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Abstract. We determine the associate space of the logarithmic interpolation space (Xo,X1)1,4,4
where X and X; are Banach function spaces over a o-finite measure space (2, ). Particularizing
the results for the case of the couple (L1, L) over a non-atomic measure space, we recover results
of Opic and Pick on associate spaces of generalized Lorentz—Zygmund spaces L 4a). We also
establish the corresponding results for sequence spaces.

1. Introduction

Logarithmic spaces (A, Al)l’ ..A are interpolation spaces which are quite close to
the space A;. This fact is useful in several situations (see, for example, [10, 6, 8, 3]).
When AN A, is dense in Ag and Ay, the dual of (A, A1), , o has been computed in
[8] for 1 < ¢ < o0, and in [3] for the case 0 < ¢ < 1. Curiously, as it is pointed out in
[3, Remark 4.5], although the couple (L;, L) does not satisfy that L N L, is dense
in L., writing down the duality results for (L;, L) the outcome coincides with
the associate spaces of generalized Lorentz—Zygmund spaces Lo q:a), determined by
Opic and Pick in [16]. The aim of the present paper is to clarify this coincidence.

We compute the associate space of (Xo, X1)17q7 A Where X are Banach function
spaces on a o-finite measure space (€2, ). This is done in Section 3 with the help of
the description of logarithmic spaces in terms of the J-functional. Since there is no
J-description in a certain range of the parameters (see |8, Proposition 3.4|), we show
first in Section 2 that in such range the space (A, Al) A turns out to be equal to
the sum of A; with a certain J-space modified. This result is of independent interest,
it complements those of [8, 3| and it is useful in Section 3. Finally, in Section 4,
we show some applications of the abstract results. We first consider a non-atomic
o-finite measure space and applying the results to the couple (L1, L) we recover the
results of Opic and Pick [16] on associate spaces of generalized Lorentz—Zygmund
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spaces Ls.q:a). Then we establish the corresponding results for the sequence spaces
l(co,q:a)- For this aim, we work with the measure space (N,#), where # is the
counting measure, which is completely atomic. The sequence case has not been
studied previously.

2. Logarithmic interpolation methods

By a Banach couple A = (Ay, A;) we mean two Banach spaces Ay, A; which are

continuously embedded in some Hausdorff topological vector space. We set ¥(A) =

Ap+ Ay and A(A) = AgN A;. These spaces become Banach spaces when normed by
lallagrar = llalls s = nf{llacll 4, + larlla, : @ = a0 + a1, a; € Aj}
and
lallagnar = llallaca) = max{[lall 4, , [lall 4, }-
For t > 0, the Peetre’s K- and J-functionals are defined by
K(t,a) = K(t,a; A) = inf{|laol o, +tllarll 4, : @ = a0+ a1,a; € A;},a € Ag+ A
and
J(t,a) = J(t,a; A) = max{||al| 4, ,t |lall 4, }, @ € AgN A;.
Note that K(1,-) = [|[| 4,14, and J(1,-) = [l 4y, - .
The Gagliardo completion A} of A; consists of all those a € ¥(A) for which there

exists a bounded sequence (a,,) in A; which converges to a in ¥(A). The norm in A%
is given by

. K(t,a ,
|al| 4~ = inf (SUP(H%HAV)) = sup U ), j=0,1
J (an) \neN J O<t<oo U/

(see [1, Theorem V.1.4]). We have A; — AT — %(A), where — means continuous
embedding. Furthermore, for the Banach couple A~ = (A7, A7), we have

(2.1) K(t,a; A~) = K(t,a; A), t>0, a € %(A)

(see |1, Theorem V.1.5]). The couple A is said to be a Gagliardo couple if Ay = Ay
and A; = A7. Examples of Gagliardo couples are (Ly, L) and (41, (). See Section 4
for details.

For ¢t > 0, let £(t) = 1+ |logt| and €/(t) = 1+log(1+ |logt|). For A = (ap, as) €

R? write
o(t) if0o<t<1
(A (t) = (oo () = -
(®) (®) (o= (t) if 1 <t < oo,
and define £¢4(t) similarly. B
Let 0 < ¢ < oo and A € R? The logarithmic interpolation space A, a =

(Ao, A1), 4 a is formed of all @ € X(A) which have a finite quasi-norm

lalh.ga = </Ooo[t‘1€A(t)K(t,a)]q%)l/q

(as usual, the integral should be replaced by the supremum when ¢ = o0). See
[11, 12, 8, 3]. The functional ||-||, , 5 is a norm if 1 < ¢ < co. We shall assume that

(2.9) {a0+1/q<0 if 0 < g < o0,

ag <0 if ¢ = o0,
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in order to avoid that (Ag, A1), , o = {0} (see [12, Theorem 2.2]). The space
(Ao, A1)1,4,a also makes sense when ¢ = oo and ay = 0. However we do not study
this limit case here because the space (Ao, A1)1,00,(0,000) has a different structure than
the spaces (Ag, A1)1,4a When ¢ and A satisfy (2.2). We refer to [4] for the properties
of the space (Ao, A1)1,00,0,000)-

