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Abstract. We solve a determinant problem related to a third order complex linear differential

equation studied by Chiang, Laine and Wang. As a consequence, a simple procedure to explicit

determination of the corresponding solutions is presented.

1. Introduction

For complex differential equations, there is an interesting line of investigations
on the distribution of the zeros of the meromorphic solutions. If a non-constant
meromorphic function f(z) has the zeros z1, z2, . . . (counted according to multiplicity
and ordered by non-decreasing moduli), the exponent of convergence λ(f) of f is
defined as inf{λ ≥ 0:

∑

zj 6=0 1/|zj|
λ < ∞} if there is a real number λ > 0 such

that the series
∑

zj 6=0 1/|zj|
λ converges, and λ(f) = ∞ otherwise. The oscillation

theory of complex differential equations (see [3] and [11]) investigates the exponents
of convergence of the solutions.

In [4], Bank and Laine studied the oscillation theory of certain second order dif-
ferential equations with entire periodic coefficients and found explicit representations
for the solutions with finite exponents of convergence.

As a concrete special case, Bank, Laine and Langley [5] proved the following
result, see also [6]:

Theorem 1.1. Let K be a non-zero complex number. The equation

f ′′ + (ez −K)f = 0

admits a non-trivial solution f that satisfies λ(f) < ρ(f) = +∞ if, and only if,

K =
(2n+ 1)2

16
for some non-negative integer n, and

f(z) = ψ(ez/2) exp

(

dez/2 −
2n+ 1

4
z

)

,

where d2 + 4 = 0 and ψ(ζ) =
∑n

j=0 cjζ
j.
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Actually, it is well known [11], [6] that the case K = (2n+1)2

16
above determines

two linearly independent solutions f± with d± = ±2i and the polynomial ψ±(e
z/2) as

described in Theorem 1.1. The true nature of the polynomials ψ± has been described
in terms of special functions by Chiang and Ismail, see [7]:

Theorem 1.2. Given K = (2n + 1)2/16 with n ≥ 0, n ∈ Z, the equation

f ′′ + (ez −K)f = 0

admits two linearly independent solutions

f±(z) = θn(∓2iez/2) exp

(

±2iez/2 −
2n+ 1

4
z

)

,

where θn(ζ) is the reverse Bessel polynomial of degree n.

As for the notion of reverse Bessel polynomials, see [9] and [7]. Theorem 1.2 here
is a special case of a more general result in [7], Theorem 1.2.

We assume that the reader is familiar with the notation and basic results of the
Nevanlinna value distribution theory as given in [10]. In [8], Theorem 1, Chiang,
Laine, and Wang established a somewhat similar result concerning the oscillation
theory of a third order linear differential equation with entire periodic coefficients
using the Nevanlinna theory:

Theorem 1.3. Let K ∈ C and suppose that

(1.1) f ′′′ −Kf ′ + ezf = 0

admits a non-trivial solution f such that

(1.2) log+N(r, 1/f) = o(r) as r → ∞.

Then there exist integers r and s such that r + s ≥ 0 and

(1.3) K =
(r + s+ 1)2

9
.

Moreover, if n = r+s > 0, then n satisfies the following tridiagonal (n+1)× (n+1)-
determinant condition:

(1.4) detA = 0,

where the non-zero diagonals of A are determined by

(1.5)











aj,j−1 := (j − 1)j(j + 1)− 2jn− jn2, j = 1, . . . , n,

aj,j := −3j(j + 1) + 2n+ n2, j = 0, . . . , n,

aj,j+1 := 3(j + 1), j = 0, . . . , n− 1.

Furthermore, f admits one of the following representations:

(1.6) fi(z) = e−(s+1)z/3ψ(ez/3) exp(cie
z/3),

where c3i + 27 = 0, i = 1, 2, 3, and

(1.7) ψ(ζ) =
s

∑

j=−r

djζ
j, d−rds 6= 0.

Conversely, suppose K takes the form (1.3) and n = r + s > 0 and n satisfies (1.4)
and (1.5). Then there exists a rational function of the form (1.7) such that the
three functions defined by (1.6) are linearly independent solutions of (1.1), each with
exponent of convergence λ(fi) ≤ 1 for i = 1, 2, 3.
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Remark. Theorem 1.3 above contains a slight inaccuracy. Namely, in the repre-
sentations fi(z) in (1.6), the rational component ψ actually depends on i, i = 1, 2, 3.
Therefore, (1.6) should in fact be written as

(1.8) fi(z) = e−(s+1)z/3ψi(e
z/3) exp(cie

z/3),

and similarly (1.7) as

(1.9) ψi(ζ) =

s
∑

j=−r

di,jζ
j, di,−rdi,s 6= 0.

The converse conclusion in Theorem 1.3 then claims the existence of three rational
functions of the form (1.9) that determine by (1.8) three linearly independent solu-
tions of (1.1). For a new, more compact formulation of Theorem 1.3, see Theorem 5.1
below.

Remark. As seen in Theorem 5.1 below, the core of ψi(ζ) may be expressed as
polynomials of ζ . It is possible that these polynomials may be expressed in terms of
some special functions, as was the case in Theorem 1.1 above.

