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Abstract. Let Bσ2,∞, Bσ2,2 denote the Besov spaces defined on a compact set K ⊂ Rd that
is equipped with an α-regular measure µ (K is called an α-set). The critical exponent σ∗ is the
supremum of the σ such that Bσ2,2 ∩ C(K) is dense in C(K). It is known that Bσ2,2 is the domain
of a non-local regular Dirichlet form, and for certain standard self-similar set, Bσ

∗

2,∞ is the domain
of a local regular Dirichlet form. In this paper, we study, on the homogenous p.c.f. self-similar sets
(which are α-sets), the convergence of the Bσ2,2-norm to the Bσ

∗

2,∞-norm as σ ↗ σ∗ and the associated
Dirichlet forms. The theorem extends a celebrate result of Bourgain, Brezis and Mironescu [4] on
Euclidean domains, and the more recent results on some self-similar sets [10, 22, 29].

1. Introduction

Let K be a closed subset in Rd with the Euclidean metric, and let µ be an
α−regular measure on K, that is, there exists α > 0 such that for any ball B(x, r)
with 0 < r < diam(K),

(1.1) µ(B(x, r)) � rα.

(Here f � g means there exists constant C > 0 such that C−1g ≤ f ≤ Cg.) We call
it an α-set (d-set in [15]). Fix σ > 0, for u ∈ L2(K,µ), let

(1.2) [u]2Bσ2,∞ := sup
0<r<1

r−(2σ+α)

ˆ
K

ˆ
B(x,r)

|u(x)− u(y)|2 dµ(y) dµ(x),

and define Bσ
2,∞ := {u ∈ L2(K,µ) : ‖u‖Bσ2,∞ < ∞} with norm ‖u‖Bσ2,∞ := ‖u‖2 +

[u]Bσ2,∞ . Similarly we define the space Bσ
2,2 by

(1.3) [u]2Bσ2,2 :=

ˆ 1

0

dr

r

(
r−(2σ+α)

ˆ
K

ˆ
B(x,r)

|u(x)− u(y)|2 dµ(y) dµ(x)

)
.

These spaces are Banach spaces, and belong to the family of Besov spaces Bσ
p,q,

which have been studied in great detail in literature (e.g., [9, 14, 15, 28]; note that
in [14], the space Bσ

p,q is denoted by Lip(σ, p, q)). For an α-set K, the family of
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spaces {Bσ
2,∞}σ>0 is a decreasing sequence of Banach spaces, and can only consist of

constant functions when σ is large. We call

σ∗ = sup
{
σ > 0: Bσ

2,∞ ∩ C(K) is dense in C(K)
}

the critical exponent of K. It is known that for 0 < σ < σ∗, Bσ
2,2 is the domain of

a stable-like non-local regular Dirichlet form; and in some known cases, Bσ∗
2,∞ is the

domain of a local regular Dirichlet form (if it exists), which induces a Laplacian on
K.

For a domain D in Rd with smooth boundary, B1
2,∞ is the Sobolev spaceW 1,2(D)

with [u]2
B1

2,∞
�
´
D
|∇u(x)|2 dx, and the corresponding Dirichlet form is associated

with the classical Laplacian ∆; for 0 < σ < 1, Bσ
2,2 is the fractional Sobolev space

W σ,2(D), and [u]2Bσ2,2 �
˜
D×D |u(x) − u(y)|2|x − y|−(d+2σ) dx dy, which is associated

with the fractional Laplacian (−∆)σ. The critical exponent is σ∗ = 1. The following
is a fundamental theorem on the relationship of the two norms.

Theorem 1.1. (Bourgain, Brezis and Mironescu [4]) Let D be a bounded do-
main in Rd with smooth boundary, then for u ∈ L2(D),

(1.4) lim
σ↗1

(1− σ)

¨
D×D

|u(x)− u(y)|2

|x− y|d+2σ
dx dy = Cd

ˆ
D

|∇u(x)|2 dx

For self-similar sets, it is well-known that the Sierpinski gasket has σ∗ = log 5
2 log 2

[14]. The exponent is also known for certain simple nested fractals, and an estimation
for the Sierpinski carpet [2]. In [11], the authors gave a preliminary study of the
critical exponent of some non-standard post critically finite (p.c.f.) self-similar sets. In
general there is not much information about the critical exponent, nor the associated
Dirichlet form at σ∗.

In [22], Pietruska-Pałuba extended Theorem 1.1 on some nested fractals K thro-
ugh a probabilistic approach, under the assumption that the diffusion process has a
sub-Gaussian heat kernel, then approximate by a sequence of subordinate stable-like
processes. In an attempt to find a unified analytic approach to study the Laplacian
on p.c.f. self-similar sets and non-p.c.f. sets, recently Grigor’yan and Yang [10, 29]
proved a discrete analog of (1.4) on the Sierpinski gasket and the Sierpinski carpet,
using the Γ-convergence on the Bσ

2,2-norm to Bσ∗
2,∞-norm. It is the main purpose of

this paper to continue this investigation to extend to certain p.c.f. self-similar sets.
The consideration of non-p.c.f. self-similar sets will be in an upcoming paper [12].

Throughout the paper, unless otherwise specified, we always assume that K is a
homogeneous connected p.c.f. self-similar set [16] (see (2.1), (2.2)), and for brevity,
we just say K is a p.c.f. self-similar set. Note the K is equipped with a normalized
α-Hausdorff measure µ, and is hence an α-set.

Let V0 be the boundary of K, Fω = Fi1 ◦ · · · ◦ Fij where ω = i1 · · · ij, and let

Ej[u] =
∑

x,y∈Fω(V0); |ω|=j

|u(x)− u(y)|2

be the energy of u on the j-level approximation. First, we need a discretization of
the Besov semi-norm [u]Bσ2,∞ .

Theorem 1.2. Let K be a p.c.f. self-similar set. Then for 2σ > α,

(1.5) [u]2Bσ2,∞ � sup
j≥0

{
ρ−(2σ−α)jEj[u]

}
.
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Moreover, for any η > α/2, there is a uniform constant C > 0 for all σ > η so that
the above “�” holds.

The first part of the theorem was first proved by Jonsson in [14] for the Sierpinski
gasket. In [3], Bodin extended this discretization theorem to Bσ

p,q, 0 ≤ p, q < ∞ for
the α-sets that admit a regular triangular system; for p or q equals∞, he claimed that
the proof is similar, and the results apply to the p.c.f. sets directly. However, it seems
that there are some technical steps that need to be justified (see Remarks 1, 2 in
Section 3). We prove two basic results on the geometry of self-similar sets to overcome
the gaps (Section 2 and Appendix section). We will also give a detailed proof of the
theorem similar to [14, 3] for completeness, and for observing the estimated constants
for the σ to be uniform as in the second part of the theorem, which will be used in
the proof of Theorem 1.4.

The discretization of the space Bσ
2,2 can be obtained similarly.

Proposition 1.3. With the same K as in Theorem 1.2, and for 2σ > α,

[u]2Bσ2,2 �
∞∑
j=0

ρ−(2σ−α)jEj[u].

We remark that in [25], Strichartz constructed several types of functional spaces
(including the Besov type) on p.c.f. self-similar sets admitting a regular harmonic
structure, in particular, on the Sierpinski gasket. His construction of the Besov
spaces uses the discrete approximation of the resistance network of the self-similar
energy identity [16]. It is quite different from the approach here on discretizing the
continuous Besov spaces, where the regular harmonic structure is not assumed.

Our main objective is to prove the following convergence theorem on Dirichlet
forms as in Theorem 1.1 and in [10, 29, 22]. For 2σ − α > 0 and σ < σ∗, the above
sum defines a non-local regular Dirichlet form on K by polarization, denoted by Eσ2,2,
which has Bσ

2,2 as domain. We also define a property (E) (Definition 5.1), which is
motivated by a “weak monotone" condition in [10, 29].

Theorem 1.4. Suppose K has property (E). Then K admits a self-similar local
regular Dirichlet form (Eσ∗ ,F) on K with domain F = Bσ∗

2,∞, and there exists C > 0
such that for u ∈ F ,

C−1Eσ∗ [u] ≤ lim
σ↑σ∗

(σ∗ − σ)Eσ2,2[u] ≤ lim
σ↑σ∗

(σ∗ − σ)Eσ2,2[u] ≤ CEσ∗ [u].

