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Abstract. In the current paper, we study how the speed of convergence of a sequence of angles
decreasing to zero influences the possibility of constructing a rare differentiation basis of rectangles in
the plane, one side of which makes with the horizontal axis an angle belonging to the given sequence,
that differentiates precisely a fixed Orlicz space. We also make a simple observation showing that
the maximal operator associated to rectangles oriented in a fixed sequence of directions, is either
bounded on all Lp spaces for 1 < p 6 ∞, or fails to be bounded on any of them (adding the case
p =∞ to a dichotomy obtained previously by Bateman).

In the sequel we always call interval in R2 a set of the form Q = [a, b] × [c, d]
where a < b and c < d are real numbers; a rectangle, on the other hand, will be any
set obtained from an interval by some isometry of the plane.

There is a long history of research around the maximal operator Mθ associated
to a set θ ⊆ [0, 2π) of angles, defined as

Mθf(x) := sup
R

1

|R|

ˆ
R

|f |,

where the upper bound extends to all rectangles R in R2 containing x, one side of
which make an angle θ ∈ θ with the horizontal axis.

It has been shown in 1977 by Cordoba and Fefferman [3] that whenever θ = {θj}
is the image of a lacunary sequence (i.e. satisfying θj+1 ' λθj for some 0 < λ < 1),
then Mθ has weak type (2, 2)—and hence is also bounded on Lp(R2) for all 2 6 p <
∞. The latter statement was extended to any 1 < p < ∞ a year later by Nagel,
Stein and Wainger in [13], and subsequently by Sjögren and Sjölin in [15]. When
θ = {0} ∪ {1/j : j ∈ N∗}, de Guzmán proved in 1981 (see [6]) that Mθ is always
unbounded on Lp(R2) for any p > 1. Later, many authors considered the influence
that the “size” of the set θ has on its yielding the (un)boundedness ofMθ on some Lp
spaces; a case of particular interest was that of Cantor sets, dealt with by e.g. Katz
in 1996 [9] and Hare in 2000 [8]. Lately, in 2009, Bateman gave in [1] a beautiful
characterization of sets of angles θ yielding the boundedness of Mθ in Lp(R2) for
all 1 < p < ∞, showing it is equivalent to the possibility of covering θ by a finite
collection of N -lacunary sets (see [1] for a definition). Even more recently in 2013,
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Hagelstein studied in [7] the relation between the Minkowski dimension of θ being
zero, and the boundedness in Lp(R2) of the associated maximal operator; namely he
shows that it is a necessary, but not sufficient condition for its boundedness.

On another hand, the boundedness, and weak boundedness on Lp of the maximal
operator Mθ is also related to differentiation properties of the associated differenti-
ation basis; namely it is classical, given 1 < p < ∞, that Mθ satisfies a weak type
(p, p) inequality if and only if Lebesgue’s differentiation theorem holds in Lp(R2) for
the associated basis Rθ of rectangles, one side of which makes an angle θ ∈ θ with
the horizontal axis, i.e. if and only the following equality holds for all f ∈ Lp(R2)
and a.e. x ∈ R2:

f(x) = lim
R3x

diamR→0

1

|R|

ˆ
R

|f |,

where the limit is taken on rectangles R ∈ Rθ containing x; we then say that the
associated basis differentiates Lp(R2) (see e.g. [5, Chapter III] where it is studied how
the differentiation of function spaces by a basis, and the behavior of the associated
maximal operator are related in the class of Orlicz spaces). On the other hand, it
also follows from [5, Theorem 1.2, p. 69] that Rθ differentiates L∞(R2) if and only if
Mθ satisfies the following condition: for all λ > 0, there exists a constant 0 < cλ <∞
such that one has, for all measurable set A

|{MθχA > λ}| 6 cλ|A|;

such a condition is called a Tauberian condition on the maximal operator Mθ. It
involves implicitly the halo function associated to the basis Rθ and defined for t > 1
by

ψθ(t) := sup

{
1

|A|

∣∣∣∣{MRθ
χA >

1

t

}∣∣∣∣ : A bounded and measurable, |A| > 0

}
.

It was a famous open question by de Guzman [5, p. 178] to understand whether
knowing that the halo function of a differentiation basis in Rn behaves like ψ(t) '
tp implies that the basis in question differentiates Lp(Rn) (or whether a similar
statement holds with Orlicz functions). In their paper [2], Berezhnoi and Novikov
answered in a negative way this halo problem, after showing that differentiation bases
may distinguish Lorentz and Orlicz spaces associated to a given function. It should be
pointed out that understanding which Orlicz/Lebesgue spaces a given differentiation
basis does or doesn’t differentiate is, in general, a question of crucial importance.

It is, in particular, the result of an observation by Strömberg in [20] that for
θ = {2−k : k ∈ N}, the above version of Lebesgue’s differentiation theorem fails in
any Orlicz space “larger” than L log2 L(R2), i.e. in any LΦ(R2) where Φ is an Orlicz
function (see below for the precise definition of those term and space) satisfying
Φ(t) = o(t log2

+ t) at ∞.
A first observation we make in the current paper is to observe that Rθ either

differentiates all spaces Lp(R2) for all 1 < p 6∞, or fails to differentiate any of those
spaces—the main point here being that one can take p =∞ in the above alternative
(this result has been obtained for decreasing sequences θ by Hagelstein and Stokolos
in [18]). We expose our argument, relying on Bateman’s result [1], in section 2.

In the present paper, we also study for various sequences (θj) decreasing to 0,
the differentiation properties of some differentiation bases of rectangles in R2 whose
elements have countably many shapes (i.e. for which the ratio between the length of
the horizontal and vertical sides belong to a countable set), knowing moreover that
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one of their sizes make an angle θj with the horizontal axis for some j, in terms of
the speed of convergence of the sequence (θj).