In [8], Chiang, Laine and Wang expressed the conjecture that the determinant
condition detA = 0 in (1.4) and (1.5), might be equivalent to n 6≡ 2 (mod 3),
meaning that K would be a ninth of a perfect square, but not an integer. This
conjecture has remained open, although it has been verified numerically up to n =
1000, thanks to S. H. Lui at the Hong Kong University of Science and Technology.
We also thank Y.-M. Chiang (Hong Kong University of Science and Technology) for
his active participation in several discussions about this problem.

The key result in this paper is now to prove this conjecture:

Theorem 1.4. The determinant condition detA = 0 in (1.4) and (1.5), holds
if, and only if, n 6≡ 2 (mod 3).

In what follows, if we wish to emphasize the dimension n + 1, we denote A by
An. To give a feeling for the determinants Dn := detAn, note that if we adopt
N = n(n + 2) as a variable in (1.5), then Dn is a non-constant polynomial in N of
degree n+ 1. The first determinants Dn, for n = 0, . . . , 6, may now be calculated to
obtain

D0 = N, D1 = N(N − 3), D2 = N(N − 3)(N − 6),

D3 = N(N − 3)(N − 15)N, D4 = N(N − 3)(N − 15)(N − 24)(N + 12),

D5 = N(N − 3)(N − 15)(N − 24)(N2 − 3N − 1080),

D6 = N(N − 3)(N − 15)(N − 24)(N − 48)(N2 + 27N − 1890).

2. Transformation of A

In what follows, we first apply elementary linear algebra, see, e.g., [12], to trans-
form A by multiplication of finitely many elementary matrices to an upper triangular
matrix B. Then it is clear, by the elementary matrix transformations defined next,
that detA 6= 0 if, and only if, all diagonal elements of B are non-vanishing.

As for the transformations, first denote by Pi(c) a matrix obtained from the unit
matrix by multiplying the i-th diagonal component with a number c 6= 0. Multiplica-
tion of a matrix A by Pi(c) on the left then means to multiply by c the elements of the
i-th row of A. Another elementary matrix Pij(c), to be needed below, is defined by
setting i, j-component as c for i 6= j, and all other components 0 except the diagonal
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components which are equal to 1. Multiplication of a matrix A by Pi,j(c) on the left
then means to add c times the j-th row of A to the i-th row of A.

We now consider an (n + 1) × (n + 1) tridiagonal matrix A = (ai,j) such that
aij = 0, whenever |i− j| ≥ 2:

(2.1) A =

























a0,0 a0,1 0

a1,0 a1,1 a1,2 0 0
0 a2,1 a2,2 a2,3 0

0 a3,2 a3,3
. . .

. . .

0
. . .

. . .
. . . 0

0
. . .

. . .
. . . an−1,n

0 an,n−1 an,n

























,

with a0,0 6= 0. By means of elementary matrix multiplications defined above, we
transform A to an upper triangular matrix An as follows:

As the first step,

A→ A1 = P1,0(−a1,0)P1(a0,0)A

=

























a0,0 a0,1 0

0 a1,1a0,0 − a0,1a1,0 a1,2a0,0 0 0
0 a2,1 a2,2 a2,3 0

0 a3,2 a3,3
. . .

. . .

0
. . .

. . .
. . . 0

0
. . .

. . .
. . . an−1,n

0 an,n−1 an,n

























.

For what follows, we write a0,0 = β0,0 and a1,1a0,0 − a0,1a1,0 = β1,1. Then

A1 =

























β0,0 a0,1 0

0 β1,1 a1,2β0,0 0 0
0 a2,1 a2,2 a2,3 0

0 a3,2 a3,3
. . .

. . .

0
. . .

. . .
. . . 0

0
. . .

. . .
. . . an−1,n

0 an,n−1 an,n

























.

As for the next step, writing β11a22 − a21a12β00 = β22, we obtain

A1 → A2 = P2,1(−a2,1)P2(β1,1)A1

=





























β0,0 a0,1 0

0 β1,1 a1,2β0,0 0 0
0 0 β1,1a2,2 − a2,1a1,2β0,0 a2,3β1,1 0

1

0 a3,2 a3,3
. . .

. . .

0
. . .

. . .
. . . 0

0
. . .

. . .
. . . an−1,n

0 an,n−1 an,n




























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=

























β0,0 a0,1 0

0 β1,1 a1,2β0,0 0 0
0 0 β2,2 a2,3β1,1 0

0 a3,2 a3,3
. . .

. . .

0
. . .

. . .
. . . 0

0
. . .

. . .
. . . an−1,n

0 an,n−1 an,n

























.

We now continue the process inductively by

(2.2) βj+1,j+1 = βj,j aj+1,j+1 − aj+1,j aj,j+1 βj−1,j−1, j = 1, 2, . . . , n− 1

with β0,0 = a0,0 6= 0 and β1,1 = β0,0a1,1 − a0,1a1,0, to obtain

(2.3) B =

























β0,0 a0,1 0 0
0 β1,1 a1,2β0,0 0
0 0 β2,2 a2,3β1,1 0

0 0 β3,3
. . .

. . .

0
. . .

. . .
. . . 0

0
. . .

. . .
. . . an−1,n βn−1,n−1

0 0 βn,n

























.

