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Abstract. We consider non-scattering energies and transmission eigenvalues of compactly
supported potentials in the hyperbolic spaces Hn. We prove that in H2 a corner bounded by two
hyperbolic lines intersecting at an angle smaller than 180◦ always scatters, and that one of the
lines may be replaced by a horocycle. In higher dimensions, we obtain similar results for corners
bounded by hyperbolic hyperplanes intersecting each other pairwise orthogonally, and that one of
the hyperplanes may be replaced by a horosphere. The corner scattering results are contrasted by
proving discreteness and existence results for the related transmission eigenvalue problems.

1. Introduction and main results

We start with two subsections on scattering theory to fix notation and make
relevant definitions as well as contrast the hyperbolic setting with the Euclidean. The
second Subsection 1.2 contains our five main theorems starting from page 551. We
prove the corner scattering theorems in Sections 2 and 3, and the interior transmission
eigenvalue theorems in Section 4.

1.1. Background: the theory in Rn. Scattering. Let us start by briefly
describing some simple short-range scattering theory in Rn at a fixed energy λ ∈ R+.
Standard references on the topic are Chapter XIV in [19] and the book [13]. Thus,
we are concerned with an incident wave w solving

(−∆− λ)w = 0

in Rn, which is scattered by a short-range potential V , say a compactly supported
L∞-function, thus creating a total wave v solving the equation

(−∆ + λνV − λ) v = 0,

where ν ∈ {0, 1}, again in Rn. The value ν = 0 arises in quantum mechanics, and
the resulting equation models e.g. electron and neutron beams, whereas the value
ν = 1 arises from many classical models, in particular in acoustic and electromagnetic
scattering. We call the case ν = 0 Schrödinger scattering and the case ν = 1
Helmholtz scattering. As it turns out, transmission eigenvalues behave differently for
these two equations.

For definiteness, we are interested in incident waves which are Herglotz waves,
i.e. waves of the form

w(x) =

ˆ
Sn−1

g(ϑ) e−i
√
λϑ·x dϑ,
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where g is an L2-function on the unit sphere Sn−1. Equivalently, we may require w
to belong to the Agmon–Hörmander space B∗(Rn), which consists of all functions
u ∈ L2

loc(R
n) which satisfy

sup
R>1

1

R

ˆ
B(0,R)

|u|2 <∞,

where B(0, R) ⊂ Rn is the open ball of Rn of radius R centered at 0. Similarly,
we will require v ∈ B∗(Rn). We recall here the classical fact that as w solves an
elliptic partial differential equation with real-analytic coefficients, w must itself be
real-analytic; see e.g. Section II.1.3 in [2].

The waves v and w will of course be linked, the essential connection being that
the scattered wave u = v − w will have, in a sense, a special asymptotic behaviour
at infinity as there exists an L2(Sn−1)-function A, depending on w and λ, called the
far-field pattern or the scattering amplitude, such that

u(x) = A

(
x

|x|

)
ei
√
λx

|x|(n−1)/2
+ error,

as |x| −→ ∞. In terms of Agmon–Hörmander spaces, this asymptotic expansion can
be taken to mean that the difference of u and the main term involving A belongs to
the space B̊∗(Rn), which consists of all functions u0 ∈ B∗(Rn) for which

lim
R−→∞

1

R

ˆ
B(0,R)

|u0|2 = 0.

Now we have achieved a complete minimal picture of scattering theory. In typical
applications, for instance, one creates incident waves w (or rather, waves that would
be w if the wave motion took place in a uniform flat background), nature then solves
the equation for v with the perturbation V present, and we measure the difference
u = v − w far away and thereby recover A, or in some cases the absolute value |A|.
A typical applied inverse problem would then be to recover information about an
unknown perturbation V of the background from the measured far-field patterns A,
or |A|. Indeed, this problem has been studied very intensively.

Non-scattering energies. One natural question about the above setting is
whether we can have A ≡ 0 for some w 6≡ 0? If this happens, then we call λ a
non-scattering energy (or more precisely, a non-scattering energy for V ). Essentially
this means that for some special w it happens that far away all the wave motion
looks precisely as if the perturbation V was not present.

The study of this rather special circumstance first arose from the study of lin-
ear sampling [11] and factorization methods [25, 26], all of which are methods for
recovering qualitative information about V from scattering measurements. Alas,
these methods required that λ is not a non-scattering energy. Thus, the question
arose whether the set of these energies is in some sense “sparse”, say discrete or even
empty?

Transmission eigenvalues. The first stab at the problem was executed via
transmission eigenvalues. In the above setting, if V is indeed compactly supported,
say for concreteness that V vanishes outside some bounded non-empty open set
Ω ⊂ Rn which has a connected exterior, then Rellich’s classical uniqueness theorem
says that if indeed A ≡ 0, then v ≡ w far away, and by unique continuation, v ≡ w
outside Ω. We thus obtain, by restricting v and w to Ω, a non-trivial solution to the
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boundary value problem 
(−∆ + λνV − λ) v = 0 in Ω,

(−∆− λ)w = 0 in Ω,

v − w ∈ H2
0 (Ω).

Here H2
0 (Ω) is the closure of C∞c (Ω) in the usual Sobolev norm ‖·‖H2(Ω), and for

smooth domains Ω the condition v − w ∈ H2
0 (Ω) reduces simply to having both

v ≡ w and ∂νv ≡ ∂νw on ∂Ω.
The values of λ for which the above problem has a non-trivial L2-solution are

called (interior) transmission eigenvalues (for Ω and V ). Thus, a non-scattering
energy for V (when V is compactly supported) is always a transmission eigenvalue
for V and any suitable domain Ω outside of which V vanishes.

Transmission eigenvalues first appeared in the works [24, 14]. The most basic
results about them is discreteness, obtained soon after [12]. Existence was obtained
for fairly general potentials in [34], and soon after the existence of infinitely many
transmission eigenvalues in the Helmholtz case was shown [8]. After that, trans-
mission eigenvalues have been intensively studied, partly because they offer a new
avenue for deriving information about a scatterer [7, 28, 29]. For more information
and references on transmission eigenvalues, we recommend [9, 10, 15].

Corner scattering. For many years, it was unclear what exactly is the rela-
tionship between non-scattering energies and transmission eigenvalues. For reason-
able radial potentials the notions were equivalent, for other potentials the situation
was unclear. The issue was resolved in [6], where a large class of potentials with
sharp rectangular corners were shown to not have any non-scattering energies, even
though for many of those potentials one has an infinite discrete set of Helmholtz
transmission eigenvalues. Further corner scattering results have been obtained in
[17, 18, 20, 33, 27]. These techniques have also contributed back to the interior
transmission problem recently, namely there is now insight into the distribution of
energy of transmission eigenfunctions in a domain [4, 3]. Also worth mentioning is
the fact that these techniques also contribute to the inverse problem of determining
information about a polyhedral medium scatterer from a single far-field measurement
[5, 17, 18, 20].

1.2. Scattering in Hn. Hyperbolic geometry. Our main goal is to extend
the above theory to the direction of the n-dimensional hyperbolic spaces Hn of con-
stant curvature −1. For a general reference on hyperbolic scattering, we recommend
[21]. One concrete model for this space is the upper half-space model, in which we
set Hn to be Rn−1×R+ with coordinates 〈x′, xn〉 = 〈x1, x2, . . . , xn−1, xn〉. Near such
a point the infinitesimal line element is divided by xn. Among other things, this
implies that the natural measure in Hn is dµ = dx1 · · · dxn−1 dxn/x

n
n, where dx1, . . . ,

dxn−1, dxn are Lebesgue measures in R, . . . , R, R+, respectively. The geometry of
Hn gives in a natural fashion rise to a Laplace–Beltrami operator. By shifting this
operator so that its spectrum coincides with [0,∞[, we arrive at the free Schrödinger
operator

(1) H0 = −x2
n

(
∂2

∂x2
1

+ . . .+
∂2

∂x2
n−1

+
∂2

∂x2
n

)
+ (n− 2)xn

∂

∂xn
− (n− 1)2

4
,

which will replace the Euclidean −∆.
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Scattering. An incident wave at a given energy λ ∈ R+ would now be a solution
w to the equation

(H0 − λ)w = 0

in Hn. The natural hyperbolic analogue of the Agmon–Hörmander space B∗(Rn) is
given by the space B∗(Hn), which consists of all functions u ∈ L2

loc(H
n; dµ) such that

sup
R>e

1

logR

ˆ R

1/R

ˆ
Rn−1

∣∣u(x′, xn)
∣∣2 dx′

dxn
xnn

<∞.

Such solutions will in fact be exactly the solutions of the form

w = F±
0 (
√
λ)∗ϕ

for some ϕ ∈ L2(Rn−1), where F±
0 (
√
λ)∗ is the Poisson operator given by(

F±
0 (
√
λ)∗ϕ

)
(x′, xn) =

√
2
√
λ sinhπ

√
λ

π
F ∗

0

((
|ξ′|
2

)±i√λ
x(n−1)/2
n Ki

√
λ(|ξ

′|xn) ϕ̂(ξ′)

)
,

where ϕ̂ is the usual Euclidean Fourier transform and F ∗
0 is the usual Euclidean

inverse Fourier transform in L2(Rn−1), which takes functions of x′ ∈ Rn−1 into
functions of ξ′ ∈ Rn−1. Thus, B∗(Hn)-solutions w to the free Schrödinger equation
are natural analogues of the Herglotz waves in Rn. Again w must be real-analytic as
the solution of an elliptic equation with real-analytic coefficients [2, Sect. II.1.3].

As before, we model the perturbation of the homogeneous hyperbolic background
by some potential function V ∈ L∞c (Hn), and the incident wave w gives rise to a total
wave v ∈ B∗(Hn) solving the perturbed equation

(H0 + λνV − λ) v = 0

in Hn, where ν = 0 or ν = 1, and we speak of Schrödinger or Helmholtz scattering,
accordingly. A more general way of modeling perturbations is to have a different
topology and metric in a subdomain in addition to a potential. Transmission eigen-
values were considered in this setting in [36, 30] recently. We shall keep the geometry
intact and only add a potential function.

Again, the solutions v and w will be linked by their asymptotic behaviour. This
time the scattered wave u = v − w has an asymptotic expansion of the form

u(x) = A(x′)x(n−1)/2−i
√
λ

n + error

as xn −→ 0+ for some A ∈ L2(Rn−1) which again deserves to be called the far-field
pattern or the scattering amplitude. More precisely, this holds in the sense that

lim
R−→∞

1

logR

ˆ 1

1/R

ˆ
Rn−1

∣∣∣u(x′, xn)− A(x′)x(n−1)/2−i
√
λ

n

∣∣∣2 dx′
dxn
xnn

= 0,

and

lim
R−→∞

1

logR

ˆ R

1

ˆ
Rn−1

|u(x′, xn)|2 dx′
dxn
xnn

= 0.

