ1(t) ∈ B(zm1 , εm2 ) for t ∈ (t1, t2).
Put γ2 := γ|[t1,t2]. Then γ > γ2 and γ2 ∈ Γ(S(zm1 , εm1 ), S(z

m
1 , εm2 ), Am). Thus, the

relation (3.2) is now established.
Put

η(t) =

{
1
ε0
, t ∈ [εm1 , ε

m
2 ],

0, t 6∈ [εm1 , ε
m
2 ].

Observe that η satisfies the relation (1.2) with r1 = εm1 and r2 = εm2 . In fact, we
obtain from (3.1) and (3.5) that

r1 − r2 = εm2 − εm1 = |gm(y0)− zm1 | − |gm(ym)− zm1 | = |gm(ym)− gm(y0)| > ε0.

Then
´ εm

2

εm
1

η(t) dt = (1/ε0) · (ε
m
2 − εm1 ) > 1. By the definition of the corresponding

class of mappings in (3.2) considered at the point zm1 , we obtain that

M(fm(Γm)) 6 M(fm(Γ(S(z
m
1 , εm1 ), S(z

m
1 , ε

m
2 ), Am ∩D)))

6
1

εn0

ˆ

D

Q(x) dm(x) := c < ∞,
(3.7)
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since Q ∈ L1(D).
Relation (3.7) is a uniform estimate of the corresponding modulus of families of

paths, in which ”uniformity” refers to the index m on the left; however, the right-
hand side of this relation does not depend on m. Now we show that this leads to
a contradiction with the condition of the weak flatness of the interior point y0, in
which we consider our family of maps RQ(D,D ′). Indeed, first of all we have that

h(fm(Pm)) > h(ym, fm(z
m
1 )) > (1/2) · h(y0, p1) > 0

and

h(fm(Qm)) > h(y0, fm(z
m
2 )) > (1/2) · h(y0, p2) > 0

for large m ∈ N. (Recall that chordal diameter h(fm(Qm)) of the set E is defined by
the relation (1.4), where, in this case, E := fm(Qm)). Moreover, note that

h(fm(Pm), fm(Qm)) := inf
x∈fm(Pm),y∈fm(Qm)

h(x, y) 6 h(ym, y0) → 0, m → ∞.

Then, by Lemma 2.2, we have that

M(fm(Γm)) = M(Γ(fm(Pm), fm(Qm), D
′)) → ∞, m → ∞,

which contradicts (3.7) and hence also (3.1). The obtained contradiction refutes the
assumption made in (3.1). The theorem is proved. �

4. On the behavior of mappings in the closure of an domain

We now pose the question of the equicontinuity of families of mappings not only
at internal, but also boundary points. In order to fully understand this question, we
prove one important topological statement about the approach of the image of the
continuum to the boundary of the domain. Note that similar statements were pre-
viously known for quasiconformal mappings, see, for example, [Va1, Theorems 21.13
and 21.14]. However, we get this result for more general classes of mappings and
according to our own scheme of arguments, different from [Va1]. The meaning of
this statement is that the image of a fixed continuum under mappings satisfying the
estimate (1.1) cannot approach the boundary of the image domain if this domain has
some ”good” properties and the diameter of the image of the continuum is bounded
below.

Lemma 4.1. Let n > 2, let D be a bounded domain in R
n, and let D ′ be some

domain in Rn. Suppose that D is locally connected on ∂D, D ′ has a weakly flat
boundary, Q ∈ L1(D) and, moreover, no connected component of the set ∂D ′ does
not degenerate into a point. Let fm : D → D ′ be a sequence of homeomorphisms of
D onto D ′, satisfying the relation (1.1) in D with the same function Q. Suppose also
that there is a continuum A ⊂ D and a number δ > 0 such that h(fm(A)) > δ > 0 for
all m = 1, 2, . . ., where, as usual, h(fm(A)) is defined in (1.4). Then there is δ1 > 0
such that

h(fm(A), ∂D
′) > δ1 > 0 ∀m ∈ N,

where h(fm(A), ∂D
′) = inf

x∈fm(A),y∈∂D ′

h(x, y).

Proof. Since D is a bounded domain and, moreover, fm(D) = D ′, m = 1, 2, . . .,
then ∂D ′ 6= ∅. Thus, the distance h(fm(A), ∂D

′) is well defined.
We carry out the proof by contradiction. Suppose that the conclusion of the

lemma is not true. Then for each k ∈ N there is some number m = mk such that
h(fmk

(A), ∂D ′) < 1/k. Of course, we can assume that the sequence mk increases on
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k. Since Rn is compact, the set ∂D ′ is also compact in extended Euclidean space.
Note that the set fmk

(A) is compact as a continuous image of a compact set A ⊂ D
under the mapping fmk

. In this case, there are elements xk ∈ fmk
(A) and yk ∈ ∂D ′

such that h(fmk
(A), ∂D ′) = h(xk, yk) < 1/k (see Figure 2).

A
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Uk Uk
DD
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kg
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wk

xk
y0

V
yk
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(| k|)
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( )A

f
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(
k )
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Figure 2. To the proof of Lemma 4.1.

Since ∂D ′ is a compact set, we may assume that yk → y0 ∈ ∂D ′ as k → ∞; then
also

xk → y0 ∈ ∂D ′, k → ∞.