We now specify A to be our original tridiagonal matrix An defined in (1.5), where
n is a fixed integer. Define as B the transformed matrix, obtained from A for this
special case A = An. By (1.5), we have β0,0 = n(n + 2) and

β1,1 = β0,0a1,1 − a0,1a1,0

= n(n+ 2)(−6 + 2n+ n2) + (2n+ n2) · 3

= (n− 1)n(n+ 2)(n+ 3).(2.4)

Defining N := β0,0 = n(n+ 2), we have β1,1 = N(N − 3) by (2.4). Making use of N ,
we may write (1.5) as

(2.5)











aj,j−1 := (j − 1)j(j + 1)− jN, j = 1, . . . , n,

aj,j := −3j(j + 1) +N, j = 0, . . . , n,

aj,j+1 := 3(j + 1), j = 0, . . . , n− 1.

It follows from β0,0 = N , β1,1 = N(N − 3), (2.2) and (2.5) that βj,j, j = 0, 1, . . . , n
are polynomials in N . Furthermore, we have

Lemma 2.1. Let βj,j, j = 0, 1, 2 . . . be defined by (2.2) with β0,0 = N and
β1,1 = N(N − 3). Then βj,j, j = 0, 1, 2 . . . are polynomials in N of degree j + 1, and
coefficient of N j+1 in βj,j equals 1.

Proof. Assume that the assertion holds for the cases j and j − 1. By (2.5),
βj,j aj+1,j+1 is a polynomial in N of degree j + 2 and the coefficient of N j+2 is 1.
Moreover, −aj+1,jaj,j+1βj−1,j−1 is a polynomial of degree j + 1 in N . This implies
that βj+1,j+1 is a polynomial of degree j +2 in N , and the coefficient of N j+2 equals
1 by (2.2), proving the lemma by induction. �



456 Aimo Hinkkanen, Katsuya Ishizaki, Ilpo Laine and Kin Y. Li

3. Proof of Theorem 1.4, the first part

We first prove the following proposition, which is the easy part in proving The-
orem 1.4:

Proposition 3.1. If detA = detB = 0, then n 6≡ 2 (mod 3).

Proof. We will show that n ≡ 2, (or −1) (mod 3) implies detA 6= 0. Suppose
that n ≡ 2 (mod 3). Then there exists an integer k such that n = 3k − 1, which
gives

β0,0 ≡ m = n(n + 2) = (3k − 1)(3k + 1) = 9k2 − 1 ≡ −1 (mod 3)

and

β1,1 = β00a11 − a01a10 = (3k − 2)(3k − 1)(3k + 1)(3k + 2)

= (9k2 − 4)(9k2 − 1) = 81k4 − 45k2 + 4 ≡ 1 (mod 3).

We complete the proof by induction. Assume that for j ≤ ℓ, βj,j ≡ −1 (mod 3) if
j is even, and βj,j ≡ 1 (mod 3) if j is odd. We note that aj,j = −3j(j+1)+m = −1
(mod 3). In case ℓ is odd, we have some integers k1, . . . , k4 such that

βℓ+1,ℓ+1 = βℓ,ℓ aℓ+1,ℓ+1 − aℓ+1,ℓ aℓ,ℓ+1 βℓ−1,ℓ−1

= (3k1 + 1)(3k2 − 1)− 3k3 = 3k4 − 1 ≡ −1 (mod 3).

Similarly, we obtain βℓ+1,ℓ+1 ≡ 1 (mod 3) when ℓ is even. This gives that βj,j,
j = 0, 1, . . . , n do not vanish in (2.3), and hence detA 6= 0. �

4. Proof of Theorem 1.4, the converse part

4.1. Notations and definitions. We define the set E of certain integers by

(4.1) E = {n ∈ Z : n ≥ 0, n 6≡ 2 (mod 3)}.

Thus E = {0, 1, 3, 4, 6, 7, . . .}.
We set α−1 = α−1(N) = 1 and define for j ≥ 0,

(4.2) αj = αj(N) =
∏

0≤k≤j, k∈E

(N − k(k + 2)).

Thus αj is a polynomial of degree [2(j + 2)/3] in N (where for a real number x, the
notation [x] means the largest integer ≤ x) and

α0 = N, α1 = α2 = N(N − 3), α3 = N(N − 3)(N − 15),

α4 = α5 = N(N − 3)(N − 15)(N − 24),

α6 = N(N − 3)(N − 15)(N − 24)(N − 48).

We write detAn in the form

(4.3) detAn = αnQn(N).

Then Qn(N) is a rational function of N . We will prove later that Qn is a polynomial
in N , but as long as we do not know that, we should think of Qn as a rational
function. Since αn is a polynomial in N (and so is detAn), there are at most finitely
many real values of N for which Qn(N) is not a well-defined real number.

From the formulas for Dn above we see that

Q0 = Q1 = 1, Q2 = N − 6, Q3 = N, Q4 = N + 12,

Q5 = N2 − 3N − 1080, Q6 = N2 + 27N − 1890.
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We next derive recursion formulas for the functions Dj and after that for the
functions Qj .

The last row of An has only two non-zero elements, and they are the last two
elements. Developing detAn according to the last row, we get

Dn = detAn = annDn−1 − an,n−1 detB,

where the matrix B is obtained by deleting from A the last row and the second last
column. The last row of B has only two non-zero elements, and they are the last two
elements, namely, an−1,n−2 and an−1,n. Developing detB according to the last row of
B, we get

detB = an−1,nDn−2 − an−1,n−2 detB
′,

where the matrix B′ is obtained by deleting from B the last row and the second last
column. Thus the last column of B′ is a zero column, so that detB′ = 0. This yields

(4.4) Dn = annDn−1 − an,n−1an−1,nDn−2.