More precisely, we prove three theorems of the following structure, for three
classes of sequences θ = (θj) decreasing to 0, where Φ is some Orlicz function and
LΦ(R2) is the associated Orlicz space (see below for the precise definitions of the
terms used here as well as in the following statement).

Theorem 1. There exists a countable family Q of intervals of the form [0, L]×
[0, l] having the following properties:

(i) the differentiation basis B of all intervals in R2 whose shape is that of some
Q ∈ Q, differentiates L1(R2);

(ii) the differentiation basis Bθ obtained from B by allowing its elements to
rotate of an angle θ ∈ θ around their lower left vertex, fails to differentiate
LΨ(R2) for any Orlicz function Ψ satisfying Ψ = o(Φ) at ∞;

(iii) there exists a differentiation basis B′ ⊆ Bθ which differentiates LΦ(R2) but
fails to differentiate LΨ(R2) for any Orlicz function Ψ satisfying Ψ = o(Φ) at
∞ (we then say that B′ differentiates precisely LΦ(R2)).

Namely, we consider the three following cases in the previous statement:

(1) θ = (θj) satisfying 0 < lim infj(θj+1/θj) 6 lim supj(θj+1/θj) < 1 — in
which case the statement above holds for Φ(t) = t(1 + log+ t) and LΦ(R2) =
L logL(R2) (see Theorem 11);

(2) θ = (θj) satisfying 0 < lim infj(θj+1/θ
d
j ) 6 lim supj(θj+1/θ

d
j ) < 1 for some

integer d > 1 — in which case the statement above holds for Φ(t) = t(1 +
log+ log+ t) and LΦ(R2) = L log logL(R2) (see Theorem 13);

(3) θ = (θj) defined by θj = arctan(aj
d
) for some 0 < a < 1 and 0 < d < 1 — in

which case the statement above holds for Φ(t) = t(1 + log
1/d
+ t) and LΦ(R2) =

L log1/d L(R2) (see Theorem 14).

Those results rely on some geometrical preliminaries (detailed in section 3) and
on a nice previous work by Stokolos [16] concerning differentiation bases of rectangles
in relation to the Orlicz spaces they differentiate. More specifically, in [16], Stokolos
constructs, for Orlicz spaces ranging (roughly speaking) between L logL(R2) and
L log2 L(R2), differentiation bases of rectangles B satisfying the following properties:

(1) rectangles in B have one side forming an angle 2−k with the horizontal axis
for some k ∈ N;

(2) B differentiates precisely LΦ(R2).

Our point, in comparison to Stokolos’ result, is here to consider more general se-
quences (θj) decreasing to 0, and to see how their convergence speed influences the
Orlicz space that one can differentiate using rectangles obtained from intervals en-
joying given shapes by rotations of some angle θj.

The structure of the paper is as follows: after studying some geometrical pre-
liminaries in the spirit of [11], we obtain in section 4 results concerning the Orlicz
spaces a differentiation basis of rectangles associated to a given sequence of angles
does not differentiate. Combining the results in those two sections with a lemma by
Stokolos (see Lemma 2 below), we manage in section 5 to prove the three versions of
Theorem 1 stated above.
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1. Notations and definitions

1.1. Rectangles. For our purposes, a standard interval in R2 is an interval
of the form Q = [0, L] × [0, `]. We then let Q+ := [L/2, L] × [0, `]. Given another
(not necessarily standard) interval Q′, we shall say that Q′ has the same shape as Q
in case there exists a ∈ R2 and α > 0 such that Q′ = a + αQ—calling shape of an
interval the quotient of its horizontal side by its vertical one, this is equivalent to say
their shapes are equal. Given a family of standard intervals Q, we then denote by
B(Q) the family of all intervals in R2 having the same shape as some Q ∈ Q.

For θ ∈ [0, 2π) we also denote by rθ the (counterclockwise) rotation of angle θ
around the origin. Given a set θ ⊆ [0, 2π), we then denote by Bθ(Q) the set of
rectangles of the form rθQ for some Q ∈ B(Q).

1.2 Differentiation bases. A family B =
⋃
x∈R2 B(x) of measurable subsets

of R2 with positive measure is called a differentiation basis in case the following
conditions hold:

(a) for each x ∈ R2 and each B ∈ B(x), one has x ∈ B;
(b) for each x ∈ R2, one has inf{diam(B) : B ∈ B(x)} = 0.

It is moreover called translation invariant in case one has B(x) = x + B(0) for
all x ∈ R2, and homothecy-invariant if it is translation-invariant and if moreover
αB(0) = B(0) for all α > 0. We shall also say, finally, that the basis B enjoys the
Buseman–Feller properties in case for any B ∈ B, the two properties B ∈ B(x) and
x ∈ B are equivalent—from now on, we shall see the collections B(Q) and Bθ(Q)
defined above as differentiation bases enjoying the Buseman–Feller property.

Associated to a differentiation basis B, there is a maximal operator MB defined
by

MBf(x) := sup
B∈B(x)

1

|B|

ˆ
B

|f |.

When θ ⊆ [0, 2π) is a set of angles, and when B is the collection Rθ of all rectangles
in the plane, one side of which makes an angle θ ∈ θ with the horizontal line, we
shall briefly denote MB by Mθ.

One also says that a differentiation basis differentiates a function space X ⊆
L1

loc(R
2) in case for every f ∈ X, the equality

f(x) = lim
diamB→0
B∈B(x)

1

|B|

ˆ
B

|f |

holds for a.e. x ∈ R2.

1.3. Orlicz spaces. For our purposes, an Orlicz function is a convex, continuous
and increasing function Φ: [0,∞)→ [0,∞) satisfying Φ(0) = 0 and Φ(t)→∞ at∞;
we say that an Orlicz function Φ satisfies the ∆2 condition in case there is an absolute
constant K > 0 such that one has Φ(2t) 6 KΦ(t) for all sufficiently large t. The
Orlicz function Ψ: [0,∞) → [0,∞) defined by Ψ(s) := sup{t|s| − Φ(t) : 0 6 t < ∞}
is then called the complementary function to Φ (a general theory of Orlicz spaces is
presented the two monographs by Krasnosel’skii and Rutickii [10] and by Rao and
Ren [14]).

