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Abstract. We prove a sharp integral inequality for the dyadic maximal operator due to which

the evaluation of the Bellman function of this operator with respect to two variables is possible,

as can be seen in [3]. Our inequality of interest is proved in this article by a simpler and more

immediate way. We also study a stability result in connection with this inequality, that is we

provide a necessary and sufficient condition, for a sequence of functions, under which we obtain

equality in the limit. The proof of this result is based on the proof of the related inequality which

we present in this article.

1. Introduction

The dyadic maximal operator on R
n is a useful tool in analysis and is defined by

(1.1) Md φ(x) = sup

{

1

|Q|

ˆ

Q

|φ(y)| dy : x ∈ Q, Q ⊆ R
n is a dyadic cube

}

,

for every φ ∈ L1
loc
(Rn), where the dyadic cubes are those formed by the grids 2−N

Z
n,

for N = 0, 1, 2, . . .. As is well known it satisfies the following weak type (1,1) in-
equality

(1.2) |{x ∈ R
n : Md φ(x) > λ}| ≤

1

λ

ˆ

{Md φ>λ}

|φ(y)| dy,

for every φ ∈ L1(Rn) and every λ > 0, from which it is easy to get the following
Lp-inequality

(1.3) ‖Md φ‖p ≤
p

p− 1
‖φ‖p,

for every p > 1 and φ ∈ Lp(Rn).
It is easy to see that the weak type inequality (1.2) is best possible. It has also

been proved that (1.3) is best possible (see [1], [2] for general martingales and [18]
for dyadic ones).

For the study of the dyadic maximal operator it is desirable for one to find
refinements of the above mentioned inequalities. Concerning (1.2), improvements
have been given in [9] and [8]. If we consider (1.3), there is a refinement of it if
one fixes the L1-norm of φ. That is we wish to find explicitly the following function
(named as Bellman) of two variables f and F ,

(1.4) B
(p)
Q (f, F ) = sup

{

1

|Q|

ˆ

Q

(Md φ)
p : φ ≥ 0,

1

|Q|

ˆ

Q

φ = f,
1

|Q|

ˆ

Q

φp = F

}

,
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where Q is a fixed dyadic cube and f, F are such that 0 < f p ≤ F .
This function was first evaluated in [5]. In fact it has been explicitly computed in

a much more general setting of a non-atomic probability space (X, µ) equipped with
a tree T , with structure similar to the one that the dyadic subcubes of [0, 1]n have
(see the definition in Section 2). Then we define the associated maximal operator by

(1.5) MT φ(x) = sup

{

1

µ(I)

ˆ

I

|φ| dµ : x ∈ I ∈ T

}

,

for every φ ∈ L1(X, µ).
Moreover, (1.2) and (1.3) still hold in this setting and remain sharp. Now if we

wish to refine (1.3) we should introduce the so-called Bellman function of the dyadic
maximal operator of two variables given by

(1.6) B
(p)
T (f, F ) = sup

{
ˆ

X

(MT φ)p dµ : φ ≥ 0,

ˆ

X

φ dµ = f,

ˆ

X

φp dµ = F

}

,

where 0 < f p ≤ F . This function of course generalizes (1.4). In [5] it is proved that

B
(p)
T (f, F ) = F ωp

(

f p

F

)p

,

where ωp : [0, 1] →
[

1, p
p−1

]

is defined by ωp(z) = H−1
p (z), and Hp(z) is given by

Hp(z) = −(p − 1)zp + pzp−1. As a consequence B
(p)
T (f, F ) does not depend on the

structure of the tree T . The technique for the evaluation of (1.6), which is used in [5],
is based on an effective linearization of the dyadic maximal operator that holds on
an adequate class of functions called T -good (see the definition in Section 2), which
is enough to describe the problem that is settled on (1.6). In [12] now a different
approach has been given for the evaluation of (1.6). This was actually done for the
Bellman function of three variables in a different way avoiding the calculus arguments
that are given in [4]. More precisely the following is a consequence of the results in
[12].

Theorem A. Let φ ∈ Lp(X, µ) be non-negative with
´

X
φ dµ = f . Then the

following inequality is true and sharp

(1.7)

ˆ

X

(MT φ)p dµ ≤ −
1

p− 1
f p +

p

p− 1

ˆ

X

φ (MT φ)p−1 dµ.

This inequality as one can see in [12], enables us to find a direct proof for the
exact evaluation of (1.6). For this evaluation we also need a symmetrization principle
that can be found in [12] (presented as Theorem 2.1 below) and which is also used in
this article for the sharpness of our results. In this paper we will prove the following
generalization of Theorem A.