Substituting Dj = αjQj(N) for j ∈ {n − 2, n− 1, n} into this equation, and noting
that ann = N −3n(n+1), an,n−1 = (n−1)n(n+1)−nN , and an−1,n = 3n, we obtain

αnQn(N) = (N − 3n(n+ 1))αn−1Qn−1(N)

− n((n− 1)(n+ 1)−N)3nαn−2Qn−2(N).
(4.5)

We divide the further development of this formula into three cases depending on the
residue class of n modulo 3.

Suppose that n = 3k for some integer k. Then

αn−1/αn = αn−2/αn = 1/(N − n(n + 2)).

Thus by (4.5),

(4.6) (N − n(n+ 2))Qn = (N − 3n(n + 1))Qn−1 + 3n2(N − n2 + 1)Qn−2.

This is compatible with all the functions Qj being rational functions of N . We note
that if Qn−2 and Qn−1 are polynomials, then so is Qn if, and only if, the right hand
side of (4.6) is divisible by N − n(n+2), which is true if, and only if, the right hand
side of (4.6) is equal to zero when N = n(n + 2). This is indeed the case, as we
will show later, but right now we do not know that so that we only think of Qn as a
rational function of N .

Suppose that n = 3k + 1 for some integer k. Then

αn−1

αn
=

1

N − n(n + 2)
,

αn−2

αn
=

1

(N − n(n + 2))(N − (n− 1)(n+ 1))
.

Thus by (4.5),

(4.7) (N − n(n+ 2))Qn = (N − 3n(n+ 1))Qn−1 + 3n2Qn−2.

The comments regarding the possibility of the Qj being polynomials that were made
in the case n = 3k apply also when n = 3k + 1.

Suppose that n = 3k + 2 for some integer k. Then

αn−1/αn = 1, αn−2/αn =
1

N − (n− 1)(n+ 1)
.

Thus by (4.5),

(4.8) Qn = (N − 3n(n+ 1))Qn−1 + 3n2Qn−2.
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So when n = 3k+ 2, if Qn−2 and Qn−1 are polynomials, then so is Qn, and there are
no extra conditions.

We have now established the recursion formulas for the functions Dj and the
functions Qj . We collect the results of this subsection together in the following
lemma.

Lemma 4.1. Suppose that n ≥ 1 and write Dn = detAn, so that Dn is a
polynomial in the variable N . With αn given by (4.2) (where E is as in (4.1)), write
Dn = αnQn where Qn is a rational function of N . Then Q0(N) = Q1(N) = 1, and
the functions Qn satisfy the following recursion formulas. If n = 3k for some integer
k, then

(4.9) (N − n(n+ 2))Qn = (N − 3n(n + 1))Qn−1 + 3n2(N − n2 + 1)Qn−2.

If n = 3k + 1 for some integer k, then

(4.10) (N − n(n+ 2))Qn = (N − 3n(n+ 1))Qn−1 + 3n2Qn−2.

If n = 3k + 2 for some integer k, then

(4.11) Qn = (N − 3n(n+ 1))Qn−1 + 3n2Qn−2.

4.2. Formulas for the solution v of Av = 0. Suppose that v = (x0, x1, . . . ,
xn) and Av = 0. We may express the equations to be satisfied by x0, x1, . . . , xn as
follows. Considering the jth component of the equation Av = 0, we obtain

(4.12) aj,j−1xj−1 + ajjxj + aj,j+1xj+1 = 0.

When j = 0, this reads

(4.13) Nx0 + 3x1 = 0.

Thus

(4.14) x1 = −
N

3
x0.

When j = n, this reads

(4.15) ((n− 1)n(n+ 1)− nN)xn−1 + (N − 3n(n + 1))xn = 0.

In the special case when N = n(n+ 2), this reads

(4.16) xn = −xn−1.

When 1 ≤ j ≤ n− 1, we get the equation

(4.17) ((j − 1)j(j + 1)− jN)xj−1 + (N − 3j(j + 1))xj + 3(j + 1)xj+1 = 0.

Using the equation (4.17) inductively, starting with j = 1, we can proceed up to
j = n− 1 to get each xj as x0 multiplied by a constant depending on j. This is also
true for x1 by (4.14). It is then clear that the equation Av = 0 (when N = n(n+2))
has a non-zero solution v if, and only if, the values of xn−1 and xn so obtained satisfy
(4.16) identically, that is, for all values of x0.

When we solve for xj+1 from (4.17), we are dividing by the number 3(j+1) that
is independent of N . Hence it is clear that regarding N as a variable, we obtain each
xj for 1 ≤ j ≤ n as a polynomial in N (where we have not used (4.15) yet).

We further note that when we use N as a variable, instead of taking for N a
specific value that depends on n, the formulas that we obtain for xj are independent
of n. That is, if we specify any value for j, and if we then choose any value for n
with n ≥ j, we get the same formula for xj regardless of the choice of n.
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We set β−1 = 1, and for j ≥ 0, we define

(4.18) βj =

j
∏

k=0

(3(k + 1)) = 3j+1((j + 1)!).

Recall that αj is defined by (4.2) and that α−1 = 1.
We now write xj for 1 ≤ j ≤ n in the form

(4.19) xj = (−1)j
αj−1

βj−1
x0Pj−1(N).

As is compatible with the rest of this notation, we set P−1(N) = 1. Then (4.19) is
valid for j = 0 also. It then follows that Pj(N), for −1 ≤ j ≤ n − 1, is a rational
function of N . We will prove later that Pj = Qj .