Given an Orlicz function Φ, we let LΦ(R2) denote the set of all measurable
functions f in R2 for which Φ(|f |) is integrable (for Φ(t) = tp, 1 6 p < ∞ this
yields the usual Lebesgue space Lp(R2), while for Φ(t) = Φβ(t) := t(1+log+

βt), with
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0 < β, and for Φ(t) := t(1 + log+ log+ t) we get the Orlicz spaces L logβ L(R2) and
L log logL(R2), respectively).

Given an Orlicz function Φ, recall that a sublinear operator T is said to be of
weak type (Φ,Φ) in case there exists a constant C > 0 such that, for all f ∈ LΦ(R2)
and all α > 0, one has

|{x ∈ R2 : Tf(x) > α}| 6
ˆ
R2

Φ

(
|f |
α

)
.

Whenever Φ(t) = tp for p > 1, we shall say that T has weak type (p, p). It is a fact
that, for a Buseman–Feller homothecy-invariant differentiation basis B, the following
two properties are equivalent for any given Orlicz function Φ:

(i) MB is of weak type (Φ,Φ);
(ii) B differentiates LΦ(R2).

The interested reader will find the details of the latter equivalence in [5, Chapter III]
(see in particular Remark 4, p. 90).

Finally, given an Orlicz function Φ, we shall say that a differentiation basis B
differentiates exactly LΦ(R2) in cases it differentiates LΦ(R2) but fails to differentiate
LΨ(R2) for any Orlicz function Ψ satisfying Ψ(t) = o(Φ(t)) at ∞.

1.4. A lemma by Stokolos. The following useful lemma, which is a particular
case of [16, Lemma A], will be useful to us in section 5.

Lemma 2. Assume that Φ is an Orlicz function satisfying the ∆2 condition and
let R =

⋃
k∈N Rk where, for each k ∈ N, Rk is a finite collection of rectangles in

R2. Assume also that there exists a sequence (λk) increasing to ∞ as k → ∞, and
a sequence of balls Bk satisfying the following properties:

(i) all members of Rk have equal area;
(ii) for any finite collection S ⊆ Rk, one has

ˆ
R2

Ψ

(∑
R∈S

χR

)
6 c1

∑
R∈S

|R|,

where Ψ denotes the complementary function to Φ;
(iii) for any R ∈ Rk, one has

|R ∩Bk|
|R|

>
c2

λn
;

(iv) |
⋃

Rk| > c3Φ(λk)|Ek|;
here, c1 > 0, c2 > 0 and c3 > 0 are constants. Under those assumptions, there exists
a differentiation basis B satisfying B ⊆ B(R) that differentiates precisely LΦ(R2).

Let us now move on to the exposition of our results. Before to discuss the type of
statements contained in Theorem 1, let us first formulate our observation concerning
the boundedness in Lp, 1 < p 6∞, of the maximal operator Mθ.

2. Boundedness of the directional maximal operator in Lp and L∞ spaces

We announced the forthcoming proposition in the introduction; the key thing here
is that one can include p =∞ in the statement of the “differentiation” dichotomy.

Proposition 3. Let θ be as above, let Rθ be the differentiation basis (defined
above) of all rectangles in the plane, one side of which makes an angle θ ∈ θ with the
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horizontal line, and let Mθ be the associated maximal operator. Then the following
dichotomy holds:

(1) Either Rθ is bounded on Lp(R2) for all 1 < p < ∞, in which case the
associated differentiation basis B differentiates all Lp(R2), 1 < p 6∞;

(2) or Mθ is unbounded on all Lp(R2), 1 < p < ∞; in this case the associated
differentiation basis B fails to differentiate Lp(R2) for all 1 < p 6∞.

Proof. Assuming that Mθ is unbounded on some Lp(R2), 1 < p <∞, it follows
from Bateman [1, Theorem 1, p. 56] that θ admits Kakeya sets, i.e. that for each
N ∈ N∗ there exists a collection RN ⊆ Rθ verifying

(1) | ∪RN | 6
1

N

∣∣∣∣∣ ⋃
R∈RN

R∗

∣∣∣∣∣ ,
where one denoted by R∗ the rectangle having the same center and width as R but
three times its length (we hence assume without loss of generality that none of the
R’s is a square).

We show that Mθ is unbounded on all Lp(R2) by contradiction. Assume thus
that there exists some 1 < q <∞ such that Mθ is bounded on Lq(R2). This implies
in turn that Mθ satisfies a weak-type (q, q) inequality. Since Rθ is a Busemann–
Feller differentiation basis invariant with respect to similarities (translations and
homothecies), we know, according to e.g. de Guzmán [5, p. 90], that Rθ would then
differentiate Lq(R2), and hence also L∞(R2). It would then follow from de Guzmán
[5, Theorem 1.2, p. 69] that there exists a constant c > 0 such that for any bounded
measurable set A ⊆ R2, one has

(2)
∣∣∣∣{MθχA >

1

4

}∣∣∣∣ 6 c|A|.

Define, for N ∈ N∗, AN :=
⋃

RN . Observe that for any x ∈ BN :=
⋃
R∈RN

R∗, there
exists some Rx ∈ RN ⊆ Rθ such that one has x ∈ R∗x. Now compute

MθχAN (x) >
1

|R∗x|

ˆ
R∗x

χAN >
1

|R∗x|

ˆ
R∗x

χRx =
|Rx ∩R∗x|
|R∗x|

=
1

3
>

1

4
.