Let K0 be a connected component of the set ∂D ′, containing y0. Obviously, K0 is
a continuum in Rn. Since D ′ has a weakly flat boundary, the mapping gmk

:= f −1
mk

can be extended to a continuous mapping gmk
: D ′ → D (see [Sm, Theorem 3]).

Moreover, gmk
is uniformly continuous on the set D ′ for every fixed k, because the

mapping gmk
is continuous on the compact set D ′. In this case, for each ε > 0 there

is δk = δk(ε) < 1/k such that

(4.2) |gmk
(x)− gmk

(x0)| < ε ∀ x, x0 ∈ D ′, h(x, x0) < δk, δk < 1/k.

Choose ε > 0 such that

(4.3) ε < (1/2) · dist (∂D,A).

Denote Bh(x0, r) = {x ∈ Rn : h(x, x0) < r}. For a given k ∈ N, we set

Bk :=
⋃

x0∈K0

Bh(x0, δk), k ∈ N.

Since the set Bk is a neighborhood of the continuum K0, due to [HK, Lemma 2.2]
there is a neighborhood Uk of the set K0, such that Uk ⊂ Bk and Uk∩D

′ is connected.
Without loss of generality, we may assume that Uk is an open set, so Uk ∩D ′ is also
path connected (see [MRSY3, Proposition 13.1]). Let h(K0) = m0. In this case,
there are z0, w0 ∈ K0 such that h(K0) = h(z0, w0) = m0. So, there are sequences
yk ∈ Uk ∩ D ′, zk ∈ Uk ∩ D ′ and wk ∈ Uk ∩ D ′ such that zk → z0, yk → y0 and
wk → w0 as k → ∞. We may assume that

(4.4) h(zk, wk) > m0/2 ∀ k ∈ N.
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Since the set Uk ∩ D ′ is path-connected, we can sequentially join the points zk, yk
and wk using some path γk such that |γk| ⊂ Uk ∩D ′. As usual, we denote by |γk| the
locus of the path γk in the domain D ′. Then gmk

(|γk|) is a compact set in the domain
D. If x ∈ |γk|, then there is x0 ∈ K0 such that x ∈ B(x0, δk). Put ω ∈ A ⊂ D.
Since x ∈ |γk| and, moreover, x is an inner point of the domain D ′, we can write here
gmk

(x) instead of gmk
(x). By the relations (4.2) and (4.3), as well as by the triangle

inequality, we obtain that for sufficiently large k ∈ N,

|gmk
(x)− ω| > |ω − gmk

(x0)| − |gmk
(x0)− gmk

(x)|

> dist (∂D,A)− (1/2) · dist (∂D,A) = (1/2) · dist (∂D,A) > ε,
(4.5)

where dist (∂D,A) := infx∈∂D,y∈A |x − y|. Taking inf in the relation (4.5) over all
x ∈ |γk| and ω ∈ A, we obtain that

(4.6) dist (gmk
(|γk|), A) := inf

x∈gm
k
(|γk |),y∈A

|x− y| > ε, ∀ k = 1, 2, . . . .

We cover the continuum A with balls B(x, ε/4), x ∈ A. Since A is a compact set, we

may assume that A ⊂
⋃M0

i=1B(xi, ε/4), xi ∈ A, i = 1, 2, . . . ,M0, 1 6 M0 < ∞. By
definition, M0 depends only on A, in particular, M0 does non depend on k. We set

(4.7) Γk := Γ(A, gmk
(|γk|), D).

Note that

(4.8) Γk =

M0⋃

i=1

Γki,

where Γki consists of all paths γ : [0, 1] → D, belonging to the family Γk, such that
γ(0) ∈ B(xi, ε/4) and γ(1) ∈ gmk

(|γk|). We now show that

(4.9) Γki > Γ(S(xi, ε/4), S(xi, ε/2), A(xi, ε/4, ε/2)).

Indeed, let γ ∈ Γki, in other words, γ : [0, 1] → D, γ(0) ∈ B(xi, ε/4) and γ(1) ∈
gmk

(|γk|). By (4.6), |γ| ∩ B(xi, ε/4) 6= ∅ 6= |γ| ∩ (D \ B(xi, ε/4)). Therefore,
by [Ku, Theorem 1.I.5.46] there is 0 < t1 < 1 with the condition γ(t1) ∈ S(xi, ε/4).
We can assume that γ(t) 6∈ B(xi, ε/4) for t > t1. Put γ1 := γ|[t1,1]. By (4.6),
|γ1|∩B(xi, ε/2) 6= ∅ 6= |γ1|∩ (D \B(xi, ε/2)). Thus, by [Ku, Theorem 1.I.5.46] there
is t1 < t2 < 1 with γ(t2) ∈ S(xi, ε/2). We may assume that γ(t) ∈ B(xi, ε/2) for
t < t2. Put γ2 := γ|[t1,t2]. Then, the path γ2 is a subpath of γ, which belongs to
the family Γ(S(xi, ε/4), S(xi, ε/2), A(xi, ε/4, ε/2)). Thus, the relation (4.9) is estab-
lished. Further reasoning is based, as before, on the successful choice of an admissible
function η. Put

η(t) =

{
4/ε, t ∈ [ε/4, ε/2],

0, t 6∈ [ε/4, ε/2].