From (4.14) we obtain

(4.20) P0(N) = 1.

We next derive recursion formulas for the functions Pj. Substituting (4.19) into
(4.17), we obtain

− 3(j + 1)(−1)j+1αj

βj
x0Pj(N)

= ((j − 1)j(j + 1)− jN)(−1)j−1αj−2

βj−2
x0Pj−2(N)

+ (N − 3j(j + 1))(−1)j
αj−1

βj−1

x0Pj−1(N).(4.21)

For this to be valid when x0 6= 0, we must have

(4.22)
αj

βj
Pj =

N − 3j(j + 1)

3(j + 1)

αj−1

βj−1

Pj−1 +
N − j2 + 1

3(j + 1)
j
αj−2

βj−2

Pj−2.

We again divide the further development of this formula into three cases depend-
ing on the residue class of j modulo 3.

Suppose that j = 3k for some integer k. As we saw before, then

(4.23) αj−1/αj = αj−2/αj = 1/(N − j(j + 2)).

Also

(4.24)
βj−1

βj
=

1

3(j + 1)
,
βj−2

βj
=

1

9j(j + 1)
.

Thus by (4.22),

(4.25) (N − j(j + 2))Pj = (N − 3j(j + 1))Pj−1 + 3j2(N − j2 + 1)Pj−2.

Suppose that j = 3k + 1 for some integer k. As we saw before, then

(4.26)
αj−1

αj
=

1

N − j(j + 2)
,
αj−2

αj
=

1

(N − j(j + 2))(N − (j − 1)(j + 1))
.

Also

(4.27)
βj−1

βj
=

1

3(j + 1)
,
βj−2

βj
=

1

9j(j + 1)
.

Thus by (4.22),

(4.28) (N − j(j + 2))Pj = (N − 3j(j + 1))Pj−1 + 3j2Pj−2.



460 Aimo Hinkkanen, Katsuya Ishizaki, Ilpo Laine and Kin Y. Li

When j = 3k or j = 3k+1, the comments regarding the possibility of the various
Pℓ being polynomials are similar to the comments that were made for the Qℓ.

Suppose that j = 3k + 2 for some integer k. As we saw before, then

(4.29) αj−1/αj = 1, αj−2/αj =
1

N − (j − 1)(j + 1)
.

Also

(4.30)
βj−1

βj
=

1

3(j + 1)
,
βj−2

βj
=

1

9j(j + 1)
.

Thus by (4.22),

(4.31) Pj = (N − 3j(j + 1))Pj−1 + 3j2Pj−2.

When j = 3k + 2, the function Pj is a polynomial if both Pj−1 and Pj−2 are polyno-
mials, without any extra conditions.

We have now established the recursion formulas for the functions Pj . We have
found P0 before (we have P0 = 1). With P−1 = 1, (4.19) is valid with j = 0. We
calculate a few more functions Pj. Taking j = 1 in (4.28), we obtain

(N − 3)P1 = (N − 6)P0 + 3P−1 = N − 6 + 3 = N − 3,

so that

P1 = 1.

Taking j = 2 in (4.31), we obtain

P2 = N − 6.

Continuing in the same way, we get

P3 = N, P4 = N + 12.

We see that

(4.32) Pj(N) = Qj(N)

at least for 0 ≤ j ≤ 4. We will see later that (4.32) is valid for all j ≥ 1.
By now we have seen that the equation Av = 0 implies that for 1 ≤ j ≤ n, each

xj is a certain multiple of x0. In addition the equation Av = 0 for v 6= 0 implies that
(4.15) must be valid also when x0 6= 0, and for N = n(n + 2), (4.15) is equivalent
to (4.16). Since xn−1 and xn have already been determined, this imposes a further
condition on Pn−1 and Pn−2. We now determine that condition when N = n(n+ 2).

Using (4.19) with j = n − 1 and j = n and substituting the results into (4.16),
we obtain, when x0 6= 0,

(4.33)
αn−2

βn−2

Pn−2(N) =
αn−1

βn−1

Pn−1(N).

We require this to be true only when n is of the form 3k or 3k + 1.
Suppose that n = 3k for some integer k, so that n−1 is of the form 3k+2. Using

(4.29) and (4.30) with j replaced by n− 1 in those formulas, we can write (4.33) in
the form

3nPn−2(N) = Pn−1(N).

Since we want this to be true when N = n(n+ 2), we require, more precisely, that

(4.34) 3nPn−2(n(n+ 2)) = Pn−1(n(n+ 2)).
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Suppose that n = 3k+1 for some integer k, so that n−1 is of the form 3k. Using
(4.23) and (4.24) with j replaced by n− 1 in those formulas, we can write (4.33) in
the form

(4.35) 3nPn−2(n(n+ 2)) = (N − (n− 1)(n+ 1))Pn−1(n(n+ 2)).

When N = n(n+ 2), we have

N − (n− 1)(n+ 1) = n(n + 2)− (n− 1)(n+ 1) = 2n+ 1.

Since we want (4.35) to be true when N = n(n+2), we require, more precisely, that

(4.36) 3nPn−2(n(n+ 2)) = (2n+ 1)Pn−1(n(n+ 2)).

We collect the results of this subsection together in the following lemma.