Non-scattering energies. We may ask whether it is possible that A ≡ 0 for
some w 6≡ 0? If affirmative, we again call λ a non-scattering energy for V . It turns
out that this is equivalent with the scattered wave u = v−w belonging to the space
B̊∗(Hn) which consists of those functions u ∈ B∗(Hn) for which

lim
R−→∞

1

logR

ˆ R

1/R

ˆ
Rn−1

|u(x′, xn)|2 dx′
dxn
xnn

= 0.
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Definition 1. A number λ ∈ R+ is called a non-scattering energy for the po-
tential V ∈ L∞c (Hn) if there exist functions v 6≡ 0 and w 6≡ 0 belonging to B∗(Hn)
and solving

(H0 + λνV − λ) v = 0 and (H0 − λ)w = 0

in Hn, and for which v − w ∈ B̊∗(Hn).

Our main theorems about these objects will include analogues of previous Eu-
clidean corner scattering results, but we can also prove similar results for more exotic
hyperbolic corners.

Definition 2. An open set C ⊂ Hn is called a cone if there is a vertex x0 ∈ ∂C
such that for any x ∈ C, the open ray from x0 through x belongs to C. The cone C
is admissible if

i) n = 2 and it is delimited by two non-parallel rays starting from x0, and C is
on the side where the opening angle is less than π, or

ii) n > 2 and it is delimited by n hyperbolic hyperplanes all of which intersect
pairwise at an angle of π/2 at their common vertex.

Theorem 3. Let Ω ⊂ H2 be a non-empty bounded open set such that the
interior ofH2\Ω is connected. Assume that there is a nonempty open set B such that
B ∩Ω = B ∩ C for some open hyperbolic cone C as in Definition 2. Let V ∈ L∞(H2)
vanish outside of Ω and assume that there is ϕ ∈ Cα(H2), α ∈ R+, of compact
support such that V = χCϕ in B. If ϕ(x0) 6= 0, then the potential V has no non-
scattering energies.

Theorem 4. Let n > 2 be an integer and let Ω ⊂ Hn be a non-empty bounded
open set such that the interior of Hn \ Ω is connected. Assume that there is a
nonempty open set B such that B∩Ω = B∩C for some open hyperbolic cone C as in
case ii) of Definition 2. Let V ∈ L∞(Hn) vanish outside of Ω and assume that there is
ϕ : Hn −→ C of compact support such that V = χCϕ in B. Moreover assume either
n = 2 with ϕ ∈ Cα(H2) and α ∈ R+, or n = 3 with ϕ ∈ Cα(H3) and α ∈ ]1/4,∞[,
or else n > 3 and ϕ ∈ Hs,r(Hn) with r ∈ [1,∞[ and s ∈ ]n/r,∞[. If ϕ(x0) 6= 0, then
the potential V has no non-scattering energies.

In addition, the hyperbolic space Hn has natural objects called horospheres, also
called horocycles in two dimensions. In the half-space model of Hn, a horosphere
means either a hyperplane parallel to the hyperplane Rn−1 × {0} at infinity, or a
sphere tangent to Rn−1×{0}. In the ball model of Hn, a horosphere means a sphere
tangent to the sphere at infinity.

We can generalize Theorem 4 to the case where one of the sides of the hyper-
bolic cone is a horocycle or a horosphere. Simply choose Φ as the upper half-space
coordinates of Hn shifted to Rn−1 × ]−1,∞[.

Theorem 5. Theorems 3 and 4 stay true if C is defined as follows instead:
Assume that there is a conformal map Φ: B −→ Rn such that Φ(x0) = 0 for some
x0 ∈ B, and that C is the preimage under Φ of a Euclidean cone with opening angle
less than π and vertex 0 in two dimensions, or C = Φ−1(]0,∞[n) in higher dimensions.

Strictly speaking, the proofs of these corner scattering results are mostly local,
similarly to those in [20], in the sense that the only input from scattering theory
consists of the scattering solutions to the free and perturbed equations and a suit-
able Rellich type theorem which is used to show that the solutions coincide outside
the corner near the vertex of the corner. After this the equations themselves are
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immediately restricted to a small neighbourhood of the vertex, and scattering theory
is not mentioned again in the proofs. Thus, the above corner scattering results hold
in any reasonable scattering setting as long as these first steps can be taken and lead
to the same equations in a small neighbourhood of the vertex. See Proposition 18
for a precise statement. The theorems are proven using these observations and by
straightening the corner with suitable coordinates. See Figure 1.

x′

Hn

xn

Ω

x0

Hn

x0

Ω

Figure 1. The Poincaré upper half-space and ball models of Hn and a scatterer Ω.

Transmission eigenvalues. In the hyperbolic setting we also have a Rellich
type theorem (see e.g. Theorem 2.10 in [21]). Again, if Ω is a non-empty bounded
open set in Hn with a connected exterior, then this Rellich type theorem and unique
continuation imply that the restrictions of v and w into Ω solve the system

(H0 + λνV − λ)v = 0,

(H0 − λ)w = 0,

v − w ∈ H2
0 (Ω),

where the space H2
0 (Ω) is the same as H2

0 (Ω) in the Euclidean sense, if we employ
the non-canonical embedding Ω ⊂ Hn ⊂ Rn. Of course, the natural Sobolev norm
in Hn would involve extra powers of xn, but in a bounded domain the Euclidean and
hyperbolic norms will be equivalent.

We may define transmission eigenvalues as in the Euclidean case.

Definition 6. Let Ω ⊂ Hn be a bounded non-empty open set, and let V ∈
L∞(Ω). A number λ ∈ C (or rather λ ∈ C× when ν = 1) is called a transmission
eigenvalue for the potential V (and Ω) if there exist L2(Ω)-functions v 6≡ 0 and w 6≡ 0
solving

(H0 + λνV − λ) v = 0 and (H0 − λ)w = 0

in Ω, and satisfying v−w ∈ H2
0 (Ω). We speak of Schrödinger transmission eigenvalues

and Helmholtz transmission eigenvalues in the cases ν = 0 and ν = 1, respectively.

Our two main theorems about transmission eigenvalues are better given sepa-
rately. First, the Schrödinger case:

Theorem 7. Let Ω ⊂ Hn be a bounded non-empty open set, and let V ∈ L∞(Ω)
be bounded away from zero and take only positive real values. Then then set of λ ∈ C
for which the system 

(H0 + V − λ)v = 0 in Ω,
(H0 − λ)w = 0 in Ω,
v − w ∈ H2

0 (Ω),
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has a solution v, w ∈ L2(Ω) with v 6≡ 0 and w 6≡ 0, is a discrete subset of R+

which can only accumulate to +∞. For each fixed λ, the space of solutions is finite-
dimensional. Furthermore, if N ∈ Z+ and in some open ball B ⊆ Ω the potential V
is sufficiently large (depending on n, N and the hyperbolic radius of the ball), then
there are at least N such transmission eigenvalues λ, counting multiplicities.

We emphasize that for real-valued potentials V , all Schrödinger transmission eigen-
values are real.

In the Helmholtz case, we get a result of a somewhat different shape:

Theorem 8. Let Ω ⊂ Hn be a bounded non-empty open set, and let V ∈ L∞(Ω)
be bounded away from both zero and one and take values either only from ]−∞, 0[,
or only from ]0, 1[. Then then set of λ ∈ R× for which the system

(H0 + λV − λ)v = 0 in Ω,
(H0 − λ)w = 0 in Ω,
v − w ∈ H2

0 (Ω),

has a solution v, w ∈ L2(Ω) with v 6≡ 0 and w 6≡ 0, is an infinite discrete subset of
R. For each fixed λ ∈ R×, the space of solutions is finite-dimensional. Furthermore,
if V takes only negative values, then the set of λ does not contain negative elements.

2. Complex geometrical optics solutions

Complex geometrical optics solutions [37] and their error estimates are a funda-
mental tool for studying corner scattering. We will choose suitable coordinates in Hn

and conjugate the free operator H0 with a suitable function to show the existence
of these solutions. This allows us to bring past techniques of [6, 33, 20] into the
hyperbolic setting.

By conjugating the free operator H0 from (1) on page 549 with a suitable function
K we get

(2) K−(n+2)/2H0

(
K(n−2)/2f

)
= (−∆ +QK) f,

where QK is a new potential function depending on K and ∆ is the Euclidean Lapla-
cian on the half-space model Rn−1 × R+ of Hn. A similar formula holds when
instead of H0 we have a Laplace–Beltrami operator HK for any metric conformal to
the Euclidean one.

A Riemannian metric g on an open nonempty set U ⊂ Rn can be written as
g : U × Rn × Rn −→ R, (x, a, b) 7→ gx(a, b) where gx is an inner product. It is
conformal to the Euclidean metric if gx(a, b) = λ2(x) a · b for some smooth function
λ : U −→ R+. To simplify formulas we writeK = 1/λ. The metric can be represented
by a matrix with components (gx)ij = gx(ei, ej) where e1, e2, . . . , en are the standard
unit vectors of Rn. Indeed, under such coordinates we have (gx)ii = K−2(x) and
(gx)ij = 0 when i 6= j. Hence its determinant is |gx| = K−2n(x). We can then define
the K-divergence at x ∈ U by

∇K ·X(x) =
1√
|gx|

n∑
j=1

∂j(
√
|gx|Xj(x)) = Kn(x)∇ · (K−n(x)X(x))

where x 7−→ X(x) ∈ Rn is once differentiable in U . Here ∇· is the Euclidean
divergence. Denote by gijx the component (g−1

x )ij of the inverse matrix of gx. The
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gradient is

∇Kf(x) =
n∑
i=1

n∑
j=1

ei g
ij
x ∂xjf(x) = K2(x)∇f(x)

for any differentiable function f . Hence the hyperbolic Laplace–Beltrami operator is

−∆Kf = −∇K · (∇Kf) = −K2 ∆f + (n− 2)K∇K · ∇f

in these coordinates. We remark that K(x) = xn in the upper half-space coordinates
of Hn, and K(x) = 2/(1− |x|2) in the Poincaré disk. We indeed have H0 = −∆K −
(n− 1)2/4 with K(x) = xn in (1).