This construction produces ezact interpolation spaces. More precisely, if B =

(By, By) is another Banach couple and T': ¥(A) — X(B) is a linear operator whose
restrictions to A; define a bounded linear operator from A; to B; for j = 0, 1, then

T: (AOaAl)Lq,A - (BO7Bl)l7q,A

is also bounded and

1708, oo < (Tl s 1T

It is not hard to check that the quasi-norm of (Ao, A1), , » is equivalent to

o] 1/q
lalls,, , = ( > [2‘m€A(2m)K(2m,a)]q> :

m=—00

Here the ¢,-quasi-norm should be replaced by the ¢,,-norm if ¢ = oc.
Next we introduce the corresponding J-spaces. We assume that

(2.3)

O >0 if0<qg<l,
0o —1/¢ >0 if 1 <q< o0,

where for 1 < g < oo the parameter ¢ is given by equality 1/¢+1/¢' = 1. The space
Al A = (Ao, Al)i],q,A consists of all a € X(A) for which there exists (ty,)mez € A(A)
such that

a= Z u,, (convergence in ¥(A))

m=—0oQ

and

m=—0oQ

oo 1/q
< Z [Q_mEA@m)J(Qm,um)}q) < 00.

The quasi-norm in (A, Al)‘qu A s

[e¢) 1/q o)
lal| Aiqu’A:inf{ ( 3 [2—m£A(2m)J(2m,um)]q> a= Y um}

m=—0oQ m=—0oQ

If 1 < ¢ <ooand as = 1/¢, the J-space still makes sense if we replace ¢4 (t) by
(A ()08 (t) with B = (8o, fx) and B —1/¢’ > 0. We denote the corresponding space
by A{  aB = (AO,Al)‘I{%A’B. The space {1‘1’7(]7A’B is also well-defined for 0 < ¢ <1,
s = 0 and S, > 0. The quasi-norm in A{ 4 g is

[e¢) 1/q 0o
||a||A{’q7A7B = inf{ ( Z [2_m£A(2m)€£B(2m)J(2m,um)]q> ca = Z um}

m=—0oQ m=—0oQ

It is easy to check that the J-spaces are also exact interpolation spaces.
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According to [8, Theorems 3.5 and 3.6, if A and 1 < g < oo satisfy (2.2) then
we have with equivalence of norms

(Ao, A1)} At if oo +1/q >0,
(AOvAl)i],q,AH,(o,l) if ae = —1/q and ¢ < 0.

(24) (A0> Al)l,q,A — {

Here for A € R, we put A + XA = (g + A\, aso + A).
If 0 < ¢ <1 and (2.2) holds, then by [3, Theorem 3.2] we have with equivalence
of quasi-norms

~ ~\J .
(2.5) (Ag, A1)y, o = (A7, 47 )1J,q,A+1/q if o +1/g >0,
” (AON’ AlN)l,q,AH/q,(O,l/q) if aee = —1/q.

Moreover, if 0 < ¢ < 1 and we assume in addition that Aq N A; is dense in Ay and
Ay, then

~ T
(AO’ A1)17q7A = (AO ) Al )1,q,(oco+1/q,0) for Qoo + 1/q < 0.
In general there is no description for (A, Al)l’ ..A 8 a J-space in the case
w+1/g<0 if g < oo,
Qoo <0 if g =00

(see [8, Proposition 3.4]). However, we show next that in this range (Ao, A1), 5 is
the sum of A; with a modified J-space.

In what follows, if X and Y are quantities depending on certain parameters some
of them being the significant parameters in our reasoning, we write X <Y if X < ¢Y
with a constant ¢ > 0 independent of the significant parameters. We put X ~ Y if
X SYand Y < X. Similarly, if || - || and ||| - ||| are quasi-norms on a space A, we
put ||la]] < |||a||| if there is a constant ¢ > 0 such that ||a|| < ¢|||al|| for any a € A.
We write [|al] ~ [lalll if o < [llal] and llall] S [lall. )

Put Z= = {0,—1,-2,-3,...}. If 0 < ¢ < 0o and ay € R, we write [A]] =

1,q,00
[Ao, Al]{,q,ao for the collection of all @ € ¥(A) such that there exists (u,)nez- C A(A)
satisfying

0
a= Z u,, (convergence in Ay + A;)

n=—oo

and

n=—oo

0 1/q
( Z [2_"60‘0(2")J(2",un)}q> < 00.

We endow [Ag, Ay]7 . with the quasi-norm

1,q,0
0 l/q 0
R § o SECIERAI RV oA
We claim that
AO N Al — [AO? Al]{,q,ao — AO + Al-

Indeed, take any a € Ay N A; and for any n € Z~, put u, = 02a where 6™ is the
Kronecker delta. So, a = >0 up and [laf| 4, 4y < J(1,a) = |lal| yyna,- On

__ J
n=-00 1,9,
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the other hand, take any a € [Ag, A;]] g0 a0d let @ = S uy be a representation
with
0 1/q
( > [2_"5“0(2")J(2",un)]q) < 2lalliag,a,7
Then
0 0 0
lall gen, = K(1,a) < > K(Lu,) < Y min(1,27)J(2% u,) = Y J(2

If 1 < ¢q < oo, applying Holder’s inequality, we obtain that

0 /g 0 1/q'
lall 4gsa, < (Z [2_"50‘0(2"”(2"7%)}‘1) (Z [2"5_0‘0(2")}61/)

n=—oo n=—oo

1qa0.

