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Abstract. We study the Lp-solutions for the semilinear heat equation with unbounded coeffi-

cients and driven by a infinite dimensional fractional Brownian motion with self-similarity parameter

H > 1/2. Existence and uniqueness of local mild solutions are shown.

1. Introduction

The fractional Brownian motion, referred to as fBm in the sequel, due to its
desirable properties of self-similarity and long-range dependence (among other fea-
tures), has become quite a relevant stochastic process for mathematical modeling in
engineering, mathematical finances, and natural sciences, to mention just a few. It
was first introduced by Kolmogorov in [10], and later, the work of Mandelbrot and
Van Ness [11] became a corner-stone that attracted the attention of researchers in
the probabilistic community to this challenging object.

Nowadays, the study of ordinary and partial stochastic differential equations
driven by a fractional noise is a very dynamic research topic, motivated by purely
theoretical reasons and also by its variety of applications in the mathematical mod-
eling of phenomena in physics, biology, hydrology, and other sciences. Besides, a
special interest in the study of the existence and uniqueness of solutions to semilin-
ear parabolic stochastic differential equations driven by an infinite-dimensional frac-
tional noise has been recently developed (see for instance, Duncan, Pasik-Duncan
and Maslowski [7]; Nualart and Vuillermot [15]; Maslowski and Schmalfuss [12], and
Sanz-Sole and Vuillermot [18], and the references therein).

Other kind of driving noises have been also considered. In [3], Brzezniak, Neer-
ven, Salopek, studied evolution equations with Liouville fractional Brownian motion;
equations driven by Hermite or Rosenblatt process were addressed by Bonaccorsi and
Tudor in [2], and Tudor in [20]. More recently, equations driven by Volterra noises
were analysed by Coupek, Maslowski in [4] and by Coupek, Maslowski, and Ondrejat
in [5].

In difference with the present manuscript, the articles [3], [4], [5] and [20] consider
no non-linearity and deal only with linear equations, and the article [2] assumes that
F is dissipative and has polynomial growth.

Analogously to deterministic partial differential equations, the first obstacle is the
requirement of deciding which kind of solution concept will be considered, due to the
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variety of alternatives to choose. We address the study of existence and uniqueness
of mild-solution to the initial value problem for the semilinear heat equation over a
smoothly bounded open domain U ⊂ R

d,

(1)

{

∂tu(t) = ∆u(t) + F (u(t)) + ∂tB
H(t), t ∈ [0, T ],

u|t=0 = u0,

In (1), F represents the nonlinear part of the equation, u0 ∈ Lp(U), and the random
forcing field BH is a Hilbert space-valued fractional Brownian motion defined on
some complete probability space (Ω,F ,P).

In this manuscript, the existence and uniqueness of local Lp-solutions for the
stochastic parabolic equation (1) with unbounded parameter F and BH a cylindrical
fractional Brownian motion with selfsimilarity parameter H > 1/2, is proved. The
approach to study Lp-solutions is based on the concept of mild solution, which can
be obtained by rewriting (1) as an integral equation,

u(t) = S(t)u0 +

ˆ t

0

S(t− s)F (u(s)) ds+

ˆ t

0

S(t− s) dBH(s),

and then proving that, in a suitable function space, the right-hand side defines a
contraction.

Results on the existence of mild solutions with values in Lp were established by
Giga in [8], Mazzucato in [13], and Weissler in [23] and [22] for the deterministic
setting.

The rest of the manuscript is fashioned as follows. In Section 2 the basic concepts,
hypothesis and tools are introduced. The results are presented in Section 3.

2. Preliminaries

Hypothesis, background and some useful notation are introduced in what follows.
Let (Ω,F ,P) be a complete probability space.

2.1. Fractional Brownian motion. Let T > 0 be a fixed time horizon.
Recall that a one-dimensional fractional Brownian motion (bH(t))t∈[0,T ] with Hurst
parameter H ∈ (0, 1), is a centred Gaussian process with covariance function

(2) E
[

bH(t)bH(s)
]

= RH(t, s) :=
1

2
(t2H + s2H − |t− s|)2H , s, t ∈ [0, T ].

The fractional Brownian motion (fBm) can also be defined as the only self-similar
Gaussian process with stationary increments.