The following lemma generalizes (2) to other conformal coordinates. It suggests
the formula

u0(x) = K(x)(n−2)/2 ex·ρ
(
1 + ψ(x)

)
for the complex geometrical optics solutions.

Lemma 9. Let U ⊆ Rn be a non-empty open set, let K ∈ C2(U) take only
positive real values, and let HK be the partial differential operator given there by

(3) HK = −K2 ∆ + (n− 2)K∇K · ∇ − (n− 1)2

4
.

Then

K−(n+2)/2HK

(
K(n−2)/2f

)
= −∆f +

(n− 2) (n |∇K|2 − 2K ∆K)− (n− 1)2

4K2
f,(4)

for any f ∈ C2(U).

Proof. For a given real number s we have ∇Ks = sKs−1∇K and

∆Ks = ∇ · (sKs−1∇K) = s (s− 1)Ks−2 |∇K|2 + sKs−1 ∆K.

The rest follows from the Leibniz rule. �

We are going to apply techniques from [6, 33, 20] to construct complex geometrical
optics solutions u0. We start with the equation (H0 + λν V − λ)u0 = 0 in Hn. After
a suitable choice of coordinates in a non-empty open set U ⊆ Rn this equation will
become (

−K2 ∆ + (n− 2)K∇K · ∇ − (n− 1)2

4
+ λν V − λ

)
u0 = 0

and K : U −→ R+ is chosen as described before Lemma 9. Setting u0 = K(n−2)/2u
gives us then(

−∆ +
(n− 2) (n |∇K|2 − 2K ∆K)− (n− 1)2 + 4 (λν V − λ)

4K2

)
u = 0

by the lemma.
For the purposes of corner scattering it is enough to show the existence of u in a

small neighbourhood B ⊆ U of the corner. We shall assume that the potential V is
equal to χC ϕ in U . Here C ⊂ Rn is a polyhedral Euclidean cone and ϕ : Rn −→ C
a Hölder continuous function. The function Φ ∈ C∞c (U) below is a cut-off function
which restricts the problem to the neighbourhood of interest.
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Lemma 10. Let n ∈ Z+ with n > 2 and let C ⊂ Rn be an open polyhedral
cone. Consider the potential V = χC ϕ where ϕ : Rn −→ C is compactly supported
and in a function space X. Here,

a) X = Cα(Rn) for some α ∈ R+, or
b) X = Hs,r(Rn) for some r ∈ [1,∞[ and s ∈ ]n/r,∞[.

Assume that K : U −→ R+ is a smooth real-valued function with a positive lower
bound and defined in a non-empty open set U ⊆ Rn. Let Φ ∈ C∞c (U) and define
Q : Rn −→ C by extending

(5) Φ
(n− 2)(n |∇K|2 − 2K ∆K)− (n− 1)2 + 4(λν V − λ)

4K2

by zero outside of supp Φ, and where ν ∈ {0, 1} and λ ∈ R+ are constants. Then, in
the case a), if q ∈ [1, 2] and s ∈ [0,min(1/q, α)[, we have

(6) Q ∈ Hs,q(Rn), ‖Qf‖Hs,q(Rn) 6 C ‖f‖Hs,q′ (Rn)

for 1/q + 1/q′ = 1. In the case b)

Q̂ ∈ B1
q,1, ‖F{Qg}‖B1

q,1
6 C ‖ĝ‖B−1

q,∞

for any q ∈ ]1,∞[.

Proof. The polyhedral cone C can be expressed as a finite intersection of half-
spaces. Hence

χC =
m∏
j=1

χHj

for a set of half-spaces Hj. We can write Q = Ψ1 +
∏

j χHjΨ2ϕ for some Ψ1,Ψ2 ∈
C∞c (U).

Consider the case b) first. The proof is more or less the same as in Lemma 3.4 of
[20] and based on estimates in [6]. In particular note that if supp a ⊂ B(0, R) then

‖â‖B1
q,1
6 CR ‖â‖Lq ,

‖âg‖B1
q,1
6 2R2 ‖â‖L1 ‖ĝ‖B−1

q,∞
,∥∥F{χHja}∥∥B1

q,1
6 C ‖â‖B1

q,1
.

The first one of these implies that the Fourier transforms of C∞c (U)-functions are in
the Besov space B1

q,1. Thus the first and last imply that FQ ∈ B1
q,1 if F{Ψ2ϕ} ∈ Lq.

Similarly, the second and last one imply the required mapping properties for Q if
F{Ψ2ϕ} ∈ L1.

Note that Ψ2ϕ ∈ Hs,r for some r > 1 and s > n/r. Then the last part in the
proof of Lemma 3.4 in [20]—which uses a dyadic partition of unity and the Hölder
and Hausdorff–Young inequalities—implies that F{Ψ2ϕ} ∈ L1∩L∞, from which the
claim follows.

Consider the case a) now. According to Triebel [38], first theorem in Section 2.8.7,
the mapping f 7→ χHjf is continuous inHs,q(Rn) when 1 6 q <∞, s > 0 and sq < 1.
We have q 6 2, so the previous sentence and the compact support of Ψ1 imply that

‖Qf‖Hs,q(Rn) 6 C(‖f‖Hs,q′ (Rn) + ‖Ψ2ϕf‖Hs,q(Rn))

for 1/q + 1/q′ = 1, s < 1/q. By Triebel [39], last corollary in Section 4.2.2, Cα(Rn)
is a multiplier for Hs,q(Rn) if s < α. So

‖Ψ2ϕf‖Hs,q(Rn) 6 C ‖Ψ2f‖Hs,q(Rn) 6 C ‖f‖Hs,q′ (Rn)
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when s < α. The claim follows by combining both of these estimates. �

The following proposition gives existence of the complex geometrical optics solu-
tions in the coordinate patch U ⊆ Rn where we assume that V has a special form.

Proposition 11. Let n ∈ Z+ with n > 2 and let C ⊂ Rn be an open polyhedral
cone. Consider the potential V = χCϕ where ϕ : Rn −→ C is compactly supported
and in a function space X, where

i) n = 2 and X = Cα(Rn) for some α ∈ R+, or
ii) n = 3 and X = Cα(Rn) for some α ∈ ]1/4,∞[, or
iii) n > 2 and X = Hs,r(Rn) for some r ∈ [1,∞[ and s ∈ ]n/r,∞[.

Let U ⊆ Rn be a non-empty open set and let K : U −→ R+ be smooth. Let HK be
the free operator of (3), ν ∈ {0, 1} and λ ∈ R+. Let B be a bounded non-empty
open set such that B ⊂ U . There is a constant s0 ∈ R+ such that the equation

(HK + λν V − λ)u0 = 0

has a complex geometrical optics solution u0 ∈ H2(B),

u0(x) = K(x)(n−2)/2 exp(ρ · x) (1 + ψ(x)),

if ρ ∈ Cn is a complex vector satisfying ρ · ρ = 0 and |ρ| > s0. In the cases i) and ii)
there is p ∈ [6,∞[ for which ψ|B ∈ Lp(B) with

‖ψ‖Lp(B) 6 C |ρ|−n/p−δ

for some δ = δ(n, α) ∈ R+. In the case iii) we may choose any p ∈ [2,∞[ and have
the estimate

‖ψ‖Lp(B) 6 C |ρ|−1 .

In both cases ‖ψ‖H2(B) 6 C |ρ|2.

Proof. Use the ansatz u0(x) = K(x)(n−2)/2u(x). Lemma 9 gives

K−(n+2)/2(HK + λν V − λ)u0

= −∆u+
(n− 2)(n |∇K|2 − 2K∆K)− (n− 1)2 + 4λν V − 4λ

4K2
u

in U .
Since K is smooth and positive, and B is compact, it has a positive lower bound

there and the function 1/K is smooth. Let Φ ∈ C∞c (U) be constant 1 in B. Denote
by Q : Rn −→ C the extension of

Q = Φ
(n− 2)(n |∇K|2 − 2K ∆K)− (n− 1)2 + 4λν V − 4λ

4K2

by zero to Rn. We will build a complex geometrical optics solution to the equation
(−∆ + Q)u = 0 in Rn and then restrict u to B. In this set it is a solution to the
original equation since Φ ≡ 1 there.

Let us show that the equation (−∆+Q)u = 0 has a solution u(x) = eρ·x(1+ψ(x))
in Rn. Equivalently, let us solve for

(−∆ + 2ρ · ∇+Q)ψ = −Q
in Rn. Note that Q satisfies the requirements of Lemma 10.

The case iii) follows from [6]. According to the case b) in Lemma 10 we have

Q ∈ B̂1
q,1 and ‖Qg‖

B̂1
q,1

6 C ‖g‖
B̂−1
q,∞
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for any q ∈ ]1,∞[. Here we used the notation from that same article: B̂s
p,q = FBs

p,q

are Fourier transforms of Besov spaces with domain Rn. In [6], Proposition 4.2, it
was showed that the Faddeev operator maps

(−∆ + 2ρ · ∇)−1 : B̂1
q,1 −→ B̂−1

q,∞

with norm estimate C |ρ|−1. This implies the existence of a solution ψ ∈ FB−1
q,∞. But

choosing q = (1 − 1/p)−1 6 2, and using the embedding FB−1
q,∞ ↪→ Lp(B) implies

that ψ|B ∈ Lp(B) with norm at most C |ρ|−1.
The cases i) and ii) follow from Proposition 3.3 in [33] and the proof of Theo-

rem 3.1 therein which uses an estimate from [23]. More details follow to make the
index calculations in the proof of the former clearer. Proposition 3.3 in [33] says that
if 1 < q < 2, 1/q + 1/q′ = 1,

1

q
− 1

q′
∈
[

2

n+ 1
,

2

n

[
,

Q satisfies (6), and |ρ| is large enough, then there is a solution ψ ∈ Hs,q′(Rn) which
satisfies

‖ψ‖Hs,q′ (Rn) 6 C |=ρ|n(1/q−1/q′)−2 ‖Q‖Hs,q(Rn) .

The slight differences in notation between their estimate and ours follows from our
choice of having ρ · ∇ instead of ρ ·D. Hence the upper bound has =ρ instead of <ρ.
Moreover

√
2 |=ρ| = |ρ| since ρ · ρ = 0.

The Sobolev embedding theorem says that Hs,q′(Rn) ↪→ Lp(Rn) if 0 6 s < n/q′

and then p is determined by −n/p = s − n/q′. The claim follows after making sure
that all the constraints for the parameters used above are satisfied. Namely

• having (6) requires 1 6 q 6 2 and 0 6 s < min(1/q, α),
• using Proposition 3.3 in [33] requires 1 < q < 2, 1/q+1/q′ = 1 and 2/(n+1) 6

1/q − 1/q′ < 2/n,
• using the Sobolev embedding to Lp(Rn) requires 0 6 s < n/q′ and p is given
by −n/p = s− n/q′,
• and finally, for having enough decay in the exponent of |ρ| in the final estimate,
we require that n(1/q − 1/q′)− 2 < −n/p.

