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Abstract. In this paper, we prove the existence and multiplicity results of solutions with
prescribed L2-norm for a class of nonlinear Chern–Simons–Schrödinger equations in R
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{
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r
(R2) : ‖u‖2

2
= c
}
. Here, c > 0 and F (s) :=

´

s

0
f(t) dt.

Under some mild assumptions on f , we show that critical points of Eκ unbounded from below on

Sr(c) exist for certain c > 0. In addition, we establish the existence of infinitely many critical points

{uκ

n
} of Eκ on Sr(c) provided that f is odd. Finally, we regard κ as a parameter and and present

a convergence property of uκ

n
as κ ց 0. These results improve and generalize the existing ones in

the literature.

1. Introduction

Jackiw and Pi in [13, 14] introduced a nonrelativistic model that the nonlinear
Schrödinger dynamics is coupled with the Chern–Simons gauge terms as follows:

(1.1)






iD0φ+ (D1D1 +D2D2)φ = −|φ|p−2φ,

∂0A1 − ∂1A0 = − Im(φ̄D2φ),

∂0A2 − ∂2A0 = Im(φ̄D1φ),

∂1A2 − ∂2A1 = −1
2
|φ|2,

where i denotes the imaginary unit, ∂0 =
∂
∂t

, ∂1 =
∂

∂x1
, ∂2 =

∂
∂x2

for (t, x1, x2) ∈ R
1+2,

φ : R1+2 → C is a complex scalar filed, Aµ : R
1+2 → R is the gauge filed and Dµ =

∂µ + iAµ is the covariant derivative for µ running over 0, 1, 2. The Chern–Simons
gauge theory describes the nonrelativistic thermodynamic behavior of large number
of particles in an electromagnetic field. This feature of the model is important for
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the study of the high temperature superconductor, Aharovnov–Bohm scattering and
the fractional quantum Hall effect.

The system (1.1) is invariant under the following gauge transformation

φ 7→ φeiχ, Aµ 7→ Aµ − ∂µχ,

where χ : R1+2 → R is an arbitrary C∞ function. Recently, the existence of stationary
states for system (1.1) has been extensively investigated, see for example [8, 9, 10,
11, 12, 17, 15, 22, 23, 28, 29, 32]. In these references, the authors seek the solutions
to (1.1) of the following form

(1.2)
φ(t, x) = u(|x|)e−iλt, A0(t, x) = k(|x|),
A1(t, x) =

x2
|x|2h(|x|), A2(t, x) = − x1

|x|2h(|x|).

If we insert the ansatz (1.2) into the system (1.1), then (1.1) is reduced to the
following nonlocal elliptic equation:

(1.3) −∆u− λu+

(
h2(|x|)
|x|2 +

ˆ ∞

|x|

h(s)

s
u2(s) ds

)
u = |u|p−2u, x ∈ R

2,

where h(s) = 1
2

´ s

0
ru2(r) dr. For more details about (1.1)–(1.3), we refer the readers

to [8, 9, 11, 22, 23, 25].
In the present paper, motivated by the fact that physicists often seek “normalized”

solutions, we search for solutions with prescribed L2-norm of the problem (1.3) with
a general nonlinearity:

(1.4) −∆u− λu+ κ

(
h2(|x|)
|x|2 +

ˆ ∞

|x|

h(s)

s
u2(s) ds

)
u = f(u), x ∈ R

2,

where λ ∈ R, κ > 0 and f verifies the following assumptions:

(f1) f ∈ C(R,R) and f(t) = o(|t|) as t→ 0;
(f2) there exists p > 4 such that f(t)t ≤ pF (t) for all t ∈ R, where F (t) :=

´ t

0
f(s) ds;

(f3) lim|t|→∞
F (t)
t4

= ∞;

(f4) the function f(t)t−2F (t)
|t|3t is strictly increasing on (−∞, 0) ∪ (0,∞);

(f5) f is odd.

Under the above conditions, it is well known (see [3, 16]) that a solution of (1.4) with
‖u‖22 = c can be obtained as a constrained critical point of the functional

(1.5) Eκ(u) =
1

2

ˆ

R2

|∇u|2 + κ

2

ˆ

R2

|u|2
|x|2

(
ˆ |x|

0

r

2
u2(r)dr

)2

−
ˆ

R2

F (u)

on the constraint
Sr(c) =

{
u ∈ H1

r (R
2) : ‖u‖22 = c, c > 0

}
.

The frequency λ, in this situation, can not be fixed any more and it appears as a
Lagrange parameter with respect to the constraint Sr(c).

More recently, normalized solutions for elliptic equations have received much
attention. See e.g. [1, 2, 3, 4, 5, 18, 19, 20, 21, 34]. Let we state some known results.
In [18], Jeanjean considered the following nonlinear Schrödinger equation:

(1.6) −∆u− λu = f(u), λ ∈ R, x ∈ R
N ,

where the following hypotheses on f are introduced:
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(H1) f : R → R is continuous and odd;
(H2) there exist α, β ∈ R satisfying 2 + 4

N
< α ≤ β < 2∗ such that

(1.7) 0 < αF (s) ≤ f(s)s ≤ βF (s), ∀s ∈ R\{0},
where 2∗ = 2N/(N − 2) if N ≥ 3 and 2∗ = ∞ if N = 2.

The condition F (s) > 0 in (H2) is not stated in [18] but used implicitly. Then it is
proved that (1.6) admits a couple of solutions (uc, λc) ∈ H1

r (R
N)×R

− with ‖uc‖22 = c
for N ≥ 2. Moreover, the author also indicated the bifurcation result associated with
(1.6), that is,

‖∇uc‖2 → ∞, λc → −∞ as c→ 0; ‖∇uc‖2 → 0, λc → 0 as c→ ∞.

Later, if (H1) and (H2) are satisfied, Bartsch and De Valeriola [1] obtained the
existence of infinitely many normalized solutions for (1.6).

In [3], Bellazzini et al. dealt with the following Schrödinger–Poisson equation:

(1.8) −∆u− λu+ (|x|−1 ∗ u2)u− |u|q−2u = 0, x ∈ R
3.

By using a mountain pass argument developed on

S(c) =
{
u ∈ H1(R3) : ‖u‖22 = c

}
, c > 0,

they established the existence of (uc, λc) ∈ S(c)×R
− a couple of solutions of (1.8)

for c > 0 sufficiently small and q ∈ (10
3
, 6). For the case q ∈ (2, 10

3
], we refer the

readers to [4, 5, 19]. Afterwards, based on [1, 3], Luo [20] has demonstrated that
when q ∈ (10

3
, 6), problem (1.8) admits an unbounded sequence of couples of solutions

(un, λn) ∈ S̄r(c)×R
− for each n ∈ N

+, where S̄r(c) = {u ∈ H1
r (R

3) : ‖u‖22 = c} for
c > 0. Very recently, using the techniques introduced in [1, 20], Luo and Wang
[21] established the existence of infinitely many couples of solutions {(ubn, λn)} ⊂
S̄r(c)×R

− for the following Kirchhoff type problem:

(1.9) −
(
a + b

ˆ

R3

|∇u|2dx
)
∆u− λu = |u|q−2u, x ∈ R

3,

for each n ∈ N
+ and q ∈ (14

3
, 6). Moreover, they also analyzed the asymptotic

behavior of ubn as b→ 0+.
To the best knowledge of ours, little is known about the existence of normalized

solutions of Chern–Simons–Schrödinger equations except for [8, 16, 33]. Set

(1.10) eq(c) := inf
u∈Sr(c)

Iq(u),

where the functional Iq is derived from (1.3) given by

Iq(u) =
1

2

ˆ

R2

|∇u|2 + 1

2

ˆ

R2

|u|2
|x|2

(
ˆ |x|

0

r

2
u2(r)dr

)2

− 1

q

ˆ

R2

|u|q, u ∈ H1
r (R

2).