By using the linearization technique that appears in [5] in a more complicated
form, we present in Section 3 a proof of the theorem that appears just below (men-
tioned as Theorem 1), which generalizes Theorem A and which is the following.

Theorem 1. Let φ be as in the hypothesis of Theorem A and suppose that
q ∈ [1, p]. Then the following inequality is true for any β > 0

ˆ

X

(MT φ)p dµ ≤ −
q(β + 1)

(p− 1)qβ + (p− q)
f p

+
p(β + 1)q

(p− 1)qβ + (p− q)

ˆ

X

φq(MT φ)p−q dµ.

(1.8)
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Additionally (1.8) is best possible for any given q ∈ [1, p], f > 0 and β such that
0 < β ≤ 1

p−1
. By this we mean that if one fixes the second constant appearing on

the right hand side of inequality (1.8) then we cannot increase the absolute value of
the first constant appearing in front of f p in a way such that (1.8) still holds.

The following is also true and is an easy consequence of Theorem 1.

Corollary 1. Let φ : (X, µ) → R
+ be such that

´

X
φ dµ = f . Then for every

q ∈ [1, p] the following inequality holds

(1.9)

ˆ

X

(MT φ)p dµ ≤ −
q

p− 1
f p +

(

p

p− 1

)q ˆ

X

φq(MT φ)p−q dµ.

Additionally (1.9) is best possible for any given q ∈ [1, p] and f > 0.

Moreover, by using the symmetrization principle that is mentioned below (The-
orem 2.1) and Theorem 1 we easily derive inequalities of Hardy type as described by
the following

Corollary 2. For any g : (0, 1] → R
+ non-increasing such that

´ 1

0
g(u) du = f ,

the following inequality is true for any β > 0 and sharp for any β such that 0 < β ≤
1

p−1
.

ˆ 1

0

(

1

t

ˆ t

0

g(u) du

)p

dt ≤ −
q(β + 1)

(p− 1)qβ + (p− q)
f p

+
p(β + 1)q

(p− 1)qβ + (p− q)

ˆ 1

0

(

1

t

ˆ t

0

g(u) du

)p−q

gq(t) dt.

(1.10)

For the case q = 1 and the value β = 1
p−1

inequality (1.10) is well known and is
in fact equality, as can be seen by applying a simple integration by parts argument.
We also note that inequality (1.8) is also a consequence of the results in [3], where it
is proved a more general inequality which involves also the parameter A =

´

X
φq dµ.

In this paper we ignore this parameter and give a more direct proof of (1.8).
Moreover the proof that we give for (1.8) enables us to provide a stability result

for this inequality. That is we characterize when we do have equality in the limit in
(1.8) for a sequence of functions (φn)n. More precisely we prove the following

Theorem 2. Let (φn)n be a sequence of nonnegative, T -good functions (the
exact definition will be given in Section 2) satisfying

´

X
φn dµ = f and

´

X
φp
n dµ = F ,

for every n ∈ N and q be such that q ∈ (1, p). Let also β which satisfies

(1.11) β + 1 = ωp

(

f p

F

)

.

Then (φn)n satisfies equality in the limit in (1.8), if and only if the following is true

(1.12) lim
n

ˆ

X

|MT φn − (β + 1)φn|
p dµ = 0,

By using now the results of [10] we conclude that if we fix the L1 and Lp norms
of φn, n ∈ N , the sequence (φn)n gives equality in the limit in (1.8) for any q ∈ (1, p],
if and only if it behaves as an extremal sequence for the respective Bellman function
(1.6). At last we mention that the evaluation of (1.6) has been given by an alternative
method in [13] while certain Bellman functions corresponding to several problems in
harmonic analysis, have been studied in [6], [7], [14], [15], [16] and [17].



536 Eleftherios N. Nikolidakis

2. Preliminaries

Let (X, µ) be a non-atomic probability space. We give the following from [5] or
[12].

Definition 2.1. A set T of measurable subsets of X will be called a tree if the
following are satisfied

i) X ∈ T and for every I ∈ T , µ(I) > 0.
ii) For every I ∈ T there corresponds a finite or countable subset C(I) of T

containing at least two elements such that
a) the elements of C(I) are pairwise disjoint subsets of I,
b) I =

⋃

C(I).
iii) T =

⋃

m≥0 T(m), where T(0) = {X} and

T(m+1) =
⋃

I∈T(m)

C(I).

iv) The following holds

lim
m→∞

sup
I∈T(m)

µ(I) = 0.

v) The tree T differentiates L1(X, µ).