We omitted the requirement that p > 6 because it will be implied by these. Checking
the conditions becomes easier by writing everything with respect to s and 1/q. With
a little effort one can see that the above are equivalent to

n+ 3

2n+ 2
6

1

q
<
n+ 2

2n
, 0 6 s < min

(
1

q
, α

)
,

0 6 s < n− n

q
,

n

q
− 2 < s,

after which q′ is determined by 1/q+1/q′ = 1 and p is given by −n/p = s−n/q′. The
conditions can be illustrated as follows, where we leave out the requirement s < α
which will have to be checked separately.
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n = 2

1
q

s

5
6 1

n = 3

1
q

s

3
4

5
6

Figure 2.

Adding the condition s < α, we see that the above have a solution in 2D if α > 0,
and in 3D if α > 1/4. In the former case a solution is (1/q, s) = (5/6, 0) which gives
1/q′ = 1/6, n/p = n/q′ − s = 1/3 and p = (n/p)−1n = 6. The exponent of |ρ|
becomes then

n

(
1

q
− 1

q′

)
− 2 = 2

(
5

6
− 1

6

)
− 2 = −2

3
= −2

6
− 1

3
= −n

p
− 1

3

which is of the form −n/p− δ, with δ = 1/3 > 0.
In the second case a solution is given by (1/q, s) = (3/4, s) for any s satisfying

1/4 < s < min(3/4, α). Then 1/q′ = 1/4, n/p = n/q′ − s = 3/4 − s and p =
(n/p)−1n = 12/(3 − 4s), a number between 6 and infinity depending on s. The
exponent of |ρ| is

n

(
1

q
− 1

q′

)
− 2 = 3

(
3

4
− 1

4

)
− 2 = −1

2
= s− 3

4
+

1

4
− s = −n

p
+

1

4
− s,

again of the form −n/p − δ, where now δ = s − 1/4 > 0 for any s satisfying the
only required condition of 1/4 < s < min(3/4, α). We can choose s based on α, for
example s = (1/4 + min(3/4, α))/2, which suits us well.

We have shown that in all cases there is a solution ψ ∈ Lp(B) for some p, and it
has fast enough decay as |ρ| → ∞. We also note that above it was always possible
to choose p > 2. Hence in all cases we have ψ ∈ L2(B′) for any bounded domain
B′ ⊃ supp Φ. Elliptic interior regularity implies that ψ|B ∈ H2(B), and the required
norm estimate for u0 follows. �

We note further that the distance from the line with slope n determines the decay
rate of ‖ψ‖p. For the fastest decay one should have α > 1/3 in 2D and α > 3/4 in
3D.

3. Corner scattering

In this section we will prove that corners that are conformal to Euclidean an-
gles in two dimensions or the corner of a Euclidean hypercube in higher dimensions
always scatter. The proof proceeds as follows: Assuming the existence of a non-
scattering energy—a nontrivial incident wave such that the corresponding scattering
amplitude vanishes—we use a Rellich type theorem to show that the scattered wave
is zero outside the support of the potential. Integration by parts gives us a type of
orthogonality relation. This is a relation between the potential function, the incident
wave and a function which we may choose.
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Choosing a family of complex geometrical optics solutions in the orthogonality
relation will be useful. The remaining steps involve choosing a suitable set of co-
ordinates for the hyperbolic space under which the corner of interest looks like a
Euclidean corner, and then estimating the decay rates of various terms involved in
the orthogonality relation. This reduces the problem to showing that the Laplace
transform of the product of the characteristic function of a cone and a nontrivial har-
monic polynomial cannot vanish identically on the complex characteristic manifold
of points ρ ∈ Cn satisfying ρ · ρ = 0, a problem which has been solved in the papers
[6] and [33].

3.1. An orthogonality relation. The first step in the proof is to derive a
near-orthogonality relation from the hypothesis that a non-scattering energy exists.
The following lemma gives that. If the neighbourhood B is large enough to contain
the support of the potential V then the right-hand side vanishes, and thus u0 and w
are orthogonal, with inner products weighted by V dµ.

Compared to strict orthogonality, the identity stated below is more useful when
the potential lacks smoothness outside of B. We will later let u0 be a complex
geometrical optics solution whose boundary values decay exponentially as the relevant
parameter tends to infinity, so this relation is as useful to us as orthogonality is.

Lemma 12. Let n > 2 be an integer, let λ ∈ R+, and let Ω be a bounded
non-empty open set in Hn such that the interior of its complement is connected.
Furthermore, let V ∈ L∞(Hn) vanish outside Ω, and let v, w ∈ B∗(Hn) be solutions
to the equations {

(H0 + V − λ) v = 0, and
(H0 − λ)w = 0,

in Hn so that v − w ∈ B̊∗(Hn). Let B ⊂ Hn be a smooth bounded domain and let
u0 ∈ H2(B) be a solution to

(H0 + V − λ)u0 = 0

in B. Then v, w ∈ H2
loc(H

n) and

(7)
ˆ
B∩Ω

V u0w dµ =

ˆ
∂B

(
(v − w) ∂νu0 − u0 ∂ν(v − w)

)
dσ

with v − w and ∂ν(v − w) vanishing identically on ∂B \ Ω. In the upper half-space
coordinates of Hn we have ∂ν = xn ∂N where N(x) is the Euclidean unit exterior
normal vector to B at x ∈ ∂B, and dµ = x−nn dx, dσ = xn−1

n dS where dx and dS
are the Euclidean volume and boundary volume forms of B.

Proof. Rellich’s classical lemma has a natural analogue in Hn (see e.g. Theo-
rem 2.10 in [21] for a more than sufficiently general version). In particular, we have
v ≡ w far away, and by unique continuation v ≡ w outside Ω. Elliptic interior reg-
ularity estimates imply that v and w are locally in H2 since V is bounded. Hence
v − w and ∂ν(v − w) exist as L2 functions on ∂B and they both vanish on ∂B \ Ω.

Note the integration by parts formula for H0,

(8)
ˆ
B

uH0v dµ =

ˆ
∂B

(
u ∂νv − v ∂νu

)
dσ +

ˆ
B

v H0u dµ,
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which follows fromˆ
B

u
(
−x2

n ∆ + (n− 2)xn ∂n
)
v

dx

xnn

= −
ˆ
B

u∆v
dx

xn−2
n

+ (n− 2)

ˆ
B

u ∂nv
dx

xn−1
n

= −
ˆ
∂B

uN · ∇v dS

xn−2
n

+

ˆ
B

∇v · ∇ u

xn−2
n

dx+ (n− 2)

ˆ
B

u ∂nv
dx

xn−1
n

= −
ˆ
∂B

uxnN · ∇v
dS

xn−1
n

+

ˆ
B

∇v · ∇u dx

xn−2
n

− (n− 2)

ˆ
B

∇v · u en
dx

xn−1
n

+ (n− 2)

ˆ
B

u ∂nv
dx

xn−1
n

= −
ˆ
∂B

uxnN · ∇v
dS

xn−1
n

+

ˆ
B

∇v · ∇u dx

xn−2
n

,

where the two terms with n − 2 simply cancel out, and where the last integral is
symmetric with respect to u and v, so that we obtainˆ

B

u
(
−x2

n ∆ + (n− 2)xn ∂n
)
v

dx

xnn
+

ˆ
∂B

uxnN · ∇v
dS

xn−1
n

=

ˆ
B

∇v · ∇u dx

xn−2
n

=

ˆ
B

∇u · ∇v dx

xn−2
n

=

ˆ
B

v
(
−x2

n ∆ + (n− 2)xn ∂n
)
u

dx

xnn
+

ˆ
∂B

v xnN · ∇u
dS

xn−1
n

.

Using (8), we get

0 =

ˆ
B

(
(H0 + V − λ)u0

)
(v − w) dµ

=

ˆ
∂B

(
(v − w) ∂νu0 − u0 ∂ν(v − w)

)
dσ

+

ˆ
B

u0 (H0 + V − λ) (v − w) dµ

=

ˆ
∂B

(
(v − w) ∂νu0 − u0 ∂ν(v − w)

)
dσ −

ˆ
B∩Ω

u0 V w dµ

since V ≡ 0 outside of Ω. �

Corollary 13. Let u0, v, w, V , B and Ω be as in Lemma 12 with variable
denoted by y ∈ Hn instead of x. Let U ⊆ Rn be open, V ⊂ Hn be open with
B ⊂ V , and x : V −→ U a diffeomorphism. Assume that under these coordinates
the pushforward of the hyperbolic metric at a point y ∈ V is given at x = x(y) ∈ U
by the Riemannian metric

gx(a, b) =
1

(K(x))2

n∑
i=1

aibi

for two vectors a, b in the tangent space to U at x where ai, bi are their orthonormal
coordinates. Here moreover K(x) : U −→ R+ is assumed smooth. Then the hy-
perbolic volume form dµ is K−n dx in these coordinates, where dx is the Euclidean
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volume form. Moreover the identity (7) becomes

(9)
ˆ

Ω∩B
V u0w

dx

Kn
=

ˆ
∂B

(
(v − w) ∂Nu0 − u0 ∂N(v − w)

) dS

Kn−2

in these coordinates. The differences v−w and ∂ν(v−w) vanish identically on ∂B\Ω.
Here N and dS are the Euclidean exterior unit normal vector and boundary measure
on ∂B, respectively, and the pushforward versions of B,Ω ⊂ Hn into U are denoted
with the same symbols.

Proof. The given form of the Riemannian metric implies that

dµ = K−n dx, dσ = K−(n−1) dS,
∂

∂ν
=

∂

K−1 ∂N
i.e. the hyperbolic volume of an infinitesimal set in U is its Euclidean volume multi-
plied by K−n. For boundary sets multiply by K−(n−1), and for lengths and vectors
by K−1. Then apply these to (7). �

3.2. From CGO solutions to Laplace transforms. In this section we will
prove a lemma that will bring together all the major players in corner scattering:
complex geometrical optics solutions, the non-scattering wave, and the shape of the
corner. This is the argument from [6, 33]. We start by stating what we mean by a
function having a specified order at a point:

Definition 14. Let Ω ⊆ Rn be open and let x0 ∈ Ω. Then f ∈ L1
loc(Ω) has

order N ∈ Z ∪ {+∞,−∞} at x0 if

N = sup{M ∈ Z | ∃CM ∈ R+ : |f(x)| 6 CM |x− x0|M for a.e. x ∈ Ω near x0}.
Lemma 15. Let Ω ⊆ Rn be open, let x0 ∈ Ω and let f : Ω −→ C be smooth.