0 1/q
rS ( Z [2_n£a0(2n)e](2n,Un>:|q> < HaH [Ao, Aﬂ

n=—oo

If0<qg<1, we get

0 1/q
Ha||A0+A1 < < Z J(2naun)q)

n=—oo

0 1/q
< <Z [2_"€°‘°(2")J(2",un)}q> seuzq (260 (2™))

< llall [A0,41)] 4 oy

This proves that [Ay, Al]iqao — Ay + Ay

It is also not hard to check that these modified J-spaces are exact interpolation
spaces.

Lemma 2.1. Let A = (ap, ) € R? and 0 < ¢ < oo satisfy (2.3). Given any
Banach couple A = (Ag, A1), we have with equivalent quasi-norms

Al + (A0>A1) A T Al + [A0>A ]

1,q,a0 *

Proof. Let v = a;+a with a; € A; and a € (A, Al)l,q,A' Find (tm)mez € AgNA;
such that a = >_°

m=—0oQ

(Z [g—mgA(Qm)J(Qm,um)]"> < 2llall a7, 4 -

m=—00

Uy, and

Then w = > ~_, u,, belongs to A;. Indeed, if 0 < ¢ < 1, we have

00 00 00 1/q
> nlly, < D227 T2 ) < (Z [2—mJ<2m,um>}q)
m=1 m=1

m=1

meN

1/q
(Z [27m g (2m) J(2m,um)}q> sup £~ (2™)

S llall(ag,a07, o
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where we have used that o, > 0 in the last inequality. If 1 < ¢ < oo, we proceed
using Holder’s inequality. We get

S g, <27 I@2™ u)
m=1 m=1

. 1/q . 1/q
< (Z [2—m£a°°<2m>J<2m,um>}q) (Z 6‘“°°q'<2m>)

m=1

/

S ||a||(AO,A1)‘{,q,A

because o, — 1/¢" > 0.

Therefore, v = (a; + w) + ZO

m=—00

J
1,q,00

um belongs to Ay + [Ao, A4] with

0 1/q
||U||A1+[AO’A1H,q,a0 < ||a1 +w||A1 + ( Z [2—m€ao(2m)z](2m,um)}q>

m=—0oQ
< ||Cl1||A1 + ||CLH(A0,A1){,Q,A :

This yields that
Ar + (Ao, Al)i%A < Ay + [Ag, A1)}

17qva() :
The converse inclusion is clear. 0
Now we are ready to show the announced result for the modified J-spaces.

Theorem 2.2. Let A = (ay, ax) € R? and 0 < g < o0 satisfy (2.2) and (2.6).
Given any Banach couple A = (Ag, A1) we have with equivalence of quasi-norms

Ao Ay, = A+ Ao, At o 1< q < 00,
0, 431)1,qA — ~ ~ AT .
1 Aj +[AO,A1]17q7aO+1/q if0<qg<l1.

Proof. The argument in the proof of |8, Lemma 2.3| for 1 < g < oo is still valid
for 0 < g < oo showing that in the assumption (2.6) we have

2 ol ([ Bt ey )

In particular, if a € A, we obtain

1 dt l/q
fallspn S ([ €290 Nl S el
This yields that

(28) Al — (Ao, Al)l,q,A .
Take any o € R with a4+ 1/¢ > 0. We claim that
(2.9) (Ao, A1)y g.a = A1+ (Ao, A1) g (ap.0)

with equivalent quasi-norms. Indeed, by (2.7) and (2.8) we have that
(A0>A1)1,q,(ao,a) = (Ao, A1) ,a  and Ay — (Ao, A1)y -

So,
Al + (A07 Al)l,q,(ao,a) — (A(]? Al)l,q,A :

Conversely, if a € (A, A1), oA We can write a = ag + a; with a; € A; and

(2.10) laoll 4, + llanlla, < 2 llallsoqa, -
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Now we check that ag belongs to (Ag, A1) )- We have

17q7(a0 &

Sl N dt\ 4
HaOHAl,q,(ao,a) g (/1 [t IK(t7a0>£ (t)]q7)
' dr\ ! g\ Ve
+ (/0 [t_lK(t>a1)€aO(t):|q 7) + (/0 [t—lK(t’a)gao(t)]q 7)
< dt\ M 1 g\
(T eor ) ol ([ en0F) e, s,

< ||CLHA0+A1 + HCL1HA1 + HCLHAl,q,A

where we have used (2.10) in the last inequality. Hence,

HCLOHALMQW) S lladlla, + llalla, , , -

This shows that (A, A1)17q7A — A1 + (Ao, Al)l,q,(ao,a) with
votoo S larllay +llaollz, | oS llallagea, +llalla,, xS llalls,, .

which establishes (2.9).
Combining (2.9) with (2.4) and Lemma 2.1, we conclude for 1 < ¢ < oo that

(Ao, A1)y g a = A1+ (A0, A1)y g (ag.) = A1+ (A0, AT g (wgs 10ty
= A1+ [Ao, A1) oo -
If 0 <g<1, weuse (2.1), (2.9), (2.5) and Lemma 2.1 to derive
(Ao, Al)l,q,A = (47, A1N>1,q,A = A7 + (47, AT)l,q,(ao,a)
= A7 + (45, A7)y )= AT + [47, A7

1,q,(c0+1/q,0+1/q 1,q,a0+1/q *

||a||A1+(Ao,A1)

The proof is complete. O

3. Associate spaces

In what follows, (€2, 1) is a o-finite measure space and M is the collection of all
(equivalence classes of) scalar valued p-measurable functions on € which are finite
p-almost everywhere. We endow M with the topology of convergence in measure on
sets of finite measure.

