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Abstract. In this note we show that, for any ξ ∈ R, there is an infinite set of positive integers

S such that, for each d ∈ S, the open disc with center at ξ and radius 1 + (log log d)2/(2 log d)

contains a full set of conjugates of an algebraic integer of degree d. A slightly better bound on the

radius is established when ξ ∈ Q \ Z.

1. Introduction

For E ⊆ C, the quantity

τ(E) := lim
n→∞

sup
z1,...,zn∈E

(

∏

1≤i<j≤n

|zi − zj |
)2/n(n−1)

is called the transfinite diameter (or logarithmic capacity) of E. It is known that a
(closed or open) disc with radius R has transfinite diameter R, whereas an interval
of lenght I has transfinite diameter I/4. In [7], Fekete has shown that every compact
set E satisfying τ(E) < 1 contains only finitely many full sets of conjugate algebraic
integers over Q. In particular, this result can be applied to every closed disc whose
radius is smaller than 1 and to every real interval whose length is smaller than 4.

In the opposite direction, Fekete and Szegö [8] proved that if E is a compact
set which is stable under complex conjugation and satisfies τ(E) ≥ 1, then its every
complex neighborhood F (so that E ⊂ F and F is an open set) contains infinitely
many sets of conjugate algebraic integers. Furthermore, by the results of Robinson
[15] and Ennola [4], every real interval of length strictly greater than 4 also contains
infinitely many sets of conjugate algebraic integers.

In [18], Zaïmi gave a lower bound for the length of a real interval containing an
algebraic integer of degree d and its conjugates. His result asserts that the length I
of such an interval should be at least 4 − φ(d), where φ(d) is some explicit positive
function which tends to zero as d → ∞. (For instance, one can take φ(d) = (c log d)/d
with some c > 0. Similar bound also follows from an earlier result of Schur [17].)
On the other hand, the author has shown that, for infinitely many d ∈ N, every real
interval of length 4+4(log log d)2/ log d contains an algebraic integer of degree d and
its conjugates (see [2] and [3]). It is not known whether there is an interval [t, t+ 4]
with some t ∈ R\Z containing infinitely many full sets of algebraic integers. For t ∈
Z, one can simply take infinitely many algebraic integers of the form t+2 cos(πr)+2,
where r ∈ Q. By Kronecker’s theorem [13], these are the only such numbers in [t, t+4]
if t ∈ Z.
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In this note, we shall consider discs with real centers and radii close 1. Suppose
first that an algebraic integer α of degree d lies with its conjugates in the disc |z−ξ| ≤
Rd, where ξ ∈ R and Rd > 0. Then, we can write the discriminant

D =
∏

1≤i<j≤d

(αi − αj)
2 =

∏

1≤i<j≤d

(

(αi − ξ)− (αj − ξ)
)2

of α with conjugates α1 = α, α2, . . . , αd as the square of Vandermonde determinant
with rows (α1 − ξ)j−1, . . . , (αd − ξ)j−1, where j = 1, . . . , d. Using the upper bound
∑d

i=1 |αi − ξ|2(j−1) ≤ dR2j−2
d , by Hadamard’s inequality, we obtain

|D| ≤
d
∏

j=1

dR2j−2
d = ddR

d(d−1)
d .

This yields Rd ≥ |Dd|1/d(d−1)d−1/(d−1), where |Dd| stands for the smallest discriminant
of an algebraic number field of degree d. From |Dd| > 1 it follows that

Rd > d−1/(d−1)

for d ≥ 2. Moreover, |Dd| > 22d for d large enough (see [14]). Hence,

(1) Rd > 1− log d

d

for d large enough. In the opposite direction we prove the following:

Theorem 1. For any real number ξ, there is an infinite set of positive in-

tegers S such that, for each d ∈ S, the open disc with center at ξ and radius

1 + (log log d)2/(2 log d) contains a full set of conjugates of an algebraic integer of

degree d.

Recall that the diameter of an algebraic integer α of degree d with conjugates αi,
i = 1, . . . , d, is defined by max1≤i<j≤d |αi − αj|. In this context, Theorem 1 implies
that the diameter of the algebraic integer of degree d whose existence is claimed in
the theorem is less than 2 + (log log d)2/ log d.