Assume that N ∈ Z ∪ {±∞} is the order of f at x0. Then N > 0 and ∂αf(x0) = 0
whenever |α| < N . Also, if M ∈ Z+ is such that ∂αf(x0) = 0 for |α| < M , then
N > M . Moreover if N <∞ then there is a homogeneous polynomial PN of degree
N with complex coefficients and C ∈ R+ such that

|f(x)− PN(x− x0)| 6 C |x|N+1

for x ∈ Ω in a neighbourhood of x0.

Proof. Since f is smooth, it is bounded in a neighbourhood of x0, and so N > 0.
Now, by Taylor’s theorem, for any Ñ ∈ Z+,

f(x) =
∑
|α|6Ñ

∂αf(x0)

α!
(x− x0)α +

∑
|α|=Ñ

hα(x)(x− x0)α

and hα(x) −→ 0 as x −→ x0. Since f is smooth so are the hα. The mean value
theorem implies that |hα(x)| 6 C |x− x0| in a neighbourhood of x0.

The claims about the derivatives follow directly. If N <∞ we can choose Ñ > N
and PN to be the sum of the terms of order N in the first sum above. �

The following lemma lacks the factor 1/Kn from the hyperbolic metric. This will
not be an issue since K will be smooth, positive and bounded from below on compact
sets in U , and so we can simply let the function ϕ hold this factor.

Lemma 16. Let Ω ⊂ Rn be a non-empty open set and let x0 ∈ ∂Ω. Assume
that there is an open cone C with vertex x0 such that for some h ∈ R+ we have
Ω ∩ B(x0, h) = C ∩ B(x0, h). Let V = χCϕ in B(x0, h), with ϕ ∈ Cα(B(x0, h)) for
some α ∈ R+, and χC the characteristic function of the cone C. Assume that ρ0 ∈ Cn
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is such that ρ0 · ρ0 = 0, |ρ0| = 1 and that the function exp(ρ0 · (x− x0)) is integrable
in C. Let there be C ∈ R+, p ∈ [1,∞[, and a sequence s1, s2, . . . of positive real
numbers satisfying sj −→ +∞ as j −→ ∞, and functions u1

0, u
2
0, . . . ∈ Lp(B(x0, h))

satisfying

uj0(x) = eρj ·(x−x0)(1 + ψj(x)),

for every j ∈ Z+, where ρj = sjρ0 and ‖ψj‖Lp(B(x0,h)) 6 Cs
−n/p−δ
j for some δ ∈ R+.

Let w be smooth in B(x0, h) and of order at least N ∈ Z+∪{0} at x0. Then we may
write

w(x) = PN(x− x0) + rN+1(x),

where PN either vanishes identically or is a homogeneous complex polynomial of
degree N , and where the error term satisfies |rN+1(x)| 6 C |x− x0|N+1 for x near x0.
As a consequence, if

(10)
ˆ

Ω∩B(x0,h)

V uj0w dx = o(s−N−nj )

as j −→∞, then we have

ϕ(x0)

ˆ
(−x0)+C

eρ0·x PN(x) dx = 0,

i.e. the Laplace transform of PN over C translated to the origin vanishes at ρ0 if
ϕ(x0) 6= 0.

Proof. By translating all the sets and functions we may assume that x0 = 0.
This simplifies notation. Also, in the following, the constant factors C in estimates
are allowed to depend on n, Ω, h, C, ϕ, α, N , w, p and ρ0, but not on j, the point
being that in the end we will take j −→∞.

According to Lemma 15 we get the splitting w = PN + rN+1, with PN of order
N and |rN+1(x)| 6 C |x|N+1 in a neighbourhood of 0. We will let B = B(0, ε) ⊂
B(0, h) be such a neighbourhood. We can assume that h = ε, because (10) decays
sufficiently fast also when h = ε. This follows since exp(sjρ0 ·x) decays exponentially
in Ω ∩B(x0, h) \B(x0, ε) as j −→∞ by the assumption on ρ0.

We will split the integral in (10) given in the statement by splitting each of the
factors of the integrand into a main term and a “higher order” term. In particular,

w(x) = PN(x) + rN+1(x),

uj0(x) = eρj ·x(1 + ψj(x)),

V (x) = χC
(
ϕ(0) + (ϕ(x)− ϕ(0))

)
,

with the estimates

|rN+1(x)| 6 C |x|N+1 ,

‖ψj‖Lp(B(0,h)) 6 Cs
−n/p−δ
j ,

|ϕ(x)− ϕ(0)| 6 ‖ϕ‖Cα(B(0,h)) |x|
α ,

for x ∈ B(0, h).
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Now, writing B = B(0, h) and letting ψ = ψj and ρ = sρ0 with s = sj, j ∈
{1, 2, . . .}, we haveˆ

Ω∩B
V (x)uj0(x)w(x) dx

=

ˆ
C∩B

(
ϕ(0) + (ϕ(x)− ϕ(0))

)
eρ·x (1 + ψ(x)) (PN(x) + rN+1(x)) dx

=

ˆ
C∩B

eρ·x ϕ(0)PN(x) dx+

ˆ
C∩B

eρ·x (ϕ(x)− ϕ(0))PN(x) dx

+

ˆ
C∩B

eρ·x ϕ(x) rN+1(x) dx+

ˆ
C∩B

eρ·x ϕ(x)w(x)ψ(x) dx

= ϕ(0)

ˆ
C
eρ·x PN(x) dx− ϕ(0)

ˆ
C\B

eρ·x PN(x) dx

+

ˆ
C∩B

eρ·x (ϕ(x)− ϕ(0))PN(x) dx+

ˆ
C∩B

eρ·x ϕ(x) rN+1(x) dx

+

ˆ
C∩B

eρ·x ϕ(x)w(x)ψ(x) dx.(11)

Let us consider the individual integrals next. First,

(12)
∣∣∣∣ˆ
C\B

eρ·x PN(x) dx

∣∣∣∣ 6 ˆ
C\B

es<ρ0·x |PN(x)| dx 6 Ce−Cs

because we assumed that exp(ρ0 · x) is integrable in C, so the integral decays expo-
nentially in C \B as j −→∞. The three integrals over C ∩B are dealt with Hölder’s
inequality. We start with∣∣∣∣ˆ

C∩B
eρ·x (ϕ(x)− ϕ(0))PN(x) dx

∣∣∣∣ 6 C

ˆ
C
es<ρ0·x |x|N+α dx

= C s−N−n−α
ˆ
C
e<ρ0·y |y|N+α dy,(13)

and the last integral is finite. Next,∣∣∣∣ˆ
C∩B

eρ·x ϕ(x) rN+1(x) dx

∣∣∣∣ 6 C

ˆ
C
es<ρ0·x |x|N+1 dx

= C s−N−n−1

ˆ
C
e<ρ0·y |y|N+1 dx,(14)

and again the dependence on s is made explicit, this time by taking the L∞-norm of
ϕ. For the last integral note that |w(x)| 6 C |x|N since it is of order at least N . Let
p′ be the dual exponent of p, so that 1 = 1/p+ 1/p′. Then∣∣∣∣ˆ

C∩B
eρ·x ϕ(x)w(x)ψ(x) dx

∣∣∣∣ 6 C ‖esρ0·xw(x)‖Lp′ (C∩B) ‖ψ‖Lp(B)

6 C s−N−n/p
′
s−n/p−δ = C s−N−n−δ(15)

since |exp(sρ0 · x)w(x)| 6 C exp(s<ρ0 · x) |x|N and by the scaling properties of the
Lp
′-norm.
Before plugging estimates (12), (13), (14) and (15) into (11) we will change

variables y = sx in the first term in the right-hand side of (11). The decay of the
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left-hand side and the estimates of the individual integrals above will leave us with

s−N−n
∣∣∣∣ϕ(0)

ˆ
C
eρ0·y PN(y) dy

∣∣∣∣ = o(s−N−n).

The claim follows by letting s = sj −→∞. �

3.3. Finishing the proofs. We will first show that if w satisfies the free
equation (H0−λ)w = 0 with λ ∈ R+ in the hyperbolic space Hn, then the principal
term of its Taylor expansion is harmonic in the chosen coordinates. This is true for
any coordinates that transform H0 into HK . After that we can prove that certain
types of corners always scatter in the hyperbolic space.

Lemma 17. Let U ⊆ Rn be a non-empty open set and let K : U −→ R+ be
smooth. Let w ∈ L1

loc(U) and assume that w does not vanish almost everywhere
and that (HK − λ)w = 0 in U , where HK is given by (3) on page 554, and λ ∈ R.
Then w is smooth and of finite order N ∈ Z+ ∪ {0} at any x0 ∈ U . Moreover, if PN
is the sum of the lowest order terms in the Taylor expansion of w at x0, given by
Lemma 15, then PN is a harmonic polynomial in Rn, i.e. ∆PN = 0.

Proof. The function w is smooth because the coefficients of HK are smooth.
Also, w has order N ∈ Z+∪{0,+∞} at x0 by Lemma 15. If N =∞ then w vanishes
to infinite order at x0, and hence would vanish identically in U . This follows from
results in [16] according to [1]. Hence 0 6 N <∞, and we may assume that N > 2.

We will emphasize the order of a function by writing it as a subscript. Then, by
Lemma 15 and the differentiability of K at x0, we have

w(x) = PN(x− x0) + rN+1(x), |rN+1(x)| 6 C |x− x0|N+1 ,

K(x) = K(x0) + k1(x), |k1(x)| 6 C |x− x0| ,
in a neighbourhood of x0.

According to (3),

0 = (HK − λ)w =
(
−K2 ∆ + (n− 2)K∇K · ∇ − λ− (n− 1)2/4

)
w.

Now

K(x0)2 ∆PN(x− x0) = (n− 2)K∇K · ∇w −
(
λ0 + (n− 1)2 /4

)
w

−K2 ∆rN+1 − 2K(x0) k1 ∆PN(x− x0)− k2
1 ∆PN(x− x0).

Next we use the boundedness of K and ∇K near x0 to get∣∣K(x0)2 ∆PN(x− x0)
∣∣ 6 C

(
|∇w(x)|+ |w(x)|

+ |∆rN+1(x)|+ |k1(x)| · |∆PN(x− x0)|+ |k1(x)|2 |∆PN(x− x0)|
)
.