It is standard that the minimizers of eq(c) are exactly critical points of Iq restricted
to Sr(c), and thus normalized solutions of (1.3). By scaling arguments, it is readily
seen that q = 4 is L2-critical exponent for (1.10) in the sense that for any c > 0,
eq(c) > −∞ if q ∈ (2, 4) and eq(c) = −∞ if q > 4.

In [8], Byeon et al. proved that problem (1.10) admits a positive minimizer pro-
vided that c > 0 is sufficiently small whenever q ∈ (3, 4) or c > 0 is arbitrary whenever
q ∈ (2, 3]. If c and q satisfy the above assumptions, then Yuan [33] obtained infinitely
many distinct pairs of solutions (un, λn) ⊂ H1

r (R
2) ×R

− of (1.3) for each n ∈ N
+

via the argument of Krasnoselski genus (see [26]). Furthermore, motivated by [1], the
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author also proved that for q > 4, (1.3) admits an unbounded sequence of couples of
solutions (un, λn) ⊂ H1

r (R
2)×R

− for c ∈ (0, c0) sufficient small.
In [16], Li and Luo considered problem (1.3) with q ≥ 4. For q = 4, they showed a

sufficient condition for the nonexistence of constraint critical points of Iq on Sr(c) for
certain c > 0 and obtained infinitely many minimizers of Iq on Sr(8π). When q > 4,
using a minimax procedure motivated by [1], the authors proved the multiplicity of
normalized solutions for (1.3) for c ∈ (0, 4π√

p−3
). Compared with [33], Li and Luo

presented a certain constant c0 =
4π√
p−3

, which improved the result for the case q > 4

in [33]. Moreover, the existence of normalized solutions for (1.3) was also considered
in [16]. To this end, they used the approach introduced in [24] to construct a suitable
submanifold of Sr(c), which is defined by a condition which is a combination of the
related Nehari functional and Pohozaev identity, i.e.,

(1.11) Ṽ (c) = {u ∈ Sr(c) : Q(u) = 0},
where

Q(u) =

ˆ

R2

|∇u|2 +
ˆ

R2

|u|2
|x|2

(
ˆ |x|

0

r

2
u2(r) dr

)2

− q − 2

q

ˆ

R2

|u|q.

Motivated by all results mentioned previously, our contribution in this paper is to
generalize the existence and the multiplicity result of normalized solutions for (1.3) in
[16, 33] to (1.4). We emphasize that, at least in our knowledge, does not exist in the
literature actually available results involving the existence of normalized solutions for
(1.4) with general nonlinearities. To state our main results, we give some definitions
and nations. Analogous to (1.11), set

V (c) = {u ∈ Sr(c) : Jκ(u) = 0}, m(c) := inf
u∈V (c)

Eκ(u),

where

(1.12) Jκ(u) =

ˆ

R2

|∇u|2 + κ

ˆ

R2

|u|2
|x|2

(
ˆ |x|

0

r

2
u2(r) dr

)2

−
ˆ

R2

[f(u)u− 2F (u)].

In addition, we shall prove that Eκ has a MP geometry on Sr(c) and m(c) = γ(c)
(see Lemma 2.6).

Definition 1.1. [3, Definition 1.1] Given c > 0, we say that Eκ(u) has a MP
geometry on Sr(c), if there exists Kc > 0 such that

γ(c) = inf
g∈Γc

max
t∈[0,1]

Eκ(g(t)) > max{max
g∈Γc

Eκ(g(0)),max
g∈Γc

Eκ(g(1))}

holds in the set Γ(c) := {g ∈ C([0, 1], Sr(c)) : g(0) ∈ AKc
and Eκ(g(1)) < 0}, where

AKc
= {u ∈ Sr(c) : ‖∇u‖22 ≤ Kc}.

Our main results are as follows:

Theorem 1.1. Assume that (f1)–(f4) hold.

(i) Then for any c > 0 and κ > 0, Eκ has a MP geometry on Sr(c).
(ii) Then there exists a certain c∗ > 0 such that for any c ∈ (0, c∗] and κ > 0, there

exists a couple of solution (uc, λc) ∈ Sr(c)×R
− for (1.4) with Eκ(uc) = m(c)

and uc is nonnegative. In addition, ‖∇uc‖2 → ∞ and λc → −∞ as c→ 0.

Theorem 1.2. Assume that (f1)–(f5) hold.
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(i) Then for any c ∈ (0, 4π√
p−3

) and κ ∈ (0, p − 3), problem (1.4) admits an

unbounded sequence of couples of solutions (un, λn) ∈ Sr(c) × R
− for each

n ∈ N
+.

(ii) Then there exists κ0 > 0 such that for any κ ∈ (0, κ0) and c > 0, problem (1.4)
admits an unbounded sequence of couples of solutions (uκn, λ

κ
n) ∈ Sr(c)×R

−

for each n ∈ N
+.

Corollary 1.3. Assume that (f1)–(f5) hold. Then there exists an unbounded
sequence of couples of solutions {(un, λn)} ⊂ Sr(c)×R

− for the following equation:

(1.13) −∆u− λu = f(u), in R
2.

Motivated by Theorem 1.2 (ii) and Corollary 1.3, we attempt to investigate the
convergence property of uκn and λκn found in Theorem 1.2 (ii) as κ → 0. Then we
have the following theorem.

Theorem 1.4. Let {(uκn, λκn)} ⊂ Sr(c)×R
− be found in Theorem 1.2 (ii). Then

for any sequence {κm} → 0+ as m → ∞, there exists a subsequence of {κm}, still
denoted by {κm}, such that for any n ∈ N

+, (uκm
n , λκm

n ) → (u0n, λ
0
n) as m → ∞,

where {(u0n, λ0n)} ⊂ Sr(c)×R
− is a sequence of couples of solutions for (1.13).

Remark 1.1. It is easy to check that the function

(1.14) f(s) =

m∑

i=1

|s|pi−2s for pi > 4, 1 ≤ i ≤ m,

satisfies (f1)–(f5) and κ = 1 ∈ (0, p − 3) due to p > 4. Thus, the results of The-
orem 1.1 (ii) and Theorem 1.2 (i) generalize and improve ones of Theorems 1.2–1.3
in [16] and Theorem 1.1 (3) in [33]. Moreover, the solutions obtained in Theorem
1.1 are mountain pass type and thus its Morse index is 1, which is not considered in
[16, 33].

Remark 1.2. The strict monotonicity of the function c 7→ m(c) is essential
for the proof of Theorem 1.1 (ii), as well as Theorem 1.2 in [16]. To prove the

property, [16] gave the restriction that c ∈ (0, (2p− 4)
2−p

2p−5 ] for p > 4. As described
in Lemma 2.8, however, we obtained a larger range that c ∈ (0, 4π√

2p−4
] for p > 4. In

particular, due to the general nonlinearity f , it does not seems possible to deduce
the strict monotonicity of c 7→ m(c). In addition, it is worth pointing out that in [16,

Theorem 1.2] λc should be negative due to c∗ := (2p− 4)
2−p

2p−5 < 4π√
p−3

.