Note that η satisfies (1.2) for r1 = ε/4 and r2 = ε/2. Then, according to the definition
of a ring Q-homeomorphism at xi, we obtain that

(4.10) M(fmk
(Γ(S(xi, ε/4), S(xi, ε/2)), A(xi, ε/4, ε/2))) 6 (4/ε)n · ‖Q‖1 < c < ∞,

where c is some positive constant and ‖Q‖1 is L1-norm of the function Q in D.
By (4.8), (4.9) and (4.10), using the subadditivity of modulus, we obtain that

(4.11) M(fmk
(Γk)) 6

4nM0

εn

ˆ

D

Q(x) dm(x) 6 c ·M0 < ∞.
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The estimate (4.11) contradicts the weak flatness on the boundary of D ′. Indeed,
let P > c · M0 and U = Bh(y0, r0) = {y ∈ Rn : h(y, y0) < r0}, where 0 < r0 <
min{δ/4, m0/4}, δ is the number from the condition of the lemma and h(K0) = m0.
Note that |γk| ∩U 6= ∅ 6= |γk| ∩ (D ′ \ U) for sufficiently large k ∈ N, since h(|γk|) >
m0/2 > m0/4, yk ∈ |γk| and yk → y0 as k → ∞. Similarly, fmk

(A) ∩ U 6= ∅ 6=
fmk

(A) ∩ (D ′ \ U). Since |γk| and fmk
(A) are continua, we obtain that

(4.12) fmk
(A) ∩ ∂U 6= ∅, |γk| ∩ ∂U 6= ∅,

see [Ku, Theorem 1.I.5.46]. For a given P > 0, let V ⊂ U be a neighborhood of the
point y0, corresponding to the definition of a weakly flat boundary. Then we have
that

(4.13) M(Γ(E, F,D ′)) > P

for any continua E, F ⊂ D ′ with E ∩ ∂U 6= ∅ 6= E ∩ ∂V and F ∩ ∂U 6= ∅ 6= F ∩ ∂V.
Observe that

(4.14) fmk
(A) ∩ ∂V 6= ∅, |γk| ∩ ∂V 6= ∅

for sufficiently large k ∈ N. Indeed, yk ∈ |γk|, xk ∈ fmk
(A), where xk, yk → y0 ∈ V

as k → ∞. Therefore, |γk| ∩ V 6= ∅ 6= fmk
(A) ∩ V for large k ∈ N. In addition,

we have that h(V ) 6 h(U) 6 2r0 < m0/2. By (4.4), h(|γk|) > m0/2, therefore,
|γk|∩(D

′\V ) 6= ∅. Thus, by [Ku, Theorem 1.I.5.46], |γk|∩∂V 6= ∅. Similarly, h(V ) 6
h(U) 6 2r0 < δ/2. Since h(fmk

(A)) > δ, we obtain that fmk
(A) ∩ (D ′ \ V ) 6= ∅.

By [Ku, Theorem 1.I.5.46], we have that fmk
(A)∩∂V 6= ∅. Thus, the relation (4.14)

is established.
By (4.12), (4.13) and (4.14), we obtain that

(4.15) M(Γ(fmk
(A), |γk|, D

′)) > P .

Note that Γ(fmk
(A), |γk|, D

′) = fmk
(Γ(A, gmk

(|γk|), D)) = fmk
(Γk). Therefore, the

relation (4.15) can be written as

(4.16) M(Γ(fmk
(A), |γk|, D

′)) = M(fmk
(Γk)) > P > c ·M0 .

In this case, by (4.11) and (4.16), we have that simultaneously M(fmk
(Γk)) > c ·M0

and M(fmk
(Γk)) 6 c · M0 for sufficiently large k ∈ N. The resulting contradiction

means that the above assumption h(fmk
(A), ∂D ′) < 1/k was incorrect. The proof of

the lemma is complete. � �

Proof of Theorem 1.6. Let g ∈ Sδ,A,Q(D,D ′). Since D ′ has a weakly flat bound-
ary, g can be extended to a continuous mapping g : D ′ → D (see [Sm, Theorem 3],
see also [MRSY3, Theorem 4.6]).

We now verify the equality g(D ′) = D. Indeed, by definition, g(D ′) ⊂ D. It
remains to show the converse inclusion D ⊂ g(D ′). Let x0 ∈ D. Now, we show
that x0 ∈ g(D ′). If x0 ∈ D, then either x0 ∈ D, or x0 ∈ ∂D. In the case x0 ∈ D
there is nothing to prove, since g(D ′) = D by the condition of the theorem. Now
consider the case when x0 ∈ ∂D. In this case, there are xk ∈ D and yk ∈ D ′ such
that xk = g(yk) and xk → x0 as k → ∞. Since D ′ is a compact set of an extended
Euclidean space, we may assume that yk → y0 ∈ D ′ as k → ∞. Since f = g−1 is
a homeomorphism, y0 ∈ ∂D ′. Since the mapping g−1 is continuous in D ′, we have
g(yk) → g(y0) as k → ∞. However, in this case, g(y0) = x0, because g(yk) = xk and
xk → x0 as k → ∞. Therefore, x0 ∈ g(D ′). The inclusion D ⊂ g(D ′) is proved.
Finally, the relation D = g(D ′) is also established, as required.
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The equicontinuity of the family Sδ,A,Q(D,D ′) in the domain D ′ is the state-
ment of Theorem 1.5. It remains to establish that the same family of mappings is
equicontinuous at the boundary points of the domain D ′.