The proof of the theorem makes use of the Γ-convergence of closed forms in the
wide sense ([5, 20], see also Definition 2.2). The first attempt to use the Γ-limits
to study a diffusive Dirichlet form can be found in [17]. Their setup is on a general
metric measure space with volume doubling and some other assumptions; the Γ-
convergence is based on a two-sided heat kernel of the Dirichlet form, discretizing
the metric space and the heat kernel to obtain an approximating sequence.

A sufficient condition for property (E) is given by the trace of resistance Rn(p, q),
p, q ∈ V0 of the electrical network from the discrete energy En[u].

Theorem 1.5. Suppose there exits λ > 1 and C > 0 such that for any two
distinct points p, q ∈ V0, and for any n ≥ 1, Rn(p, q) � λn. Then K has property
(E).

The proof of the theorem makes use of a uniform Harnack inequality of harmonic
extensions due to [10] (see Lemma 6.2, Proposition 6.3). In the standard fractals, it
is obvious that the sufficient condition is satisfied as Rn(p, q) = ρ−n where ρ is the
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renormalizing factor [16, 26]. We also provide some examples that strict inequality
in the condition holds.

For the organization of the paper, we state some definitions and basic results
in Section 2, and leave the proof of the new results in the Appendix section, as
the techniques are quite different from the main theme of the paper. We prove the
discretization of Bσ

2,∞ and Bσ
2,2 in Sections 3 and 4. We introduce property (E) and

prove Theorem 1.4 in Section 5, and Theorem 1.5 in Section 6. Section 7 is for some
examples and remarks.

2. Preliminaries

We first recall the definition of a Dirichlet form. Let (M,d) be a locally compact,
separable metric space, and let ν be a Radon measure on M with supp(ν) = M .
Let C0(M) denote the space of continuous functions with compact support. A closed
form in L2(M, ν) is a symmetric bilinear form that is non-negative definite, closed,
densely defined on L2(M, ν). We say a closed form in L2(M, ν) is in the wide sense if
all conditions for a closed form are satisfied except that it may not be densely defined
in L2(M,µ); and we can simply extend the form on L2(M,µ) by setting value +∞
outside its domain.

Definition 2.1. On (M,d, ν), a Dirichlet form E with domain F is a closed form
and satisfies the Markovian property: u ∈ F ⇒ ũ := (u∨0)∧1 ∈ F and E [ũ] ≤ E [u].
(Here E [u] := E(u, u) denote the energy of u.) It is called regular if F ∩ C0(M) is
dense in C0(M) with the supremum norm, and dense in F with the E1/2

1 -norm. It is
called local if E(u, υ) = 0 for u, υ ∈ F having disjoint compact supports.

Note that for σ < σ∗, the quadratic form in (1.3) always defines a non-local
regular Dirichlet form with Bσ

2,2 as domain. On the other hand in the known cases,
if (1.2) defines a local regular Dirichlet form, then the domain is Bσ∗

2,∞; it is a non-
trivial matter to construct or to prove the existence of such form. We will consider
this problem through the Γ-convergence [5].

Definition 2.2. Let En and E be closed forms on L2(M, ν) in the wide sense.
We say that En Γ-converges to E if

(i) for any {un}∞n=1 ⊂ L2(M, ν) converging strongly to u, limn→∞En[un] ≥ E [u];
(ii) for any u ∈ L2(M, ν), there exists a sequence {un} ⊂ L2(M, ν) converges

strongly to u such that limn→∞En[un] ≤ E [u].

Theorem 2.3. ([5, Theorem 8.5], [20, Theorem 2.8.1]) Let {En}n be a sequence
of closed forms in the wide sense on L2(M, ν), then there exists a subsequence {Enk}k
that Γ-converges to a closed form E in the wide sense on L2(M, ν).

Let {Fi}Ni=1 be an IFS of similitudes on Rd with contraction ratios {ρi}Ni=1. Let
K =

⋃N
i=1 Fi(K) be the self-similar set; a self-similar measure µ is a probability

measure defined by µ =
∑N

i=1 piµ ◦F
−1
i where {pi}Ni=1 is a set of probability weights.

Note that the support of µ isK. An IFS is said to satisfy the open set condition (OSC)
if there is a bounded nonempty open set U such that Fi(U) ⊂ U , and Fi(U)∩Fj(U) =
∅ for i 6= j. In this case dimH(K) := α, the Hausdorff dimension of K, is given by∑N

i=1 ρ
α
i = 1; also if we take pi = ραi (the natural weight), then µ is the normalized

Hausdorff measure Hα on K.
We define the symbolic space as usual. Let Σ = {1, · · · , N} be the alphabets,

Σn the set of words ω = i1 · · · in of length n =: |ω|, and Σ∞ the set of infinite words
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ω = i1i2 · · · . We write Fω = Fi1 ◦ · · · ◦ Fin , and Kω = Fω(K). Let π : Σ∞ → K be
defined by {x} = {π(ω)} =

⋂
n≥1Ki1···in , a symbolic representation of x ∈ K by ω.

The following proposition is kindly provided by Professor D.-J. Feng. We will
give his proof in the Appendix section.

Proposition 2.4. (Feng [8]) For any IFS {Fi}Ni=1 of similitudes on Rd, let µ be
a self-similar measure on K. Suppose K is not contained in a hyperplane, then for
any ball B(x, r) ⊂ Rd, µ (∂B(x, r)) = 0.

In this paper we only consider IFS {Fi}Ni=1 of similitudes that are homogenous,
i.e.,

(2.1) Fi(x) = ρ(x− bi) + bi, 1 ≤ i ≤ N.

If the IFS satisfies the OSC, then dimH(K) = α = − logN/ log ρ. Following Kigami
[16], we define the critical set C and the post-critical set P for K by

(2.2) C = π−1
(⋃

1≤i<j≤N

(
Ki

⋂
Kj

))
, P =

⋃
m≥1

τm(C),

where Ki = Fi(K), τ : Σ∞ → Σ∞ is the left shift by one index. If P is a finite set,
we call {Fi}Ni=1 a post-critically finite (p.c.f.) IFS, and K is a p.c.f. self-similar set.
The boundary of K is defined to be V0 = π(P). We also define

Vn =
⋃

i∈{1,...,N}

Fi(Vn−1), V∗ =
⋃
n≥1

Vn.

It is clear that K is the closure of V∗. We call Vω := Fω(V0) a cell of Vn for any
ω ∈ Σn.

For brevity, by a p.c.f. self-similar set K, we will mean the K is generated by
a homogeneous p.c.f.; we also assume that K is connected and #(V0) ≥ 2 to avoid
triviality. It is known that a p.c.f. IFS in (2.1) satisfies the open set condition [6],
hence K admits an α-Hausdorff measure and is an α-set.

Remark. More generally, the OSC holds if the associated similar matrices Ai of
the p.c.f. {Fi}Ni=1 are commensurable (instead of the ρ in (2.1)), i.e., there exists A
such that Ai = Ani . But it is not true without the commensurable assumption [27].

We will need another type of separation property of the IFS. We say that an IFS
(or K) satisfies condition (H) if

(H) there exists c0 > 0 such that for any integer m ≥ 1 and any two words ω and
ω′ with length m and Kω ∩ Kω′ = ∅ (if and) only if dist(Kω, Kω′) ≥ c0ρ

m.
Equivalently, |x − y| < c0ρ

n (if and) only if x and y lie in the same or
neighboring n-cells.

The property on the Sierpinski gasket is obvious and was used in [14]. It was also
studied in [19] in another context, and there are non-p.c.f. examples that condition
(H) fails even with the open set condition. In [23], Pietruska-Pałuba and Stós intro-
duced another separation condition called property (P) which is similar to property
(H). They proved that it holds on certain nested fractals, and was used to study the
Hajłasz–Sobolev spaces on nested fractals via the Poincaré inequality.

Proposition 2.5. Suppose the IFS {Fi}Ni=1 in (2.1) has the p.c.f. property, then
it satisfies condition (H).