Both w and rN+1 are smooth and of orders N and at least N + 1, respectively.
By looking at how many derivatives vanish at x0, Lemma 15 shows that ∇w and
∆rN+1 are of order at least N − 1, and so |∇w(x)| + |∆rN+1(x)| 6 C |x− x0|N−1.
Also, ∆PN is of degree at most N − 2, and so using all of the previous estimates we
see that ∣∣K(x0)2 ∆PN(x− x0)

∣∣ 6 C |x− x0|N−1

in a neighbourhood of x0. Since ∆PN either vanishes identically or is a homogeneous
polynomial of degree N − 2, and since K(x0) 6= 0, we have ∆PN = 0. �

We can now prove a proposition from which the main theorems on non-scattering
energies follow easily. The proposition deals with corner scattering in Rn for the
partial differential operator HK given by (3) on page 554. After this, the strategy
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for proving the main theorem is to choose a coordinate patch (U, x) for Hn, and
this will fix the function K appearing in the coefficients of HK . The proposition
gives conditions, in terms of the coordinate patch, under which the potential will
always scatter. These will then have to be translated back into the language of the
hyperbolic space.

Proposition 18. Let n > 2 be an integer and let U ⊆ Rn be a non-empty open
set with a smooth function K : U −→ R+. Let Ω ⊂ U be a bounded non-empty
open set such that Ω ⊂ U and U \ Ω has connected interior. Also, let C ⊂ Rn

be an open cone with vertex x0 ∈ U and assume that there is h ∈ R+ such that
B(x0, h) ∩ Ω = B(x0, h) ∩ C and h < d(x0, ∂U). Let V ∈ L∞(U) vanish outside of Ω
and assume that there is a compactly supported function ϕ : Rn −→ C in a function
space X, defined below, such that V = χC ϕ in B(x0, h). Let λ ∈ R+. If

(16)
ˆ

Ω∩B(x0,h)

V u0w
dx

Kn
=

ˆ
∂B(x0,h)

(vs ∂Nu0 − u0 ∂Nvs)
dS

Kn−2

for any u0 ∈ H2(B(x0, h)) satisfying (HK + V − λ)u0 = 0 with HK given in (3) and
some functions

• w ∈ L1
loc(U) satisfying (HK − λ)w = 0 and not vanishing almost everywhere,

and
• vs ∈ H2(B(x0, h)) vanishing outside of Ω,

and if
i) n = 2, X = Cα for some α ∈ R+, and C has opening angle in ]0, π[, or
ii) n = 3, X = Cα for some α ∈ ]1/4,∞[, and C = ]0,∞[3 + x0, or
iii) n > 2, X = Hs,r for some r ∈ [1,∞[, s ∈ ]n/r,∞[, and C = ]0,∞[n + x0,

then we have ϕ(x0) = 0.

Proof. We will use Lemma 16 with the potential V ′ = V K−n = χC ϕK
−n.

There is no smoothness issue since K−n ϕ ∈ Cα for some α > 0 in all cases. This
follows from the smoothness and lower bound of K in the compact set Ω, and Sobolev
embedding when ϕ ∈ Hs,r with s > n/r. Let us show that we have functions u0 and w
satisfying the lemma’s assumptions, and that

´
V K−n u0w dx decays exponentially

when the complex geometrical optics solution parameter tends to infinity.
In all three cases we see that C is an open polyhedral cone. Hence Proposi-

tion 11 implies the existence of a set of complex geometrical optics solutions uj0 ∈
H2(B(x0, h)), where j ranges over Z+, and p ∈ ]1,∞[ such that

uj0(x) = K(x)(n−2)/2 eρj ·(x−x0) (1 + ψj(x)), ‖ψj‖Lp(B(x0,h)) 6 C s
−n/p−δ
j

for every j ∈ Z+, for some δ ∈ R+, and where ρj = sjρ0 ∈ Cn has absolute value
sj which tends to infinity as j −→ ∞ and ρ0 · ρ0 = 0. Note that this form of the
bound for ψj holds also in case iii) because p can be large, for example p > n. We
may choose ρ0 ∈ Cn such that exp(ρ0 · (x− x0)) is integrable in a neighbourhood of
C, i.e. that <ρ0 · (x− x0) 6 −γ |x− x0| for some γ ∈ R+ when x ∈ C.

Consider the function w now. By Lemma 17 it is smooth, has a finite order N ∈
Z+ ∪ {0} at x0, and its lowest order approximation PN is a harmonic homogeneous
polynomial.

Now the only thing left to show for Lemma 16 is the exponential decay of´
V K−n uj0w dx as sj −→ ∞. Recall that vs vanishes outside C in B(x0, h), which

implies the same for its trace and normal derivative on ∂B(x0, h). On the other hand,
by the choice of ρ0, we have |exp(ρj · (x− x0))| 6 exp(−γsjh) when x ∈ ∂B(x0, h)∩C.
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These imply the decay of the boundary term in the proposition statement, and hence
also of the volume integral. Lemma 16 implies then that

ϕ(x0)

Kn(x0)

ˆ
C−x0

eρ0·x PN(x) dx = 0.

We assumed that PN is a nontrivial polynomial. Then standard arguments in
corner scattering imply that ϕ(x0) = 0. In more detail, the arguments of Section 5 in
[33] apply verbatim in the two dimensional case, and show that the Laplace transform
cannot vanish for all admissible ρ0. Similarly, in the three and higher dimensional
cases where C is a right-angled corner, Theorem 2.5 of [6] implies the same statement.
Hence ϕ(x0) = 0. �

Proof of Theorem 3. Use the Poincaré disc coordinates for H2. Choose these
coordinates so thatH2 is pushed forward to U = B(0, 1) ⊂ R2 and x0 has coordinates
0. Then C becomes a Euclidean cone restricted to the disc. By restricting to a smaller
neighbourhood we may assume that the pushforward of B is a Euclidean ball B(0, h),
0 < h < 1.

Assume that there would be a non-scattering incident wave w of energy λ ∈ R+.
Then Lemma 12 implies the following: for any u0 ∈ H2(B) solving (H0+V −λ)u0 = 0
we have ˆ

B∩Ω

V u0w dµ =

ˆ
∂B

(vs ∂νu0 − u0 ∂νvs) dσ

where vs ∈ B̊∗(H2) is the corresponding scattered wave with vanishing far-field
pattern. It also vanishes outside Ω. Using the coordinates of the Poincaré disc,
Corollary 13 implies that (16) holds with K(x) = 2/(1 − |x|2). Case i) holds, so
Proposition 18 implies that ϕ(x0) = 0. The contradiction implies that there is no
non-scattering incident wave. �

Proof of Theorem 4. Model Hn by the n-dimensional Poincaré ball such that Hn

is pushed forward to U = B(0, 1) ⊂ Rn and x0 to the origin 0 ∈ U . After rotation C
becomes ]0,∞[n∩U . The rest of the proof is similar to the proof of Theorem 3 except
that in addition to case i) we also use case ii) and case iii) in Proposition 18. �

Proof of Theorem 5. Let g denote the hyperbolic metric in B ⊂ Hn and G
the Euclidean one in Φ(B) ⊂ Rn, respectively. Let g′ = Φ∗g be the pushforward
of g to Φ(B). We may assume that B is small enough guaranteeing that Φ is a
diffeomorphism and Φ ◦ Φ−1 is conformal in Φ(B). This implies that there is a
positive function K : Φ(B) −→ R+ such that

g′x(a, b) =
1

K2(x)
Gx(a, b)

for vectors a, b ∈ Rn at x ∈ Φ(B). We shall pass to an even smaller, smooth
neighbourhood B of x0 which maps to a Euclidean ball B(0, h) with h ∈ R+. This
allows us to assume that infΦ(B) K > 0, B is smooth and that Φ(B) = B(0, h).

Assume that H0 + V would have a non-scattering energy λ with corresponding
incident wave w. By Lemma 12 we see that for any u0 ∈ H2(B) solving (H0 + V −
λ)u0 = 0 we get ˆ

B∩C
V u0w dµ =

ˆ
∂B

(vs ∂νu0 − u0 ∂νvs) dσ

where vs is the scattered wave corresponding to w, and it vanishes outside Ω.
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Use Corollary 13 for B. If we write V ′ = V ◦ Φ−1, u′0 = u0 ◦ Φ−1, w′ = w ◦ Φ−1

and v′s = vs ◦ Φ−1, then the corollary impliesˆ
Φ(B)∩Φ(C)

V ′ u′0w
′ dy

Kn
=

ˆ
∂Φ(B)

(
v′s ∂Nu

′
0 − u′0 ∂Nv′s)

) dS

Kn−2

and K is smooth and bounded from below by a positive constant in Φ(B).
Let ∆g denote the Laplace–Beltrami operator in B, and soH0 =−∆g−(n− 1)2 /4

by (1) on page 549 where the upper half-space coordinates are used, or by the dis-
cussion at the beginning of Section 2. The pushforward of the Laplacian is

Φ∗(∆g f) = ∆g′ Φ∗f = K2 ∆G Φ∗f − (n− 2)K∇GK · ∇G Φ∗f,

where ∆G and ∇G are the Euclidean Laplacian and gradient in Φ(B). In other words

H0 f(y) = −K2 ∆G f̃(x) + (n− 2) K∇GK · ∇G f̃(x)− (n− 1)2

4
f̃(x)

where f̃(x) := f(Φ−1(x)) = f(y). This is equal to HK f̃(x) where HK is given by
(3) on page 554. Moreover the pushforward of the potential V restricted to B(0, h)
vanishes outside of a convex cone in two dimensions or ]0,∞[n in higher dimensions.
The rest of the proof is as in the proofs of Theorems 3 and 4. �

4. Transmission eigenvalues via quadratic forms

Finally, let us focus on transmission eigenvalues and prove Theorems 7 and 8.
We note that the behaviour of transmission eigenvalues for the Schrödinger operator
H0 + V − λ is different than for the Helmholtz operator H0 + λV − λ. The number
ν ∈ {0, 1} shall denote our choice of operator, and let us assume that Ω ⊆ Hn

is a bounded nonempty open set, and that V ∈ L∞(Ω) satisfies the conditions of
one of Theorems 7 and 8. The first step in the proofs is to move from the interior
transmission problem to a single fourth-order equation.