We hence have BN ⊆
{
MθχAN > 1

4

}
; using (1) and (2) we then get

N |AN | 6 |BN | 6 c|AN |,
which is a contradiction for sufficiently large N . We conclude that Mθ is unbounded
on all Lq(R2), 1 < q <∞, and that Rθ fails to differentiate L∞(Rn). �

Remark 4. As pointed out by one of the referees, the preceding proposition
has been obtained for decreasing sequences of angles θ (even though their argument
would extend to any set θ without modification) by Hagelstein and Stokolos in [18].
Instead of relying directly on Bateman’s result, it also relies on the beautiful paper
by the same authors [19], where they show that if the maximal operator associated
to a homothecy-invariant basis of convex sets satisfies a Tauberian condition (which
happens in case the basis differentiates L∞(Rn) according to de Guzmán’s result [5,
Theorem 1.2, p. 69]), then it is bounded on Lp(Rn) for sufficiently large p <∞). The
argument we presented above uses instead Bateman’s geometrical characterization
(1) of sets θ yielding an unbounded maximal operator Mθ in Lp(R2), 1 < p <∞.

We now proceed towards the proof of Theorem 1 by starting with some geomet-
rical preliminaries that were announced in the introduction.
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3. Some geometrical preliminaries

The following straightforward geometrical fact is borrowed from [11].

Lemma 5. Fix real numbers 0 6 ϑ < θ < π
2
and 0 < 2` < L and let Q :=

[0, L]× [0, `]. If moreover one has tan(θ−ϑ) > 1/
√

1
4

(
L
`

)2 − 1, then rϑQ+ and rθQ+

are disjoint.

Lemma 6. Let {θj} ⊂ [0, π
4
] be a decreasing sequence such that, letting mj :=

tan θj, we have that there exist a constant C > 0, a constant 0 < ζ < 1 and a
sequence {tk} so that, for each k, for integers 0 6 j < k,

mj −mk > Cζtk .

Then, there exist constants d(C) > c(C) > 0 and e(C) > 0 depending only on C
such that, for each ε > 0 and each integer k ∈ N? = N\{0}, one can find a standard
interval Qk = [0, Lk]×[0, `k] and a subset θk = (θ0, . . . , θk) ⊂ θ satisfying #θk = k+1
and such that the following hold:

(i) 0 < 2`k < Lk 6 ε;
(ii) c(C)ζ−t2k 6 Lk

`k
6 d(C)ζ−t2k ;

(iii)
∣∣⋃

θ∈θk rθQk

∣∣ > k
2
|Qk|;

(iv) for any subset θ′ = (θi0 , . . . , θil) ⊆ θk (0 6 l 6 k, i0 < i1 < · · · < il) and any
nonnegative, Borel function ϕ : R+ → R+ satisfying ϕ(0) = 0, one has

ˆ
R2

ϕ

(∑
θ∈θ′

χrθQk

)
6 e(C)|Qk|ζt2k

l∑
j=0

ϕ(j + 1)
l∑

r=j

ζ−tir .

Proof. To prove this lemma, observe first that letting mj := tan θj for all j > 0,
we have mj 6 1 for all j, so that one can compute, for integers 0 6 j < k

tan(θj − θk) =
mj −mk

1 +mjmk

>
1

2
(mj −mk) >

C

2
ζtk .

Now choose, for all k, real numbers 0 < 2l < L 6 ε (we write L and ` instead of
Lk and `k here, for the index k remains constant all through the proof) satisfying(

L

`

)2

= 4 + 16C−2ζ−2t2k .

It is clear that one has
L

`
= 2ζ−t2k

√
ζ2t2k + 4C−2,

so that (i) and (ii) hold if we take, for example, c(C) := 2
√

4C−2 = 4
C

and d(C) :=

2
√

1 + 4C−2.
In order to show (iii), define Q := [0, L]× [0, `] and observe that one has

tan(θj − θk) >
C

2
ζt2k =

C

2

2

C

1√
1
4

(
L
`

)2 − 1
=

1√
1
4

(
L
`

)2 − 1
,

for all integers j < k with k ∈ N?. According to Lemma 5, this ensures that the
family {rθjQ+ : j ∈ N, 0 6 j 6 k} consists of pairwise disjoints sets; in particular we
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get ∣∣∣∣∣
k⋃
j=0

rθjQ

∣∣∣∣∣ >
∣∣∣∣∣
k⊔
j=0

rθjQ+

∣∣∣∣∣ = k
|Q|
2
,

(we used t to indicate a disjoint union), which proves (iii).

Figure 1. Intersection of rectangles rαri
Qk, 0 6 i 6 p.

In order to prove (iv), start by writing αr := θir in order to alleviate notations
in the sequel. Given a finite sequence r0 < · · · < rp = (p 6 l), observe first that one
has (see Figure 1)

p⋂
i=0

rαriQk = rαr0Qk ∩ rαrpQk,

from which it follows that one has (see Figure 2)∣∣∣∣∣
p⋂
i=0

rαriQk

∣∣∣∣∣ =
1

2
|OP |h 6 1

2

`k

sin P̂
· `k > `2

k

1

tan(αr0 − αrp)
,

since one has sin P̂ = sin(αr0 − αrp) = tan (αr0 − αrp) cos (αr0 − αrp) > 1
2

tan(αr0 −
αrp) (recall that αr0 − αrp 6 π/4 6 π/3.

Figure 2. Intersection of rectangles rαri
Qk, 0 6 i 6 p.

Now let χ :=
∑

θ∈θ′ χrθQk and fix 0 6 j 6 l.

Claim 1. One has |{χ = j + 1}| 6 1
2
`2
k

∑l−j
s=0

1
tan(αs−αs+j) .