Denote by H its associated canonical Hilbert space (reproducing kernel Hilbert

space). If H = 1
2

then b
1

2 = b is the standard Brownian motion (Wiener process)
and in this case H = L2([0, T ]). Otherwise H is the Hilbert space on [0, T ] extending
the set of indicator functions 1[0,t], t ∈ [0, T ] by linearity and closure under the inner
product

〈

1[0,t]; 1[0,s]

〉

H
= RH (t, s)

As the fBm is a regular Volterra process only for H > 1/2, we will focus our
analysis exclusively in this case. In order to define the concept of mild-solution
through convolution integrals, we need to recall the definition of integrals with respect
to the fBm. The followings facts will be needed in the sequel (we refer to [14] or [17]
for their proofs):
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• The fBm admits a representation as Wiener integral of the form

(3) bH(t) =

ˆ t

0

KH(t, s) db(s),

where b = {b(t), t ∈ [0, T ]} is a Wiener process, and KH(t, s) is the kernel

(4) KH(t, s) = cHs
1

2
−H

ˆ t

s

(u− s)H− 3

2uH− 1

2 du

where t > s and cH =
(

H(2H−1)

β(2−2H,H− 1

2
)

)
1

2

, where β is the Beta function.

• For every s < T , consider the operator K∗
H : H 7→ L2([0, T ]), defined by

(5) (K∗
H φ)(s) =

ˆ T

s

φ(t)(s)
∂KH

∂t
(t, s) dt.

Notice that,
(

K∗
Hφ1[0,t]

)

(s) = KH(t, s)φ(s)1[0,t](s), and the operator K∗
H is an

isometry between H and L2([0, T ]) (see [1] or [14]). Hence, for every φ ∈ H it
is possible to establish the following relationship between a Wiener integral with
respect to the fBm and a Wiener integral with respect to the standard Brownian
motion b

(6)

ˆ t

0

φ(s) dbH(s) =

ˆ t

0

(K∗
Hφ) (s) db(s),

for every t ∈ [0, T ] and φ1[0,t] ∈ H if and only if K∗
Hφ ∈ L2([0, T ]).

In general, the existence of the right-hand side of (6) requires careful justification
(see [14, Section 5.1]). As we will work only with Wiener integrals over Hilbert spaces,
we point out that if X is a Hilbert space and f ∈ L2([0, T ];X) is a deterministic
function, then relation (6) holds, and the right hand-side is well defined in L2(Ω;X)
if K∗

Hf is in L2([0, T ]×X).

2.2. Cylindrical fractional Brownian motion. As in [7] or [19], we define
the standard cylindrical fractional Brownian motion in X as the formal series

(7) BH(t) =

∞
∑

n=0

enb
H
n (t),

where {en, n ∈ N} is a complete orthonormal basis in X. It is well known that the
infinite series (7) does not converge in L2(P), hence BH(t) is not a well-defined X-
valued random variable. Nevertheless, for every Hilbert space X1 such that X →֒ X1,
the linear embedding is a Hilbert–Schmidt operator, therefore, the series (7) defines
a X1-valued random variable and {BH(t), t ≥ 0} is a X1-valued cylindrical fBm.

Following the approach for a cylindrical Brownian motion introduced in [6], it is
possible to define a stochastic integral of the form

(8)

ˆ T

0

f(t) dBH(t),

where f : [0, T ] 7→ L(X, Y ) and Y is another real and separable Hilbert space, and
the integral (8) is a Y -valued random variable that is independent of the choice of
X1.

Let f be a deterministic function with values in L2(X, Y ), the space of Hilbert-
Schmidt operators from X to Y . We consider the following assumptions on f .

i.- For each x ∈ X, f(·)x ∈ Lp([0, T ]; Y ), for p > 1/H .
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ii.- αH

´ T

0

´ T

0
|f(s)|L2(X,Y ) |f(t)|L2(X,Y )|s− t|2H−2ds dt < ∞.

The stochastic integral (8) is defined as

(9)

ˆ t

0

f(s) dBH(s) :=

∞
∑

n=1

ˆ t

0

f(s)en db
H
n (s) =

∞
∑

n=1

ˆ t

0

(K∗
Hfen)(s) dbn(s),

where bn is the standard Brownian motion linked to the fBm bHn via the representation
formula (3). Since fen ∈ L2([0, T ]; Y ) for each n ∈ N, the terms in the series (9) are

well defined. Besides, the sequence of random variables
{

´ t

0
fen db

H
n

}

are mutually

independent (see [7]).
The series (9) is finite if

(10)
∑

n

‖K∗
H(fen)‖

2
L2([0,T ];V ) =

∑

n

‖ ‖fen‖H ‖2V < ∞.

If we consider X = Y = H, we have

∞
∑

n=1

ˆ t

0

f(s)en db
H
n (s) =

∞
∑

n=1

∞
∑

m=1

em

ˆ t

0

〈f(s)en, em〉H dbHn (s)

=

∞
∑

n=1

∞
∑

m=1

em

ˆ t

0

〈K∗
H(f(s)en), em〉H dbn(s)

=

∞
∑

n=1

ˆ t

0

K∗
H(f(s)en) dbn(s).