We will give a full proof of the proposition in the Appendix section. It will be
used in Section 3 for the discretization of the Besov norm (Lemma 3.3), and in the
proof of Theorem 1.5 in Section 6.
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3. Discretizing Bσ
2,∞

In this section, we will provide a discrete expression of (1.2) on a p.c.f. self-similar
set K. The main idea of proof is similar to Jonsson [14] on the Sierpinski gasket,
together with Propositions 2.4 and 2.5. We first recall a well-known result (c.f. for
example [9]).

Proposition 3.1. Let K be an α-set. For 2σ > α, the identity map ι : Bσ
2,∞ →

C(2σ−α)/2(K) is a continuous embedding with |u(x)−u(y)| ≤ C|x−y|(2σ−α)/2‖u‖Bσ2,∞
for some C > 0. (Here Cβ(K) denotes the class of Hölder continuous functions of
order β on K.)

(Note that in [9], the proposition is stated under the assumption that a heat
kernel exists, but it was not used in the proof.) It follows that for 2σ > α, all the
functions in Bσ

2,∞ are continuous.
It is easy to see that the semi-norm [u]Bσ2,∞ has an equivalent expression

(3.1) [u]2Bσ2,∞ � sup
j≥0

r−(2σ+α)j

ˆ
K

ˆ
B(x, crj)

|u(x)− u(y)|2 dµ(y) dµ(x),

where j is an integer, and c > 0, 0 < r < 1 are any fixed constants. On the p.c.f. set
K, for simplicity we will take r = ρ and c to be the constant c0 in the definition of
condition (H). Let Vn =

⋃
{Vω : |ω| = n} and let µn = 1

|Vn|
∑

p∈Vn δp where δp is the
Dirac measure at point p, then µn weak∗-converges to µ. Let

In,j =

ˆ
K

ˆ
B(x,cρj)

|u(x)− u(y)|2 dµn(y) dµn(x).

Lemma 3.2. On a p.c.f. self-similar set K,

lim
n→∞

In,j =

ˆ
K

ˆ
B(x,cρj)

|u(x)− u(y)|2 dµ(y) dµ(x).

Remark 1. In [3], the continuity of |u(x)−u(y)|2 on K×K was used in applying
the weak∗-convergence of µn to µ. In fact we need to consider the discontinuous
χB(x,cρj)|u(x)− u(y)|2 and apply Proposition 2.4 for such conclusion.

Proof. It is well-known that if a sequence of bounded regular Borel measures
{νn}n converges to ν weakly on a compact Hausdorff space E, then limn→∞

´
E
f dνn =´

E
g dν for any Borel measurable f such that the set of discontinuity of g is a ν-zero

set. By Proposition 3.1, u is continuous; letting f(x, y) = χB(x,cρj)(y) · |u(x)−u(y)|2,
then the set of discontinuity points of f is the set E =

⋃
x∈K

(
{x}× ∂B(x, cρj)

)
. By

Proposition 2.4, µ(∂B(x, r)) = 0 for any r > 0. It follows that (µ× µ)(E) = 0, and
hence by using the weak convergence of µn × µn to µ× µ, the lemma follows. �

Lemma 3.3. Let K be a p.c.f. set. Then for 2σ > α, there exists C > 0 such
that for any u ∈ Bσ

2,∞,

(3.2) In,j ≤ Cρ2αj
∑n

k=j
Ek[u],

where Ek[u] =
∑

x,y∈Vω , |ω|=k

∣∣u(x)− u(y)
∣∣2.

Remark 2. In [3, Theorem 3.23], it was claimed that the Besov space Bσ
p,q

on p.c.f. sets can be obtained by the same proof as the regular triangulation setup.
However, it seems that the T4 condition in the regular triangulation has not been
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justified for the p.c.f. set. This is replaced in the above, by the property (H) and
Proposition 2.5.

Proof. We let Fj be the family of all the cells Kω with word length |ω| = j.
By Proposition 2.5, the IFS satisfies condition (H), for our choice of c, we have
|x − y| ≤ cρj implies x, y lie in the same cell or the neighboring j-cells. It follows
that for n > j,

In,j ≤
∑

S,S′∈Fj
S∩S′ 6=∅

∑
x∈S∩Vn

∑
y∈S′∩Vn

1

|Vn|2
|u(x)− u(y)|2

≤ 2
∑

S,S′∈Fj
S∩S′ 6=∅

∑
x∈S∩Vn

∑
y∈S′∩Vn

1

|Vn|2
(
|u(x)− u(z)|2 + |u(z)− u(y)|2

)
,(3.3)

where z is any common vertex of S and S ′. We observe the following estimates:
(i) |Vn| � Nn; (ii) #(S ∩Vn) � Nn−j; (iii) for each z ∈ Kωj ∩Vj, x ∈ Kωn ∩Vn, there
exists a decreasing sequence of cells {Kωk}

n
k=j such that |ωk| = k with z ∈ Kωj ∩ Vj,

x ∈ Kωn ∩ Vn. Choose a sequence of vertices {z = xj, xj+1, · · · , xn = x} such that
xk ∈ Kωk ∩ Vk for k = j, · · · , n. By Cauchy–Schwarz inequality, we have

|u(z)− u(x)|2 ≤ C1

∑n−1

k=j
Nk−j|u(xk)− u(xk+1)|2;

(iv) for each S ∈ Fj, the cardinality of a fixed pair (p, q) := (xk, xk+1) that appeared
in z ∈ S ∩ Vj, x ∈ S ∩ Vn is ≤ C ′Nn−k for some C ′ > 0 (counting all the possible
successors of k + 1 to xn = x).

Now back to (3.3), by separating the sum there into two parts on x and y and
adding separately, we obtain

In,j ≤ C2N
−(n+j)

∑
S∈Fj

( ∑
z∈S∩Vj

∑
x∈S∩Vn

|u(x)− u(z)|2
)

(by (i))

≤ C3N
−(n+j)

∑
S∈Fj

( n−1∑
k=j

∑
|ω|=k,
Kω⊂S

∑
p,q∈Kω∩Vk+1

Nk−j ·Nn−k|u(p)− u(q)|2
)

(by (ii)–(iv))

= C3ρ
2αj

n−1∑
k=j

∑
S∈Fj

∑
|ω|=k,
Kω⊆S

∑
p,q∈Kω∩Vk+1

|u(p)− u(q)|2 (by N = ρ−α).

Finally, observe that for each pair p, q ∈ Kω ∩ Vk+1 with |ω| = k, any path (with
no loop) connecting p, q such that the two consecutive vertices belong to the same
Kτ ∩ Vk+1, |τ | = k + 1 has uniformly bounded length. Therefore by the triangle
inequality,

In,j ≤ C4ρ
2αj

n−1∑
k=j

Ek+1[u] ≤ C4ρ
2αj

n∑
k=j

Ek[u].

This completes the proof of the lemma. �

Theorem 3.4. Let K be a p.c.f. self-similar set. Then for 2σ > α,

(3.4) [u]2Bσ2,∞ � supj≥0

{
ρ−(2σ−α)jEj[u]

}
.
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Moreover, for any η > α/2, there is a uniform constant C > 0 for all σ > η so that
the above “�” holds.

Proof. It follows from Lemma 3.3 that

ρ−(2σ+α)jIn,j ≤ Cρ−(2σ−α)j

n∑
k=j

ρ(2σ−α)k

(
sup
k≥0

ρ−(2σ−α)kEk[u]

)
≤ C ′ sup

k≥0
ρ−(2σ−α)kEk[u].

(3.5)

By letting n→∞, Lemma 3.2 implies the “≤” side of the theorem holds.
To prove the reverse inequality, we denote Ix,ω[u] := 1

µ(E)

´
Kω
|u(x)−u(y)|2 dµ(y).