Proof of the claim. If x ∈ R2 satisfies χ(x) = j + 1, there exists j + 1 angles
αr0 , . . . , αrj (r0 < r1 < · · · < rj) such that one has

x ∈
j⋂
i=0

rαriQk = rαr0Qk ∩ rαrjQk =

rj⋂
r=r0

rαrQk.
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Hence if r0 < r1 < · · · < rj is not a sequence of successive integers, we have in fact
χ(x) > 1 + rj − r0 > j + 1. This proves that one has

{χ = j + 1} ⊆
l−j⋃
s=0

s+j⋂
r=s

rαrQk =

l−j⋃
s=0

(rαsQk ∩ rαs+jQk).

Hence one computes

|{χ = j + 1}| 6 `2
k

l−j∑
s=0

1

tan(αs − αs+j)
,

which proves the claim. �

Recalling that one has tan(αs−αs+j) = tan(θis − θis+j) > C
2
ζtis+j for all 0 6 s 6

l − j, we compute

|{χ = j + 1}| 6 2

C
`kLk

`k
Lk

l−j∑
s=0

ζ−tis+j 6
2

Cc(C)
|Qk|ζt2k

l∑
r=j

ζ−tir .

Letting e(C) := 2
Cc(C)

, we finally obtain
ˆ
R2

ϕ(χ) =
l∑

j=0

ϕ(j + 1)|{χ = j + 1}| 6 e(C)|Qk|ζt2k
l∑

j=0

ϕ(j + 1)
l∑

r=j

ζ−tir ,

which proves (iv) and hence finishes the proof of the lemma. �

The next proposition will be useful in order to study the maximal operatorMrθR .

Proposition 7. Assume that θ is as in Lemma 6. There exists a family Q =
{Qk : k ∈ N} of standard intervals inR2 which is totally ordered by inclusion, satisfies
inf{diamQ : Q ∈ Q} = 0 and satisfies the following property: for any sufficiently
large integer k, there exist sets θk ⊆ θ and Θk ⊆ R2 satisfying #θk = k + 1 as well
as the following conditions (we define Rk := {rθQk : θ ∈ θk} and Yk :=

⋃
Rk):

(i) |Yk| > γ(C)kζ−t2k |Θk|;
(ii) for all R ∈ Rk, one has:

|R ∩Θk|
|R|

> γ′(C)ζt2k ;

(iii) all rectangles in Rk have the same area;
(iv) for any subset θ′ = (θi0 , . . . , θil) ⊆ θk (0 6 l 6 k, 0 6 i0 < i1 < · · · < il 6 k)

and any nonnegative, Borel function ϕ : R+ → R+ satisfying ϕ(0) = 0, one
has: ˆ

R2

ϕ

(∑
θ∈θ′

χrθQk

)
6 γ′′(C)|Qk|ζt2k

l∑
j=0

ϕ(j + 1)
l∑

r=j

ζ−tir ,

where γ(C) > 0, γ′(C) > 0 and γ′′(C) > 0 are constants depending only on C.

Proof. Define R = {Qk : k ∈ N∗} where the sequence (Qk)k∈N∗ is defined induc-
tively as follows. We choose Q1 = [0, L1] × [0, `1] and θ1 ⊆ θ associated to k = 1
and ε = 1 according to Lemma 6. Assuming that Q1, . . . , Qk have been constructed,
for some integer k ∈ N∗, we choose Qk+1 = [0, Lk+1] × [0, `k+1] and θk+1 associated
to k + 1 and ε = min(`k, 1/k) according to Lemma 6. Since the sequence (Qk)k∈N∗
is a nonincreasing sequence of rectangles, it is clear that Q is totally ordered by
inclusion. It is also clear by construction that one has inf{diamQk : k ∈ N} = 0.
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Now fix k ∈ N∗ and define Θk := B(0, `k) and Rk := {rθQk : θ ∈ θk}. Compute
hence, using [Lemma 6, (ii) and (iii)]

|Yk| >
k

2
|Qk| =

k

2
Lklk =

1

2π
k
Lk
lk
|Θk| >

1

2π
kc(C)ζ−t2k |Θk|,

so that (i) is proved with γ(C) := c(C)
2π

.
For any R ∈ Rk, there exists θ ∈ θk such that one has R = rθQk; we hence

compute

|R ∩Θk|
|R|

=
|Θk ∩ rθQk|
|Qk|

=
1
4
· π`2

k

Lk`k
=
π

4
· `k
Lk
>
π

4

1

d(C)
ζt2k ,

which finishes the proof of (ii) if we set γ′(C) := π
4

1
d(C)

. Now (iii) is clear, while (iv)
results immediately from [Lemma 6, (iv)]. �

Remark 8. In the conditions of the previous proposition, statement (ii) can be
reformulated as follows:

(ii’) for all x ∈ Yk, one has MBθ(Q)χΘk(x) > γ′(C)ζt2k .

Using the previous proposition, we can, using standard techniques developed e.g.
in a previous work by the second and third authors [12] or in a paper by the two
first authors [4], obtain negative differentiation results in a range of Orlicz spaces for
some differentiation bases of rectangles associated to various sets θ.

4. Bad Orlicz spaces for some maximal functions

In the following statement, we let Φβ(t) := t(1 + logβ+ t).

Proposition 9. Assume that θ is as in Lemma 6, that the sequence tk tends to
+∞ as k → ∞ and the sequence { tkβ

k
} is bounded above for some β > 0, that is

M := lim supk
tk
β

k
< ∞. There exists a (countable) family Q of standard intervals

in R2 with inf{diamQ : Q ∈ R} = 0, satisfying the following conditions:

(i) MB(Q) has weak type (1, 1), and hence the differentiation basis B(Q) differ-
entiates L1(R2);

(ii) for any Orlicz function Ψ satisfying Ψ = o(Φβ) at ∞, MBθ(Q) fails to be of
weak type (Ψ,Ψ), and hence the associated differentiation basis Bθ fails to
differentiate LΨ(R2).

Proof. We keep the notations of Proposition 7 and call Q the family of rectangles
given by Proposition 7. Observe first that, since Q is totally ordered by inclusion, it
follows e.g. from [17, Claim 1] that MB(Q) satisfies a weak (1, 1) inequality.