We carry out the proof by contradiction. Suppose that the above conclusion
does not hold. Then there is a point z0 ∈ ∂D ′, a positive number ε0 > 0, a sequence
zm ∈ D ′ converging to a point z0 and a map gm ∈ Sδ,A,Q(D,D ′) such that

(4.17) |gm(zm)− gm(z0)| > ε0, m = 1, 2, . . . .

Put gm := gm|D ′. Since the map gm has a continuous extension to ∂D ′, we may
assume that zm ∈ D ′ and, therefore, gm(zm) = gm(zm). In addition, there is a
sequence z ′

m ∈ D ′ with z ′
m → z0 as m → ∞, such that |gm(z

′
m) − gm(z0)| → 0

as m → ∞. Since the domain D is bounded, D is a compact set. Therefore, we
may assume that gm(zm) and gm(z0) converge as m → ∞. Let gm(zm) → x1 and
gm(z0) → x2 as m → ∞. By the continuity of the module in (4.17), x1 6= x2.
Also, since homeomorphisms preserve the boundary of the domain, x2 ∈ ∂D. Let
x1 and x2 be different points of the continuum A, none of which is the same as x1.
According to Lemma 2.1 we can join pairs of points x1, x1 and x2, x2 using the
paths γ1 : [0, 1] → D and γ2 : [0, 1] → D so that |γ1| ∩ |γ2| = ∅, γ1(t), γ2(t) ∈ D for
t ∈ (0, 1), γ1(0) = x1, γ1(1) = x1, γ2(0) = x2 and γ2(1) = x2. Since the domain D
is locally connected on ∂D, there are neighborhoods U1 and U2 of points x1 and x2,
respectively, whose closures do not intersect, and, moreover, sets Wi := D ∩ Ui are
path-connected. Without loss of generality, we may assume that U1 ⊂ B(x1, δ0) and

(4.18) B(x1, δ0) ∩ |γ2| = ∅ = U2 ∩ |γ1|, B(x1, δ0) ∩ U2 = ∅.

In addition, we may assume that gm(zm) ∈ W1 and gm(z
′
m) ∈ W2 for all m ∈ N. Let

a1 and a2 are arbitrary points belonging to |γ1|∩W1 and |γ2|∩W2. Let 0 < t1, t2 < 1
be such that γ1(t1) = a1 and γ2(t2) = a2. Join the points a1 and gm(zm) by means
of the path αm : [t1, 1] → W1 such that αm(t1) = a1 and αm(1) = gm(zm). Similarly,
let us join a2 and gm(z

′
m) by means of the path βm : [t2, 1] → W2, βm(t2) = a2 and

βm(1) = gm(z
′
m) (see Figure 3).
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Figure 3. To the proof of Theorem 1.6.
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Put

C1
m(t) =

{
γ1(t), t ∈ [0, t1],

αm(t), t ∈ [t1, 1],
C2

m(t) =

{
γ2(t), t ∈ [0, t2],

βm(t), t ∈ [t2, 1].

As usual, we denote by |C1
m| and |C2

m| the loci of the paths C1
m and C2

m, respectively.
Setting

l0 = min{dist (|γ1|, |γ2|), dist (|γ1|, U2)} ,

consider the coverage A0 :=
⋃

x∈|γ1|
B(x, l0/4) by balls of |γ1|. Since |γ1| is a compact

set, we can choose a finite number of indices 1 6 N0 < ∞ and the corresponding
points x1, . . . , xN0

∈ |γ1| such that |γ1| ⊂ B0 :=
⋃N0

i=1B(xi, l0/4). In this case,

|C1
m| ⊂ U1 ∪ |γ1| ⊂ B(x1, δ0) ∪

N0⋃

i=1

B(xi, l0/4).

Let Γm be a family of paths joining the sets |C1
m| and |C2

m| in the domain D. Then
we will have that

(4.19) Γm =

N0⋃

i=0

Γmi,

where Γmi is a family consisting of paths γ : [0, 1] → D such that γ(0) ∈ B(xi, l0/4)∩
|C1

m| and γ(1) ∈ |Cm
2 | at 1 6 i 6 N0. Similarly, define Γm0 as a family, consisting of

paths γ : [0, 1] → D such that γ(0) ∈ B(x1, δ0) ∩ |C1
m| and γ(1) ∈ |Cm

2 |. By (4.18)
there is σ0 > δ0 > 0 such that

B(x1, σ0) ∩ |γ2| = ∅ = U2 ∩ |γ1|, B(x1, σ0) ∩ U2 = ∅.

Arguing as in the proof of Lemma 4.1, we may show that

Γm0 > Γ(S(x1, δ0), S(x1, σ0), A(x1, δ0, σ0) ∩D),

Γmi > Γ(S(xi, l0/4), S(xi, l0/2), A(xi, l0/4, l0/2) ∩D).(4.20)

Put

η(t) =

{
4/l0, t ∈ [l0/4, l0/2],

0, t 6∈ [l0/4, l0/2],
η0(t) =

{
1/(σ0 − δ0), t ∈ [δ0, σ0],

0, t 6∈ [δ0, σ0].