For p, q ∈ Kω, using |p− q|2 ≤ 2(|p−x|2 + |x− q|2), x ∈ Kω, it is direct to show that

Ej[u] ≤ 2
∑

p,q∈Vω , |ω|=j

(
Ip,ω[u] + Iq,ω[u]

)
≤ 4|V0|

∑
p∈Vω , |ω|=j

Ip,ω[u].(3.6)

For each p ∈ Vω with |ω| = j, there is a uniquely determined decreasing sequence
of cells {Kωk}nk=j for n sufficiently large, such that p ∈

⋂n
k=jKωk with ωj = ω,

|ωk+1| = |ωk| + 1. Let 0 < δ < 2σ − α, by the Cauchy–Schwarz inequality, we have
for xk ∈ Kωk ,

|u(p)− u(xj)|2

≤ 2|u(p)− u(xn)|2 + 2

(
n−1∑
k=j

ρδ(k−j)

)(
n−1∑
k=j

ρ−δ(k−j)|u(xk)− u(xk+1)|2
)
.

(3.7)

Since these xk ∈ Kωk are arbitrary, the averages still hold:

Ip,ω[u] ≤ Iωn [u] + C

n−1∑
k=j

ρ−δ(k−j)
1

µ(Kωk)

ˆ
Kωk

Ix,ωk+1
[u] dµ(x).(3.8)

We will make two estimations:
(i) For the first term on the right side of (3.7), we have p, y ∈ Kωn , by Proposi-

tion 3.1,

|u(p)− u(y)|2 ≤ C|p− y|2σ−α‖u‖2
Bσ2,∞

≤ Cρ(2σ−α)n‖u‖2
Bσ2,∞

.

Note that the total number of p in Vj is � N j = ρ−αj. This implies that for n >(
2σ

2σ−α + 1
)
j.

ρ−(2σ−α)j
∑

p∈Vω , |ω|=j

Iωn [u] ≤ C ′ρ(2σ−α)(n−j)ρ−αj‖u‖2
Bσ2,∞

< C ′‖u‖2
Bσ2,∞

,
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(ii) Combining (3.6) and the second term on the right side of (3.8), and observe
that |x− y| ≤ ρk in the double integral, and µ(Kωk) � µ(Kωk+1

) � ρkα, we have

ρ−(2σ−α)j
∑

p∈Vω ,|ω|=j

(
n−1∑
k=j

ρ−δ(k−j)
1

µ(Kωk)

ˆ
Kωk

Ix,ωk+1
[u] dµ(x)

)

≤ C1ρ
−(2σ−α)j

∞∑
k=j

ρ−δ(k−j)ρ−2αk

ˆ
K

ˆ
B(x, ρk)

∣∣u(x)− u(y)
∣∣2 dµ(y) dµ(x)

≤ C2ρ
−(2σ−α)j

∞∑
k=j

ρ−δ(k−j)ρ−2αk
(
ρ(2σ+α)k · ‖u‖2

Bσ2,∞

)
≤ C2

∞∑
k′=0

ρk
′((2σ−α)−δ) · ‖u‖2

Bσ2,∞
≤ C3‖u‖2

Bσ2,∞
.

The “≥” part of the theorem follows from (3.6)–(3.8) and the above two estimations.
For the last assertion, we inspect the constants in the above proof, the ones

depend on σ are those with
∑∞

n=0 ρ
(2σ−α)n < ∞ (in (3.5) and (3.7)), hence for η >

α/2, there is a C > 0 such that for all 2σ ≥ 2η > α,

C−1[u]2Bσ2,∞ ≤ sup
j≥0

{
ρ−(2σ−α)jEj[u]

}
≤ C[u]2Bσ2,∞ , u ∈ Bσ

2,∞. �

It follows easily from Theorem 1.2 that

Corollary 3.5. For 2σ > α, fix any integer ` ≥ 1, we have

[u]2Bσ2,∞ � supn≥0

{
ρ−(2σ−α)n`En`[u]

}
.

The following corollary is useful in the construction of functions in Bσ
2,∞ on K

from a discrete form.

Corollary 3.6. Assume 2σ > α, then for any function u on V∗ , if

[u]2Bσ2,∞(V∗) := supj≥0

{
ρ−(2σ−α)jEj[u]

}
<∞,

then u can be extended continuously to ũ on K with ũ ∈ Bσ
2,∞.

Proof. The proof is based on the following inequality: there exists C > 0 such
that for any function u on V∗, and any x, y ∈ V∗,

(3.9) |u(x)− u(y)|2 ≤ C|x− y|2σ−α[u]2Bσ2,∞(V∗).

(See also [23, Theorem 3.4].) Then u is uniformly continuous on V∗ which is dense
in K. Hence it has a continuous extension to K, and the extension is in Bσ

2,∞ by
Theorem 1.2.

We turn to prove (3.9). Given x, y ∈ V∗, let k be the integer such that

c0ρ
k+1 ≤ |x− y| < c0ρ

k,

where c0 is the constant in condition (H). Let ω and τ be two finite words such that
|ω| = |τ | = k and x ∈ Kω, y ∈ Kτ . Observing that

dist(Kω, Kτ ) ≤ |x− y| < c0ρ
k,

and using condition (H), we see that Kω ∩ Kτ 6= ∅. Let z ∈ Kω ∩ Kτ , we can
find a decreasing sequence of cells starting with ω = ω0 and a chain of points x =
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x0, x1, · · · , xn = z such that xi ∈ Vωi , and {Vωi} is a monotonic sequence (as in the
proof of Lemma 3.3). Then

|u(x)− u(z)| ≤
n∑
i=1

|u(xi−1)− u(xi)| ≤ C

n∑
i=1

 ∑
p,q∈Vω ,|ω|=k+i

|u(p)− u(q)|2
1/2

≤ C
n∑
i=1

ρ
(2σ−α)(k+i)

2 [u]Bσ2,∞(V∗) ≤ Cρ
k(2σ−α)

2 [u]Bσ2,∞(V∗).

We get the same bound for |u(y)− u(z)|. Hence

|u(x)− u(y)| ≤ |u(x)− u(z)|+ |u(y)− u(z)| ≤ 2Cρ
k(2σ−α)

2 [u]Bσ2,∞(V∗)

≤ 2C|x− y|
2σ−α

2 [u]Bσ2,∞(V∗) ,

and proves (3.9). �

4. Discretizing Bσ
2,2

The semi-norm [u]Bσ2,2 of Bσ
2,∞ has the expression

(4.1) [u]2Bσ2,2 :=

ˆ
K

ˆ
K

|u(x)− u(y)|2

|x− y|α+2σ
dµ(y) dµ(x).

It is not hard to see that [u]2Bσ2,2 is equivalent to
ˆ 1

0

dr

r
· 1

rα+2σ

ˆ
K

ˆ
B(x,r)

(u(x)− u(y))2 dµ(y) dµ(x),

as in (1.3), which can also be expressed as

(4.2)
∞∑
j=0

ρ−(α+2σ)j

ˆ
K

ˆ
B(x,ρj)

(u(x)− u(y))2 dµ(y) dµ(x).

We have the following discretization of [u]Bσ2,2 .

Proposition 4.1. Suppose K is a p.c.f. self-similar set. Then for 2σ > α,

(4.3) [u]2Bσ2,2 �
∞∑
j=0

ρ−(2σ−α)jEj[u].

Proof. In view of (4.2), ‖u‖Bσ2,∞ ≤ ‖u‖Bσ2,2 , hence by Proposition 3.1, ι : Bσ
2,2 →

C(2σ−σ)/2(K) is a continuous embedding, so that every u ∈ Bσ
2,2 has a continuous

representation.
By Lemma 3.3, we have

∞∑
j=0

ρ−(2σ+α)jIj,n ≤ C

∞∑
j=0

ρ−(2σ−α)j

∞∑
k=j

∑
x,y∈Vω , |ω|=k

∣∣u(x)− u(y)
∣∣2

≤ C ′
∞∑
k=0

ρ−(2σ−α)k
∑

x,y∈Vω , |ω|=k

∣∣u(x)− u(y)
∣∣2.