Remark 1.3. The idea of Theorem 1.4 comes from [17], which studied the exis-
tence and asymptotic behavior of least energy sign-changing solutions for (1.4) with
f(u) = |u|q−2u (q > 6). But in [17] there is no information about the L2-norm of
the solutions. Hence, Theorems 1.1–1.3 can be also regarded as a complement of the
main results in [17]. In addition, the results of Theorem 1.2 (ii) and Theorem 1.4 are
new, even for problem (1.3).

Obviously, the conditions (f1)–(f5) imply that the functional Eκ is no longer
bounded form below on Sr(c). Therefore, the minimization method on Sr(c) used
in [8] does not work. To prove Theorem 1.1, we construct a submanifold V (c) of
Sr(c), on which Eκ is bounded from below and then we prove that the minimum of
Eκ on V (c) is attained. This approach is motivated by [16]. However, we have to
overcome three main difficulties. Firstly, different from [16], it does not seem possible
to prove the coercivity of Eκ on V (c). Therefore, the first difficulty is to verify the
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boundedness of the minimizing sequence {un} ⊂ V (c) of Eκ. We use the assumption
(H2) in [18] to deal with such a difficulty. But the presence of the nonlocal term

(1.15)

ˆ

R2

|u|2
|x|2

(
ˆ |x|

0

r

2
u2(r) dr

)2

in Eκ would require extra efforts to be treated. Secondly, because it is not assumed
that f is differentiable, it is difficult to prove that Eκ|V (c) is a natural constraint of
Eκ|Sr(c), which is not derived through the use of Lagrange multiplier theorem adopted
in [16]. Instead, we use the quantitative deformation lemma on Sr(c), which was
introduced by [3]. Finally, although the workspace is H1

r (R
2), the difficulty that the

weak limit ū ∈ H1
r (R

2) of {un} does not necessarily lie in V (c) still exists as observed
in [16]. Because our minimization problem is constrained on a submanifold of Sr(c)
but not on that of H1

r (R
2), it is more difficult to prove that V (c) is weakly closed.

To circumvent this obstacle, we prove the monotonicity of the function c 7→ m(c)
and borrow some ideas from [27].

For Theorem 1.2, Since Eκ is unbounded from below on Sr(c), the genus of the
sublevel set

Ed
κ : {u ∈ Sr(c) : Eκ(u) ≤ d}

is always infinite. This shows that the classical argument based on the Krasnoselski
genus seems not applicable to our case. To prove Theorem 1.2, we mainly follow the
strategy of [1] to construct a special (PS) sequence at high energy level γn(c) for each
fixed n ∈ N

+ and prove its boundedness and compactness. Compared with [1], we
get rid of the condition 0 < αF (s) ≤ f(s)s in (H2), which seems essential to ensure
the boundedness of the (PS) sequence in [1], as well as in [18]. Instead, we assume
that c ∈ (0, 4π√

p−3
) and κ ∈ (0, p − 3) to prove the boundedness of (PS) sequence.

In addition, the restriction that c ∈ (0, 4π√
p−3

) originates in the need to show that

the associated Lagrange multiplier λc are strictly negative. This property is used to
recover the compactness of (PS) sequence.

Remark 1.4. Let N = 2 in (H2). Obviously, (H1) and (H2) imply (f1)–(f3),
(f5). It is easy to check that (1.14) also satisfies (H1) and (H2). However, the
following functions

f(s) = 4s3 ln(1 + s2) +
2s5

1 + s2

and

f(s) = s3 + |s|p−2s, p > 4,

satisfy (f1)− (f4), but do not satisfy (H2).

The remainder of this paper is organized as follows. In Section 2, we give the
proof of Theorem 1.1. Sections 3 is devoted to dealing with the proof of Theorems 1.2
and 1.4 and Corollary 1.3.

Notation. Throughout the article, we let ut(x) := tu(tx) for t > 0. Denote by
C, Ck, k = 1, 2, · · · various positive constants whose exact value is inessential. For
r > 0 and y ∈ R

2, we denote by Br(y) the open ball in R
2 with center y and radius

r. We denote by → (⇀) the strong (weak) convergence. We consider the Hilbert
space H1(R2) with the norm

‖u‖ =

(
ˆ

R2

(|∇u|2 + u2)

) 1
2

.
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H1
r (R

2) denotes the set of the radially symmetric functions in H1(R2). Denote the
standard norm of Lp(R2) (1 ≤ p < ∞) by ‖u‖p. Recall that a sequence {un} ⊂
H1(R2) is said to be a PS sequence for E if

E(un) is bounded and E ′(un) → 0 as n→ ∞.

We say E satisfies the PS condition if any PS sequence contains a convergent subse-
quence.

2. Proof of Theorem 1.1

In this section, without loss of generality, let κ = 1. For simplicity, denote by
E(u) and J(u) the functionals E1(u) and J1(u), respectively. Let

A(u) :=

ˆ

R2

|u|2
|x|2

(
ˆ |x|

0

r

2
|u|2 dr

)2

.

From now on we assume that (f1)− (f4) hold. Similar to the discussion of Proposi-
tion 2.3 and Lemma 3.2 in [8], we can get the following conclusions.

Lemma 2.1. A ∈ C1(H1
r (R

2),R). Moreover, if un ⇀ u in H1
r (R

2), as n → ∞,
then

lim
n→∞

A(un) = A(u), lim
n→∞

〈A′(un), un〉 = 〈A′(u), u〉 and lim
n→∞

〈A′(un), ϕ〉 = 〈A′(u), ϕ〉,

for any ϕ ∈ E.

Lemma 2.2. Let b, c and d be real constants and u ∈ H1
r (R

2) be a weak solution
of the equation:

∆u+ bu+ c

(
h2(|x|)
|x|2 +

ˆ ∞

|x|

h(s)

s
u2(s) ds

)
u+ df(u) = 0, x ∈ R

2,

where h(s) = 1
2

´ s

0
ru2(r)dr. Then there holds the following Pohozaev identity

b

ˆ

R2

|u|2 + 2cA(u) + 2d

ˆ

R2

F (u) = 0.

To estimate the quantity A(u), we present the following lemma.

Lemma 2.3. [16, Lemma 2.3] For u ∈ H1
r (R

2), the following inequality holds

A(u) ≤ 1

16π2
‖u‖42‖∇u‖22.

Now we give some preliminary lemmas to show some properties of V (c).

Lemma 2.4. For each u ∈ Sr(c),

(2.1) E(u) ≥ E(ut) +
1− t2

2
J(u), ∀t ≥ 0.

Proof. We first claim that the following inequality holds:

(2.2)
1− t2

2
f(τ)τ + (t2 − 2)F (τ) +

1

t2
F (tτ) ≥ 0, ∀t > 0, τ ∈ R.

Indeed, it is evident that (2.2) holds for τ = 0. For τ 6= 0, we denote

g(t) =
1− t2

2
f(τ)τ + (t2 − 2)F (τ) +

1

t2
F (tτ), ∀t > 0.
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After direct calculations, we see that

g′(t) = t|τ |4
[
f(tτ)tτ − 2F (tτ)

(t|τ |)4 − f(τ)τ − 2F (τ)

|τ |4
]
.

This relation and (f4) mean that g′(t) > 0 for t > 1 and g′(t) < 0 for 0 < t < 1, that
is,

(2.3) g(t) > g(1) = 0, for t 6= 1.