The last property stated in the definition of the tree T means that for every
φ ∈ L1(X, µ), limx∈I∈T ,µ(I)→0

1
µ(I)

´

I
φ dµ = 0 for µ-almost all x on X.

For the proof of Theorem 1 we will use an effective linearization for the operator
MT that was introduced in [5]. We describe it as appears there and use it in the
sequel.

For every φ ∈ L1(X, µ) non-negative and I ∈ T we define AvI(φ) =
1

µ(I)

´

I
φ dµ.

In the proofs below we denote AvI(φ) by yI . We will say that φ is T -good if the set

Aφ = {x ∈ X : MT φ(x) > AvI(φ) for all I ∈ T such that x ∈ I}

has µ-measure zero.
Let now φ be T -good and x ∈ X \Aφ. We define Iφ(x) to be the largest in the

nonempty set

{I ∈ T : x ∈ I and MT φ(x) = AvI(φ)} .

Now given I ∈ T let

A(φ, I) = {x ∈ X\Aφ : Iφ(x) = I} ⊆ I and

Sφ = {I ∈ T : µ(A(φ, I)) > 0} ∪ {X} .

Obviously then

MT φ =
∑

I∈Sφ

AvI(φ)χA(φ,I), µ-a.e.,

where χE is the characteristic function of E. We also define the following correspon-
dence I → I⋆ by: I⋆ is the smallest element of {J ∈ Sφ : I ( J}. It is defined for
every I ∈ Sφ except X. Also it is obvious that the A(φ, I)’s are pairwise disjoint and
that

µ





⋃

I /∈Sφ

A(φ, I)



 = 0,
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so that
⋃

I∈Sφ

A(φ, I) ≈ X,

where by A ≈ B we mean that

µ(A\B) = µ(B\A) = 0.

Now the following is true (see [5]).

Lemma 2.1. Let φ be T -good

i) If I, J ∈ Sφ then either A(φ, J) ∩ I = ∅ or J ⊆ I.
ii) If I ∈ Sφ then there exists J ∈ C(I) such that J /∈ Sφ.
iii) For every I ∈ Sφ we have that I ≈

⋃

J∈Sφ

J⊆I

A(φ, J).

iv) For every I ∈ Sφ we have that

A(φ, I) = I \
⋃

J∈Sφ

J⋆=I

J,

so that

µ(A(φ, I)) = µ(I)−
∑

J∈Sφ

J⋆=I

µ(J).

From the above we see that

AvI(φ) =
1

µ(I)

∑

J∈Sφ

J⊆I

ˆ

A(φ,J)

φ dµ.

In the sequel we will also need the notion of the decreasing rearrangement of a µ-
measurable function defined on X. This is given by the following equation

φ⋆(t) = sup
e⊆X
µ(e)≥t

[

inf
x∈e

|φ(x)|
]

, t ∈ (0, 1].

This is the unique non-increasing, left continuous function defined on (0, 1], equimea-
surable to |φ| (that is µ({|φ| > λ}) = |{φ⋆ > λ}|, for any λ > 0). A more intuitive
definition of φ⋆ is that it describes a rearrangement of the values of |φ| in decreasing
order. We are now ready to state the following theorem, which appears in [12], and
can be viewed as a symmetrization principle for the dyadic maximal operator.

Theorem 2.1. For any k ∈ (0, 1] the following equality is true

sup

{
ˆ

K

G1(MT φ)G2(φ) dµ : φ
⋆ = g, φ ≥ 0, K measurable subset of X

with µ(K) = k

}

=

ˆ k

0

G1

(

1

t

ˆ t

0

g

)

G2(g(t)) dt,

(2.1)

where Gi : [0,+∞) → [0,+∞) are increasing functions for i = 1, 2, while g : (0, 1] →
R

+ is non-increasing. Additionally the supremum in (2.1) is attained by some (φn)
such that φ⋆

n = g, for every n ∈ N . This sequence of functions is independent of the
pair of functions (G1, G2).
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3. Proof of the inequality (1.8)

We now proceed to the

Proof of Theorem 1. Let φ : (X, µ) → R
+ be T -good such that

´

X
φ dµ = f

and let q ∈ (1, p]. (The case q = 1 can be handled easily if we consider a sequence
(qn)n of elements of (1, p], tending to q = 1 and applying the result for every qn). We
consider the quantity

kq =

ˆ

X

φq(MT φ)p−q dµ.

By the definition of the linearization of the dyadic maximal operator we have that

(3.1) kq =
∑

I∈Sφ

ˆ

A(φ,I)

φq dµ · yp−q
I .