By using Fatou’s lemma to pass the limit on n, the “≤” of (4.3) holds.
To prove the reverse inequality, we adopt the same estimation as (i) in the proof

of Theorem 3.4 with some obvious adjustment. In (ii) we set the δ in (3.7) to
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be (2σ − α)/2. Writing Ik[u] =
´
K

´
B(x, ρk)

∣∣u(x) − u(y)
∣∣2dµ(y)dµ(x), we have the

estimate
n∑
j=0

ρ−(2σ−α)j
∑

p∈Vω ,|ω|=j

( n−1∑
k=j

ρ−
(2σ−α)(k−j)

2
1

µ(Kωk)

ˆ
Kωk

Ix,ωk+1
[u]dµ(x)

)

≤ C1

n∑
j=0

ρ−(2σ−α)j

n−1∑
k=j

ρ−
(2σ−α)(k−j)

2 ρ−2αkIk[u] ≤ C1

∞∑
k=0

k∑
j=0

ρ
(2σ−α)(k−j)

2 · ρ−(2σ+α)kIk[u]

≤ C2

∞∑
k=0

ρ−(2σ+α)kIk[u] = C2‖u‖2
Bσ2,2

,

and completes the proof of the reverse inequality. �

5. Convergence of Bσ
2,2 to Bσ

2,∞

In this section, we will make use of the Γ-convergence (Theorem 2.3) to prove
the convergence of the Dirichlet forms on Bσ

2,2 to Bσ
2,∞.

For 2σ − α > 0 and u ∈ `(Vn) (or in `(V∗)), we write

Eσn [u] = ρ−(2σ−α)nEn[u],

where En[u] =
∑

x,y∈Vω ,|ω|=n |u(x)− u(y)|2. It follows that for σ, σ′,

(5.1) Eσn [u] = ρ2(σ′−σ)n · (ρ−(2σ′−α)nEn[u]) = ρ2(σ′−σ)nEσ′n [u].

For u0 ∈ `(V0), we define the harmonic extension un ∈ `(Vn), n ≥ 1 to be the unique
one satisfies

En[un] = min{En[υ] : υ ∈ `(Vn), υ|V0 = u0}.
For a sequence {nk}∞k=1, we can define inductively a sequence uk such that Enk [uk] =
min{Enk [υ] : υ ∈ `(Vnk), υ|Vnk−1

= uk−1}. In this way for each u0 ∈ `(V0), we obtain
a piecewise harmonic extension of ũ ∈ `(V∗). Also, for any u ∈ `(Vn), we can consider
u restricted on each n-cells Vω, and use the above to extend u to ũ ∈ `(V∗). Note
that if supn Eσn [ũ] <∞, then ũ ∈ Bσ

2,∞(V∗), and by Corollary 3.6, it can be extended
to K and belongs to Bσ

2,∞.
In the following, we consider a more general type of extensions.

Definition 5.1. We say that a p.c.f. set K satisfies property (E) if there exists
σ > 0 with 2σ − α > 0, and C > 0 such that

(i) for any u ∈ Bσ
2,∞ and for all n ≥ 1, E0[u] ≤ CEσn[u],

(ii) for any u ∈ `(V0), there exists an extension ũ ∈ Bσ
2,∞.

Remark 1. Let Osc(u, F ) = |maxF u−minF u| denote the oscillation of u on F .
Suppose K satisfies (ii) of (E), we may require that Osc(ũ, K) = Osc(u, V0), since if
we set υ = (ũ ∨minu) ∧maxu, then υ is an extension of u satisfying En[υ] ≤ En[ũ]
for all n and Osc(υ,K) = Osc(u, V0).

Also, for any u ∈ `(Vm), we can apply the above to each Kω, |ω| = m piecewise,
and obtain an extension ũ ∈ Bσ

2,∞ with Osc(ũ, Kω) = Osc(u, Vω) and Em[u] ≤ CEσn [ũ]
for all n ≥ m.

Remark 2. Let Gn denote the corresponding electrical network of En[u]. It is
known [16, Theorem 2.1.6] that for any n ≥ 0, there is an induced network of Gn on
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V0 with resistance Rn(p, q) such that for u ∈ `(V0),

min
{
En[υ] : υ ∈ `(Vn), υ|V0 = u

}
=
∑
p,q∈V0

1

Rn(p, q)
|u(p)− u(q)|2.

In the well studied case that Rn(p, q) = λn, λ > 1 (e.g., Sierpinski gasket, Vicsek
cross), we have λEn+1[u] = En[u], and λ−1 is the renormalizing factor of the energy
form. By taking piecewise harmonic extensions, and let σ be such that ρ−(2σ−α) = λ,
and C = 1, it is seen K has property (E).

We will consider a sufficient condition for K to have property (E) in the next
section. The following proposition shows that the condition determines a unique σ,
which is the critical exponent.

Proposition 5.2. LetK be a p.c.f. self-similar set with property (E) with respect
to σ. Then σ = σ∗ necessarily, and Bσ∗

2,∞ is dense in C(K) (in the supremum norm).

Proof. We first show that Bσ
2,∞ is dense in C(K). Let v ∈ C(K), and let

vn = v|Vn . By property (E)(ii), we have piecewise extensions {ṽn}n ⊂ Bσ
2,∞ (as in

Remark 1) and they are continuous (Proposition 3.1). For ε > 0, we can find m such
that Osc(v,Kω) ≤ ε for all ω with |ω| = m, hence Osc(ṽm, Kω) ≤ ε. It follows that
for any x ∈ Kω, |ω| = m, and for any fixed q ∈ Kω ∩ Vm, we have

|ṽm(x)− v(x)| ≤ |ṽm(x)− ṽm(q)|+ |ṽm(q)− v(q)|+ |v(q)− v(x)| ≤ 2ε.

This shows that Bσ
2,∞ is dense in C(K).

Next observe that Bσ
2,2 ⊂ Bσ

2,∞ ⊂ Bσ−ε
2,2 for any small ε > 0. This implies σ∗ can

be defined in terms of Bσ
2,2, i.e.,

σ∗ = sup{σ > 0: Bσ
2,2 ∩ C(K) is dense in C(K)}.

For each nonconstant u ∈ Bσ
2,∞, by considering subcells if necessary, we may assume

that E0[u] > 0. By applying property (E)(i) to u, we see that for any n > 0,

Eσn [u] ≥ C−1E0[u].

This implies [u]2Bσ2,2 =
∑∞

n=0 Eσn [u] = ∞, and u 6∈ Bσ
2,2. Hence we have Bσ

2,2 =

{const. function}. This implies that for any σ′ > σ, Bσ′
2,∞ is trivial, in particular, not

dense in C(K). Therefore σ = σ∗. �

We write Eσ2,2 to be the Dirichlet form defined by
∑∞

j=0 Eσj [u]=
∑∞

j=0 ρ
−(2σ−α)jEj[u],

then Eσ2,2 has domain Bσ
2,2. Our main theorem is

Theorem 5.3. Suppose K is a p.c.f. self-similar set and has property (E). Then
K admits a local regular self-similar Dirichlet form (Eσ∗ ,F) with domain F = Bσ∗

2,∞,
and there exists C > 0 such that for u ∈ F ,

C−1Eσ∗ [u] ≤ lim
σ↑σ∗

(σ∗ − σ)Eσ2,2[u] ≤ lim
σ↑σ∗

(σ∗ − σ)Eσ2,2[u] ≤ CEσ∗ [u].

Proof. Consider the family of closed forms {(σ∗ − σ)Eσ2,2 : σ < σ∗, 2σ − α > 0},
there is a sequence σn ↗ σ∗ and (σ∗− σn)Eσn2,2 Γ-converges to some closed form E∗ in
L2(K,µ) in the wide sense (Theorem 2.3). Let F = {u ∈ L2(K,µ) : E∗[u] <∞}.

We observe that for u ∈ Bσ∗
2,∞. Taking un = u, by Definition 2.2(i) and (5.1), we

have

E∗[u] ≤ lim
n→∞

(σ∗ − σn)Eσn2,2[u] = lim
n→∞

(σ∗ − σn)
∞∑
j=0

ρ2(σ∗−σn)jEσ∗j [u] ≤ C1 sup
j≥0
Eσ∗j [u].
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Therefore we have E∗[u] ≤ C ′[u]2
Bσ
∗

2,∞
, so that Bσ∗

2,∞ ⊆ F .
On the other hand, assume that u ∈ F . By the Γ-convergence (Definition 2.2(ii)),

for any u ∈ L2(K,µ), there exists {un}n ⊂ L2(K,µ) converges to u strongly such
that

lim
n→∞

(σ∗ − σn)Eσn2,2[un] ≤ E∗[u] <∞.