Therefore, (2.2) follows. Note that

(2.4) E(ut) =
t2

2

ˆ

R2

|∇u|2 + t2

2
A(u)− 1

t2

ˆ

R2

F (tu).

Then, from (2.2), (2.4) and (1.12), we get that

(2.5)

E(u)− E(ut) =
1− t2

2

ˆ

R2

|∇u|2 + 1− t2

2
A(u) +

ˆ

R2

(
1

t2
F (tu)− F (u)

)

=
1− t2

2
J(u) +

ˆ

R2

[
1− t2

2
f(u)u+ (t2 − 2)F (u) +

1

t2
F (tu)

]

≥ 1− t2

2
J(u),

and this proves (2.1). �

Lemma 2.5. For each u ∈ Sr(c), there exists a unique t̃ = t(u) > 0 such that

ut̃ ∈ V (c). Moreover, E(ut̃) = maxt≥0 E(u
t).

Proof. Consider a function Φ(t) := E(ut) on [0,∞). By (f1)–(f3) and (2.4), it
is easy to check that Φ(0) = 0, Φ(t) > 0 for t > 0 small and Φ(t) < 0 for t large.
Hence, maxt≥0 Φ(t) is achieved at t̃ = t(u) > 0 and then Φ′(t̃) = 0, that is,

t̃2
ˆ

R2

|∇u|2 + t̃2A(u)− 1

t̃2

ˆ

R2

[f(t̃u)t̃u− 2F (t̃u)] = 0.

This shows that J(ut̃) = 0 and ut̃ ∈ V (c).
Next we prove that t̃ is unique for any u ∈ Sr(c). Let t1, t2 > 0 be such that

ut1, ut2 ∈ V (c) and t2 = at1. Then J(ut1) = J(ut2) = 0. From (2.5), one has

E(ut1) = E(ut2) +

ˆ

R2

[
1− a2

2
f(u)u+ (a2 − 2)F (u) +

1

a2
F (au)

]

and

E(ut2) = E(ut1) +

ˆ

R2

[
1− a−2

2
f(u)u+ (a−2 − 2)F (u) + a2F (a−1u)

]
,

which together with (2.3) imply that a = 1, i.e., t1 = t2. In addition, it is readily

checked that E(ut̃) = maxt≥0 E(u
t). �

Thanks to Lemma 2.5, we get that

(2.6) m(c) = inf
u∈Sr(c)

max
t≥0

E(ut) > 0.

Let t→ 0 in (2.2), then we get from (f1) and (2.3) that

(2.7) f(τ)τ − 4F (τ) > 0, ∀τ ∈ R\{0}.
By (f2) and (2.7), one has

(2.8) 4F (t) < f(t)t ≤ pF (t), ∀t ∈ R\{0},
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which implies that for all t ∈ R,

(2.9)

{
|s|pF (t) ≤ F (ts) ≤ |s|4F (t), if |s| ≤ 1;

|s|4F (t) ≤ F (ts) ≤ |s|pF (t), if |s| ≥ 1;

and F (t) > 0 for t 6= 0. In particular, taking t = 1 in (2.9), we deduce from (f1) that
for any ε > 0, there exists Cε > 0 such that

(2.10) |F (s)| ≤ ε|s|2 + Cε|s|p for all s ∈ R.

In what follows we shall need the following Gagliardo–Nirenberg type result (see
[30]): let q ≥ 2 and u ∈ H1

r (R
2), then

(2.11) ‖u‖qq ≤ C(q)‖∇u‖q−2
2 ‖u‖22

with equality holds for u = Wq , where C(q) = q
2
‖Wq‖2−q

2 and, up to translations,
Wq is the unique ground state solution of

−q − 2

2
∆W +W = |W |q−2W, x ∈ R

2.

Lemma 2.6. For c > 0, E has a MP geometry on Sr(c). Moreover, m(c) = γ(c),
where γ(c) is defined in Definition 1.1.

Proof. It follows from (2.7) that for any u ∈ Sr(c),

(2.12) E(u)− 1

2
J(u) =

1

2

ˆ

R2

[f(u)u− 4F (u)] > 0.

We next show that there exist 0 < k1 < k2 such that

(2.13) 0 < αk1 := sup
y∈Ak1

E(u) < νk2 := inf
u∈∂Ak2

E(u),

where Ak is introduced in Definition 1.1. Note that by (2.9), (2.11) and Lemma 2.3,
we see that

(2.14)
|E(u)| ≤ 1

2
‖∇u‖22 +

1

2
A(u) + F (1)

(
‖u‖44 + ‖u‖pp

)

≤ 1

2
‖∇u‖22 + C1‖∇u‖22 + C2‖∇u‖22 + C3‖∇u‖p−2

2 .

In particular, αk1 → 0+ as k1 → 0+. On the other hand, from (2.10), it follows that

(2.15)
E(u) =

1

2
‖∇u‖22 +

1

2
A(u)−

ˆ

R2

F (u) ≥ 1

2
‖∇u‖22 − ε‖u‖22 − Cε‖u‖pp

≥ 1

2
‖∇u‖22 − εc− C2‖∇u‖p−2

2 .

Thus, since p > 4 and ε is arbitrary, we have νk2 ≥ 1
8
k2 for k2 > 0 small. These two

observations imply that (2.13) holds. We now fix 0 < k1 < k2 as in (2.13). From (f3)
and (2.4), it is readily checked that

(2.16) ‖∇ut‖ → ∞ and E(ut) → −∞ as t→ ∞.

Thus Γc 6= ∅. Then form the definition of γ(c), we get that γ(c) ≥ νk2 > 0.
For any u ∈ V (c), from ‖∇ut‖22 = t2‖∇u‖22 and (2.16), we deduce that there exist

t1 > 0 small and t2 > 0 large such that ut1 ∈ Ak1 and E(ut2) < 0. So, if we define

(2.17) g(τ) = u(1−τ)t1+τt2 , for τ ∈ [0, 1],
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then we obtain a path in Γc. Using (2.6),

γ(c) ≤ max
τ∈[0,1]

E(g(τ)) ≤ max
τ≥0

E(uτ ) = E(u)

and thus γ(c) ≤ m(c). On the other hand, from (f2), (1.12) and (2.10), it follows
that

(2.18)

J(u) ≥ ‖∇u‖22 + A(u)− (p− 2)

ˆ

R2

F (u)

≥ ‖∇u‖22 − ε(p− 2)‖u‖22 − Cε‖u‖pp
≥ ‖∇u‖22 − ε(p− 2)c− C2‖∇u‖p−2

2 .

The fact that p > 4 and ε is arbitrary ensures that J(u) > 0 for ‖∇u‖22 < k1. Then
(2.12) implies that J(g([0, 1]))∩ V (c) 6= ∅ for any g ∈ Γ(c). Hence γ(c) ≥ m(c). The
proof is completed. �

Lemma 2.7. For c > 0, E is bounded from below on V (c). Moreover for any
u ∈ V (c), there exists a constant ρ > 0 such that ‖∇u‖22 ≥ ρ.

Proof. For any u ∈ V (c), it follows from Lemma 2.6 that that m(c) = γ(c) ≥
νk2 > 0. This together with (2.14) implies that ‖∇u‖22 ≥ ρ. �

Lemma 2.8. For any c ∈ (0, 4π√
2p−4

], the function c 7→ m(c) is non-increasing,

where p is given in (f2).