Let fm := g−1
m . Then by virtue of (1.1), we obtain that

M(fm(Γ(S(x1, δ0), S(x1, σ0), A(x1, δ0, σ0) ∩D))) 6 (1/(σ0 − δ0))
n · ‖Q‖1

< c1 < ∞,(4.21)

M(fm(Γ(S(xi, l0/4), S(xi, l0/2), A(xi, l0/4, l0/2) ∩D))) 6 (4/(l0))
n · ‖Q‖1

< c2 < ∞,

where c1 and c1 are some positive constants independent on m. Combining re-
lations (4.19), (4.20) and (4.21) and taking into account the subadditivity of the
modulus of families of paths, we obtain that

(4.22) M(fm(Γm)) 6 (4nN0/l
n
0 + (1/(σ0 − δ0))

n)‖Q‖1 := c < ∞.

Again, as in the proof of Lemma 4.1, we show that relation (4.22) contradicts the
condition of the weak plane of the mapped domain. Indeed, by Lemma 4.1, there is
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a number δ1 > 0 such that h(fm(A), ∂D
′) > δ1 > 0 for all m = 1, 2, . . .. Therefore,

h(|fm(C
1
m)|) > h(zm, fm(x1)) > (1/2) · h(fm(A), ∂D

′) > δ1/2,

h(|fm(C
2
m)|) > h(z ′

m, fm(x2)) > (1/2) · h(fm(A), ∂D
′) > δ1/2

(4.23)

for some M0 ∈ N and all m > M0. Put U := Bh(z0, r0) = {y ∈ Rn : h(y, z0) <
r0}, where 0 < r0 < δ1/4 and the number δ1 is from the relation (4.23). Note
that |fm(C

1
m)| ∩ U 6= ∅ 6= |fm(C

1
m)| ∩ (D ′ \ U) for sufficiently large m ∈ N, since

h(|fm(C
1
m)|) > δ1/2 and zm ∈ |fm(C

1
m)|, zm → z0 as m → ∞. Similarly, |fm(C

2
m)| ∩

U 6= ∅ 6= |fm(C
2
m)| ∩ (D ′ \ U). Since |fm(C

1
m)| and |fm(C

2
m)| are continua,

(4.24) |fm(C
1
m)| ∩ ∂U 6= ∅, |fm(C

2
m)| ∩ ∂U 6= ∅,

see, e.g., [Ku, Theorem 1.I.5.46]. Since ∂D ′ is weakly flat, then for a given P > 0
there is a neighborhood V ⊂ U of z0 such that

(4.25) M(Γ(E, F,D ′)) > P

for any continua E, F ⊂ D ′ with E ∩ ∂U 6= ∅ 6= E ∩ ∂V and F ∩ ∂U 6= ∅ 6= F ∩ ∂V .
We show that the following relation holds:

(4.26) |fm(C
1
m)| ∩ ∂V 6= ∅, |fm(C

2
m)| ∩ ∂V 6= ∅

where m ∈ N is large enough.
Indeed, let zm ∈ |fm(C

1
m)|, z

′
m ∈ |fm(C

2
m)|, where zm, z

′
m → z0 ∈ V as m → ∞.

In this case, |fm(C
1
m)| ∩ V 6= ∅ 6= |fm(C

2
m)| ∩ V for sufficiently large m ∈ N. Also,

h(V ) 6 h(U) 6 2r0 < δ1/2. Further, by (4.23) we obtain that h(|fm(C
1
m)|) > δ1/2.

Therefore, |fm(C
1
m)| ∩ (D ′ \ V ) 6= ∅ and, therefore, |fm(C

1
m)| ∩ ∂V 6= ∅ (see [Ku,

Theorem 1.I.5.46]). Similarly, h(V ) 6 h(U) 6 2r0 < δ1/2. By (4.23) h(|fm(C
2
m)|) >

δ1/2, therefore |fm(C
2
m)| ∩ (D ′ \ V ) 6= ∅. By [Ku, Theorem 1.I.5.46] we obtain that

|fm(C
2
m)| ∩ ∂V 6= ∅. Thus, the relation (4.26) is established.

Combining the relations (4.24), (4.25) and (4.26), we obtain that

M(fm(Γm)) = M(Γ(|fm(C
1
m)|, |fm(C

2
m)|, D

′)) > P.

The last relation contradicts the inequality (4.22). Theorem is completely proved.

Remark 4.27. One of the versions of Theorem 1.6 was established by us earlier
and related to less general classes of mappings, see [SevSkv, Theorem 3]. In addition,
the mapped domain D ′ here was QED-domain by Gehring–Martio, which can also
be considered as a particular case of a domain with a weakly flat boundary. We also
mention paper [SSI], where the boundary behavior of families of mappings with two
normalization conditions is investigated. Although the publications mentioned above
correspond to the situation of general metric spaces, the results of this article do not
follow from them in full. In particular, an equicontinuity of families of mappings
inside a domain cannot be obtained as in Theorem 1.5, in an arbitrary metric space.

5. On isolated singularities of inverse mappings

We consider the removability of an isolated singularity for mappings whose in-
verses satisfy (1.1). Isolated singularities have been studied in [MRSY2, Corol-
lary 5.23], [RS, Theorem 6.1] and [Sm, Theorem 5], but, besides (1.1), we do not
assume any extra conditions on the domains of definitions and their images. The
main result is as follows.
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Theorem 5.1. Let D and D ′ be domains in Rn, n > 2, and let g be a homeo-
morphism of a domain D ′ onto a domain D, the inverse f = g−1 of which satisfies
the condition (1.1) at every point x0 ∈ ∂D. If Q ∈ L1(D) and y0 is an isolated point
of the boundary of the domain D ′, then the mapping g has a continuous extension
g : D ′ ∪ {y0} → Rn to y0.