(11)

2.3. Semigroup. It is well known that the Laplacian ∆ is the infinitesimal
generator of an analytic, strongly continuous semi-group of linear operators (S(t), t ≥
0) acting on Lp(U) and given by S(t) = e−t∆. Besides, for bounded domains the
following estimate holds (see [21])

(12) ‖S(t)u‖p ≤
1

t
d
2
(1/r−1/p)

‖u‖r, for 1 < r ≤ p < ∞.

3. Results

In this section we study the parabolic problem (1) in the space Lp(U). The
required hypothesis are introduced as well as the notion of mild-solution.

3.1. Hypothesis. We assume that F is a nonlinear mapping from Lp(U) onto
Lm(U) such that F (0) = 0, and for some α > 0 and m = p

1+α
, the estimate

(13) ‖F (u)− F (v)‖m ≤ C‖u− v‖p(‖u‖
α
p + ‖v‖αp )

holds, with C a positive constant.
In addition, the initial condition satisfies

(14) u0 ∈ Lp(U).

Besides, the cylindrical fBm BH has selfsimilarity parameter H > 1/2 and

(15) H > d/4, p ·H ≥ 1, and 2p > αd.

3.2. Mild-solution. Within the framework of paragraph 2.2 we consider X =
L2(U), f = S(t − ·) and the complete orthonormal basis {en}n∈N of eigenfunctions
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of the Laplacian operator, the stochastic convolution is given by
ˆ t

0

S(t− s) dBH(s) =
∞
∑

j=1

ˆ t

0

S(t− s)ej dβ
H
j (s).

Consider the mild formulation of equation (1) (see [7])

(16) u(t) = S(t)u0 +

ˆ t

0

S(t− s)F (u(s)) ds+

ˆ t

0

S(t− s) dBH(s).

Definition 3.1. A measurable function u : Ω× [0, T ] 7→ Lp(U) is a mild solution
of the equation (1) if

(1) u satisfies the mild formulation (16) with probability one.
(2) u ∈ C([0, T ], Lp(U)).

Definition 3.2. Let T0 be a stopping time. A measurable function u : Ω ×
[0, T ] → Lp(U) is a local mild solution of (1) in C([0, T0], L

p(U)) with stopping time
T0 > 0, if it satisfies Definition 3.1 on [0, T0]. It is the unique local mild solution with
stopping time T0, if two solutions are modifications of each other on [0, T0].

3.3. Existence. Consider the linear problem

(17)

{

∂tz(t) = ∆z(t) + ∂tB
H
t , t ∈ [0, T ],

z|t=0 = 0,

whose mild solution is given by

z(t) =

ˆ t

0

S(t− s) dBH(s).

Denote

K0 :=max

{

‖u0‖p, sup
t∈[0,T ]

∥

∥

∥

∥

ˆ t

0

S(t− s)dBH(s)

∥

∥

∥

∥

p

}

= max

{

‖u0‖p, sup
t∈[0,T ]

‖z(t)‖p

}

,

C̃(t) =











C t
1− dα

2p

1− dα
2p

(6K0)
α, if α ≥ ln(3)

ln(2)
,

C t
1− dα

2p

1− dα
2p

(3K0)
α+1, if α < ln(3)

ln(2)
,

and define

(18) T0 =

{

T, if C̃(T ) < 1,

inf{0 ≤ t ≤ T : C̃(t) ≥ 1}, if C̃(T ) ≥ 1.

Theorem 3.3. Assume hypothesis (13), (14), (15). Then there exists a local
mild solution u ∈ C([0, T0], L

p(U)).

Proof. Since H > d
4

and pH ≥ 1 , the results in [5] allow us to conclude that the
mild solution z to the linear problem (17) is in C([0, T ], Lp(U)). Therefore,

sup
t∈[0,T ]

∥

∥

∥

∥

ˆ t

0

S(t− s) dBH(s)

∥

∥

∥

∥

p

< ∞.

Now, in order to construct a contraction that will allow us to use a fix point argument,
let us assume that ‖u‖C([0,T0],Lp(U)) := supt∈[0,T0] ‖u(t)‖p ≤ 3K0. Set

G[u](t) := S(t)u0 +

ˆ t

0

S(t− s)F (u(s)) ds+ z(t).
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We shall show that supt∈[0,T0] ‖G[u](t)‖p ≤ 3K0. We have

‖G[u](t)‖p ≤ ‖S(t)u0‖p +

ˆ t

0

‖S(t− s)F (u(s))‖p ds+ ‖z(t)‖p.