Proof. For any 0 < c1 < c2 ≤ 4π√
2p−4

and p > 4, from Lemma 2.5 and (2.4), it

follows that there exists {un} ⊂ V (c1) such that

E(un) = max
t≥0

E(utn) ≤ m(c1) +
1

n
.

We first claim that for any 0 < c1 < c2 ≤ 4π√
2p−4

and p > 4, then

c
1

p−2

2 (c22 − c21) ≤ 16π2(c
1

p−2

2 − c
1

p−2

1 ).

Indeed, it is sufficient to prove that

c22 ≤ 16π21− a1/(2−p)

1− a−2
, where a :=

c2
c1
> 1.

Set the function f(x) = 1−x
1−x2p−4 , x ∈ (0, 1). After direct calculations, we see that

f ′(x) =
1

(1− x2p−4)2
[
(5− 2p)x2p−4 + (2p− 4)x2p−5 − 1

]
:=

1

(1− x2p−4)2
g(x);

g′(x) = (2p− 5)(2p− 4)x2p−6(1− x).

From the expression of g′(x) and p > 4, we know that g(x) ≤ g(1) = 0 and thus
f ′(x) < 0 for x ∈ (0, 1). Then we have that

f(x) ≥ lim
x→1−

1− x

1− x2p−4
=

1

2p− 4
, ∀x ∈ (0, 1).

This proves the assertion. Then it is easy to check that for n ∈ N
+,

c21
16π2

(
a2 − a

1
p−2

)
‖∇un‖22 ≤

(
a

1
p−2 − 1

)
‖∇u‖22,

which together with Lemma 2.3 shows that

(2.19) ‖∇un‖22 + a2A(un) ≤ a
1

p−2 (‖∇un‖22 + A(un)), ∀n ∈ N
+.
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Let vn = un(a
− 1

2x), then ‖vn‖22 = c2. Note that (f2) implies that F (τ)
|τ |p−1τ

is nonin-

creasing in R\{0}. Therefore, for any τ ∈ R\{0},

(2.20)

0 ≤
(
F (τ)

|τ |p − F (a
1

2(p−2) τ)

(a
1

2(p−2) |τ |)p

)
|τ |p

= F (τ)− a−
p

2(p−2)F
(
a

1
2(p−2) τ

)
≤ aF (τ)− a

p−4
2(p−2)F

(
a

1
2(p−2) τ

)

= aF (τ)− a
− 1

(p−2)F
(
a

1
2(p−2) τ

)
− a

− 1
(p−2) (a

p−2
2(p−2) − 1)F

(
a

1
2(p−2) τ

)

< aF (τ)− a−
1

(p−2)F
(
a

1
2(p−2) τ

)
,

since a > 1 and p > 4. In virtue of Lemma 2.5, there exists tn > 0 such that
vtnn ∈ V (c2). Then by (2.19) and (2.20), we see that

m(c2) ≤ E(vtnn ) =
t2n
2

(
‖∇un‖22 + a2A(un)

)
− a

t2n

ˆ

R2

F (tnun)

≤ 1

2
t2na

1
(p−2)

(
‖∇un‖22 + A(un)

)
− a

t2n

ˆ

R2

F (tnun)

≤ E(ua
1

2(p−2) tn
n ) +

a−
1

(p−2)

t2n

ˆ

R2

F
(
a

1
2(p−2) tnun

)
− a

t2n

ˆ

R2

F (tnun)

< m(c1) +
1

n
,

which shows that m(c2) ≤ m(c1) by letting n→ ∞. �

Lemma 2.9. There exists c∗ > 0 such that for any c ∈ (0, c∗], m(c) is achieved.

Proof. It follows from Lemma 2.7 that m(c) ≥ νk2 > 0. Take

(2.21) c∗ := min

{
4π√
2p− 4

, (8C(4)F (1))−1, (C(p)F (1))−18
2−p

2 (m(c))
4−p

2

}
,

where C(q) and p is given in (2.11) and (f2), respectively. Let {un} ⊂ V (c) be such
that E(un) → m(c). Now we show that {‖∇un‖2} is bounded. Suppose arguing by

contradiction ‖∇un‖2 → ∞. Let tn =

√
8m(c)

‖∇un‖2 . Then from (2.1), (2.4), (2.9), (2.11)

and J(un) = 0, we deduce

(2.22)

m(c) + o(1) = E(un) ≥ E((un)
tn)

=
t2n
2
‖∇un‖22 +

t2n
2
A(un)−

1

t2n

ˆ

R2

F (tnun)

≥ t2n
2
‖∇un‖22 − F (1)

ˆ

R2

(t2n|un|4 + tp−2
n |un|p)

≥ t2n
2
‖∇un‖22 − cF (1)C(4)t2n‖∇un‖22 + cF (1)C(p)tp−2

n ‖∇un‖p−2
2

≥ 4m(c)− cF (1)
(
8m(c)C(4) + C(p)(8m(c))(p−2)/2

)
≥ 2m(c),

which contradicts m(c) > 0. Thus, {‖∇un‖2} is bounded and then {un} is also
bounded in H1

r (R
2). Then, there exists u 6= 0 such that, taking a subsequence if
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necessary, 




un ⇀ u in H1
r (R

2),

un → u in Lq(R2),

un → u a.e. in R
2,

for q ∈ (2,∞), and thus by (2.7) and (2.10), we have

(2.23)

ˆ

R2

f(un)un → f(u)u and

ˆ

R2

F (un) → F (u).

Otherwise, u = 0. Then it follows from (1.12) and (2.23) that ‖∇un‖2 → 0 and
A(un) → 0, which and (2.23) imply E(un) → 0, that is, m(c) = 0. This is a
contradiction. Next we suppose that ‖u‖22 = c̄ ∈ (0, c]. Then from (1.12), (2.23),
Lemma 2.1 and weak lower semi-continuity of norm, we get

(2.24) J(u) ≤ lim inf
n→∞

J(un) = 0.

In virtue of Lemma 2.5, there exists tu > 0 such that utu ∈ V (c̄). By (2.1), (2.12),
(2.23)–(2.24) and Lemma 2.8, one has

(2.25)

m(c̄) ≥ m(c) = lim
n→∞

(
E(un)−

1

2
J(un)

)

=
1

2

ˆ

R2

(f(u)u− 4F (u)) = E(u)− 1

2
J(u) ≥ E(utu)− t2u

2
J(u)

≥ m(c̄)− t2u
2
J(u).

This shows that J(u) = 0 and m(c) = m(c̄). To this end, we only show that c̄ = c.
Arguing indirectly, suppose that c̄ < c. Let vn := un − u, then by the Brezis–Lieb
Lemma [31, Lemma 1.32],

‖vn‖22 = c− c̄+ on(1).

We may assume that for large n, there exist tn > 0 and βn ≥ c−c̄
2

such that vtnn ∈
V (βn). Using the previous argument in (2.25), for large n, one has

on(1) = E(vn)−
1

2
J(vn) ≥ E(vtnn )− t2n

2
J(vn)

≥ m(βn) + on(1) ≥ m(c) + on(1).

This is a contradiction and then the proof is complete. �

The above lemma shows that the set

M(c) :=

{
uc ∈ V (c) : E(uc) = inf

u∈V (c)
E(u)

}

is not empty.

Lemma 2.10. For each uc ∈ M(c), there exists a λc ∈ R such that (uc, λc) ∈
H1

r (R
2)×R solves (1.4).