Lemma 4.2. Suppose that n ≥ 1. Then the equation Anv = 0 has a non-zero
solution v = (x0, x1, . . . , xn) if, and only if, with the notation (4.19), the rational
functions Pj(N) of N satisfy the recursion formulas given below for 1 ≤ j ≤ n − 1
and, in addition, (4.15) holds (hence (4.16) when N = n(n + 2)). The recursion
formulas are as follows. We have P−1(N) = P0(N) = P1(N) = 1. If j = 3k for some
integer k, then

(4.37) (N − j(j + 2))Pj = (N − 3j(j + 1))Pj−1 + 3j2(N − j2 + 1)Pj−2.

If j = 3k + 1 for some integer k, then

(4.38) (N − j(j + 2))Pj = (N − 3j(j + 1))Pj−1 + 3j2Pj−2.

If j = 3k + 2 for some integer k, then

(4.39) Pj = (N − 3j(j + 1))Pj−1 + 3j2Pj−2.

For the rest of this lemma, we assume that N = n(n+2). If n = 3k for some integer
k, then (4.16) is equivalent to

(4.40) 3nPn−2(n(n+ 2)) = Pn−1(n(n+ 2)).

If n = 3k + 1 for some integer k, then (4.16) is equivalent to

(4.41) 3nPn−2(n(n+ 2)) = (2n+ 1)Pn−1(n(n+ 2)).

4.3. Connection between the formulas for detAn and v. We note that
the functions Qj and Pj are defined in the same way, no matter which value of n
with n ≥ j+1 is considered to define Qj and Pj. The following lemma expresses the
relationship between Qj and Pj.

Lemma 4.3. For all j ≥ 0, we have

(4.42) Pj(N) = Qj(N).

To prove Lemma 4.3, we merely have to note that (4.42) is valid for j = 0 and
j = 1, and that the recursion formulas for Qj are identical to those for Pj.

4.4. The final statements to be proved by induction. For n ≥ 1 with
n ∈ E, we define the statement S(n) as follows.

If n = 3k for some integer k, then S(n) states that (4.40) holds.
If n = 3k + 1 for some integer k, then S(n) states that (4.41) holds.
We will prove the following result by induction on n. Recall that the set E is

defined by (4.1).

Lemma 4.4. For every integer n ≥ 1, all of the following statements are valid:
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(i) For all j with 1 ≤ j ≤ n such that j ∈ E, we have

(4.43) detAj = 0

when N = j(j + 2).
(ii) For all j with 1 ≤ j ≤ n−1, the function Pj(N) (and hence also the function

Qj(N)) is a polynomial in N .
(iii) For all j with 1 ≤ j ≤ n such that j ∈ E, the statement S(j) is valid.

Clearly, after Lemma 4.4 has been proved, Theorem 1.4 follows immediately.

4.5. Proof of Lemma 4.4. To be able to use the recursion formulas for Pj,
we need to prove two base cases first. If n = 1, then (ii) and (iii) of Lemma 4.4 are
vacuous, while (i) states that detA1 = 0, that is, D1 = 0 when N = n(n + 2) = 3.
Since D1 = N(N − 3), this is true.

As a side-remark, we note that if n = 0 and N = n(n+2) = 0, then D0 = N = 0
also. We further know that P0(N) = Q0(N) = 1 is a polynomial in N .

Suppose that n = 2, so n /∈ E. Then (i) imposes no further requirements beyond
what was demanded for n = 1. For (ii), we need to know that P1(N) is a polynomial
in N , which is true since P1(N) ≡ 1. The condition (iii) requires that S(1) is true,
that is, that (4.41) holds when we take n = 1 in (4.41). This reads 3P−1(3) = 3P0(3),
which is true since P−1(N) ≡ 1 and P0(N) ≡ 1.

For more convenient notation, suppose that n ≥ 3 and that the claims of
Lemma 4.4 are valid for n − 1 instead of n. For the induction step, we need to
prove that these claims are valid for n. To do this, we need to prove the following.
For (i), if n ∈ E, we need to prove that detAn = 0 when N = n(n + 2) (while if
n /∈ E, we do not need to prove anything for (i)). For (ii), we need to prove that
Pn−1(N) is a polynomial in N . For (iii), we need to prove that if n ∈ E, then S(n)
is true (while if n /∈ E, we do not need to prove anything for (iii)).

Let us begin with the proof of (ii), which we divide into three cases according to
the residue class of n modulo 3. Thus we are assuming that Pℓ(N) is a polynomial
in N for 1 ≤ ℓ ≤ n− 2.

Suppose first that n is of the form n = 3k, so n−1 = 3(k−1)+2. Write j = n−1.
Then the formula (4.31) is applicable, and it gives Pj(N), that is, Pn−1(N), as

(4.44) Pj(N) = (N − 3j(j + 1))Pj−1(N) + 3j2Pj−2(N).

By the induction assumption, Pj−1 and Pj−2 are polynomials in N , so that Pj(N) is
also trivially a polynomial in N .

Suppose next that n is of the form n = 3k + 1, so n− 1 = 3k. Write j = n− 1.
Then the formula (4.25) is applicable, and it gives Pj(N), that is, Pn−1(N), as

(4.45) (N − j(j + 2))Pj(N) = (N − 3j(j + 1))Pj−1(N) + 3j2(N − j2 + 1)Pj−2(N).