Proposition 19. Let ν ∈ {0, 1}, and let λ ∈ R or λ ∈ R \ {0} depending
on whether ν = 0 or ν = 1, let Ω be a bounded nonempty open set in Hn, and
let V ∈ L∞(Ω) only take positive real values, or only negative real values, and be
bounded away from zero. Then the system

(H0 + λνV − λ)v = 0 in Ω,
(H0 − λ)w = 0 in Ω,
v − w ∈ H2

0 (Ω)

has a solution v, w ∈ L2(Ω) with v 6≡ 0 and w 6≡ 0 if and only if there exists a function
u ∈ H2

0 (Ω) with u 6≡ 0 solving (in the sense of distributions) the fourth-order equation

(H0 + λνV − λ)
1

V
(H0 − λ)u = 0

in Ω. Furthermore, this transition retains multiplicities in the sense that the space of
pairs of solutions 〈v, w〉 to the interior transmission problem has the same dimension
as the space of solutions u to the fourth-order equation.

Proof. If λ is such that the interior transmission problem has a non-trivial
solution v, w ∈ L2(Ω), then it is a simple matter of computation to show that
u = v − w ∈ H2

0 (Ω) solves the fourth-order equation. Furthermore, u 6≡ 0 because
otherwise we would have V v ≡ 0, which is not possible.
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Conversely, if the fourth-order equation has a non-trivial solution u ∈ H2
0 (Ω),

then it is a routine calculation to check that the functions

v = − 1

λν V
(H0 − λ)u and w = − 1

λν V
(H0 + λνV − λ)u,

where λν is understood as 1 if ν = 0 and λ = 0, are in L2(Ω) and solve the interior
transmission problem. Furthermore, we have v−w = u ∈ H2

0 (Ω). Neither of v and w
can vanish identically because v−w ∈ H2

0 (Ω) would then imply that v ≡ w ≡ u ≡ 0
by the unique continuation principle.

Finally, the above linear mappings between the spaces of solutions from 〈v, w〉
to u = v − w, and from u to 〈v, w〉, are injections and inverses of each other, which
yields the last statement of the proposition. �

We now move into the realm of quadratic forms and their analytic perturbation
theory. First, we define the quadratic form Qλ : H2

0 (Ω) −→ C, for every λ ∈ C, by
setting

Qλ(u) =

〈(
H0 + λνV − λ

)
u

∣∣∣∣ 1

|V |
(H0 − λ)u

〉
L2(Ω;dµ)

.

Here the operator on the left is the adjoint operator of H0 +λνV −λ in the hyperbolic
inner product 〈f |g〉L2(Ω;dµ) =

´
Ω
f g dµ for f, g ∈ L2(Ω; dµ).

In particular, for λ ∈ R, we have

Qλ(u) =

∥∥∥∥∥ 1√
|V |

(H0 − λ)u

∥∥∥∥∥
2

L2(Ω,dµ)

+ λν
V

|V |
〈u|(H0 − λ)u〉L2(Ω;dµ)

since V/ |V | is a constant as V is real-valued and has a constant sign. Following the
presentations of [41, 42], where Euclidean transmission eigenvalues were considered
for suitable polynomially and exponentially decaying potentials in unbounded do-
mains, almost verbatim, we may list the relevant facts about Qλ which follow from
analytic perturbation theory [22]. The types (a) and (B) are defined there in Chapter
VII.

Proposition 20. The quadratic forms Qλ form an entire self-adjoint analytic
family of quadratic forms of type (a) with compact resolvent, and so give rise to an
entire self-adjoint analytic family of operators Tλ of type (B) with compact resolvent.
There exists a sequence of real-analytic functions µ` : R −→ R, ` ∈ Z+, such that for
each λ ∈ R, the spectrum of Tλ, which consists of a discrete set of real eigenvalues of
finite multiplicities and accumulating to +∞, is given by the values µ`(λ), ` ∈ Z+,
respecting multiplicities. Finally, for any fixed T ∈ R+, there exist constants c, C ∈
R+ such that

|µ`(λ)− µ`(0)| 6 C
(
ec|λ| − 1

)
,

uniformly for ` ∈ Z+ and λ ∈ [−T, T ].



Non-scattering energies and transmission eigenvalues in Hn 569

λ

σ(Tλ)

Figure 3. The situation described in Propositions 20 and 21. There exists a family of real-
analytic functions µ`(λ) which give the eigenvalues of Tλ, respecting multiplicities. Transmission
eigenvalues correspond to zeros of the functions µ`(λ).

The connection to the fourth-order equation, and a fortiori to the interior trans-
mission problem is established easily with the min-max principle:

Proposition 21. For each λ ∈ R, the dimension of the space of solutions u ∈
H2

0 (Ω) to

(H0 + λν V − λ)
1

V
(H0 − λ)u = 0

in Ω is equal to the number the pairs 〈`, λ〉 ∈ Z+ ×R for which µ`(λ) = 0.

In particular, λ ∈ R is a transmission eigenvalue if and only if 0 is an eigenvalue
of the fourth-order operator Tλ. Again the proof is the same as in [41].

Our next goal is to prove the existence of Helmholtz transmission eigenvalues for
constant potentials in discs of Hn. This is a key step in establishing the existence of
transmission eigenvalues for more general potentials via fourth-order operators and
their quadratic forms in both of the cases ν = 0 and ν = 1.

Proposition 22. Let R ∈ R+, and let V0 ∈ ]−∞, 1[ be a constant potential in
an open ball B ⊂ Hn of radius R. Then there exists an infinite sequence of positive
real numbers λ, tending to +∞, such that the system

(H0 + λV0 − λ) v = 0 in B,
(H0 − λ)w = 0 in B,
v − w ∈ H2

0 (B)

has a solution v, w ∈ L2(B) with v 6≡ 0 and w 6≡ 0. Furthermore, these λ are
Helmholtz non-scattering energies for the potential V0 χB in Hn, and each of them is
a Schrödinger non-scattering energy for the corresponding scaled potential λV0 χB.

Proof. We shall follow the approach of the proof of Theorem 2 in [15] and look
for radial solutions to the system. Instead of the hyperbolic polar coordinates 〈r, ϑ〉
originating from the center of B, we shall use the coordinates 〈ρ, ϑ〉 with ρ related to
r by cosh r = 2ρ + 1 and where ϑ ∈ Sn−1 represents the angular variables. We can
also translate B so that its center is the point 〈0, . . . , 0, 1〉 in the 〈x′, xn〉 coordinates
of the upper half-space model of Hn.

We need a formula for H0 applied to a radially symmetric function. If x, y ∈ Hn

then the hyperbolic distance between x and y has the pleasant expression arcosh(1 +
|x− y|2 /(2xnyn)). Hence the radial distance of x to the center of B is given by

r = arcosh

(
1 +
|x′|2 + |xn − 1|2

2xn

)
,
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and hence

ρ =
|x′|2 + x2

n − 2xn + 1

4xn
.

Also, we see that for j ∈ {1, 2, . . . , n− 1},

∂ρ

∂xj
=

xj
2xn

,
∂ρ

∂xn
=
x2
n − |x′|

2 − 1

4x2
n

,

∂2ρ

∂x2
j

=
1

2xn
,

∂2ρ

∂x2
n

=
|x′|2 + 1

2x3
n

.

Let us consider a sufficiently smooth function f defined in a non-empty open subset
of Hn, and let us assume that f is radially symmetric, which means that it is constant
on the sphere of the form {ρ = c} for any fixed c ∈ R+. Hence

∂f

∂xj
=
∂f

∂ρ
· ∂ρ
∂xj

and
∂2f

∂x2
j

=
∂2f

∂ρ2
·
(
∂ρ

∂xj

)2

+
∂f

∂ρ
· ∂

2ρ

∂x2
j

.

The change of coordinates of the previous paragraph applied to (1) gives a formula
which simplifies to

H0 = −ρ (ρ+ 1)
∂2

∂ρ2
−
(
nρ+

n

2

) ∂

∂ρ
− (n− 1)2

4
.

In the above coordinates B has radius P = (coshR−1)/2. A radial solution v = v(ρ),
w = w(ρ) to our system must now solve the ordinary differential equations

−ρ (ρ+ 1)
∂2v

∂ρ2
−
(
nρ+

n

2

) ∂v
∂ρ
− (n− 1)2v

4
+ λV0v − λv = 0,

and

−ρ (ρ+ 1)
∂2w

∂ρ2
−
(
nρ+

n

2

) ∂w
∂ρ
− (n− 1)2w

4
− λw = 0.

In terms of the variable z = −ρ, this simplifies into the hypergeometric equation

z(1− z)
∂2f

∂z2
+ (c− (a+ b+ 1)z)

∂f

∂z
− abf = 0,

with certain constants a, b and c (see Section 15.10 in [31]). The solutions to
this equation can be given by means of the hypergeometric functions F (a, b, c; z) =

2F1(a, b, c; z). In particular, we have the solutions

v(ρ) = A · F
(
n− 1

2
− i
√
λ− λV0,

n− 1

2
+ i
√
λ− λV0,

n

2
;−ρ

)
,

and

w(ρ) = B · F
(
n− 1

2
− i
√
λ,
n− 1

2
+ i
√
λ,
n

2
;−ρ

)
.

for some real constant coefficients A and B. These functions are real-valued. Fur-
thermore, since v and w are bounded in the neighbourhood of the center γ of the
ball B, and since the original equations have smooth coefficients, v and w solve their
respective equations also in the neighbourhood of γ (see e.g. [35]).

We would like to pick nonzero constants A and B so that the required boundary
conditions

v(P) = w(P) and v′(P) = w′(P)
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hold. The derivatives v′(P) and w′(P) are given by

v′(P) = −A · ((n− 1)/2)2 + λ− λV0

n/2

· F
(
n+ 1

2
− i
√
λ− λV0,

n+ 1

2
+ i
√
λ− λV0,

n+ 2

2
;−P

)
,

and

w′(P) = −B · ((n− 1)/2)2 + λ

n/2
· F
(
n+ 1

2
− i
√
λ,
n+ 1

2
+ i
√
λ,
n+ 2

2
;−P

)
,

(see e.g. Section 15.5 in [31]). Thus, A and B need to solve the homogeneous pair of
linear equations{

A · F (. . .)−B · F (. . .) = 0,

A
(
((n− 1)/2)2 + λ− λV0

)
F (. . .)−B

(
((n− 1)/2)2 + λ

)
F (. . .) = 0.

We will not choose any values of λ, A or B explicitly. Rather, we shall show that as
λ −→ ∞, the determinant of the above system will have infinitely many zeros. The
implicit constants in the O-terms below may depend on n, R and V0, but not on λ.