The notion of Banach function space as described in [1] and [9] includes the Fatou
property. However, in other books one can find a similar concept but leaving out the
Fatou property. See [18], [14] and [15]. In this paper we follow this last point of view.

By a Banach function space we mean a Banach space (X, ||-||y) of functions in
M satisfying the following three properties:

(i) Whenever ¢ € M, f € X and |g(z)] < |f(z)| p-a.e., then ¢ € X and
lallx < |Ifllx (lattice property).
(ii) xg € X for every E C Q with p(E) < co.
(iii) For every E C Q with p(FE) < oo there is c¢p > 0 such that [ |f]du <
ce || fllx for every f € X.
Clearly, simple functions are contained in X and |||f|||y = || f||x for f € X.
The argument in [1, p. 4] based on (iii) can still be applied with the result that

(3.1) X > M.
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Lebesgue spaces L,, Lorentz spaces L, ,, Orlicz spaces L® are examples of Banach
function spaces. Other examples are the generalized Lorentz—Zygmund spaces L, 4:a)
formed by all those f € M satisfying that

00 t qd 1/q
(32) ||f||L(p,q;A) - (/0 |:t1/p_1€A(t)/0 f*(S)dS:| Tt) < 0

(the outer integral should be replaced by the supremum if ¢ = 0o0). Here 1 < p < o0,
1 <q<o0, A= (a,as) € R?and f* stands for the decreasing rearrangement of
f, defined by

() =inf{6 > 0: p({w € Q: |f(w)| > d}) <t}, t >0.

Spaces Ly q;a) make also sense if 0 < ¢ < 1 but then (3.2) is no longer a norm but a
quasi-norm. We refer to [16] and [9] for properties of generalized Lorentz—Zygmund
spaces. In order to avoid that Ly, qa) = {0} one should assume that any of the
following conditions holds

(1 < p < oo;

p = 00, q<oo, ag+1/q<0;
p = o0, q =00, g <0;
p=1, g <00, Qs +1/q<0;
p=1 q =00, o <0;

(see [16, Lemma 3.5/(ii)]).

We write L g.00)(0,1) if the integral in (3.2) is taken only on the interval (0,1)
instead of (0, 00).

The associate space X' of the Banach function space X consists of all ¢ € M
such that

/|fg|d,u<oo for every f € X.
Q

It is also a Banach function space over {2 endowed with the norm

ol =sup { [ \faldu 171 <1}

Indeed, the arguments in the proof of |1, Theorem 1.2.2| can be applied to show that
(X',]] - [|x7) is a normed space of functions in M which satisfies the corresponding
versions of (i), (ii) and (iii). Moreover, using the definition of || - || x+, it is not hard
to check that if (g,) € X" and Y ., ||gnl|x» < oo then the function g = > > g,
belongs to X’ and [|g — >77_, gjllx» — 0 as n — oo.

We also have that [, [fg|du < || fllx 9l If (Y,] - |ly) is a quasi-Banach space
of functions in M such that the corresponding versions of (i), (ii) and (iii) hold, then
we define Y as above.

We let ¢, be the usual space of scalar g-summable sequences with indices on Z.
It is known that (; = £, for 1 < ¢ < co where 1/q+ 1/¢' = 1. For later use we
compute now the associate space of the quasi-Banach space ¢, when 0 < ¢ < 1.

Lemma 3.1. Let 0 < ¢ < 1. Then ¢ = (, with equality of norms.
Proof. Take any n = (n,) € le and € = (&,,) € {,. It follows from

) 00 1/q
D &l < ( > \imlqlnm\q> < llle, lnll..,

m=—0Q m=—0Q
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that (o, < £, and that the embedding has norm less than or equal to 1. Conversely,
take any 7 = (1,,) € {;, and for n € Z let e,, = (,)mez. We have

1l =D Iyl < Ml lenlle, = Nl -

m=—0Q

Hence, 1 belongs to {« and ||n]|, < |[n]|, . This completes the proof. O

Let Xy, X; be Banach function spaces over €. According to (3.1), we have that
X; = M. Hence X = (Xp, X)) is a Banach couple. Subsequently, we are going
to determine the associate space of Xi,4 and X/ ,. We work under different
assumptions on X than in [13] and [5], but ideas of those papers will be useful for
our considerations.