Hence there is some N0 such that for n ≥ N0, (the case E∗[u] = 0 is similar)

(σ∗ − σn)Eσn2,2[un] ≤ 2E∗[u],

which implies un ∈ Bσn
2,2 for n ≥ N0 (Proposition 4.1). As Bσn

2,2 ⊂ C(K), un is
pointwise defined. Hence that Eσ∗j [un] is well defined. By (5.1), we have

2E∗[u] ≥ (σ∗ − σn)
∞∑
j=0

ρ2(σ∗−σn)jEσ∗j [un]

≥ (σ∗ − σn)
∞∑
j=m

ρ2(σ∗−σn)jEσ∗j [un]

≥ 1

C
(σ∗ − σn)

∞∑
j=m

ρ2(σ∗−σn)jEσ∗m [un] (by property (E)(i))

≥ 1

C2

ρ2(σ∗−σn)mEσ∗m [un] =
1

C2

Eσnm [un].(5.2)

From this and the second part of Theorem 1.2, there is a constant C ′′ > 0 such that
for n ≥ N0,

[un]2Bσn2,∞ ≤ C ′′ sup
m≥0
Eσnm [un] ≤ C3E∗[u],

where C3 = 2C ′′C2. By the imbedding BσN0
2,∞ ↪→ C(2σN0

−α)/2, we see that {un}n≥N0

are equi-continuous, and furthermore by un → u in L2(K,µ), we have {un}n≥N0 are
uniformly bounded. Hence {un}n is compact in C(K), and there is a subsequence
{unk}k≥0 and some v ∈ C(K) such that unk → v in C(K). Therefore unk → v in
L2(K,µ), which yields v = u. Hence unk → u uniformly on K.

It follows that lim
k→∞

Em[unk ] = Em[u] for any m ≥ 0. In view of (5.2), we see that

Eσnkm [unk ] ≤ 2C2E∗[u], and by letting k →∞, and take supremum on m, we have

sup
m≥0
Eσ∗m [u] ≤ 2C2E∗[u].

This gives [u]2
Bσ
∗

2,∞
≤ 2C ′′C2E∗[u], so that F ⊆ Bσ∗

2,∞. Together with the first part, we

have F = Bσ∗
2,∞. By Proposition 5.2, F is dense in C(K).

Next, we use a standard argument (see [18], [10]) to construct a closed form
(Eσ∗ ,F) that is self-similar and equivalent to (E∗,F). We write λ = ρ−(2σ∗−α). For
k ≥ 0 and u ∈ F , let

(5.3) E (k)
[u] = λk

∑
|ω|=k

E∗[u ◦ Fω],

and for m ≥ 1, define Ẽ (m)[u] = 1
m

∑m−1
k=0 E

(k)
[u]. Then for all u ∈ F , we have

Ẽ (m)[u] � [u]2
Bσ
∗

2,∞
. By a diagonal argument, we can find a subsequence, which we still
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denote by Ẽ (m) such that
{
Ẽ (m)[u]

}
m

converges for all u ∈ F . We denote by

Eσ∗ [u] = lim
m→∞

Ẽ (m)[u], u ∈ F .

It is clear that (Eσ∗ ,F) is still a closed form.
By (5.3), we have E (k+1)

[u] = λ
∑N

i=1 E
(k)

[u ◦ Fi], which, by taking limit, shows
that

Eσ∗ [u] = λ
N∑
i=1

Eσ∗ [u ◦ Fi], u ∈ F ,

and the self-similar identity of (Eσ∗ ,F) follows. We also have that

Eσ∗ [u] � E∗[u] � [u]2
Bσ
∗

2,∞
, u ∈ F .

The Markovian property of Eσ∗ is clear (e.g., [20, Theorem 2.8.1]), and the locality
of Eσ∗ is an immediate consequence of self-similar identity (see the proof in [16,
Theorem 3.4.6]). Hence (Eσ∗ ,F) is a local regular Dirichlet form. �

6. A sufficient condition

In the following, we give a sufficient condition for property (E) to hold.

Theorem 6.1. Let K be a p.c.f. self-similar set. Assume that there exists λ > 1
and C > 0 such that for any two distinct points p, q ∈ V0, and for any n ≥ 1,

(6.1) C−1λn ≤ Rn(p, q) ≤ Cλn.

Then K satisfies property (E).

The idea of proof is based on a uniform Harnack inequality for the nonnegative
harmonic functions (Proposition 6.3), similar to that used in [10] dealing with the
Sierpinski carpet. We will need a few lemmas.

For m ≥ 1, for x ∈ Vm, we denote

Ωm(x) :=
⋃
{Kω : |ω| = m, x ∈ Kω}, Lm(x) = {ω : |ω| = m, Kω ⊆ Ωm(x)},

also we let Ω′m(x) :=
⋃
{Kω : |ω| = m, Kω ∩ Ωm(x) 6= ∅}.

Lemma 6.2. Suppose K satisfies (6.1). Then there exists C0 > 0 such that for
any x ∈ Vm, and any nonnegative harmonic function u on Ω′m(x) ∩ Vn, n ≥ m, we
have

u(Fω(p)) ≤ C0 u(Fω(q)) for any ω ∈ Lm(x), p, q ∈ V0.

Consequently, there is C1 > 0 (independent of m,n and u) such that

max
Ωm(x)∩Vn

u ≤ C1 min
Ωm(x)∩Vn

u.

Proof. Fix a pair p, q ∈ V0, p 6= q. Without loss of generality, we assume
that u(Fω(p)) = 1. Clearly, we have Ωm(Fω(q)) ⊆ Ω′m(x), so u is nonnegative
and harmonic on Ωm(Fω(q)), and u is uniquely determined by the values of u on⋃
η∈Lm{Fη(V0)} \ {Fω(q)}, where Lm := Lm(Fω(q)).
Define v on Vm with 0 outside {Fω(p), Fω(q)}, 1 on Fω(p) and harmonic at Fω(q).

It is clear that u(Fω(q)) ≥ v(Fω(q)). Let ṽ be the harmonic extension of v on Vn.
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Write γ = v ◦ Fω(q), then we have

En[ṽ] =
∑
η∈Lm

En−m[v ◦ Fη] =
∑
η∈Lm

∑
x,y∈V0

1

Rn−m(x, y)
(v ◦ Fη(x)− v ◦ Fη(y))2

=
(1− γ)2

Rn−m(p, q)
+
∑
η∈Lm

∑
x∈V0,x 6=p,q

γ2

Rn−m(x, q)
+
∑
η∈Lm

∑
x∈V0,x 6=p,q

1

Rn−m(x, p)

=: µ1(1− γ)2 + µ2γ
2 + µ3.

Since v is harmonic on Fω(q) with boundary Vm \Fω(q), the above energy expression
has minimum for v(Fω(q)) := γ = µ1

µ1+µ2
. Now observe that C−1λm−n ≤ Rn−m(x, y) ≤

Cλm−n for x, y ∈ V0 by assumption, and that #{(η, x) : η ∈ Lm, x ∈ V0} is uniformly
bounded. Hence there exists c0 independent ofm,n, ω, u such that v(Fω(q)) ≥ c0 > 0.
By taking C0 = c−1

0 , we have

u(Fω(p)) = 1 ≤ C0v(Fω(q)) ≤ C0u(Fω(q)),

and completes the proof of the first part.
By the maximum principle of the harmonic function u on Ωm(x), u takes max-

imum and minimum on the set
⋃
ω∈Lm(x){Fω(V0)} \ {x}. On the other hand, ap-

plying the above result to these Kω for ω ∈ Lm(x), it follows that for any y ∈⋃
ω∈Lm(x){Fω(V0)},

C−1
0 u(y) ≤ u(x) ≤ C0u(y).