Proof. From Lagrange multiplier theorem, to prove the lemma, it suffices to show
that any uc ∈ M(c) is a critical point of E|Sr(c). The idea of the proof comes from
Lemma 6.1 in [3]. We give a detailed proof here for readers’ convenience.

Let uc ∈M(c) and suppose, by contradiction, that E ′|Sr(c)(uc) 6= 0. Then by the
continuity of E ′, there exist δ > 0 and ̺ > 0 such that

v ∈ Buc
(3δ) ⇒ ‖E ′|Sr(c)(v)‖H−1

r (R2) ≥ ̺,
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where Buc
(δ) := {v ∈ Sr(c) : ‖v − uc‖ ≤ δ}.

Let ε := {m(c)
4
, ̺δ

8
}, then [3, Lemma 6.1] yields a deformation η ∈ C([0, 1] ×

Sr(c), Sr(c)) such that

(i) η(1, v) = v if E(u) < m(c)− 2ε or E(u) > m(c) + 2ε;
(ii) η(1, Em(c)+ε ∩ Buc

(δ)) ⊂ Em(c)−ε, where Ed := {u ∈ Sr(c) : E(u) ≤ d};
(iii) E(η(1, v)) ≤ E(v), ∀v ∈ Sr(c).

Now let g ∈ Γ(c) be the path constructed in (2.17) by choosing u = uc ∈ V (c).
By the proof of Lemma 2.6, we can assume without restriction that supu∈AKc

E(u) <

γ(c)/2. This and (i) show that η(1, g(τ)) ∈ Γ(c). Note that since E(g(τ)) ≤ E(uc) =
m(c) = γ(c) for all τ ∈ [0, 1], one of the following three cases must occur:

(1) If g(τ) ∈ Sr(c)\Buc
(δ), then by (iii) and Lemma 2.2,

E(η(1, g(τ))) ≤ E(g(τ) < E(uc) = γ(c).

(2) If g(τ) ∈ Eγ(c)−ε, then using (iii),

E(η(1, g(τ))) ≤ E(g(τ) ≤ γ(c)− ε.

(3) If g(τ) ∈ E−1([m(c)− ε,m(c) + ε]) ∩Buc
(δ), then by (ii),

E(η(1, g(τ))) ≤ γ(c)− ε.

Thus we have that

(2.26) max
τ∈[0,1]

E(η(1, g(τ))) < γ(c),

which contradicts the definition of γ(c). �

Lemma 2.11. If uc ∈ H1(R2) is a weak solution of (1.4), then J(uc) = 0.
Furthermore, if λ ≥ 0, then the only solution of (1.4) fulfilling ‖uc‖22 < 4π√

p−3
is null

function.

Proof. It follows from Lemma 2.2 that the following Pohozaev identity holds for
uc ∈ H1(R2) weak solution of (1.4):

(2.27) λ

ˆ

R2

|uc|2 − 2A(uc) + 2

ˆ

R2

F (uc) = 0.

By multiplying (1.4) by uc and integrating, we derive a second identity

(2.28) ‖∇uc‖22 − λ

ˆ

R2

|uc|2 + 3A(uc)−
ˆ

R2

f(uc)uc = 0.

Thus we have immediately

‖∇uc‖22 + A(uc)−
ˆ

R2

(f(uc)uc − 2F (uc)) = 0,

that is, J(uc) = 0. Then by Lemma 2.3, (2.27) and (2.28), we have

(2.29)

λ‖uc‖2 =
2p− 6

p− 2
A(uc)−

2

p− 2
‖∇uc‖22 +

2

p− 2

ˆ

R2

[f(uc)uc − pF (uc)]

≤ 2p− 6

p− 2
A(uc)−

2

p− 2
‖∇uc‖22

≤
(

p− 3

8π2(p− 2)
‖uc‖2 −

2

p− 2

)
‖∇uc‖22 ≤ 0,

if ‖uc‖2 < 4π√
p−3

. Thus uc = 0. �
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Lemma 2.12. For any λ > 0 and κ > 0, there exists no positive solution to
(1.4) in H1

r (R
2).

Proof. By (2.8), we have f(τ)τ > 0 for τ 6= 0. Then the rest of proof is similar
to [16, Lemma 2.9] or [8, Proposition 4.2]. So we omit it. �

Proof of Theorem 1.1. Point (i) follows form Lemma 2.6.
By Lemmas 2.5, 2.7 and 2.9, it is enough to show that for any 0 < c ≤ c∗, E|V (c)

attains its minimum at uc, where c∗ is given by (2.21). Since c∗ ≤ 4π√
2p−4

< 4π√
p−3

for

p > 4, the first part of point (ii) follows from Lemmas 2.10-2.12. To end this, by
J(uc) = 0, (2.8), (2.10) and (2.11) yields

‖∇uc‖22 ≤
ˆ

R2

[f(uc)uc − 2F (uc)] ≤ ε‖uc‖22 + Cε‖uc‖pp

≤ ρ1
2

+ C1‖uc‖pp ≤
ρ

2
+ C2‖∇uc‖p−2

2 c,

where ρ is given in Lemma 2.7. Thus,

(2.30) ‖∇uc‖22 ≤ 2C2‖∇uc‖p−2
2 c.

Thanks to p > 4, (2.30) tells us that ‖∇uc‖2 → ∞ as c→ 0+. Moreover, we deduce
from (2.29) that

λc ≤
1

c

(
p− 3

8π2(p− 2)
c− 2

p− 2

)
‖∇uc‖22 ≤ − 1

c(p− 2)
‖∇uc‖22 → −∞,

as c→ 0+. Thus the proof is completed. �

3. Proof of the multiplicity results

In this section, we shall prove Theorems 1.2–1.4. From now on, we assume that
(f1)–(f5) hold. Let X = H1

r (R
2) and {Vn} ⊂ X be a strictly increasing sequence

of finite-dimensional linear subspaces such that
⋃

n Vn is dense in X. In addition, we
denote the orthogonal space of Vn in X and the dual space of X by V ⊥

n and X∗,
respectively.

Lemma 3.1. [1, Lemma 2.1] For q > 2 there holds:

µn(q) := inf
u∈V ⊥

n−1

´

R2(|∇u|2 + |u|2)
(´

R2 |u|q
)2/q = inf

u∈V ⊥

n−1

‖u‖2
‖u‖2q

→ ∞, as n→ ∞.

Now for c > 0 fixed and for each n ∈ N
+, we define

̺n := L− 2
p−2µn(p)

p

p−2 with L = max
x>0

(x2 + c)p/2

xp + cp/2

and

(3.1) Bn := {u ∈ V ⊥
n−1 ∩ Sr(c) : ‖∇u‖22 = ̺n}.

Then we have:

Lemma 3.2. bn := infu∈Bn
Eκ(u) → ∞ as n→ ∞. In particular, we can assume

that bn ≥ 1 for any n ∈ N
+ without any restriction.
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Proof. For any u ∈ Bn, using (2.10), we get that

(3.2)

Eκ(u) =
1

2
‖∇u‖22 +

κ

2
A(un)−

ˆ

R2

F (u) ≥ 1

2
‖∇u‖22 − C1c−

1

p
‖ u‖pp

≥ 1

2
‖∇u‖22 − C1c−

1

pµn(p)p/2
(‖∇u‖22 + c)

p

2

≥ 1

2
‖∇u‖22 − C1c−

L

pµn(p)p/2
(‖∇u‖p2 + c

p

2 )

=

(
1

2
− 1

p

)
̺n − C1c−

L

pµn(p)p/2
c

p

2 .