Let g € M and f € XoN X; with |g(z)] < |f(z)] a.e., then it is clear that

g € XoN Xy with J(t,9; X) < J(¢t, f; X), t > 0. So, Xo N X; is a Banach function

space with the norm J(¢,-; X). As for the K-functional, using that

K(t, f; X) = if{[| follx, +t 1 Aillx, = [FI < fo+ fr, f; >0, f; € X}

(see, for example, |7, Lemma 3.1]), it follows that K(t,g; X) < K (¢, f; X) provided
that |g| < |f], f € Xo+ Xi. Now it is not hard to check that X, + X; is also a
Banach function space.

The properties above of the J- and K-functionals also yield that for 1 < ¢ < oo
the spaces X 4, X’i{%A and Xi],q,A,B are Banach function spaces. To check (3) one
can rely on the exact interpolation property of the logarithmic interpolation methods
applied to the operator f ~~ fE fdu. If 0 < ¢ < 1, these spaces have also properties
(i), (i), (i) but [| - [|x, o> |- HX{%A and || - HXi],q,A,B are only quasi-norms.

Let X’ = (X, X]) be the Banach couple formed by the associate spaces. If
feXoNXy, g€ Xg+ Xy with g = go + g1, g; € X} and ¢ > 0, we have

s [ 1ol [ 1mldn <10 ooy + 11, Il

< It £:.%) (llgoll + ¢ llgnlly, )
This yields

(3.3) /Q foldu < J(t, £ )K", g X0), ¢ > 0.

Furthermore, we have that

— Jo | fgldp :
3.4 J(t,g; X") = —_ X/NnX,, t>0.
( ) ( v 95 ) fe;leXl K(t_l,f;X)’ g S 0 1

Indeed, let g € X{ N X{. Proceeding as to establish (3.3) we get
fQ ‘fg‘ dp =
sup 2V g g X,
feXo+X1 K(t_laf;X> ( / )

To check the converse inequality we write AX for the space X normed by A ||-|| . Since
the embeddings Xy < (Xo + X1, K(t71, ) and t7'X; — (X, + X1, K(t7',+)) have
norm less than or equal to 1, it follows that the imbeddings (Xo+ X7, K(t71,)) — X},
and (X, + X1, K(t7',+))" = tX] have norm less than or equal to 1. Hence

(Xo+ X1, K1) = (X;n X, J(t,))
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with
i Jo lfgldu
J(t,g: X)) < sup 2T
feXo+X1 K(t—l’ E X)
This establishes (3.4).

Recall that a Banach function space X over (2 is said to have absolutely continuous
norm if for any f € X and any decreasing sequence (E,) of py-measurable sets with
empty intersection we have that ||fxg,|x 4 0 as n — oco. If X has absolutely
continuous norm then X’ coincides with the dual space X* of X (see [18, Theorem

15.72.5, p. 480]).
Subsequently, K stands for the scalar field, K =R or C.

Lemma 3.2. Let X = (Xy, X;) be a couple of Banach function spaces over ).
Suppose that X, or X, has absolutely continuous norm. Then

(3.5) K(t_laQJY): sup M

——, ge X+ X, t>0.
feXonXs J(t,f;X) g 0 !

Proof. Inequality
fQ |fg| d'u -1 Y/ / /
sup —F—— < Kt ,9;X"), ge X+ X, t>0,
b a3 = ) Y
follows from (3.3). To check the reverse inequality, consider X, N X; with the norm
J(t,; X), endow X} + X| with the norm K (¢7!,-; X’) and take any g € (Xo N X1)".

Then the functional T assigning to any f € XoNX; the scalar Tf = [, fgdu belongs
to (XO N Xl)* with

1T xonxrys = Sup{ /Qfgdu‘ D J(t [ X) < 1} = 119/l xorxyy -

Consider the space Xy x X; normed by

1o F)llxg s, = max{[[ follx, » £ 1f1llx, }

and put A = {(fo, /1) € Xox X1: fo = f1}. The linear functional F : A — K defined
by
FUnf) =7 [ g, (o) € 4.
Q

is bounded with

M)_
) =

£

A= SUP{ ‘/ fgdu‘ L f e Xon Xy with J(t, f; X) < 1} = ll9llxonxyy -
Q

According to the Hahn—Banach theorem, we can extend F' to a bounded linear func-
tional I € (Xo x X1)* with ||Fl|(xyxx1)= = |9/l (xonx,) - Hence, there are L; € X7,
7 =20,1, such that

(3.6) Lofo = F(f0,0), Lifi =F(0,f1) and F(fo, f1) = Lofo + L1 f1.

Assume that X, has absolutely continuous norm. Then X§ = X and so there is
go € X{ such that Lyfy = fQ fogo dp and || Lo x; = HgOHX()' For any f € XoN Xy, we
have

/ fgdp=F(f.f) = Lof + Inf = / faodu + Lof.
Q Q
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Whence
Lif = [ fg=g0)du, § € Xan1 Xa
Q

We claim that ¢ — go € X{. Indeed, take any f € X;. We can find an increasing
sequence of simple functions (f,,) such that 0 < f,, T |f|. Since (f,) € Xo N Xy, we
get

/JHQ-%MMZ
Q
= |L1(sgn(g — go) fu)|l < [ Lallxs 1 fullx, < I L1

Whence, using the monotone convergence theorem, we derive that

J%ﬂg—%wm@—g@m4

/vw-mmmhm/nm—mw<m.
Q n—oo Q

This shows that g, = g — go belongs to X with ||g1||x: < || L]
X{ + X{. Moreover, given any € > 0, we have