To prove that Pj is a polynomial is equivalent to proving that the right hand side of
(4.45) is equal to zero when N = j(j + 2). We write the right hand side of (4.45) as

(N − j(j + 2))(Pj−1 + 3j2Pj−2)

+ (j(j + 2)− 3j(j + 1))Pj−1 + 3j2(j(j + 2)− j2 + 1)Pj−2

= (N − j(j + 2))(Pj−1 + 3j2Pj−2)− j(2j + 1)(Pj−1 − 3jPj−2).

Thus we need to prove that for j = n− 1 = 3k ∈ E, we have

(4.46) Pj−1(j(j + 2)) = 3jPj−2(j(j + 2)).
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Our induction assumption regarding (i) implies that detAn−1 = 0. Thus the equation
An−1v = 0 has a non-zero solution v, and now (4.40) of Lemma 4.2 implies (4.46)
on replacing n by j in (4.40).

Suppose then that n is of the form n = 3k+2, so n−1 = 3k+1. Write j = n−1.
Then the formula (4.28) is applicable, and it gives Pj(N), that is, Pn−1(N), as

(4.47) (N − j(j + 2))Pj(N) = (N − 3j(j + 1))Pj−1(N) + 3j2Pj−2(N).

To prove that Pj is a polynomial is equivalent to proving that the right hand side of
(4.47) is equal to zero when N = j(j + 2). We write the right hand side of (4.47) as

(N − j(j + 2))Pj−1 + (j(j + 2)− 3j(j + 1))Pj−1 + 3j2Pj−2

= (N − j(j + 2))Pj−1 − j((2j + 1)Pj−1 − 3jPj−2).

Thus we need to prove that for j = n− 1 = 3k + 1 ∈ E, we have

(4.48) (2j + 1)Pj−1(j(j + 2)) = 3jPj−2(j(j + 2)).

Our induction assumption regarding (i) implies that detAn−1 = 0. Thus the equation
An−1v = 0 has a non-zero solution v, and now (4.41) of Lemma 4.2 implies (4.48) on
replacing n by j in (4.41). This completes the proof that Pn−1(N) is a polynomial in
N , so that (ii) is proved for n.

Next, we prove (i), that is, we prove that detAn = 0 if n ∈ E and N = n(n+2).
For this, we only need to use (4.3) and note that since Pn = Qn by Lemma 4.3, also
Qn(N) is a polynomial in N . Now, since n ∈ E, the product αn contains the factor
N −n(n+2), so that αn = 0 and hence detAn = 0 when N = n(n+2). This proves
(i) for n.

For (iii), suppose that n ∈ E. By what we have proved already, we know that
detAn = 0 when N = n(n + 2), so that for this N , the equation Anv = 0 has a
non-zero solution v. By Lemma 4.2, the equation (4.40) holds if n = 3k, and the
equation (4.41) holds if n = 3k + 1. This gives S(n). This completes the proof of
Lemma 4.4 and hence also the converse part of Theorem 1.4.

5. Discussion

In [2], Bank constructed a method to test the second order linear differential
equation

f ′′ + A(z)f = 0,

where A(z) is a non-constant periodic entire function, for the existence of solutions f
satisfying λ(f) <∞, as well as to construct these solutions explicitly. The method in
[2] involves about finding polynomial solutions of four second order linear differential
equations. This method has been extended by Baesch [1] to test higher order linear
differential equations of type

f (n) +
n−2
∑

j=1

Aj(z)f
(j) + A0(z)f = 0,

where A1, . . . , An−2 are constants, n ≥ 3, and A0 is a non-constant periodic entire
function. In this higher order case, n2 linear differential equations of order n have
to be tested for polynomial solutions. For a more general consideration where the
coefficients are permitted to be rational functions of ez, see [13].

Unfortunately, the procedure described in [2], [1] is somewhat difficult to be
applied in practice, although it is certainly possible to implement a suitable software
package for such a purpose. In the special case of (1.1) with the determinant condition



464 Aimo Hinkkanen, Katsuya Ishizaki, Ilpo Laine and Kin Y. Li

(1.4), it is much easier to get an explicit construction of solutions f with λ(f) ≤ 1
from a reformulation of Theorem 1.3:

Theorem 5.1. The linear differential equation (1.1) with K ∈ C admits a non-
trivial solution f such that

log+N(r, 1/f) = o(r) as r → ∞,

if, and only if,

K =
(n+ 1)2

9
for some integer n ≥ 0 such that n 6≡ 2 (mod 3). Moreover, in this case, three linearly
independent such solutions f exist, corresponding to the three complex numbers c
such that c3 + 27 = 0. With ζ := ez/3, these solutions f have a representation of the
form

(5.1) f(z) = ecζζ−1Q(c−1ζ−1),

where Q is a polynomial of degree n, independent of c. The function Q(z) satisfies
the differential equation

(5.2) z4Q′′′ + z2(6z− 3)Q′′ − (6z− 3+ (n(n+2)− 6)z2)Q′ − n(n+2)(z− 1)Q = 0.

Furthermore, with Pj(N) defined as in Section 4, with βj = 3j+1((j + 1)!) defined as
in (4.18), and with αj(N) defined as in (4.2), we may write

(5.3) Q(z) = 1 +
n

∑

j=1

djz
j ,

where

(5.4) dj = (−1)j
αj−1(n(n+ 2))

βj−1

Pj−1(n(n + 2)),

for 1 ≤ j ≤ n. In particular, λ(f) = 0 for n = 0 and λ(f) = 1 for n > 0, in each case
for all three choices of c.