This implies that
max

Ωm(x)∩Vn
u ≤ C2

0 min
Ωm(x)∩Vn

u. �

Proposition 6.3. There is C > 0 and δ ∈ (0, 1) such that for any nonnegative
harmonic function u on B(x, r)∩Vn, where x ∈ K, and 3aρn < r < 1 (a = diam(K)),

max
B(x,δr)∩Vn

u ≤ C min
B(x,δr)∩Vn

u, uniform for n ≥ 0.

Proof. Let m be the smallest integer such that 3aρm < r, then m ≤ n. We pick
|ω| = m such that x ∈ Kω. Then for any p ∈ Fω(V0), we have Ω′m(p) ⊂ B(x, r).
Hence u is nonnegative and harmonic on Ω′m(p). By Lemma 6.2, we have

(6.2) max
Ωm(p)∩Vn

u ≤ C0 min
Ωm(p)∩Vn

u, p ∈ Fω(V0).

Denote Ω(x) = {Kτ : |τ | = m, Kτ ∩ Kω 6= ∅}(⊂ Ω′m(p)). Since maxΩ(x)∩Vn u and
minΩ(x)∩Vn u take place at those Fτ (V0), by using (6.2) twice, we have

max
Ω(x)∩Vn

u ≤ C2
0 min

Ω(x)∩Vn
u.

On the other hand, K satisfies condition (H) (Proposition 2.5), which yields a 0 <
δ < 1 such that B(x, δr) ⊆ Ω(x). Hence our assertion follows. �

In the following, we use Proposition 6.3 and an argument in [1] to obtain the
uniform Hölder continuity of bounded harmonic functions away from the boundary.

Lemma 6.4. For small η > 0, let Kη := K \
(⋃

p∈V0 B(p, η)
)

( 6= ∅). Then there
exists Cη > 0 such that for any n ≥ 1 and u a function on Vn harmonic on Vn \ V0,
we have

|u(x)− u(y)| ≤ Cη |x− y|γ max
Vn
|u|, ∀ x, y ∈ Kη ∩ Vn,

where γ > 0 is independent of η, n and u.
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Proof. We apply the argument as in [1, Theorem 3.9]. To do this, we first obtain
the oscillation inequality for harmonic functions by the uniform Harnack inequality.

By using Proposition 6.3 and an argument of Moser [21], we obtain 0 < ε, δ < 1
such that for any n ≥ m ≥ 1, any harmonic function u on B ∩ Vn, with x ∈ K and
3aρn < r < 1, we have

Osc (u, δB ∩ Vn) ≤ ε ·Osc (u,B ∩ Vn) ,

where B = B(x, r) and δB = B(x, δr).
For x, y ∈ Kη ∩ Vn, let k be the integer such that δk+1 ≤ |x − y| < δk. Assume

m is the integer such that δm ≤ η < δm−1. If k ≥ m, we have

|u(x)− u(y)| ≤ Osc
(
u,B

(
x, δk

))
≤ εOsc

(
u,B

(
x, δk−1

))
...

≤ εk−mOsc (u,B (x, δm))

≤ Cη− log ε/ log δ|x− y|log ε/ log δ max
Vn
|u|.

If k ≤ m, then |x− y| ≥ δ2η, we have

(6.3) |u(x)− u(y)| ≤ 2 max
Vn
|u| ≤ 2

(
δ2η
)−1 |x− y|max

Vn
|u|.

Combining the above two cases, our assertion holds. �

Proof of Theorem 6.1. Let λ = ρ−(2σ−α). As λ > 1, it follows that 2σ − α >
0. That K satisfies Property (E)(i) is simple because using Rn(p, q) � λn (see
Remark 2), we have for any u ∈ Bσ

2,∞, and v the harmonic extension of u|V0 on Vn,

E0[u] ≤ CλnEn[v] ≤ CλnEn[u] = CEσn [u].

We prove K satisfies property (E)(ii). Let u ∈ `(V0) with values u(p) for p ∈ V0

and un be the harmonic function on Vn with un|V0 = u. By Lemma 6.4, we see that
for any η > 0, let Kη := K \

⋃
p∈V0 B(p, η), we have

(6.4) |un(x)− un(y)| ≤ Cη|x− y|γ max
V0
|u| ∀ x, y ∈ Kη ∩ Vn.

By using the well-known Whitney extension and trace theorem on closed sets [15,
§2.2, Theorem 2], we can extend un fromKη∩Vn to be ũn onRd, then restrict back on
K preserving the bound Cη and the Hölder exponent. This together with the uniform
boundedness of {ũn}n≥0 yield the compactness of {ũn}n≥0 in C(Kη). Therefore there
is a subsequence {ũnk}k≥0 and ũ on Kη such that ũnk → ũ uniformly on Kη. Next
by letting η → 0, and by a diagonal argument, we obtain a subsequence, which we
still denote by {ũnk}k≥0, and a continuous ũ on K \ V0 such that ũnk → ũ pointwise
on K \ V0.

To see the continuity of ũ on the boundary points p ∈ V0, we first claim ũn(z), z ∈
K converges to un(p) uniformly on n as z → p. Indeed, let m ≥ 1 be fixed and Kω

be an m-cell contains p, assume n ≥ m, then we have

En[un] ≥
∑
x,y∈V0

1

Rn−m(x, y)
(un ◦ Fω(x)− un ◦ Fω(y))2

≥ C−1λm−n
∑
x,y∈V0

(un ◦ Fω(x)− un ◦ Fω(y))2,
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Also, as un is the harmonic extension of u ∈ `(V0), we have by (6.1) that for any
n ≥ 0,

(6.5) En[un] =
∑
p,q∈V0

Rn(p, q)−1 (un(p)− un(q))2 ≤ Cλ−nE0[u].

Hence |un(x)−un(p)|2 ≤ Cλ−m for x, p ∈ Fω(V0), |ω| = m,m > 0. The property (H)
on K implies the estimate also holds for small ball with center at p (same argument
as the last part of proof in Proposition 6.3), and the claim follows. Therefore by
setting ũ with boundary values u(p) for p ∈ V0, we obtain ũ ∈ C(K).

We show that ũ is the required function in property (E)(ii). We fix m ≥ 0. As
unk → ũ uniformly on any Kη, we have (as finite sums)

(6.6) Eσ∗m [ũ] = lim
k→∞

λmEm[unk ].

We claim that
λmEm[unk ] ≤ C2E0[u].

Indeed for any nk ≥ m, by (6.5), we have Enk [unk ] ≤ Cλ−nkE0[u]. Also by the
harmonicity of unk on each (nk −m)-cell, we have

Enk [unk ] =
∑
|ω|=m

∑
p,q∈V0

Rnk−m(p, q)−1 (unk(Fω(p))− unk(Fω(q)))2

≥ C−1λ−(nk−m)Em[unk ].

The claims follows from these two estimates. Substituting this into (6.6), and observ-
ing that C does not depend on m, we have supm≥0 Eσ

∗
m [ũ] ≤ C2E0[u], This implies

ũ ∈ Bσ∗
2,∞ (Corollary 3.6), and completes the proof. �

Remark. For the condition C−1λn ≤ Rn(p, q) ≤ Cλn, p, q ∈ V0, n ≥ 0, we can
relax the upper bound slightly (keep the lower bound): for any p, q ∈ V0, there is
some chain p = p1, p2, · · · , pk = q in V0 such that

Rn(pi, pi+1) ≤ Cλn, for i = 1 · · · , k − 1,

and all the above proofs go through. Indeed the only change is in showing u(Fω(p)) ≤
C0u(Fω(q)) in Theorem 6.1. We apply the same argument to each pair (pi, pi+1), then

u(Fω(p)) ≤ C0u(Fw(p1)) ≤ · · · ≤ Ck
0u(Fω(q)).

Hence Theorem 6.1 holds with this new sufficient condition.