191l —e@+¢71) < lgollx, =+t (llgrlly —€)
< | Lollx; — e+t (I Lallx; —€) < |[Lofol + 7" [Lofi]

X;- 90, g =go+ g1 €

for some f; € X; with HfjHXj < 1. Therefore, using (3.6), we get

|muﬁﬂ—au+fggLOC%ﬁg)+JAGA\me)

Lo fo Lifi
L L
<| ofo|f07t_1| 1f1|f1)
Lo fo Lify
A |Lofol 1 || il
< [[F | (xoxx7) (‘ Lofo |l x, Ly fi o X1
< ||F||(XO><X1)* = ||g||(XgﬁX1)’ :
Letting ¢ — 0, this yields that
B faldp
K t_17 7X/ == / / < 1= su \]‘Q|77
( g; X') ||9||X0+X1 = HgH(Xoﬁxl) fexﬁxl J(t, f; X)

and completes the proof. The case when X; has absolutely continuous norm can be
treated analogously. U

Next we determine the associate space of X7 aa - A= (g, a0) € R?, we put

—A = (—ap, —a) and we write A= (oo, () for the reverse pair.

Theorem 3.3. Let X = (Xy, X;) be a couple of Banach function spaces over (2.
Suppose that X, or X, has absolutely continuous norm. Let A = (g, a) € R? and
0 < ¢ < oo satisfying (2.3). Put

. q if1<g<oo,
oo if0<g<1.
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Proof. We proceed following the lines of [13, Theorem 3.4]. Take any g € (X{_ A)’
and any ¢ > 0. According to (3.5), for any m € Z, there is f,, € Xy N X; such that

(1— K @™ |g): ) < J@™ | fu] : ) / gl dt.

Take any sequence (d,,) of non-negative scalars such that

[e%) 1/‘1
( > (z—meA(zm)ém)q> <1.
Put w, = J(2™, | fm]; X) " m | fm|- Then the function f = >>>° _ wu,, belongs to
X{, a and

o0

1/q 0o 1/q
Iz, < < 2 [Q_mfA(2m)J(2m>um)}q) < ( > [TWA(z’”)dm]") <1.

m=—0oQ m=—00

Moreover,

(=) 3 2 A@KE ™, gl ;X2 ™A 2™,
< Y bl [ Vgl = [ Ifoldi < lallsy, -

1,q,A
m=—o00

Using that £, = (4« we derive_that g€ 717q*7_A7and that ||g]|717q*’ﬂ& < ||gH(Xi]yq’A)/.
Conversely, take any g € X', . 4, let f € Xi],q,A and take any J-representation

f=>>__ fmof f. By (3.3), we have

/ |fmgldp < J27, fr; X)K(277",9; X7), m € Z.
Q

Hence, if 1 < ¢ < o0, it follows by using Holder’s inequality that

[ Voldu< 30 90 s O

m=—0oQ

- Ve e
- ( 2, e <2m=fm;X>V> (Z [2m€‘A<2m>K<2—m,g;7>}q) .

m=—00 m=—0oQ

If 0 < g <1, we obtain

[ lrsldus 32 aem fu DK@ 40

m=—0oQ

s 1/q
< ( > [J(2m,fm;X)K(2_m,g;T)}q>

m=—00

o] 1/q
< ( > [2‘m€A(2m)J(2m,fm;Xﬂq> Zg{2m5_A(2m)K(2‘m,g;X)}-

Therefore, for any 0 < ¢ < oo, we get that

[ Vsl < el , gl

1,q%,—A
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This shows that g belongs to (X{, ) with l9llzs y < llgllxr, . - The proof is
b 5 ,q, ;q*y7
complete. O

Remark 3.4. For A = (g, 0s), B = (80,0x) € R* and 1 < ¢ < oo with
oo = 1/¢ and By > 1/¢, or 0 < ¢ <1, as = 0 and S, > 0, one can determine
the associate space of (Xp, Xl){,q,A,B proceeding in a similar way. If Xy or X; has
absolutely continuous norm, the outcome is

/
(3.7) (X0, X0 am) = (X6 XDy a8

where the quasi-norm in the K-space is given by

0 N\ Va
< . 14
lolber, o= ( S [2‘m£—A(2m)£€—B(2m)K(2m7g;X/)] ) .

Remark 3.5. The same techniques are useful to determine the associate space

of the modified J-space [X, Xl]f’ .00 Lhe relevant K-spaces are now
o] 1/q
X0 X1, = (F € X0t X2 (e, = (Z[z—m£a<2m>f<<2m,f;x>]q> < o0},
m=0
We have
J ! / 2719
(38) ([XO? Xl]l,q,ao) = [XO’ Xl]l,q*,—oco

provided that Xy or X; has absolutely continuous norm.

Remark 3.6. On the contrary to the duality formulae of [8] and [3| where it
is essential that Ag N A; is dense in Ag and A;, such assumption is not needed in
Theorem 3.3. It suffices that Xy or X; has absolutely continuous norm. Moreover,
the parameter ¢ can also take the value oo in the Theorem 3.3.