As (S(t))t≥0 is a semigroup of contractions, for every t ≥ 0

(19) ‖S(t)u0‖p ≤ ‖u0‖p,

and
ˆ t

0

‖S(t− s)F (u(s))‖p ds ≤

ˆ t

0

(t− s)−
dα
2p ‖F (u(s))‖ p

α+1
ds

≤ C

ˆ t

0

(t− s)−
dα
2p ‖u(s)‖α+1

p ds,

(20)

where we used (12) and hypothesis (13).
From (19) and (20) we deduce that

‖G[u](t)‖p ≤ 2K0 + C

ˆ t

0

(t− s)−
dα
2p ‖u(s)‖α+1

p ds

≤ 2K0 + C

ˆ t

0

(t− s)−
dα
2p

(

sup
s∈[0,T0]

‖u(s)‖p

)α+1

ds

≤ 2K0 + C(3K0)
α+1 t1−

dα
2p

1− dα
2p

.

Hence,

sup
[0,T0]

‖G[u](t)‖p ≤ 2K0 + C(3K0)
α+1 T

1− dα
2p

0

1− dα
2p

= 3K0





2

3
+ C

T
1− dα

2p

0

1− dα
2p

(3K0)
α



 ≤ 3K0,

whenever

(21) C
T

1− dα
2p

0

1− dα
2p

(3K0)
α+1 < 1.

We shall show now that G : X 7→ X is a contraction, where X := {u ∈ C([0, T0],
Lp(U)) : ‖u‖C([0,T0],Lp(U)) ≤ 3K0}. Let Fix u, v ∈ X then t ∈ [0, T0], we have

‖G[u](t)−G[v](t)‖p ≤

ˆ t

0

‖S(t− s) (F (u(t))− F (v(t))) ‖p ds

≤

ˆ t

0

(t− s)−
dα
2p ‖F (u(t))− F (v(t))‖ p

α+1
ds

≤ C

ˆ t

0

(t− s)−
dα
2p ‖u(t)− v(t)‖p

(

‖u(t)‖αp + ‖v(t)‖αp
)

ds

≤ C(6K0)
α T

1− dα
2p

0

1− dα
2p

sup
t∈[0,T0]

‖u(t)− v(t)‖p ds,

(22)
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where we used (12) and hypothesis (13). Hence, if

(23) C
T

1− dα
2p

0

1− dα
2p

(6K0)
α < 1,

then

sup
t∈[0,T0]

‖G[u](t)−G[v](t)‖p < sup
t∈[0,T0]

‖u(t)− v(t)‖p.

Therefore, G is a contraction. Hence, there exist a unique fixed point. �

3.4. Example of a non-linearity F . An example of a non-linearity F satisfying
condition (13) is as follows. Let f be a mapping from R

d to R
d verifying f(0) = 0

and

|f(y)− f(x)| ≤ C|x− y|(|x|α + |y|α),

for α > 0.
Set F (u)(x) = f(u(x)), hence, by Hölder’s inequality F satisfies (13). As an

especific example to construct the non-linearity F , we may consider the function
f(x) = x|x|α.

Remark 3.4. The results presented in the manuscript can be generalized to
following setting: X a real separable Hilbert space, and (D, µ) be a measure space.

For 1 ≤ p < ∞, Lp = Lp(D, µ) is a separable Banach space. We consider the
following stochastic differential equation

(24)

{

∂tu(t) = Au(t) + F (u(t)) + Φ∂tB
H
t , t ∈ [0, T ],

u|t=0 = u0,

where u0 ∈ Lp, A : Dom(A) ⊂ Lp 7→ Lp, is the infinitesimal generetor of an analytic
strongly continuous semigroup of linear operators (S(t), t ≥ 0) acting on Lp, and
Φ ∈ γ(X,Lp) where γ(X,Lp) denote the space of the γ-radonifying operator(see [16]).
Under similar conditions as (12), (13) and (15), and assuming that for λ ∈ [0, H),
‖S(t)Φ‖γ(X,Lp) ≤ t−λ, by following the same steps as in the proof of Theorem 3.3 and
Corollary 4.3 in [5], is possible to show the existence of an unique local mild solution
to (24) in C([0, T ], Lp). The conditions on Φ allows to consider both Φ = Id (that
corresponds to noise that is white in space) or Φ ∈ γ(X,Lp) (that corresponds to
correlated noise in space).

Acknowledgements. Christian Olivera is partially supported by FAPESP by
the grants 2017/17670-0 and 2015/07278-0. Also supported by CNPq by the grant
426747/2018-6. The authors would also like to thank the reviewers comments, which
enriched the content of the article.