Theorem 5.1 does not imply the removability of an isolated singularity for f ,
see [MRSY3, Proposition 6.3], although for quasiconformal mappings, as in the par-
ticular case of such classes, we can still assert the validity of Theorem 5.1 for both
f and g, see [Va1, Theorem 17.3]. As before, the boundary, closure, and continuous
extension of maps are understood in the sense of the extended space Rn. For a given
mapping f : D → Rn and a set E in Rn, we put

C(f, E) = {y ∈ Rn : ∃ x ∈ E, xk ∈ D : xk → x, f(xk) → y, k → ∞}.

The next most important statement is published in [IR, Lemma 5.3], see also [MRSY3,
Lemma 6.5].

Proposition 5.2. Let D and D ′ be domains in Rn, n > 2, and f : D → Rn a
homeomorphism. Then there exists a one-to-one correspondence between the com-
ponents K and K ′ of the boundaries ∂D and ∂D ′ such that C(f,K) = K ′ and
C(f −1, K ′) = K.

Proof of Theorem 5.1. Without loss of generality, we may assume that y0 6=
∞. Here and everywhere, as usual, h(x, y) denotes the chordal (spherical) distance
between points x, y ∈ Rn, see (1.3). Suppose the contrary, namely, suppose that g
has no limit at y0. Since the space Rn is compact, C(g, y0) 6= ∅. Then there are
x1, x2 ∈ Rn, x1 6= x2, and at least two sequences ym, y

′
m → y0 as m → ∞ such that

zm := g(ym) → x1, z
′
m = g(y ′

m) → x2 as m → ∞. Without loss of generality, we may
assume that x1 6= ∞.

Since y0 ∈ ∂D ′ is an isolated point of ∂D ′, C(g, y0) is a continuum and, moreover,
is a component of the boundary ∂D (see Proposition 5.2). Let us show that there
exists ε1 > 0 such that

(5.3) B(x1, ε1) ∩K = ∅

for every component K of the boundary ∂D such that C(g, y0) 6= K.
We establish the relation (5.3) also by contradiction. Suppose the contrary. Then

there is a sequence dm of components of ∂D, dm 6= C(g, y0), m = 1, 2, . . ., such
that B(x1, 1/m)∩dm 6= ∅. By Proposition 5.2, the component dm of the set ∂D is in
one-to-one correspondence with some component d ′

m ⊂ ∂D ′ such that C(f, dm) = d ′
m.

Therefore, we may choose ζm ∈ B(x1, 1/m) ∩D so that

h(f(ζm), d
′
m) = inf

p∈d ′

m

h(f(ζm), p) < 1/m.

Since d ′
m is a compact set in Rn, there is ξm ∈ d ′

m such that h(f(ζm), d
′
m) =

h(f(ζm), ξm). Since Rn is compact, there is a subsequence f(ζmk
), converging in

Rn as k → ∞. Since ζmk
∈ B(x1, 1/mk), then by Proposition 5.2 the sequence

f(ζmk
) can converge only to y0 as k → ∞. Then by the triangle inequality

h(y0, d
′
mk

) 6 h(y0, ξmk
) 6 h(y0, f(ζmk

)) + h(f(ζmk
), ξmk

) → 0

as k → ∞, which contradicts the assumption that the point y0 is an isolated point
of ∂D ′. We may consider that f(x) 6= ∞ for x ∈ B(x1, ε1) ∩ D. Let B∗(x2, ε2) =
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B(x2, ε2) for x2 6= ∞ and B∗(x2, ε2) = {x ∈ Rn : h(x,∞) < ε2} for x2 = ∞. As in
the proof for (5.3) there is ε2 > 0 such that

B∗(x2, ε2) ∩K = ∅

for every component K of the boundary ∂D, not equal to C(g, y0) 6= K. Without

loss of generality, we may assume that B(x1, ε1)∩B∗(x2, ε2) = ∅, zm ∈ B(x1, ε1) and
z ′
m ∈ B∗(x2, ε2) for all m = 1, 2, . . . (see Figure 4).
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Figure 4. To the proof of Theorem 5.1.

Note that the set B(x1, ε1) is convex, and B∗(x2, ε2) is path connected. In this
case, the points z1 and zm can be joined by the segment Im(t) = z1 + t(zm − z1),
t ∈ (0, 1), lying inside the ball B(x1, ε1). Similarly, the points z ′

1 and z ′
m can be

connected by the path Jm = Jm(t), t ∈ [0, 1], lying in the ”ball” B∗(x2, ε2).
Note that the set |Im| does not have to lie in the domain D entirely. However,

in this case, there is tm ∈ [0, 1] such that h(Im(tm), ∂D) < 1/m and |Im|[0,tm]| ⊂
D. Similarly, Jm may not be in D entirely, but there is pm ∈ [0, 1] such that
h(Jm(pm), ∂D) < 1/m and |Jm|[0,pm]| ⊂ D. If Im ⊂ D or Jm ⊂ D, then we put
tm := 1 and pm := 1, respectively. Put C 1

m := Im|[0,tm] and C 2
m := Jm|[0,pm]. Con-

sider the sequences y ∗
m := f(Im(tm)) and y ∗∗

m : = f(Jm(pm)). Since the space Rn is
compact, we may assume that all considered sequences Im(tm), Jm(pm), y