Next we determine the associate spaces of K-spaces. We start with the case
1<g<oo. Weput 1/g+1/¢ =1.

Theorem 3.7. Let X = (X, X;) be a couple of Banach function spaces over
the space §2. Suppose that Xy or X; has absolutely continuous norm. Let 1 < g < oo
and A = (g, @) € R? satisty (2.2). Then we have with equivalence of norms:

(i) If aoo + 1/g > 0, then (X ,a) = 717(1,7_1;_1.

(ii) If ¢ < 00 and sy = —1/q, then (X1 ,4) = 717(},7_;&_17(_170).
(iii) If aso + 1/g < 0 and q < 00, or ais < 0 and g = oo, then

o K
(X1g.a)" = X1 0 [Xo, XY _agm1-
Proof. Statements (i) and (ii) follow from (2.4), Theorem 3.3 and Remark 3.4.
To prove (iii) we use Theorem 2.2, (3.4) and Remark 3.5. O

Next we deal with the case 0 < ¢ < 1.

Theorem 3.8. Let X = (X, X;) be a Gagliardo couple of Banach function
spaces over §2. Suppose that X, or X; has absolutely continuous norm. Let 0 < ¢ < 1
and A = (ay, @) € R? satisfying (2.2). Then we have with equivalence of norms:

(l) If e + 1/q >0, (‘%L%A)/ = zl,oo,—A—l/q‘
(11> If Qoo 1 1/(] = 07 ()E*Lq,Ay = Xll,oo,—A—l/q,(—l/q,O)'
(iti) If oo 4+ 1/q < 0, (X1 0a) = X N [X, XI5

1,00,—ap—1/q "
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Proof. Since X is a Gagliardo couple, we have that X7 = Xj;, j=0,1. State-
ments follow from (2.5), Theorems 2.2 and 3.3, and Remarks 3.4 and 3.5. O

4. Generalized Lorentz—Zygmund spaces

First we assume that (£2, ¢) is a non-atomic o-finite measure space and we deal
with the spaces L q.a) (see (3.2)). Their associate spaces have been determined
by Opic and Pick [16, Theorem 6.2/(ii),(v) and Theorem 6.6/(ii),(iv)|] by means of
direct calculations. In this section we derive them from the abstract results obtained
in Section 3 as an specific example.

Consider the Banach couple (L, L) . It is well-known that

K(tvf;le /f t>07

(see, for example, |2, Theorem 5.2.1]). From this equality it is not hard to check that
(L1, L) is a Gagliardo couple (see the comment after [1, Theorem V.1.6]). Besides,
the norm of L; is absolutely continuous.

Theorem 4.1. Let 1 < g < o0, 1/q+1/¢ =1 and A = (ap, as) € R? satisfying
(2.2). We have with equivalence of norms:

(1) If Qoo + 1/(] > O, then (L(oo,q;A)>/ = L(l,q’;—A—l)-
(ii) If o +1/q¢ < 0 and q < 00, or ay < 0 and g = oo, then

L) = {o € M ol = [ @i+l o < o0}
(iii) If oo +1/q¢ =0 and q < oo, then
(Licog:a))’

[e'e) + q dt 1/¢
=q9€M: gl = ( / [ﬁ(‘%‘l"”‘”(t)wov—”(t) / g*(s) ds} 7) < o0
0 0

Proof. We have
(4.1) (L17 Loo)l,q,A = L(oo,q;A)

because
[ o)

g
([T e [ psyas) Uq:nfnL(w,q;A)-
([ [reo [ roe]F)

Besides, L} = Ly, and L’ = L,. Hence, it follows from Theorem 3.7/(i) that

0 / 1/q
—1)—A-1 _ ¢ dt
191z oy ™ </0 [t AN DK (L, g; LOO,LI)} 7)
o0 A _ q’ dt l/q,
0

> A-1 ! 7 dt e
_ / {g 0 / g<s>ds] I .

|| f||(L17Loo)1,q,A
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This establishes (i). As for (ii), using Theorem 3.7/(iii), we get
||g||(L(oo,q;A))l ~ ||g||L1 + ||g||[L°°vL1]{fq/,fa071 :

On the other hand, reversing the couple, we derive

o) 1/q
Wi, = (35 e e gl

-1
m=0

o] 1/‘1,
— (Z [£_a°_1(2m)K(2_m,g; Ly, Loo)}ql)

m=0

~ (/01 (670" (1) K (¢, g; Ly, Loo)]” %)

_ ( / 1 o [ ) | ' %) "

= lglly,,, ., ©.1).