By Hölder’s inequality now, since q > 1, we have that

(3.2)

ˆ

A(φ,I)

φq dµ ≥
1

αq−1
I

(
ˆ

A(φ,I)

φ dµ

)q

,

where A(φ, I) = I\
⋃

J∈Sφ,J⋆=I J , in view of Lemma 2.1 iv), and so αI = µ(A(φ, I)) =

µ(I)−
∑

J∈Sφ,J⋆=I µ(I). Thus (3.1) in view of (3.2) gives

kq ≥
∑

I∈Sφ

yp−q
I

(

´

I
φ dµ−

∑

J∈Sφ,J⋆=I

´

J
φ dµ

)q

(

µ(I)−
∑

J∈Sφ,J⋆=I µ(J)
)q−1

=
∑

I∈Sφ

yp−q
I

(

µ(I)yI −
∑

J∈Sφ,J⋆=I µ(J)yJ

)q

(

µ(I)−
∑

J∈Sφ,J⋆=I µ(J)
)q−1 .(3.3)

We use now Hölder’s inequality in the following form

(3.4)
(λ1 + λ2 + . . .+ λm)

q

(σ1 + σ2 + . . .+ σm)q−1
≤

λq
1

σq−1
1

+
λq
2

σq−1
2

+ . . .+
λq
m

σq−1
m

,

which holds for every λi ≥ 0, σi > 0 since q > 1.
We consider now an arbitrary β such that 0 ≤ β ≤ 1

p−1
. We set for any I ∈ Sφ

τI = (β + 1)− βρI , where ρI =
µ(A(φ, I))

µ(I)
=

αI

µ(I)
,

thus concluding that τI > 0. For this choice of τI we have that

(3.5) τIµ(I) − (β + 1)
∑

J∈Sφ,J⋆=I

µ(J) = µ(I) −
∑

J∈Sφ,J⋆=I

µ(J).

Thus using (3.4) and (3.5) we have from (3.3) that

kq ≥
∑

I∈Sφ

yp−q
I

{

(µ(I)yI)
q

(µ(I)τI)q−1
−

∑

J∈Sφ

J⋆=I

(µ(J)yJ)
q

((β + 1)µ(J))q−1

}

=
∑

I∈Sφ

µ(I)
ypI
τ q−1
I

−
∑

I∈Sφ

yp−q
I

∑

J∈Sφ

J⋆=I

yqJ
(β + 1)q−1

µ(J).(3.6)
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By the definitions now of Sφ and the correspondence I → I⋆ for I 6= X, we conclude
from (3.6) that

kq ≥
∑

I∈Sφ

µ(I)
ypI
τ q−1
I

−
∑

I∈Sφ

I 6=X

1

(β + 1)q−1
yqI(yI⋆)

p−qµ(I)

=
∑

I∈Sφ

1

ρI
αI

ypI
((β + 1)− βρI)q−1

−
1

p

∑

I∈Sφ

I 6=X

pyqI(yI⋆)
p−q

(β + 1)q−1
µ(I).(3.7)

We now use the following elementary inequality

pxq ·yp−q ≤ qxp + (p− q)yp,

which holds since 1 < q ≤ p for any x, y > 0. By (3.7) we thus have

kq ≥
∑

I∈Sφ

αI

ρI

ypI
((β + 1)− βρI)q−1

−
1

p

∑

I∈Sφ

I 6=X

[qypI + (p− q)(yI⋆)
p]

(β + 1)q−1
µ(I)

=
∑

I∈Sφ

αI

ρI

ypI
((β + 1)− βρI)q−1

−
p− q

p

1

(β + 1)q−1

∑

I∈Sφ

I 6=X

(yI⋆)
pµ(I)

−
q

p

1

(β + 1)q−1

∑

I∈Sφ

ypIµ(I) +
q

p

1

(β + 1)q−1
ypX .(3.8)

By using now Lemma 2.1 iv), and the definition of the correspondence I → I⋆, we
have that

∑

I∈Sφ

I 6=X

(yI⋆)
pµ(I) =

∑

I∈Sφ

ypI (µ(I)− αI),

thus (3.8) gives

kq ≥
∑

I∈Sφ

αI

ρI

1

((β + 1)− βρI)q−1
ypI −

p− q

p

1

(β + 1)q−1

∑

I∈Sφ

(µ(I)− αI)y
p
I

−
q

p

1

(β + 1)q−1

∑

I∈Sφ

µ(I)ypI +
q

p

1

(β + 1)q−1
ypX .