In order to show (ii), define, for k sufficiently large, fk := 1
γ′ (C)

· ζ−t2kχΘk , where
Θk and Yk are associated to k and Q according to Proposition 7.

Claim 2. For each sufficiently large k, we have

|{x ∈ R2 : MBθ(Q)fk(x) > 1}| > γ1(β, C, ζ,M)

ˆ
R2

Φβ(fk).

Proof of the claim. To prove this claim, one observes that for x ∈ Yk we
have MBθ(Q)fk(x) > 1 according to (ii’) in Remark 8. Yet, on the other hand, one
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computes, for k sufficiently largeˆ
R2

Φβ(fk) 6
1

γ′(C)
· ζ−t2k |Θk|

(
2t2k log

1

ζ

)β
6

1

γ(C)γ′(C)
|Yk|(2k)−1

(
2t2k log

1

ζ

)β
< 2β+1M̃

1

γ(C)γ′(C)
|Yk|
(

log
1

ζ

)β
,

where M̃ := max{1,M} and

γ1(β, C, ζ,M) :=

(
log

1

ζ

)−β [
γ
′
(C)γ(C)

2β+1M̃

]
.

The claim follows. �

Claim 3. For any Φ satisfying Φ = o(Φβ) at∞ and for each constant T > 0, we
have:

lim
k→∞

´
R2 Φβ(|fk|)´
R2 Φ(T |fk|)

=∞.

Proof of the claim. Compute for any k,´
R2 Φ(T |fk|)´
R2 Φβ(|fk|)

=
Φ(ζ−t2kT/γ′(C))

Φβ(ζ−t2k/γ′(C))
=

Φ(ζ−t2kT/γ
′
(C))

Φβ(ζ−t2kT/γ′(C))

Φβ(ζ−t2kT/γ
′
(C))

Φβ(ζ−t2k/γ′(C))
,

observe that the quotient Φβ(ζ−t2kT/γ
′
(C))

Φβ(ζ−t2k/γ′ (C))
is bounded as k → ∞ by a constant inde-

pendent of k, and observe that by assumption Φ(ζ−t2kT/γ
′
(C))

Φβ(ζ−t2kT/γ′ (C))
tends to zero as k →∞.

The claim is proved. �

We now finish the proof of Proposition 9. To this purpose, fix Φ an Orlicz function
satisfying Φ = o(Φβ) at ∞ and assume that there exists a constant T > 0 such that,
for any α > 0, one has

|{x ∈ R2 : MBθ(Q)f(x) > α}| 6
ˆ
R2

Φ

(
T |f |
α

)
.

Using Claim 2, we would then get, for each k sufficiently large

0 < γ1(β, C, ζ,M)

ˆ
R2

Φβ(fk) 6

∣∣∣∣{x ∈ R2 : MBθ(Q)fk(x) >
1

2

}∣∣∣∣ 6 ˆ
Rn

Φ(2Tfk),

contradicting the previous claim and proving the theorem. �

The following result is proved in a very similar way and we omit the proof.

Proposition 10. Assume that θ is as in Lemma 6, that the sequence tk tends
to +∞ as k → ∞, that it satisfies M := lim supk

log tk
k

< ∞ and define Φ(t) =
t(1 + log+ log+ t). There exists a (countable) family Q of standard intervals in R2

with inf{diamQ : Q ∈ Q} = 0, satisfying the following conditions:
(i) MB(Q) has weak type (1, 1), and hence the associated differentiation basis

B(Q) differentiates L1(R2);
(ii) for any Orlicz function Ψ satisfying Ψ = o(Φ) at ∞, MBθ(Q) fails to be of

weak type (Ψ,Ψ)—hence the differentiation basis Bθ(Q) fails to differentiate
L log logL(R2).



422 Emma D’Aniello, Laurent Moonens and Joseph M. Rosenblatt

We now turn to proving the three versions of Theorem 1 we stated in the intro-
duction.

5. Three examples of sequences yielding Theorem 1

Let d ∈ N be fixed. Assume that the sequence (θk)k∈N ⊆ (0, π/4] is such that
one has:

(3) 0 < λ < lim inf
j→∞

θj+1

θj
d
6 lim sup

j→∞

θj+1

θj
d
< µ < 1.

Letting mj := tan θj for all j ∈ N, one clearly has:

lim
j→∞

mj

θj
= 1,

so that (3) also holds for the sequence (mj)j∈N. There hence exists an index j0 ∈ N
such that, for all j > j0, one has λ 6 mj+1

mjd
6 µ (we may also and will assume that

one has λ
2
6 mj0 6 λ). For the sake of clarity, we shall now consider that j0 = 0 and

compute, for an integer 0 6 j < k:

tan(θj − θk) =
mj −mk

1 +mjmk

>
1

2
(mj −mk).

We also have, for every integer 0 6 j < k,

(4) λ
∑k−j−1
i=0 dimj

dk−j 6 mk 6 µ
∑k−j−1
i=0 dimj

dk−j .

5.1. Assume first that d = 1. Arguing as in [11], we then get

tan(θj − θk) >
1

2
m0 · λk · [µ−1 − 1],

so that if we set C = 1
2
m0 ·[µ−1−1], ζ = λ, tk = k and take β = 1 then the hypotheses

of Proposition 9 are satisfied. Let Q, Rk and θk be associated to θ by Proposition 7;
define Φ(t) := t(1+ log+ t) and observe that it is easy to see (see e.g. [10, Chapter 1])
that one can have Ψ(t) 6 K1e

t for the complementary function Ψ to Φ. There is no
loss of generality, of course, to assume ζ < 1/e.