Remark. Thus the numbers dj are the same as the numbers xj given by (4.19),
when taking x0 = 1 and N = n(n+ 2) in (4.19). By Lemma 4.1 and Lemma 4.3, we
may also write

(5.5) dj = (−1)j
detAj−1

3j(j!)

where we take N = n(n + 2) when computing detAj−1. Thus it has been useful for
us to solve the equation Av = 0 not only to prove Theorem 1.4 but also to obtain
the coefficients of Q for a more explicit solution of (1.1). In spite of their appearance,
the numbers dj are integers, but we will not prove that here.

Proof. Suppose that n ≥ 0, n ∈ E, and K = (n + 1)2/9. We look for a solution
f of (1.1) in the form f(z) = F (cez/3), where c3 = −27. Substituting this f into
(1.1), denoting in the resulting equation the quantity cez/3 by t and using the fact
that c3 = −27, we obtain for the function F (t) the equation

(5.6) t3F ′′′(t) + 3t2F ′′(t)− n(n+ 2)tF ′(t)− t3F (t) = 0.

This equation is independent of c, so that for each choice of c, a solution F of (5.6)
yields a solution f of (1.1). We look for F in the form F (t) = etg(1/t). Substituting
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this F into (5.6) and denoting in the resulting equation 1/t by z, we obtain for g(z)
the equation

(5.7) z3g′′′ + 3z(z − 1)g′′ −
3

z

(g

z
− g′

)

+ n(n + 2)
(g

z
− zg′

)

= 0.

Writing g(z) = zQ(z) we get for the function Q(z) the equation (5.2). Thus with
ζ = ez/3, a solution Q of (5.2) gives the solution f(z) = ecζ(cζ)−1Q(1/(cζ)) of (1.1).
Then also cf is a solution of (1.1), and this gives the right hand side of (5.1).

We next verify that (5.2) has a solution Q that is a polynomial. When n = 0,
it is obvious that Q(z) ≡ 1 is a solution of (5.2). Suppose that n ≥ 1 and n ∈ E.
Write N = n(n + 2). Substituting

Q(z) =
n

∑

j=0

djz
j

into (5.2) we get the recursion formulas for the dj. We need to consider the coefficient
of zj on the left hand side of (5.2), for 0 ≤ j ≤ n+ 1.

Considering the constant coefficient on the left hand side of (5.2), we get

(5.8) d1 = −(N/3)d0.

The coefficient of zj for 1 ≤ j ≤ n− 1 yields

(5.9) 3(j + 1)dj+1 + (N − 3j(j + 1))dj + (j2 − 1−N)jdj−1 = 0.

The coefficient of zn gives

(5.10) (N − 3n(n+ 1))dn + (n2 − 1−N)ndn−1 = 0,

and since N = n(n+ 2), this is equivalent to

(5.11) dn = −dn−1.

The coefficient of zn+1 vanishes identically, regardless of the value of dn.
The equations (5.8), (5.9), and (5.11) are the same as the equations (4.14), (4.17),

and (4.16) for the xj , simply with xj replaced by dj. As we have seen in Section 4,
when n ∈ E and N = n(n+2), the equations for the xj have a solution for all values
of x0, and hence the equations for the dj have a solution for all values of d0. Since a
solution f can be multiplied by any non-zero complex number, we may take d0 = 1,
and then, considering (4.19), we obtain (5.4).

Thus we see that when n ≥ 0, n ∈ E, and K = (n + 1)2/9, the equation (1.1)
indeed has the solution f given by (5.1) where c, ζ , and Q are as stated, for each c
with c3 = −27. Clearly the three functions f obtained for the three values of c are
linearly independent.

The first claim of Theorem 5.1 follows by combining Theorem 1.4 and Theo-
rem 1.1 (taking into account the subsequent remark to this theorem). This completes
the proof of Theorem 5.1. �

Examples. We consider what the functions f look like for some small values of
n when n ≥ 0, n ∈ E, and K = (n+ 1)2/9. Without further indexing, we allow c to
be any one of the three values with c3 = −27. Again, ζ = ez/3.

We first express solutions f in the style of (1.6). If n = 0, then f(z) = ζ−1ecζ . If
n = 1, then

f(z) = ζ−2(1− cζ)ecζ.
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If n = 4, then

(5.12) f(z) = ζ−5

(

1− cζ +
1

2
c2ζ2 −

1

7
c3ζ3 +

1

56
c4ζ4

)

ecζ .

Compare (5.12) to the fact that when n = 4, we have

Q(z) = 1− 8z + 28z2 − 56z3 + 56z4.

The difference is due to a different coefficient being normalized to be equal to 1.
Apart from the normalizations, the polynomial Q is essentially the reverse (or the
reciprocal polynomial) of the polynomial in cζ in (5.12).

Regarding the expression (5.1) for the solution f , we note that when n gets
larger, the coefficients of the polynomial Q become more complicated. For example,
if n = 7, then

Q(z) = 1− 21z + 210z2 − 1330z3 + 5880z4 − 18200z5 + 36400z6 − 36400z7.

If n = 9, then

Q(z) = 1− 33z + 528z2 − 5456z3 + 40656z4 − 227920z5 + 960960z6

− 2932160z7 + 5864320z8 − 5864320z9.

The formula (5.4) for the coefficients of Q might be used to consider the question
mentioned before, see the Remark preceding Theorem 1.4, of whether ψ (or Q) is
related to some known special functions.
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