After some simple cancellations we conclude that

kq ≥
∑

I∈Sφ

αI

ρI

(

1

((β + 1)− βρI)q−1
−

1

(β + 1)q−1

)

ypI

+
p− q

p

1

(β + 1)q−1

∑

I∈Sφ

αIy
p
I +

q

p

1

(β + 1)q−1
ypX .

(3.9)

Now note that

1

((β + 1)− βx)q−1
−

1

(β + 1)q−1
≥

(q − 1)βx

(β + 1)q
,
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by the mean value theorem on derivatives for all x ∈ [0, 1], so by (3.9) we have as a
consequence that

kq ≥
∑

I∈Sφ

[

αI

ρI

(q − 1)βρI
(β + 1)q

]

ypI +
p− q

p

1

(β + 1)q−1

∑

I∈Sφ

αIy
p
I +

q

p

1

(β + 1)q−1
ypX

=
∑

I∈Sφ

[

(q − 1)β

(β + 1)q
+

p− q

p

1

(β + 1)q−1

]

αIy
p
I +

q

p

1

(β + 1)q−1
f p,(3.10)

and we have derived inequality (1.8) for T -good functions.
For the general φ : (X, µ) → R

+ which belongs to Lp(X, µ) we argue as follows.
Consider the sequence (φm)m defined by φm =

∑

I∈T(m)
AvI(φ)χI , and for any m ∈ N

set

Φm =
∑

I∈T(m)

max{AvJ(φ) : I ⊆ J ∈ T }χI = MT φm.

The last equality holds due to the fact that AvJ(φm) = AvI(φm) = AvI(φ) whenever
J ⊆ I ∈ T(m). It is easy to see that

´

X
φm dµ =

´

X
φ dµ = f while

´

X
φp
m dµ ≤

´

X
φp dµ for all m and that Φm increases to MT φ on X. Now φm satisfies (1.8)

since as can be easily seen is T -good, and since T differentiates L1(X, µ) we get that
φm tends almost everywhere to φ. Thus by taking limits and using the dominated
convergence theorem we obtain (1.8) for φ.

At this point we give the following.

Proof of Corollary 2. Let g : (0, 1] → R
+ be non-increasing such that

´ 1

0
g(u) du

= f . Fix a non-atomic probability space (X, µ) equipped with a tree structure T
that differentiates L1(X, µ). Applying Theorem 2.1 for the pair of functions

(G1(t) = tp, G2(t) = 1) and
(

G3(t) = tp−q, G4(t) = tq
)

we conclude that there exists, for every n ∈ N , φn : (X, µ) → R
+ such that φ⋆

n = g,
such that

(3.11) lim
n

ˆ

X

(MT φn)
p dµ =

ˆ 1

0

(

1

t

ˆ t

0

g

)p

dt,

and

(3.12) lim
n

ˆ

X

φq
n(MT φn)

p−q dµ =

ˆ 1

0

(

1

t

ˆ t

0

g

)p−q

gq(t) dt.

Applying (1.8) for every (φn) and taking the limits as n → ∞, we conclude by (3.11)
and (3.12) the validity of inequality (1.10).

We now prove that (1.10) is best possible. We proceed to this as follows: We first
treat the case where β = 1

p−1
. We consider the following continuous and decreasing

function gα(t) = c t−α, defined in (0, 1], where c = f(1− α), and α ∈
(

0, 1
p

)

. Then it

is easy to show that
´ 1

0
gα(u) du = f while gα ∈ Lp((0, 1]).

Note that for any t ∈ (0, 1] the equality 1
t

´ t

0
g(u) du = ( 1

1−α
)g(t) is true. So

considering the difference

J =

ˆ 1

0

(

1

t

ˆ t

0

gα

)p

dt−

(

p

p− 1

)q ˆ 1

0

gqα(t)

(

1

t

ˆ t

0

gα

)p−q

dt
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we see that it is equal to

J =

(

1

1− α

)p ˆ 1

0

gpα(t) dt−

(

p

p− 1

)q (
1

1− α

)p−q ˆ 1

0

gpα(t) dt.

Since
´ 1

0
gpα(t) dt = f p(1− α)p 1

1−αp
we have that

J =
f p

1− αp
−

(

p

p− 1

)q

(1− α)q
f p

1− αp

= −
f p

1 − αp

[(

p

p− 1

)q

(1− α)q − 1

]

= −f p G(α),

where G(α) is defined for any α ∈
(

0, 1
p

)

by G(α) =
( p

p−1)
q
(1−α)q−1

1−αp
. But as it is easily

seen by using de L’Hospital’s rule,

lim
α→1/p−

G(α) = −q

(

1−
1

p

)q−1(
p

p− 1

)q (

−
1

p

)

=
q

p− 1
.