∗
m and y ∗∗

m

converge as m → ∞.
We show that y ∗

m → y0 and y ∗∗
m → y0 as m → ∞. Indeed, let y ∗

m → w0 as m → ∞.
Since the sequence Im(tm) converges by assumption and, moreover, h(Im(tm), ∂D) <
1/m, then Im(tm) converges to some point ω0 ∈ ∂D. Since Im(tm) ∈ B(x1, ε1),
and, moreover, by (5.3) the ball B(x1, ε1) does not contain other components of ∂D
besides C(g, y0), we have that ω0 ∈ C(g, y0). Since y ∗

m = f(Im(tm)) and y ∗
m → y0 as

m → ∞, we obtain that w0 ∈ C(f, C(g, y0)). Taking into account that g = f −1, by
Proposition 5.2 we obtain that w0 = y0, as required. Reasoning similarly, we may
show that y ∗∗

m → y0 as m → ∞.

Since B(x1, ε1) ∩ B∗(x2, ε2) = ∅, then for some ε∗1 > ε1 we also still have

B(x1, ε∗1) ∩ B∗(x2, ε2) = ∅. We may consider that f(x) 6= ∞ for x ∈ B(x1, ε
∗
1) ∩D.

Let Γm = Γ(|C1
m|, |C

2
m|, D). Note that

(5.4) Γm > Γ(S(x1, ε
∗
1), S(x1, ε1), A(x1, ε1, ε

∗
1) ∩D).

Indeed, let γ ∈ Γm, γ : [a, b] → R
n. Since γ(a) ∈ |C1

m| ⊂ B(x0, ε1) and γ(b) ∈
|C2

m| ⊂ R
n \ B(x0, ε1), due to [Ku, Theorem 1.I.5.46] there is t1 ∈ (a, b) such that

γ(t1) ∈ S(x1, ε1). Without loss of generality, we may assume that |γ(t) − x1| > ε1
for t > t1. Next, since γ(t1) ∈ B(x1, ε

∗
1) and γ(b) ∈ |C2

m| ⊂ R
n \ B(x0, ε

∗
1), by [Ku,
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Theorem 1.I.5.46] there is t2 ∈ (t1, b) such that γ(t2) ∈ S(x1, ε
∗
1). Without loss of

generality, we may assume that |γ(t) − x1| < ε∗1 for t1 < t < t2. Thus, γ|[t1,t2] is a
subpath of γ, belonging to the family Γ(S(x1, ε

∗
1), S(x1, ε1), A(x1, ε1, ε

∗
1)). Thus, the

relation (5.4) is established. Consider the function

η(t) =

{
1/(ε∗1 − ε1), t ∈ [ε1, ε

∗
1],

0, t ∈ R \ [ε1, ε
∗
1].

Note that the function η satisfies the relation (1.2) for r1 = ε1 and r2 = ε∗1. By (1.1)
at x0 := x1, taking into account the conditions Q ∈ L1(D) and (5.4), we obtain that

M(f(Γm)) 6 M(f(Γ(S(x1, ε
∗
1), S(x1, ε1), A(x1, ε1, ε

∗
1) ∩D)))

6 ‖Q‖/(ε∗1 − ε1)
n < ∞,

(5.5)

where ‖Q‖ denotes L1-norm of the function Q in D. We show that the relation (5.5)
contradicts the condition of a weak flatness at the point y0 (see Lemma 2.2). Indeed,

diam |f(C1
m)| > |f(z1)− f(Im(tm))| = |y1 − y∗m| > (1/2) · |y1 − y0| > 0

and

diam |f(C2
m)| > |f(z ′

1)− f(Jm(pm))| = |y ′
1 − y∗∗m | > (1/2) · |y ′

1 − y0| > 0

for large m ∈ N, and, in addition,

dist (|f(C1
m)|, |f(C

2
m)|) 6 |y∗m − y∗∗m | → 0

as m → ∞. By Lemma 2.2

M(f(Γm)) = M(Γ(|f(C1
m)|, |f(C

2
m)|, D

′)) → ∞

as m → ∞, which contradicts the relation (5.5). �

Remark 5.6. It is easy to see that the assertion of Theorem 5.1 is true un-
der much weaker condition on the mapping f , namely, it is enough to require the
condition (1.1) just in one finite point of the cluster set C(g, y0).

Moreover, it is not so important whether to require the condition (1.1) in ∂D
or in D. In fact, suppose that under conditions of Theorem 5.1 we require the
relation (1.1) not on ∂D, but at each inner point x0 ∈ D. Repeating the proof of
this theorem at the same notations, we obtain the relation (5.4). Now let ak ∈ D,
k = 1, 2, . . ., be some (arbitrary) sequence of points converging to x1 as k → ∞
such that |ak − x1| < 1/k. Fix x ∈ B(x1, ε1). Then, by the triangle inequality
|x− ak| 6 |x− x1|+ |x1 − ak| < ε1 +1/k and, therefore, B(x1, ε1) ⊂ B(ak, ε1+1/k).
Further, for x ∈ B(ak, ε1 + 2/k) by the triangle inequality we have that

|x− x1| 6 |x− ak|+ |ak − x1| < ε1 + 3/k .