It is clear that the diameter of a root of unity shifted by an integer, namely,
e2πi/n + t, where t ∈ Z and n ∈ N, of degree d = ϕ(n) is less than or equal to 1.
In [10], Grandcolas computed the smallest possible diameters of algebraic integers of
degree d up to 10. These computations show that, for each d from 2 to 10 except
for d = 9, there is an algebraic integer, other than e2πi/n + t, whose diameter is less
than 2. Apparently, the are no such numbers of degree d ≥ 11, but this is very
far from being proved. If proved, this would imply that if an algebraic integer α of
degree d is not a shifted root of unity and lies with its conjugates in a closed disc
with radius Rd, then instead of (1) the stronger inequality Rd > 1 holds for d ≥ 11.
Some related results can be found in [11], [12]. See also [1], [9] for the calculations
of small diameters of totally real algebraic integers and [5], [6] for the constructions
of conjugate algebraic numbers lying on a circle |z − ξ| = R.

The main ingredient in the proof of Theorem 1 is its version for rational ξ with
a slightly better estimate in d.

Theorem 2. Let p 6= 0 and q ≥ 2 be two coprime integers. Then, there is an

infinite set of positive integers S such that, for each d ∈ S, the open disc with center

at p/q and radius

1 +
log(3q) log log d

log d
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contains a full set of conjugates of an algebraic integer of degree d.

Note that in case p = 0 or q = 1, we have t = p/q ∈ Z. Then, as we already
remarked above, for any n ∈ N, there is is an algebraic integer α = e2πi/n + t of
degree d = ϕ(n) lying with its conjugates on the circle with center at t and radius 1.

In the next section we prove Theorem 2. Then, in Section 3 we will prove
Theorem 1.

2. Proof of Theorem 2

Fix two positive integers K < d and write
(

x− p

q

)d

= xd +

K
∑

k=1

(−1)k
(

d

k

)(

p

q

)k

xd−k +

d−K−1
∑

k=0

(−1)d−k

(

d

k

)(

p

q

)d−k

xk.

Let DK be the least common multiple of 1, 2, . . . , K. For each k ∈ {1, . . . , K}, the
coefficient

(2) ad−k := (−1)k
(

d

k

)(

p

q

)k

= (−1)k
d

kqK

(

d− 1

k − 1

)

pkqK−k

is an even integer if

(3) 2DKq
K divides d.

The proof of the theorem consists in the construction of the polynomial of the
form

f(x) =

(

x− p

q

)d

+
d−K−1
∑

k=0

bk

(

x− p

q

)k

= xd + ad−1x
d−1 + · · ·+ ad−Kx

d−K +

d−K−1
∑

k=0

akx
k

with some specially chosen b0, . . . , bd−K−1 ∈ Q. Observe that ad−k are as in (2) for
k = 1, . . . , K. Also, for each k in the range 0 ≤ k ≤ d−K − 1, one has

ak = bk + (−1)d−k

(

d

k

)(

p

q

)d−k

+
d−K−1
∑

j=k+1

(−1)j−kbj

(

j

k

)(

p

q

)j−k

.

Thus, step by step, we can first choose bd−K−1 ∈ Q, then bd−K−2 ∈ Q, etc. up to
b0 ∈ Q so that the coefficients ad−K−1, . . . , a0 are all integers. Furthermore, iteratively
we can select bd−K−1, . . . , b1 ∈ (−1, 1]∩Q so that the integers ad−K−1, . . . , a1 all even,
and after that select b0 ∈ (−2, 2]∩Q so that that the integer a0 is 2 modulo 4. With
this choice, by Eisenstein’s criterion with respect to the prime 2, the above monic
polynomial f(x) ∈ Z[x] of degree d will be irreducible over Q provided (3) holds.

Let us consider d of the form d = 2DKq
K , so that (3) surely holds. Fix a small

positive number δ. Then, by the Prime Number Theorem, for each K ≥ K(δ), we
have logDK < (1 + δ)K (see, e.g., [16]), and hence

log d = log(2DK) +K log q < log 2 + (1 + δ + log q)K < K log(2.8q).