We now prove the sharpness of (1.10) for any β such that 0 < β < 1
p−1

.

We fix such a β and we consider the following continuous and decreasing function
gβ(t) = c t−α, defined on (0, 1], where c = f(1 − α), and α = β

β+1
. Then α ∈

(

0, 1
p

)

,

and it is easy to see that
´ 1

0
gβ(u) du = f while for any β as above we have that

gβ ∈ Lp((0, 1]).

Moreover,
´ 1

0
gpβ(u) du = fp

(β+1)p
β+1

1−β(p−1)
. Note that for any t ∈ (0, 1] the following

equality holds 1
t

´ t

0
gβ(u) du = (β + 1)gβ(t). We then consider the difference

J =

ˆ 1

0

gqβ(t)

(

1

t

ˆ t

0

gβ

)p−q

dt

−

[

(q − 1)β

(β + 1)q
+

p− q

p

(

1

β + 1

)q−1
]

ˆ 1

0

(

1

t

ˆ t

0

gβ

)p

dt.

(3.13)

Then we easily see after some simple calculations that J = q
p

1
(β+1)q−1 f

p. The proof

of Corollary 2 is now complete. �

Now for the proof of Theorem 2 we need to prove the sharpness of (1.8). This is
easy now to show since by Theorem 2.1 for any g : (0, 1] → R

+ non increasing, there
exists a sequence φn : (X, µ) → R

+ of rearrangements of g such that

(3.14) lim
n

ˆ

X

(MT φn)
p dµ =

ˆ 1

0

(

1

t

ˆ t

0

g

)p

dt

and

(3.15) lim
n

ˆ

X

φq
n(MT φn)

p−q dµ =

ˆ 1

0

gq(t)

(

1

t

ˆ t

0

g

)p−q

dt.

We discuss now the case where 0 < β < 1
p−1

and we consider the function gβ (denoted

now as g), constructed in the proof of Corollary 2. For every n ∈ N , we choose a
rearrangement φn of g such that

∣

∣

∣

∣

ˆ 1

0

(

1

t

ˆ t

0

g

)p

dt−

ˆ

X

(MT φn)
p dµ

∣

∣

∣

∣

≤
1

n
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and
∣

∣

∣

∣

∣

ˆ 1

0

gq(t)

(

1

t

ˆ t

0

g

)p−q

dt−

ˆ

X

φq
n (MT φn)

p−q dµ

∣

∣

∣

∣

∣

≤
1

n
.

Then by the choice of g, we conclude that (1.8) is best possible. The case β = 1
p−1

is

entirely similar so we omit it. The proof of Theorem 1 is now complete. �

4. Proof of Theorem 2

Proof. We begin by stating inequality (1.8) in the following equivalent form

(4.1)

ˆ

X

(MT φ)p−qφq dµ ≥ A0(β)

ˆ

X

(MT φ)p dµ+
q

p

1

(β + 1)q−1
f p,

where A0(β) =
(q−1)β
(β+1)q

+ p−q
p

1
(β+1)q−1 . For the one direction of the proof we suppose

that (φn)n satisfies
´

X
φn dµ = f and

´

X
φp
n dµ = F , for every n ∈ N . Since (1.11) is

equivalent to

(4.2) F (β + 1)p−q − A0(β)F (β + 1)p =
q

p

1

(β + 1)q−1
f p,

for any q ∈ [1, p] as can be easily seen, we immediately conclude that the validity of
(1.12) gives equality in (4.1) in the limit. For the opposite direction we suppose that
we are given f, F such that 0 < f p ≤ F and q, p for which 1 < q < p. We suppose
that we are given a sequence of non negative functions in Lp, (φn)n, whose elements
satisfy

´

X
φn dµ = f and

´

X
φp
n dµ = F . Then if we define An =

´

X
φq
n dµ for every

n ∈ N we may assume, by passing to a subsequence of (An)n that this sequence
converges to a fixed constant (note that (An)n is bounded because of the inequality
f q ≤ An ≤ F q/p), which we call A. By continuity reasons we may also assume that
(An)n is constant, that is

´

X
φq
n dµ = A for every n ∈ N .