Now fix a subset θ′ = {θir : 0 6 r 6 l} ⊂ θk (0 6 i0 < i1 < · · · < il 6 k) and
write, using ϕ = Ψ in [Proposition 7, (iv)],

ˆ
R2

Ψ

(∑
θ∈θ′

χrθQk

)
6 K ′1|Qk|ζ2k

l∑
j=0

ej
l∑

r=j

ζ−ir ,

where K ′1 = eK1e(C) > 0. Write then
l∑

r=j

ζ−ir 6 ζ−il
∞∑
s=0

ζs 6
ζ−k

1− ζ
.

On the other hand one computes
l∑

j=0

ej = el
l∑

j=0

ej−l 6 ek
∞∑
s=0

e−s 6
ek+1

e− 1
.

Hence we obtainˆ
R2

Ψ

(∑
θ∈θ′

χrθQk

)
6 K ′1|Qk|ζ2k · e

k+1

e− 1
· ζ

−k

1− ζ
6

2K ′1
1− ζ

|Qk|,
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since one has eζ < 1 and e/(e− 1) 6 2.
Combining now Proposition 9 and Lemma 2 for the particular sequence consid-

ered in this section, we get the following result.

Theorem 11. Assume that the sequence (θk)k∈N ⊆ (0, π/4] is such that one has

0 < λ < lim inf
j→∞

θj+1

θj
6 lim sup

j→∞

θj+1

θj
< µ < 1.

Under those assumptions, there exists a countable family of standard intervals in R2

denoted by Q and totally ordered by inclusion, satisfying the following properties
(where one defines Φ(t) := t(1 + log+ t)):

(i) the associated differentiation basis B(Q) differentiates L1(R2);
(ii) for any Orlicz function Ψ satisfying Ψ = o(Φ) at ∞, the differentiation basis

Bθ(Q) fails to differentiate LΨ(R2);
(iii) there exists a differentiation basis B ⊆ Bθ(Q) that differentiates exactly

L logL(R2).

Remark 12. Statement (iii) above is weaker than stating that the basis Bθ(Q)
itself does differentiate (exactly) L logL(R2); however, it is not known to us whether
this statement holds or not.

5.2. Assume now that d > 1 in (3). Using (4), we obtain for 0 6 j < k

λ
dk−j−1
d−1 mj

dk−j = λ
∑k−j−1
i=0 dimj

dk−j 6 mk 6 µ
∑k−j−1
i=0 dimj

dk−j = µ
dk−j−1
d−1 mj

dk−j .

We then compute, for the same j < k,

tan(θj − θk) >
1

2
(mj −mk) >

1

2

[
mk

1

dk−j · µ−
∑k−j−1
i=0

di

dk−j −mk

]
>

1

2
mk ·

[
µ−

∑k−j−1
i=0

di

dk−j − 1

]
>

1

2
m0

dk · λ
∑k−1
i=0 d

i ·
[
µ−

1
d−1 − 1

]
=

1

2
m0

dk · λdk ·
[
µ−

1
d−1 − 1

]
>

1

2
m0

dk · λdk ·
[
µ−

1
d−1 − 1

]
>

1

2

(
λ

2

)dk
· λdk ·

[
µ−

1
d−1 − 1

]
>

1

2

(
λ

2

)2dk

·
[
µ−

1
d−1 − 1

]
.

So if we set C = 1
2
[µ−

1
d−1 − 1], ζ = (λ

2
)
2 and tk = dk, then the hypotheses of Propo-

sition 10 are satisfied. Let hence Q, Rk and θk be associated to θ by Proposition 7
and define Φ(t) := t(1 + log+ log+ t) and observe that it is easy to see (see e.g. [10,
Chapter 1]) that one can have Ψ(t) 6 K2 exp(exp t)for the complementary function
Ψ to Φ. There is no loss of generality, again, to assume ζ < 1/e.

Fix as before a subset θ′ = {θir : 0 6 r 6 l} ⊂ θk (0 6 i0 < i1 < · · · < il 6 k)
and write, using ϕ = Ψ in [Proposition 7, (iv)]:

ˆ
R2

Ψ

(∑
θ∈θ′

χrθQk

)
6 K ′2|Qk|ζd

2k
l∑

j=0

ee
j+1

l∑
r=j

ζ−d
ir
,

where K ′2 = K2e(C) > 0. Write then
l∑

r=j

ζ−d
ir
6 ζ−d

il

∞∑
s=0

ζs 6
ζ−d

k

1− ζ
.
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On the other hand one computes

l∑
j=0

ee
j+1

6 ee
l+1

∞∑
s=0

e−s 6
e1+ek+1

e− 1
.

Hence we obtain
ˆ
R2

Ψ

(∑
θ∈θ′

χrθQk

)
6 K ′2e|Qk|ζd

2k · e
ek+1

e− 1
· ζ
−dk

1− ζ

6
K ′2e

(1− ζ)(e− 1)
|Qk| exp

[
ek+1 + dk −

(
d2
)k]

,

since one has eζ < 1. Observing e.g. that d2 > 4 > e and that one hence has

ek+1 + dk −
(
d2
)k

= e

[
ek − 1

2e

(
d2
)k]

+ dk − 1

2

(
d2
)k
,

and since moreover it is clear that ak − εbk tends to −∞ as k → ∞ for any real
numbers 1 < a < b and ε > 0, we finally get

lim
k→∞

exp
[
ek+1 + dk −

(
d2
)k]

= 0.

There thus exists a constant K ′′2 > 0 (depending only on θ and d) for which one has

ˆ
R2

Ψ

(∑
θ∈θ′

χrθQk

)
6 K ′′2 |Qk|.

Combining now as above Proposition 10 and Lemma 2 for the particular case of
a sequence satisfying (3) for d > 1, we obtain the following result.

Theorem 13. Assume that d ∈ N∗ and the sequence (θk)k∈N ⊆ (0, π/4] are
such that one has

0 < λ < lim inf
j→∞

θj+1

θdj
6 lim sup

j→∞

θj+1

θdj
< µ < 1.