Combining this estimate and Lemma 3.1, we deduce from p > 4 that bn → ∞ as
n→ ∞. �

Next we follow the arguments in [1] to set up a min-max scheme. Define a map

H : X ×R → X by H(u, s) = esu(esx) and a C1 functional Ẽκ : X ×R → X given
by

Ẽκ(u, s) =
e2s

2

ˆ

R2

|∇u|2 + e2s

2
A(u)− e−2s

ˆ

R2

F (esu).

It is clear that Ẽκ(u, s) = Eκ(H(u, s)) and for all s ∈ R, H(u, s) ∈ Sr(c) if u ∈ Sr(c).
We know from Lemmas 2.3 and 3.1 that

(3.3)

{
‖∇H(u, s)‖2 → 0, Ẽκ(u, s) → 0, as s→ −∞;

‖∇H(u, s)‖2 → ∞, Ẽκ(u, s) → −∞, as s→ ∞.

Thus by virtue of the fact Vn is finite dimensional, for each n ∈ N
+, there exists a

sn > 0 such that

(3.4) ḡn : [0, 1]× (Sr(c) ∩ Vn) → Sr(c), ḡn(t, u) = H(u, (2t− 1)sn)

satisfies

(3.5)

{
‖∇ḡn(0, u)‖2 < ̺n, ‖∇ḡn(1, u)‖2 > ̺n;

Eκ(ḡn(0, u)) < bn, Eκ(ḡn(1, u)) < bn.

Now we define

(3.6)
Γn := {g : [0, 1]× (Sr(c) ∩ Vn) → Sr(c)

∣∣g is continuous, odd in u

and such that ∀u : g(0, u) = ḡn(0, u), g(1, u) = ḡn(1, u)}.
Clearly ḡn ∈ Γn. Using the linking property (see [1, Lemma 2.3]), we have immedi-
ately the following intersection result:

Lemma 3.3. For each n ∈ N
+,

(3.7) γκn(c) := inf
g∈Γn

max
t∈[0,1],u∈Sr(c)∩Vn

Eκ(g(t, u)) ≥ bn.

Next we will show that {γκn(c)} is indeed a sequence of critical values of Eκ on
Sr(c). To do that, we first show that there exists a bounded (PS) sequence at each
level γκn(c). We fix an arbitrary n ∈ N

+ from now on. To this end, we adopt the
approach developed by [18], already applied in [1, 16]. Set

γ̃κn(c) = inf
g̃∈Γ̃n

max
t∈[0,1],u∈Sr(c)∩Vn

Ẽκ(g̃(t, u)),
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where

Γ̃n := {g̃ :[0, 1]× (Sr(c) ∩ Vn) → Sr(c)×R
∣∣g̃ is continuous, odd in u

and such that H ◦ g̃ ∈ Γn}.

Clearly, for any g ∈ Γn, g̃ := (g, 0) ∈ Γ̃n. From the fact that the maps

ϕ : Γn → Γ̃n, g 7→ ϕ(g) := (g, 0) and ψ : Γ̃n → Γn, g̃ 7→ ψ(g̃) := H ◦ g̃

satisfy

Ẽκ(ϕ(g)) = Eκ(g) and Eκ(ψ(g̃)) = Ẽκ(g̃),

we get that γ̃κn(c) = γκn(c). Following [3] or [31, page 86], the tangent space at a point

(u, s) ∈ Sr(c)×R is defined as T̃(u,s) = {(v, t) ∈ Y :
´

R2 uv = 0}, where Y := X ×R

is equipped with the scalar product ((u, s), (v, t))Y =
´

R2(∇u∇v + uv + st) and the

corresponding norm defined by ‖(u, s)‖Y = (‖u‖2 + s2)1/2. Then the norm of the

derivative of Ẽκ|Sr(c)×R at (u, s) is defined by

‖(Ẽκ|Sr(c)×R)
′(u, s)‖∗ = sup

(u,s)∈T̃(u,s),‖(u,s)‖Y =1

|〈E ′
κ(u, s), (v, t)〉|.

Lemma 3.4. For any fixed c > 0 and n ∈ N
+, there exists a sequence {vd} ⊂

Sr(c) such that as d→ ∞,

(3.8)





Eκ(vd) → γκn(c),

‖E ′
κ|Sr(c)(vd)‖∗ → 0,

Jκ(vd) → 0.

Proof. We borrow some elements of Lemma 2.4 in [18]. Noting the definition of
γκn(c), we have that for each d ∈ N

+, there exists gd ∈ Γn such that

max
t∈[0,1],u∈Sr(c)∩Vn

Eκ(gd(t, u)) ≤ γκn(c) +
1

d
.

Set g̃d = (gd, 0), then g̃d ∈ Γ̃n and

max
t∈[0,1],u∈Sr(c)∩Vn

Ẽκ(g̃d(t, u)) ≤ γ̃κn(c) +
1

d
,

since γ̃κn(c) = γκn(c). Similar to Proposition 2.2 in [18], we obtain a sequence
{(ud, sd)} ⊂ Sr(c)×R satisfying that

(3.9) Ẽκ(ud, sd) → γκn(c), ‖(Ẽκ|Sr(c)×R)
′(ud, sd)‖∗ → 0

and

(3.10) min
t∈[0,1],u∈Sr(c)∩Vn

‖(ud, sd)− g̃d(t, u)‖Y → 0.

For each d ∈ N
+, let vd = H(ud, sd). Then vd ∈ Sr(c) and from (3.9), we have that

(3.11) Eκ(vd) → γκn(c) as d→ ∞.
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For any (w, t) ∈ Y , we see that

(3.12)

〈Ẽ ′
κ(ud, sd), (w, t)〉

= te2sd‖∇ud‖22 + e2sd
ˆ

R2

∇ud∇w + κe2sd
ˆ

R2

udw

|x|2

(
ˆ |x|

0

r

2
u2d(r) dr

)2

+ κe2sd
ˆ

R2

|ud|2
|x|2

(
ˆ |x|

0

r

2
u2d(r) dr

)(
ˆ |x|

0

rud(r)w(r) dr

)
+ tκe2sdA(ud)

− te−2sd

ˆ

R2

[f(esdud)e
sdud − 2F (esdud)]− e−2sd

ˆ

R2

f(esdud)e
sdw

= 〈E ′
b(vd), H(w, sd)〉+ Jκ(vd)t.

Let (w, t) = (0, 1) ∈ T̃(ud,sd), then (3.9) and (3.12) imply that

(3.13) Jκ(vd) → 0.

For any w ∈ Tvd , if we take t = 0 in (3.12), then we get that

(3.14) 〈Ẽ ′
κ(ud, sd), (H(w,−sd), 0)〉 = 〈E ′

κ(vd), w〉,
where Tvd = {w ∈ X :

´

R2 wvd = 0}. Moreover, since
´

R2 wvd =
´

R2 udH(w,−sd), we

obtain that w ∈ Tvd ⇔ (H(w,−sd), 0) ∈ T̃(ud,sd). To verify that ‖E ′
κ|Sr(c)(vd)‖∗ → 0,

it suffices to show that {(H(w,−sd), 0)} is uniformly bounded in Y for n large, which
is insured by the fact that

|sd| = |sd − 0| ≤ min
t∈[0,1],u∈Sr(c)∩Vn

‖(ud, sd)− (gd(t, u), 0)‖Y ≤ 1

for d large enough. This ends the proof. �

Proposition 3.5. Let c ∈ (0, 4π√
p−3

), κ ∈ (0, p − 3) and {und} ⊂ Sr(c) be a

sequence satisfying (3.8). Then {und} ⊂ Sr(c) is bounded. Moreover, there exist
{λnd} ⊂ R and un ∈ X, such that, up to subsequence, as d→ ∞,

(i) und ⇀ un 6= 0 in X ;
(ii) λnd → λn in R;
(iii) E ′

κ(u
n
d)− λndu

n
d → 0 in X∗.