1/¢

This completes the proof of (ii). Finally, for (iii), according to Theorem 3.7/(ii), we
obtain

o0 i B q dt 1/‘1/
192 yary = < /0 [t LAY O () K (¢, g; Loo,Ll)] 7)

00 3 / 1/q
- ([ o oore g 0)" )
0

¢ q 1/q
o0 , dt
= (/ [6(_0‘0_1’_1/‘1)(t)ﬁﬁ(o’_l)(t)/ g*(s) ds] _t) ) O
0 0

Theorem 4.2. Let 0 < ¢ < 1 and A = (g, @) € R? satisfy (2.2). Then we
have with equivalence of norms:

(i) If veo +1/¢ >0, (Lico,g:a))’ = L1,00-A-1/g)-
(ii) If oo +1/¢ <0,

(Liso,gia)) = {g e M: |gll = / GO dt+ 19l g1/ < OO}'
0

(ili) If as +1/q =0,

t
(L)) = {g.€ M2 gl = sup <f(_“°_1/q’0)(t)«%(o’_l/q’(t) / g*<s>d8) < o).
0

0<t<oo

Proof. One can proceed from (4.1) as in Theorem 4.1 but replacing Theorem 3.7
by Theorem 3.8. 0

We close the paper by establishing the corresponding results to Theorems 4.1
and 4.2 for sequence spaces. This question has not been discussed in [16], but it can
be treated as another specific application of the abstract results of Section 3.

Let Q = N and pu = # the counting measure. Given any bounded sequence of
scalars £ = (&,), we put

& =inf{r > 0: #{j e N: || > 7} <n}.
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The sequence (&) is the decreasing rearrangement of (,) by magnitude of modulus.
If £ = (&,) converges to zero, then

& =max{|&|:neN}=1¢,], & =max{[&|:ne N\ {n}} andsoon.
For oo € R, let {( 4:a) be the collection of all bounded sequences ¢ = (§,) such

that
1€lles ey = <Z [ﬁa(n)n—lziﬂqn—1> < 0.
j=1

n=1

We put £(1 4,0 for the set of all bounded sequences £ = (§,) such that

n 1/q
||€||z(1qa) (Z )Zfﬂqn_l) < 0.
=1 j=1

Replacing the weight ¢%(n) by £%(n)¢¢®(n), where 3 € R, we obtain the spaces

C(1,g;0,8)-
To determine the associate space of f(s 4:a), We work with the Banach couple
(01,0s). The K-functional for this couple is

(4.2) K(n,& b, le) =Y &, neN
j=1
(see [17, p. 126]). Since

I€lly = sup K(t,¢) = lim Zs = |¢ll,,

we have that (¢, /) is a Gagliardo couple. Moreover, ¢; has absolutely continuous
norm.

Theorem 4.3. Let 0 < ¢ < oo and o € R. Then we have

Cigi—a—1) ifl1<g¢g<oo and «a+1/q>0,

v B 6(1700;_0_1/(1) if0<g<1 and o+ 1/(] > 0,
(c0.g5e) Cig'—a—1,—1) ifl<g<oo and a+1/¢g=0,
C(1,00—a—1/g-1/¢) 0 <q<1 and a+1/q=0.

Proof. Choose ag € R with ag + 1/¢g < 0. We have K(t,§;01,0) < t|€]],-
Hence

1 qd 1/q d
([ reoresner®) < ([ o) . <ie.

Therefore, using (4.2), we obtain

o0 1 th 1/‘1
1€ 01 e g g ™ (/1 [ (K (8,6 6, o) 7)

0 n 1/q
~ <Z [ (n) Zgﬂ‘%*)

n=1

= Hé_HZ(oo,q;a) :
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Whence, if 1 < ¢ < oo and o+ 1/q > 0, according to Theorem 3.7/(i), we derive

/(oo,q;oa) = (6007 61)1,q’,(—a—1,—a0—1) .

Furthermore,

o0 s dt\ M
([ o sn.n)” )
<

0o q’d 1/‘1'
([ e o ) el Shel.

This yields that

1/q

~ 16 a— 1 ) (t7£;€oo’£l>j|q’ %)

HgH (500751)1#1/,(704—1,—&071)

H\o\,c\

1 1/¢
[ K (65 b, 00)]” dt)

~Y

(o
(/!
(!

Consequently, E’(oo’q’a) =1, —a-1)-
The case v + 1/¢ = 0 with 1 < ¢ < oo follows similarly but using now Theo-
rem 3.7/(ii). The remaining cases where 0 < ¢ < 1 can be derived analogously but

replacing Theorem 3.7 by Theorem 3.8. U

00 , 1/q
0K g ) )

n , 1/q
V—a_l(n) Z g;f]q n_1> = HgHe(l,qr;,aq)

n=1 j=1

Mg

In Theorem 4.3 we have not considered the case a4+ 1/g < 0. The reason is that
in this situation we have that (o 4.a) = fo. Indeed,

o n 1/q
1€l < liell,... = <Z [¢*(n)n~! Zfﬂ"n‘1>
n=1 j=1
00 1/q
< (zeaqm)n—l) €l S €l
n=1
Therefore,
(4.3) Ly gy = loo =11 for a+1/g<0 and 0 <g<oo, or @ <0 and ¢=o00
Still, this last result can be derived from Theorems 3.7/(iii) and 3.8/(iii) noting
that in this case X{ = £1 and that [(eo, (1]F 001 = oo = [loos 1]  ae —ay— l/q because
o0 Cd\ Ve o0 ,dt
( / [t (K (E, &5 o, 61)]° 7) < ( / [ttt (0)* 7) 1€l
1 1

< 1€l
and similarly
sup [t_lﬁ_ao_l/q(t)K(taf%goo,gl)] S .. -

1<t<oo
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