We additionally assume that (φn)n satisfies equality in the limit in (4.1) for the
choice of β which is described above. We now go back to the proof of Theorem 1 and
examine where inequalities where used. In these inequalities now we have equality
in the limit for our sequence. The first one that is used is the following

ˆ

A(φ,I)

φq dµ ≥
1

αq−1
I

(
ˆ

A(φ,I)

φ dµ

)q

,

where αI = µ(A(φ, I)) (this is exactly inequality (3.2)). Additionally the right mem-
ber of this inequality equals

(

´

I
φ dµ−

∑

J∈Sφ,J⋆=I

´

J
φ dµ

)q

(

µ(I)−
∑

J∈Sφ,J⋆=I µ(J)
)q−1 ,

which in turn is greater or equal than

µ(I)
yqI

(τI)q−1
−

∑

J∈Sφ

J⋆=I

µ(J)
yqJ

(β + 1)q−1
,
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where τI = (β + 1)− βρI . Since we have equality in the limit in (4.1), we conclude
that in the inequality

(4.3) 0 ≤
∑

I∈Sφ

yp−q
I

{

ˆ

A(φ,I)

φq dµ−
[

µ(I)
yqI

(τI)q−1
−

∑

J∈Sφ

J⋆=I

µ(J)
yqJ

(β + 1)q−1

]

}

we have equality in the limit as φ moves along (φn)n and Sφ is replaced by Sφn
. That

is the right member of (4.3), tends to zero for our sequence (φn)n.
Additionally, every term on the sum in (4.3) is non-negative by the comments

mentioned right above. Thus since yI ≥ f = yX for every I ∈ Sφ, we have that also
the following sum tends to zero

(4.4) 0 ≤
∑

I∈Sφ

f p−q

{

ˆ

A(φ,I)

φq dµ−
[

µ(I)
yqI

(τI)q−1
−

∑

J∈Sφ

J⋆=I

µ(J)
yqJ

(β + 1)q−1

]

}

,

as φ moves along (φn)n. Cancelling the term f p−q, using Lemma 2.1 iii) for I = X
and the integral assumptions for every φ ∈ (φn)n we immediately conclude that the
following inequality is true

(4.5) A ≥
∑

I∈Sφ

[

µ(I)
yqI

(τI)q−1
−

∑

J∈Sφ

J⋆=I

µ(J)
yqJ

(β + 1)q−1

]

,

and is also equality in the limit for our sequence (φn)n. We substitute τI with its
value and we get the inequality

(4.6) A ≥
∑

I∈Sφ

αI

ρI

yqI
[(β + 1)− βρI ]q−1

−
∑

I∈Sφ

∑

J∈Sφ

J⋆=I

µ(J)
yqJ

(β + 1)q−1
,

with equality in the limit. Now the right hand side of this inequality equals

∑

I∈Sφ

αI

ρI

yqI
[(β + 1)− βρI ]q−1

−
∑

I∈Sφ,I 6=X

µ(I)
yqI

(β + 1)q−1
,

which in turn equals to

∑

I∈Sφ

αI

ρI

{

1

[(β + 1)− βρI ]q−1
−

1

(β + 1)q−1

}

yqI +
yqX

(β + 1)q−1
.

But in the proof of Theorem 1 we have used the inequality

1

((β + 1)− βρI)q−1
−

1

(β + 1)q−1
≥

(q − 1)βρI
(β + 1)q

,

for every I ∈ Sφ and by the same arguments that were used above (by replacing ypI
by f p−qyqI) we conclude that we should have equality in the limit in the following
inequality

A ≥
∑

I∈Sφ

αI

ρI

(q − 1)βρI
(β + 1)q

yqI +
f q

(β + 1)q−1

=
(q − 1)β

(β + 1)q

ˆ

X

(MT φ)q dµ+
f q

(β + 1)q−1
.

(4.7)



544 Eleftherios N. Nikolidakis

This gives us equality in the limit in the following inequality

(4.8)

ˆ

X

(MT φ)q dµ ≤

(

1 +
1

β

)

(β + 1)q−1A− f q

q − 1

where β satisfies β + 1 = ωp(
fp

F
).

But the right side of (4.8) is minimized exactly when β + 1 = ωq(
fq

A
) as can be

seen in [4], or by a simple calculus argument. From the above we conclude that the
value of A satisfies β + 1 = ωq(

fq

A
) = ωp(

fp

F
) and replacing β + 1 by its value in (4.8)

we easily see that

(4.9) lim
n

ˆ

X

(MT φn)
q dµ = ωq(

f q

A
)qA,

that is, (φn)n behaves as an extremal sequence for the Bellman function B
(q)
T (f, A).