References

[1] Alòs, E., O. Mazet, and D. Nualart: Stochastic calculus with respect to Gaussian pro-
cesses. - Ann. Probab. 29:2, 1999, 766–801.

[2] Bonaccorsi, S., and C. Tudor: Dissipative stochastic evolution equations driven by general
Gaussian and non-Gaussian noise. - J. Dynam. Differential Equations 23:2, 2011, 791–816.

[3] Brzezniak, Z., J. Neerven, and D. Salopek: Stochastic evolution equations driven by
Liouville fractional Brownian motion. - Czechoslovak Math. J. 62(137):1, 2012, 1–27.

[4] Čoupek, P., and B. Maslowski: Stochastic evolution equations with Volterra noise. - Sto-
chastic Process. Appl. 127:3, 2017, 877–900.



312 Jorge Clarke and Christian Olivera

[5] Coupek, P., B. Maslowski, and M. Ondrejat: Lp-valued stochastic convolution integral
driven by Volterra noise. - Stoch. Dyn. 18:6, 2018, 1850048.

[6] Da Prato, G., and J. Zabczyk: Stochastic equations in infinite dimensions. - Encyclopedia
of Mathematics and its Applications 44, Cambridge Univ. Press, Cambridge, 1992.

[7] Duncan, T. E., B. Pasik-Duncan, and B. Maslowski: Fractional Brownian motion and
stochastic equations in Hilbert spaces. - Stoch. Dyn. 2:2, 2002, 225–250.

[8] Giga, Y.: Solutions for semilinear parabolic equations in Lp and regularity of weak solutions
of the Navier–Stokes system. - J. Differential Equations 62:2, 1986, 186–212.

[9] Grecksch, W., and V.V. Anh: A parabolic stochastic differential equation with fractional
Brownian motion input. - Statist. Probab. Lett. 41:4, 1999, 337–346.

[10] Kolmogoroff, A.N.; Wienersche Spiralen und einige andere interessante Kurven im
Hilbertschen Raum. - C. R. (Doklady) Acad. Sci. URSS (N.S.) 26, 1940, 115–118 (in Ger-
man).

[11] Mandelbrot, B. B., and J.W. Van Ness: Fractional Brownian motions, fractional noises
and applications. - SIAM Rev. 10, 1968, 422–437.

[12] Maslowski, B., and B. Schmalfuss: Random dynamical systems and stationary solutions
of differential equations driven by the fractional Brownian motion. - Stochastic Anal. Appl.
22:6, 2004, 1577–1607.

[13] Mazzucato, A. L.: Besov–Morrey spaces: function space theory and applications to non-
linear PDE. - Trans. Amer. Math. Soc. 355:4, 2003, 1297–1364.

[14] Nualart, D.: The Malliavin calculus and related topics. Second edition. - Probab. Appl. (N.
Y.), Springer-Verlag, Berlin, 2006.

[15] Nualart, D., and P.-A. Vuillermot: Variational solutions for partial differential equations
driven by a fractional noise. - J. Funct. Anal. 232:2, 2006, 390–454.

[16] Ondreját, M.: Uniqueness for stochastic evolution equations in Banach spaces, - Disserta-
tiones Math. (Rozprawy Mat.) 426, 2004.

[17] Pipiras, V., and M.S. Taqqu Integration questions related to fractional Brownian motion. -
Probab. Theory Related Fields 118:2, 2000, 251–291. MR 1790083

[18] Sanz-Solé, M., and P.-A. Vuillermot: Mild solutions for a class of fractional SPDEs and
their sample paths. - J. Evol. Equ. 9:2, 2009, 235–265.

[19] Tindel, S., C.A. Tudor, and F. Viens: Stochastic evolution equations with fractional
Brownian motion. - Probab. Theory Related Fields 127:2, 2003, 186–204.

[20] Tudor, C.A.: Analysis of the Rosenblatt process. - ESAIM Probab. Stat. 12, 2008, 230–257.

[21] Weissler, F. B.: Semilinear evolution equations in Banach spaces. - J. Funct. Anal. 32:3,
1979, 277–296.

[22] Weissler, F. B.: Local existence and nonexistence for semilinear parabolic equations in Lp.
- Indiana Univ. Math. J. 29:1, 1980, 79–102.

[23] Weissler, F. B.: Existence and nonexistence of global solutions for a semilinear heat equation.
- Israel J. Math. 38:1-2, 1981, 29–40.

Received 3 August 2018 • Received 14 February 2019 • Accepted 24 May 2019