Using the asymptotics from sections 15.12(iii) and 10.17(i) of [31], we obtain
rather pleasant asymptotics in terms of λ −→∞, for we have

F

(
n− 1

2
− i
√
λ,
n− 1

2
+ i
√
λ,
n

2
;−P

)
= Cn,R λ

1/4−n/4 cos

(
R
√
λ− (n− 1) π

4

)
+O(λ−1/4−n/4),

as λ −→ ∞, where Cn,R is a nonzero real coefficient only depending on n and R.
More precisely, we have used here the asymptotics (15.12.5) from [31], rewritten the
I-Bessel function in terms of the J-Bessel function using (10.27.6) of [31], and then
applied the asymptotics of the J-Bessel function given by (10.17.3) of [31]. Similarly,
we may derive asymptotics for the expressions involving the derivatives:(

(n− 1)2

4
+ λ

)
F

(
n+ 1

2
− i
√
λ,
n+ 1

2
+ i
√
λ,
n+ 2

2
;−P

)
= C̃n,R λ

3/4−n/4 cos

(
R
√
λ− (n+ 1) π

4

)
+O(λ1/4−n/4),

as λ −→ ∞, where C̃n,R is again a nonzero real coefficient only depending on n and
R.

Combining the above facts, we see, after some simplifications, that the asymp-
totics for the determinant of the pair of equations is

det(λ) = Dn,R,V0 λ
1−n/2M(λ) +O(λ1/2−n/2),

as λ −→∞, where

M(λ) =
(

1−
√

1− V0

)
cos
(
R(
√
λ+

√
λ− λV0)− nπ

2

)
+
(

1 +
√

1− V0

)
sin
(
R(
√
λ−

√
λ− λV0)

)
,

where Dn,R,V0 is a nonzero real constant only depending on n, R and V0. Now the
existence claim follows from the fact that the second term clearly dominates the first,
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when its absolute value reaches local maxima, thereby giving rise to infinitely many
sign changes as λ −→∞.

It only remains to check that these values λ obtained are in fact non-scattering
energies. This is done by observing that w clearly defines a real-analytic function in
all of Hn, and v can be extended as w to a twice weakly differentiable function in all
of Hn. It is clear that as v − w is compactly supported, it is in B̊∗(Hn). Thus, we
only need to show that v, w ∈ B∗(Hn). However, since we are only concerned with
the asymptotic behaviour far away, it is enough to check that w ∈ B∗(Hn).

Without loss of generality, we may assume that the center of the ball B is the
point O = 〈0, . . . , 0, 1〉 in the usual 〈x′, xn〉 coordinates of the upper half-space model
of Hn. Then the properties of hypergeometric functions, namely Paragraph §15.2(i)
and Equation (15.8.2) of Paragraph §15.8(i) in [31], give the estimate

|w(ρ)|2 6 C ρ1−n,

as ρ −→ ∞, which is 6 C e(1−n)r, where r is the hyperbolic distance from the point
O. Since

cosh r =
|x′|2 + x2

n + 1

2xn
,

as ρ −→∞ (see e.g. Section 1.1 in [21]), we may estimate

|w(x)|2 6 C
(
|x′|2 + x2

n + 1
)1−n

xn−1
n .

Now, let R ∈ ]e,∞[. The expression in the B∗-norm of w is now

1

logR

ˆ R

1/R

ˆ
Rn−1

|w|2 dx′
dxn
xnn
6

C

logR

ˆ R

1/R

ˆ
Rn−1

(
|x′|2 + x2

n + 1
)1−n

dx′
dxn
xn

.

We split the x′-integral into two parts according to whether |x′| >
√
x2
n + 1 or not,

and we may continue

6
C

logR

ˆ R

1/R

(ˆ
|x′|>
√
x2n+1

|x′|2−2n
dx′ +

ˆ
|x′|6
√
x2n+1

(
x2
n + 1

)1−n
dx′

)
dxn
xn

6
C

logR

ˆ R

1/R

(
x2
n + 1

)(1−n)/2 dxn
xn
6

C

logR

ˆ 1

1/R

dxn
xn

+
C

logR

ˆ R

1

x−nn dxn 6 C,

where C only depends on w and n, but not on R, and so we have proved that
‖w‖B∗(Hn) <∞, as required. �

Proof of Theorem 7. It is easy to check that for real potentials V , the trans-
mission eigenvalues are indeed real, as the transmission eigenvalue system implies
=λ ‖v‖2

L2(Ω;dµ) = =λ ‖w‖2
L2(Ω;dµ) = 0. Recall that ν = 0 in the Schrödinger case and

hence we will consider the quadratic form

Qλ(u) =

∥∥∥∥ 1√
V

(H0 − λ)u

∥∥∥∥2

L2(Ω;dµ)

+ 〈u|(H0 − λ)u〉L2(Ω;dµ) ,

for u ∈ H2
0 (Ω) and λ ∈ R. It is also easy to observe that Qλ(u) > −λ ‖u‖2

L2(Ω;dµ) for
all u ∈ H2

0 (Ω) and λ ∈ R. Thus, for λ ∈ R−, the eigenvalues of Tλ from Proposi-
tion 20 are all positive, and the eigenvalues of T0 are nonnegative. Furthermore, if
0 was an eigenvalue of T0, then we would have Q0(u) = 0 for a corresponding eigen-
vector u ∈ DomT0 ⊆ H2

0 (Ω). But then H0u = 0 in Ω since both terms of Q0(u) have
to vanish by their non-negativity. Hence by the H2

0 (Ω)-condition the zero extension
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ũ of u into all of Hn is a solution to H0ũ = 0 in Hn, and by real-analyticity ũ ≡ 0
in all of Hn, which gives a contradiction. Thus, all eigenvalues of T0 are positive as
well.

λ

σ(Tλ)

λ0

Figure 4. The situation in the proof of Theorem 8. The spectrum of Tλ is contained in [−λ,∞[,
and in particular all the values µ`(λ) are strictly positive for λ ∈ ]−∞, 0]. The key idea in the proof
of existence is to find a number λ0 ∈ R+ such that there is a subspace X of dimension N such that
Qλ is negative-semidefinite in X. This implies that at least N of the values µ`(λ0) are non-positive
and so the corresponding functions must intersect the λ-axis at least N times, and so we obtain at
least N transmission eigenvalues.

The discreteness follows directly from Propositions 20 and 21: for any T ∈ R+

only finitely many of the eigenvalues µ`(λ), ` ∈ Z+, can vanish for some λ ∈ [−T, T ].
This is because they are positive at λ = 0, tend to +∞ as ` −→ ∞ and because
|µ`(λ)−µ`(0)| �T e

c|λ|−1. Furthermore, because of real-analyticity, for each `, there
are at most finitely many zeros in [−T, T ].

To prove the existence statement let us emphasize that in any ball and despite
being written for the Helmholtz operator, Proposition 22 guarantees the existence of
pairs 〈λ0, V0〉 ∈ R+×R+ such that λ0 is a transmission eigenvalue for the Schrödinger
operator H0+V0−λ in that ball. Suppose that Ω contains congruent pairwise disjoint
balls B1, B2, . . . , BN (with N ∈ Z+). Let λ0 ∈ R+ be a transmission eigenvalue for
the constant potential V0 in each of the balls. Let us define an auxiliary quadratic
form

Q̃λ(u) =

∥∥∥∥ 1√
V0

(H0 − λ)u

∥∥∥∥2

L2(Ω;dµ)

+ 〈u|(H0 − λ)u〉L2(Ω;dµ)

for λ ∈ R and u ∈ H2
0 (Ω).

Since λ0 is a transmission eigenvalue for the constant potential V0 in the balls, we
have functions u1, . . . , uN ∈ H2

0 (Ω), supported in the balls B1, . . . , BN , respectively,
such that Q̃λ0(u) = 0 for u ∈ X = span {u1, . . . , uN}. Now, if V > V0 in each of the
balls, it is easy to check that

Qλ0(u) 6 Q̃λ0(u) = 0

for u in the N -dimensional space X. This means that at least N of the eigenvalues
µ`(λ), ` ∈ Z+, must vanish for some λ ∈ ]0, λ0], thereby establishing the existence of
at least N transmission eigenvalues, counting multiplicities. �
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Proof of Theorem 8. In the Helmholtz case the quadratic form becomes

Qλ(u) =

∥∥∥∥∥ 1√
|V |

(H0 − λ)u

∥∥∥∥∥
2

L2(Ω,dµ)

+ λ
V

|V |
〈u|(H0 − λ)u〉L2(Ω;dµ)

for u ∈ H2
0 (Ω) and λ ∈ R, where V/ |V | is the constant +1 or −1 depending on the

fixed sign of V . Discreteness is obtained in essentially the same way as in the proof of
Theorem 7: we observe that Q0(u) > 0 for all u ∈ H2

0 (Ω), and if 0 was an eigenvalue
of T0, then an eigenfunction u ∈ DomT0 ⊆ H2

0 (Ω) would solve H0u = 0 in Ω, leading
to a contradiction as before. Thus all the eigenvalues of T0 are strictly positive. Now
the result follows from Propositions 20 and 21, since for any T ∈ R+ at most finitely
many eigenvalues µ`(λ), ` ∈ Z+, can vanish for some λ ∈ [−T, T ], and each µ` has
at most finitely many zeros.

The existence claim is also established in the same manner as in the proof of
Theorem 7. We pick an arbitrarily large N ∈ Z+ and a radius r ∈ R+ so small
that the domain Ω contains N pairwise disjoint balls B1, . . . , BN of radius r. Let
V0 ∈ ]−∞, 1[ \ {0} be such that |V0| 6 |V | and V0/ |V0| = V/ |V | in B1 ∪ . . . ∪ BN .
We define the auxiliary quadratic form

Q̃λ(u) =

∥∥∥∥∥ 1√
|V0|

(H0 − λ)u

∥∥∥∥∥
2

L2(Ω;dµ)

+ λ
V0

|V0|
〈u|(H0 − λ)u〉L2(Ω;dµ)

for u ∈ H2
0 (Ω) and λ ∈ R.

Now, by Proposition 22 there exists λ0 ∈ R+ that is a transmission eigenvalue
for the constant potential V0 in each of the balls. Again we get an N -dimensional
subspaceX ⊂ H2

0 (Ω) such that Q̃λ0(u) = 0 for u ∈ X, and clearly Qλ0(u) 6 Q̃λ0(u) =
0 for u ∈ X, therefore establishing the existence of N transmission eigenvalues in
]0, λ0], counting multiplicities.

Finally, for negatively valued V , the simple observation that Qλ(u) > 0 for u ∈
H2

0 (Ω) \ {0} and λ ∈ R− shows immediately that there are no negative transmission
eigenvalues. �
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