(iv) E ′
κ(un)− λnun = 0 in X∗;

In addition, if λn < 0, then we have ud → un in X as d→ ∞. In particular, ‖un‖22 = c
and Eκ(un) = γκn(c).

Proof. By the second relation of (3.8), we obtain

(3.15) 〈E ′
κ(u

n
d), u

n
d〉 = ‖∇und‖22 + 3κA(und)−

ˆ

R2

f(und)u
n
d = o(‖und‖).

From Lemma 2.3, (2.7), (3.8) and (3.15), we conclude

(3.16)

γκn(c) + o(1) =
1

2
‖∇und‖22 +

κ

2
A(und)−

ˆ

R2

F (und)

≥ 1

2
‖∇und‖22 +

κ

2
A(und)−

1

4
(‖∇und‖+ 3κA(und)) + o(‖und‖)

=
1

4

(
‖∇und‖22 − κA(und)

)
+ o(‖und‖)

≥ 1

4

(
1− κc2

16π2

)
‖∇und‖22 + o(‖und‖).
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Thanks to c ∈ (0, 4π√
p−3

) and κ ∈ (0, p−3), (3.16) shows that {und} ⊂ Sr(c) is bounded.

Similar to the proof of Lemma 2.9, we know that there exists un 6= 0 such that, taking
a subsequence if necessary, as d→ ∞,

(3.17)






und ⇀ un in X,

und → un in Lq(R2),

und → un a.e. in R
2,

for q ∈ (2,∞). Thus point (i) holds and

(3.18)

ˆ

R2

f(und)u
n
d → f(un)un and

ˆ

R2

F (und) → F (un).

In addition, the proofs of points (ii)–(iv) are similar to that in [16, Proposition 2.26].
Using (ii)–(iv), we obtain that

(3.19) 〈E ′
κ(u

n
d)− λndu

n
d , u

n
d − un〉 = o(1) and 〈E ′

κ(un)− λnun, u
n
d − un〉 = o(1).

if λn < 0, then we deduce from (3.18), (3.19) and Lemma 2.2 that

‖∇ud‖2 → ‖∇un‖2 and ‖ud‖2 → ‖un‖2, as d→ ∞.

The proof is completed. �

Remark 3.1. In the above proof, (3.16) also shows that if κ > 0 is sufficient
small, then {und} ⊂ Sr(c) is bounded and thus the the conclusions (i)–(iv) of Propo-
sition 3.5 still hold.

Proof of Theorem 1.2. From Lemmas 2.11 and 3.4 and Proposition 3.5, it
follows that for c ∈ (0, 4π√

p−3
), κ ∈ (0, p−3) and each n ∈ N

+, there exists a couple of

solutions (un, λn) ∈ Sr(c) ×R
− for (1.4) with Eκ(un) = γκn(c). By Lemmas 3.2 and

3.3, we deduce that γn(c) → ∞ as n→ ∞ and the sequences of solutions {(un, λn)}
is unbounded. Thus (i) is proved.

To prove (ii), we only need to show that if (un, λn) ∈ H1
r (R

2) ×R solves (1.4),
then λn < 0 provided that κ > 0 is sufficient small. In fact, similar to (2.29), we get
that

λnc ≤
p− 3

8π2(p− 2)

(
κc− 16π2

p− 3

)
‖∇uc‖22 < 0,

for κ > 0 small enough. This ends the proof. �

Remark 3.2. In the proof of Theorem 1.2 (ii), κ = 0 is allowed. Therefore, we
can prove Corollary 1.3.

Proof of Theorem 1.4. For κ > 0 sufficiently small, let {(uκn, λκn)} ⊂ Sr(c)×R
−

be obtained in Theorem 1.3 (ii). We decare that for any sequence {κm} → 0+, {uκm
n }

is bounded in X. Indeed, it follows from dimVn <∞ that for each n ∈ N
+,

γκn(c) := inf
g∈Γn

max
t∈[0,1],u∈Sr(c)∩Vn

Eκ(g(t, u)) ≤ inf
g∈Γn

max
t∈[0,1],u∈Sr(c)∩Vn

E1(g(t, u)) <∞.

Since the sequence of {(uκm
n , λκm

n )}m∈N ⊂ Sr(c)×R
− solves (1.4), we get that {uκm

n } ⊂
V (c) and

(3.20) λκm

n =
1

c

[
‖∇uκm

n ‖22 + 3κmA(u
κm

n )−
ˆ

R2

f(uκm

n )uκm

n

]
.

Similar to Remark 3.1, we can obtain {uκm
n } is bounded in X. Furthermore, by

(2.9)–(2.11) and Lemmas 2.1 and 2.3, it is easy to see that {λκm
n } is bounded in R.
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Then there exist a subsequence of {κm}, still denoted by {κm}, u0n ∈ X and λ0n ≤ 0
such that as m→ ∞, λκm

n → λ0n and

(3.21)






uκm
n ⇀ u0n in X ;

uκm
n → u0n in Lq(R2), 2 < q < 6;

uκm
n → u0n a.e. in R

2.

It is trivial that for each n ∈ N
+, (u0n, λ

0
n) is a couple of solutions of (1.13), i.e.,

ˆ

R2

∇u0n∇v − λ0n

ˆ

R2

u0nv =

ˆ

R2

f(u0n)v, ∀v ∈ X.

Then we have

(3.22)

ˆ

R2

∇u0n∇(uκm

n − u0n)− λ0n

ˆ

R2

u0n(u
κm

n − u0n) =

ˆ

R2

f(u0n)(u
κm

n − u0n).

Since {(uκn, λκn)} is a sequence of couples of solutions for (1.4) with κ = κm and {uκm
n }

is bounded in X, using λκm
n −→

m
λ0n and Lemma 2.3, we get that

(3.23)

ˆ

R2

∇uκm

n ∇(uκm

n −u0n)−λ0n
ˆ

R2

uκm

n (uκm

n −u0n) =
ˆ

R2

f(uκm

n )(uκm

n −u0n)+o(1).

(3.21)–(3.23) imply that

(3.24) ‖∇(uκm

n − u0n)‖22 − λ0n‖uκm

n − u0n‖22 = o(1).

At this point, using λ0n ≤ 0 we get ‖∇(uκm
n − u0n)‖2 → 0. Moreover, if λ0n = 0, then

(u0n, 0) is a couple of solutions of (1.13). Thus it is readily checked that
´

R2 F (u
0
n) = 0

and
´

R2 f(u
0
n)u

0
n = ‖∇u0n‖22 = 0. Then by Lemma 3.3, as m→ ∞,

1 ≤ bn ≤ γκm

n (c) = Eκm
(uκm

n ) → 0.

This contradiction means λ0n < 0. From (3.24), we deduce that ‖uκm
n − u0n‖2 −→

m
0.

Hence the sequence of {(u0n, λ0n)} ⊂ Sr(c)×R
− solves (1.13). �
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