Under those assumptions, there exists a countable family of standard intervals in R2

denoted by Q and totally ordered by inclusion, satisfying the following properties
(where one defines Φ(t) := t(1 + log+ log+ t)):

(i) the associated differentiation basis B(Q) differentiates L1(R2);
(ii) for any Orlicz function Ψ satisfying Ψ = o(Φ) at ∞, the differentiation basis

Bθ(Q) fails to differentiate LΨ(R2);
(iii) there exists a differentiation basis B ⊆ Bθ(Q) that differentiates exactly

L log logL(R2).

5.3. A non-lacunary example. Let (aj) be a nonincreasing sequence of
positive real numbers with 0 < a = infj aj 6 supj aj = b < 1. Clearly, a0 = max aj =
b. In the sequel we fix a real number 0 < d < 1 and we define a sequence (θj) by

θj := arctan
[
(aj)

jd
]
.
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Observe that letting mj := tan θj for all j, we can write, for j0 6 j 6 k,

mj −mk = (aj)
jd − (ak)

kd > (ak)
jd − (ak)

kd = (ak)
kd
[
(ak)

jd−kd − 1
]

> ak
d

[(
1

b

)kd−jd
− 1

]
> ak

d

[(
1

b

)kd−(k−1)d

− 1

]
.(5)

It hence follows in particular that (mj) (and hence also (θj)) is a decreasing sequence.
On the other hand, it is easy to observe that one has, for all j,

jd − (j − 1)d = djd−1 +O(jd−2),

we get [
jd − (j − 1)d

]
j1−d = d+O(j−1),

so that, for j sufficiently large, we have

(6) jd − (j − 1)d >
d

2j1−d .

It is also the case that for j sufficiently large, we always have

(7)
2

d
j1−d 6

1

2
b−j

d

;

we shall hence assume that both (6) and (7) hold for j > j0, and we shall, from now
on, work with the sequence (θj)j>j0 ; we also define θ := {θj : j > j0}.

Now given k > j0, we obtain from (5), for all max{j0, loga(loga e)} 6 j1 6 j 6 k,
using the inequality ax > 1 + x for all x > loga(loga e) and then (6) and (7):

mj −mk > ak
d

[(
1

b

)kd−(k−1)d

− 1

]
> ak

d d

2k1−d > 2(ab)k
d

.

So if we take C = 2, ζ = ab, tk = kd and β = 1
d
, we have that the hypotheses of

Proposition 9 are satisfied. Let also Q, Rk and θk be associated to θ by Proposition 7;
define now Φ(t) := t(1 + log

1/d
+ t) and observe that it is easy to see (see e.g. [10,

Chapter 1]) that one can have Ψ(t) 6 K3e
tdfor the complementary function Ψ to

Φ. There is no loss of generality, reducing ζ if necessary, to assume that one has
η := eζ2d−1 < 1.

Now fix a subset θ′ = {θir : 0 6 r 6 l} ⊂ θk (0 6 i0 < i1 < · · · < il 6 k) and
write, using ϕ = Ψ in [Proposition 7, (iv)],

ˆ
R2

Ψ

(∑
θ∈θ′

χrθQk

)
6 K ′3|Qk|ζ(2k)d

l∑
j=0

e(j+1)d
l∑

r=j

ζ−i
d
r ,

where K ′3 = K3e(C) > 0. Write then
l∑

r=j

ζ−i
d
r 6 ζ−i

d
l

l∑
r=j

ζ i
d
l−i

d
r 6 (k + 1)ζ−k

d

,

since we have ζ idl−idr 6 1 for all j 6 r 6 l. On the other hand one computes in a
similar fashion

l∑
j=0

ej
d

= el
d

l∑
j=0

ej
d−ld 6 (k + 1)ek

d

.
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Hence we obtain
ˆ
R2

Ψ

(∑
θ∈θ′

χrθQk

)
6 K ′3|Qk|(k + 1)2ζ(2k)d−kdek

d

.

Yet one has

(k + 1)2ζ(2k)d−kdek
d

= (k + 1)2
(
eζ2d−1

)kd
= (k + 1)2ηk

d → 0, k →∞.

Hence there exists a constant K ′′3 > 0, independent of k, for which one has

ˆ
R2

Ψ

(∑
θ∈θ′

χrθQk

)
6 K ′′3 |Qk|.

Combining now Proposition 9 and Lemma 2 for the particular sequence consid-
ered in this section, we get the following result.

Theorem 14. Assume that 0 < d < 1 is a real number. Let (aj) be a nonin-
creasing sequence of positive real numbers with 0 < infj aj 6 supj aj < 1 and define
a sequence (θj) by

θj := arctan
[
(aj)

jd
]
.

Under those assumptions, there exists a countable family of standard intervals in R2

denoted by Q and totally ordered by inclusion, satisfying the following properties
(we define Φ(t) := t(1 + log

1/d
+ t) for β > 0):

(i) the associated differentiation basis B(R) differentiates L1(R2);
(ii) for any Orlicz function Ψ satisfying Ψ = o(Φ) at ∞, the differentiation basis

Bθ(Q) fails to differentiate LΨ(R2);
(iii) there exists a differentiation basis B ⊆ Bθ(Q) that differentiates exactly

L log
1
d L(R2)—hence it also differentiates Lp(R2) for all p > 1.

Remark 15. Let (aj) and d be as above, that is let {aj} be a non-increasing
sequence of positive real numbers with 0 < a = infj aj 6 supj aj = b < 1 and
0 < d < 1. Then (aj)

jd cannot be lacunary according to the definition in [11].
Assume, by contradiction that there exist α and β satisfying

0 < α 6
aj+1

(j+1)d

ajj
d < β < 1.

Then, for each j > 2, we have

α
j−1

jd a1

1

jd 6 aj 6 β
j−1

jd a1

1

jd ,

so we must have limj aj = 0, and this contradicts the hypothesis infj aj = limj aj =
a > 0.
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