By using the results of [10] we get that all such sequences behave like Lq-approximate
eigenfunctions for the eigenvalue ωq(

fq

A
) which equals β + 1. That is the following

holds

(4.10) lim
n

ˆ

X

|(MT φn)− (β + 1)φn|
q dµ = 0.

Our purpose was to show the same equality but with p in place of q. This
is now not difficult to show because of the following arguments. Since (4.10) is
true, by a well known theorem in measure theory, we conclude that there exists
a subsequence of (φn)n (without loss of generality we call it again (φn)n) for which
(MT φn)−(β+1)φn → 0 almost uniformly, that is there exists a decreasing sequence
(An)n of µ-measurable subsets of X for which µ(An) → 0 and

(4.11) |(MT φn)(x)− (β + 1)φn(x)| ≤
1

n
,

for every x ∈ X \ An and for every n ∈ N . Define now hn(x) = (MT φn)(x)− (β +
1)φn(x) for every x ∈ X. Then for every n ∈ N

ˆ

X

|hn|
p dµ =

ˆ

X\An

|hn|
q|hn|

p−q dµ+

ˆ

An

|hn|
p dµ.

The first integral of the right side of this last equation is less or equal than
1

np−q

´

X\An
|hn|

q, which obviously tends to zero. We proceed now to prove that

limn

´

An
|hn|

p dµ = 0. By the definition of hn and since MT φ ≥ φ almost every-

where, for every integrable φ (the tree T differentiates L1(X, µ)), we see that it is
enough to show that limn

´

An
(MT φn)

p dµ = 0.
We define gn = φ⋆

n, so by Theorem 2.1 we see that

(4.12)

ˆ

An

(MT φn)
p dµ ≤

ˆ δn

0

(

1

t

ˆ t

0

gn

)p

dt,

where δn = µ(An) for every n ∈ N . Additionally gn is equimeasurable with φn so
that the 1, q, p norms of these two functions are identical, for each n ∈ N . Thus
again by Theorem 2.1

(4.13)

ˆ

X

(MT φn)
q dµ ≤

ˆ 1

0

(

1

t

ˆ t

0

gn

)q

dt ≤ Aωq(
f q

A
)q,

But by (4.10) we have that limn

´

X
(MT φn)

p dµ = Aωq(
fq

A
)q, since β + 1 = ωq(

fq

A
).

Thus by (4.13) we get limn

´ 1

0

(

1
t

´ t

0
gn

)q

dt = Aωq(
fq

A
)q, which means that (gn)n is
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extremal for the respective to the Bellman function problem related to the Hardy
operator for the variables f, A(q > 1). This gives us in view of the results in [11],

that (gn)n tends in the Lq-norm to the function g, which is defined by g(t) = f
α
t−1+ 1

α ,

t ∈ (0, 1], where α = ωq(
fq

A
) = β + 1. But since β + 1 = ωp(

fp

F
), it is easy to see that

´ 1

0
gp = F . Obviously

ˆ δn

0

(

1

t

ˆ t

0

gn

)p

dt ≤

(

p

p− 1

)p ˆ δn

0

gpn,

so because of (4.12) it is enough to show that limn→∞

´ δn
0

gpn = 0.
It is a standard fact now from measure theory that if for a sequence of integrable

functions (kn)n, defined in a measure space (Y, r), we have that for some integrable
function k, limn

´

Y
|kn|dr =

´

Y
|k|dr and that kn tends r-almost everywhere to k on

Y , then the sequence (kn)n tends to k in the L1-norm (see for example [4], Theo-

rem 13.47, page 208). Now
´ 1

0
gpn =

´ 1

0
gp = F for every n ∈ N and since (gn)n

converges in the Lq-norm to g we can assume (by passing if necessary to a subse-
quence) that gn tends almost everywhere to g, so because of the fact mentioned just
before we have as a consequence that gpn tends to gp in the L1-norm thus giving
us the convergence of gn to g in the Lp-norm, in view of the elementary inequality
(x− y)p ≤ xp − yp which is true whenever 0 ≤ y ≤ x, and p > 1.

Moreover in a finite measure space (Y, r), if we are given a sequence of p-integrable
functions (kn)n and a p-integrable function k for which kn tends almost everywhere
and in the Lp-norm to k then the following is true

lim
r(E)→0

ˆ

E

|kn| dr = 0,

uniformly in n ∈ N . This result is known in the literature as Vitali’s convergence
theorem and can be seen in [4] (Exercise 13.38, page 203). From all the above we

conclude immediately that limn

´ δn
0

gpn = 0, since δn = µ(An) → 0. Our proof is
complete. �
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