Let k0 ∈ N be so large that ε1+3/k < ε ∗
1 for k > k0. Then B(ak, ε1+2/k) ⊂ B(x1, ε

∗
1)

for k > k0. Putting ε̃1 := ε1 + 1/(k0 + 1) and ε̃2 := ε1 + 2/(k0 + 1), we obtain that

(5.7) B(x1, ε1) ⊂ B(ak0+1, ε̃1) ⊂ B(ak0+1, ε̃2) ⊂ B(x1, ε
∗
1 ) .

Arguing by analogy with the proof of the formula (5.4), from the relation (5.7) we
obtain that

Γ(S(x1, ε
∗
1), S(x1, ε1), A(x1, ε1, ε

∗
1) ∩D)

> Γ(S(ak0+1, ε̃1), S(ak0+1, ε̃2), A(ak0+1, ε̃1, ε̃2) ∩D),
(5.8)

see Figure 5.
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Figure 5. To Remark 5.6.

Consider the function

η(t) =

{
1/(ε̃2 − ε̃1), t ∈ [ε̃1, ε̃2],

0, t ∈ R \ [ε̃1, ε̃2].

Note that the function η satisfies the relation (1.2) with r1 = ε̃1 and r2 = ε̃2. Then
by (1.1) at x0 := ak0+1, taking into account the condition Q ∈ L1(D) and the
relations (5.4) and (5.8), we obtain that

M(f(Γm)) 6 M(f(Γ(S(ak0+1, ε̃1), S(ak0+1, ε̃2), A(ak0+1, ε̃1, ε̃2) ∩D)))

6 ‖Q‖/(ε̃2 − ε̃1)
n < ∞,

(5.9)

where ‖Q‖ denotes L1-norm of Q in D. So, instead of (5.5) we have the relation (5.9).
The rest of the proof of Theorem 5.1, based on a contradiction of (5.9) with the weak
flatness condition at the point y0, does not change.

6. Some examples

Example 6.1. We have already mentioned that maps inverse to a given class
may turn out to be better (or worse) than the original class of maps. This situation
is impossible for quasiconformal mappings, but is quite real for relatively simple
mappings with unbounded characteristic. Here is one such example.

Fix a number p > 1 satisfying the condition n/p(n− 1) < 1. Put α ∈ (0, n/p(n−
1)). We define the sequence of mappings fm of the unit ball onto the ball B(0, 2) as
follows:

fm(x) =

{
1+|x|α

|x|
· x, 1/m 6 |x| 6 1,

1+(1/m)α

(1/m)
· x, 0 < |x| < 1/m.

Note that fm satisfies the condition (1.1) for Q =
(

1+|x|α

α|x|α

)n−1

at every x0 ∈ Bn,

moreover, Q ∈ Lp(Bn) see, for example, [Sev, proof of Theorem 7.1].
By [Vu, Lemma 4.3], the ball B(0, 2) has a weakly flat boundary. Note that the

mappings fm fix an infinite number of points of the unit ball for every m > 2. By
Theorem 1.6, the family G = {gm}

∞
m=1, gm := f −1

m , is equicontinuous in B(0, 2).
Note that the ”inverse” family of mappings F = {fm}

∞
m=1 is not equicontinuous

in B
n. Indeed, |fm(xm) − fm(0)| = 1 + 1/mα → 1 as m → ∞, where |xm| = 1/m.

In particular, it follows that the family G contains an infinite number of mappings
gmk

:= f −1
mk

, fmk
∈ F, that cannot satisfy the relation (1.1) for any functions Q ∈ L1.

Indeed, otherwise, by Theorem 1.5, F must be equicontinuous in B
n.
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Example 6.2. As for Theorem 5.1, we can also construct an example that is
very similar to the one already given above. More precisely, let us point out the
case when the inverse mapping extends by continuity to an isolated point of the
boundary of the domain, and the corresponding direct mapping does not already
have this property.

Let p > 1, α ∈ (0, n/p(n− 1)) and e1 = (0, 0, . . . , 0, 1/2). Consider the mapping
f in the domain D := B

n \ {e1 ∪ 0} as follows:

f(x) =
1 + |x|α

|x|
· x, x ∈ B

n \ {e1 ∪ 0}.

It is easy to see that the mapping f is a ring Q-mapping of Bn \ {e1 ∪ 0} onto A :=

{1 < |y| < 2} \ {e2}, where Q(x) :=
(
1+r α

αr α

)n−1
, r = |x| (see, e.g., [MRSY3, Propo-

sition 6.3]). Moreover, Q ∈ Lp(Bn). Note that f(e1) =
(
0, 0, . . . , 0, 1 +

(
1
2

)α)
:= e2.

The inverse mapping g := f −1(y) = y
|y|
(|y| − 1)1/α has a continuous extension to

the point e2, g := y
|y|
(|y| − 1)1/α, g : {1 < |y| < 2} → B

n \ {0} (the existence of this

extension also follows from Theorem 5.1). On the other hand, the mapping f := g−1,
f : Bn \ {0} → {1 < |y| < 2}, does not have a continuous extension to the point
0, which is an isolated point of the boundary of the domain B

n \ {0}. The latter
circumstance is connected with the non-existence of an integrable function Q ∗(y),
corresponding to the map g in {1 < |y| < 2} in the context of the inequality (1.1).
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