Accordingly,

(4) K >
log d

log(2.8q)
.
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By Rouché’s theorem, the polynomials f(x) and (x−p/q)d have the same number
of roots in the open disc

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

< R := 1 +
log(3q) log log d

log d

(i.e., they both have d roots) if, for their difference

ϕ(x) = f(x)−
(

x− p

q

)d

=

d−K−1
∑

k=0

bk

(

x− p

q

)k

,

the inequality |ϕ(x)| < |(x − p/q)d| = Rd is true for every x ∈ C on the circle
|x − p/q| = R. Then, f(x) ∈ Z[x] is an irreducible monic polynomial of degree d
with all d roots in |x − p/q| < R, and so it defines an algebraic integer of degree
d = 2DKq

K with required properties.
Since |b0| ≤ 2 and |b1|, . . . , |bd−K−1| ≤ 1, it remains to verify that

(5) 2 +

d−K−1
∑

k=1

Rk < Rd.

Notice that (5) is equivalent to Rd−K−1 < (R−1)(Rd−1). Multiplying by RK−d

we obtain 1 − RK−d < RK(R − 1)(1 − R−d). This is clearly true if RK(R − 1) ≥ 1.
By (4), for K large enough (and so d large enough), we deduce that

RK >

(

1 +
log(3q) log log d

log d

)log d/ log(2.8q)

> elog log d = log d.

Hence, RK(R− 1) > log(3q) log log d > 1, as claimed. This implies (5).

3. Proof of Theorem 1

There is nothing to prove if ξ ∈ Z. We can simply take the disc with radius 1. If
ξ = p/q with coprime integers p 6= 0 and q ≥ 2, then the result follows by Theorem 2.

From now on, we assume that ξ is irrational. Then, by Dirichlet’s theorem, there
is an infinite sequence of positive integers q1 < q2 < q3 < . . . such that, for every
n ∈ N,

(6)

∣

∣

∣

∣

ξ − pn
qn

∣

∣

∣

∣

<
1

q2n

with some pn ∈ Z. For each n ∈ N, we select

(7) Kn := q2n and dn := 2DKn
qKn

n = 2Dq2
n

qq
2
n

n .

Then, dn > qKn

n = eq
2
n
log qn, and hence

(8) q2n log qn < log dn.

Also, as in (4), from (7) it follows that

(9) Kn >
log dn

log(2.8qn)

for each sufficiently large n.
Set

(10) Rn := 1 +
log(3qn) log log dn

log dn
.
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Evidently, in view of (6) the disc with center at ξ and radius Rn + 1/q2n covers the
disc with center at pn/qn and radius Rn. By Theorem 2, the latter disc contains a
full set of conjugates of an algebraic integer of degree dn. Thus, by (10), it suffices
to show that

(11)
log(3qn) log log dn

log dn
+

1

q2n
<

(log log dn)
2

2 log dn
.

Now, we will verify (11) using (8) and (9). Evidently, q2 > 1 so for n ≥ 2 we can
write (8) in the form 2 log qn + log log qn < log log dn. Consequently,

2 log(3qn) = log 9 + 2 log qn < log 9 + log log dn − log log qn < log log dn − 2

for all sufficiently large n. This gives an upper bound for the first term in (11):

log(3qn) log log dn
log dn

<
(log log dn)

2 − 2 log log dn
2 log dn

=
(log log dn)

2

2 log dn
− log log dn

log dn
.

Next, by (9), we find that log dn < Kn log qn = q2n log(2.8qn). This yields qn >
√

log dn/ log log dn for n large enough. Therefore,

1

q2n
<

log log dn
log dn

.

By adding both displayed estimates we obtain (11). This, by (7), completes the proof
of the theorem with the set

S := {2Dq2
n

qq
2
n

n , n = n0, n0 + 1, . . . },
where n0 is large enough.

We remark that by using Hurwitz theorem instead of that of Dirichlet (with 1/q2

replaced by 1/
√
5q2 in (6)) one gets no advantage, since it implies the same result.
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