7. Examples and remarks

For the Sierpinski gasket K, the boundary is the three vertices V0 = {pi}3
i=1. It

is well known that the trace of the n-network on V0 satisfying Rn(pi, pj) =
(

5
3

)n for
i 6= j [16]. From 5

3
= ρ−(2σ∗−α) with ρ = 1

2
and α = log 3

log 2
, we see that the critical

exponent is σ∗ = log 5
2 log 2

[14]. It follows that K has property (E) (Theorem 6.1) and
the convergence of the non-local Dirichlet forms on Bσ

2,2 to the local Dirichlet form
on Bσ∗

2,∞ holds (Theorem 5.3). By the uniqueness of the self-similar Dirichlet form on
K [24], we see that the Dirichlet form obtained in this way is the canonical one on K.
We remark that in [29], Yang first used the Γ-convergence to prove this convergence
theorem on the Sierpinski gasket. The present approach is a modification of his
technique, it greatly simplified and generalized his result. This convergence theorem
also follows from another probabilistic approach of Pietruska-Pałuba on some simple
nested fractals under the assumption that sub-Gaussian heat kernel exists.
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In [11], we use the Sierpinski-type self-similar sets to study the critical exponents
of the Besov space, they also provide interesting examples and insights for the con-
vergence of the Dirichlet forms. Let K1 be the self-similar set with 15 similitudes on
a triangle with vertices V0 = {pi}3

i=1, and with contraction ratio ρ = 1
7
as in Figure 1.

K1 has Hausdorff dimension log 15
log 7

, and the boundary is V0. By [11, Proposition 7.1],
we have

(7.1) Rn(p1, p2) � Rn(p2, p3) � Rn(p3, p1) � λn,

(equality does not hold) with some λ > 1(λ ≈ 6.6448 numerically). Hence K1

has property (E), and it follows from the convergence theorem (Theorem 5.3) that
there is a self-similar local regular Dirichlet form on K with renormalizing factor λ.
However, we do not know the uniqueness of such Dirichlet form on K1. In fact, in
[11, Proposition 7.1], we applied a “reverse recursive method” and the fixed point
theorem to obtain the existence of a local regular self-similar Dirichlet form, with
renormalization factor λ−1 and has domain F = Bσ∗

2,∞. But we do not know if the
two Dirichlet forms will be identical or equivalent.

There are two other variants K2 and K3 (Figures 2, 3) that are similar, K2 has
13 maps with contraction ratio ρ = 1

6
, K3 has 10 maps with ρ = 1

5
(see [11]).

Figure 1. K1. Figure 2. K2. Figure 3. K3.

Another interesting example studied in detail in [11, Section 6.2] is the self-
similar set K in Figure 4 that is generated by 17 similitudes with ρ = 1

7
. We call it

the Sierpinski sickle. It also has boundary V0 = {pi}3
i=1. Unlike the previous cases,

it was shown that

Rn(p1, p2) � Rn(p2, p3) �
(

17

2

)n
, Rn(p3, p1) � 7n.

This gives us two critical exponents; besides σ∗, there is another σ# defined by

σ# = sup{σ : Bσ
2,∞ contains non-constant functions}.

It was shown that Bσ∗
2,∞ is dense in (C(K), ‖ · ‖∞) in the uniform norm, and for

σ∗ < σ ≤ σ#, Bσ
2,∞ is dense in L2(K,µ), but not dense in (C(K), ‖ · ‖∞). Noting

that at σ#, by examining the proof of Theorem 5.2 carefully, and take the Γ-limit of
(σ# − σ)Eσ2,2 as σ ↑ σ#, we can obtain a closed form truly in the wide sense which
has domain Bσ#

2,∞. While for the σ∗, clearly Bσ∗
2,∞ does not admit a local regular

Dirichlet form (otherwise, σ∗ = σ#). We do not know the Γ-limit of the Dirichlet
forms (σ∗ − σ)Eσ2,2 at the critical exponent σ∗. On the other hand, by using the
“reverse recursive technique” again, we can construct a regular self-similar Dirichlet
form on K, but the domain is different from Bσ∗

2,∞.
We remark that the self-similar Dirichlet form from the Γ-convergence is by taking

convergent subsequence (Theorem 5.3), hence the uniqueness is not clear. Although
the energy form is self-similar, it does not need to have the “harmonic structure",
which is commonly used with the fixed point theorem to construct local regular
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Dirichlet forms (Kigami [16, Chapter 3]). In the first example, the Dirichlet form
obtained from the reverse recursive construction has harmonic structure, and has the
same domain as the one from the Γ-limit, but we still cannot conclude that they are
equal. In general, the reverse recursive construction might not yield such Dirichlet
form. Note also that there is diffusive approach to study the convergence ([22] and
[17]). Over there, they assumed the existence of some two-sided heat kernel estimates
of the diffusive processes first, then use them to construct approximating sequences.
In our consideration, we do not put any assumption on the limiting Dirichlet form,
which is a crucial point in our approach (see the remark at the end).

Figure 4. The Sierpinski sickle K.

For the sufficient condition for property (E) in Theorem 6.1, we basically rely
on the resistance network technique on the p.c.f. sets. It is not clear what role the
geometric properties of the p.c.f. sets play on the convergence at the critical exponents
of the two classes of function spaces.

Q1. Find geometric condition of the p.c.f. sets (or more general α-sets) for the
Γ-convergence of [·]2Bσ2,2 to [·]2

Bσ
∗

2,∞
.

For the energy form (E ,F) satisfies the energy self-similar identity

E [u] =
N∑
i=1

τ−1
i [u ◦ Fi], u ∈ F ,

where the τi are not all equal, we need to consider a modified Besov space on the
metric measure space (K, dr, ν) where dr is the resistance metric on K, and ν is the
self-similar measure {τ si }Ni=1 with

∑N
i=1 τ

s
i = 1 [9, 13, 16]. Also in [17], they actually

considered the Γ-convergence of the Besov spaces on metric measure spaces equipped
with doubling measures.

Q2. Can we extend the convergence theorem (Theorem 1.4) to these more general
settings?

Our final remark is that the Dirichlet form Eσ2,2 is rather easy to obtain, but at the
critical exponent for Eσ∗2,∞, the situation is more difficult. In particular the Dirichlet
form on Bσ∗

2,∞ is not known to exist in general. It is seen that a further investigation
of the convergence theorem (Theorem 5.3), and finding a more general condition than
property (E) are important and interesting, and will lead to more knowledge on this
open problem.

8. Appendix

A. Proof of Proposition 2.4. We will make use of a result [7]: if a self-
similar measure µ on K and is not an atom, then for any hyperplane H in Rd, either
µ(H ∩K) = 0 or H ⊇ K.
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Proof of Proposition 2.4. Suppose the conclusion of the theorem does not
hold, then there exists a ball B(x, r) ⊂ Rd such that δ := µ(∂B(x, r)) > 0. By the
definition of self-similar measure, we have

µ (∂B(x, r)) =
∑

|ω|=n
pω · µ

(
F−1
ω (∂B(x, r))

)
,

where pω = pi1 · · · pin , It follows that for any n > 0, there exists a word ωn with
|ωn| = n such that

µ
(
F−1
ωn (∂B(x, r))

)
≥ δ.

Let B(0, η) be a ball containing K, then F−1
ωn (∂B(x, r))∩B(0, η) 6= ∅. As F−1

ωn (∂B(x,

r)) = ∂B
(
F−1
ωn (x), ρ−1

ωnr
)
, the radii of the balls increases to ∞ as n → ∞. By the

smoothness of the sphere, there exists a hyperplane Hn such that the Hausdorff
distance of F−1

ωn (∂B(x, r))∩B(0, η) and Hn∩B(0, η) is small. By the compactness of
the family of compact sets in the Hausdorff metric, there exists a subsequence {nk}
and a hyperplane H,

F−1
ωnk

(∂B(x, r)) ∩B(0, η)→ H ∩B(0, η).

This implies
µ(H) ≥ lim inf

n→∞
µ
(
F−1
ωnk

(∂B(x, r))
)
≥ δ.

By the result stated in the beginning, we conclude that H ⊃ K. This is a contradic-
tion. �

B. Proof of Proposition 2.5. We quote from [6, Proposition 2.4] that under
the p.c.f. assumption, if p ∈ Ki∩Kj, then p has two representations iθ1ξ̇, jθ2η̇ ∈ Σ∞,
i.e.,

(8.1) π(iθ1ξ̇) = π(jθ2η̇) = p,

where ξ̇, η̇ are recurrent words; we can also choose θ1 and θ2 to be the shortest words
respectively so that the above holds.

Lemma 8.1. Suppose the IFS {Fi}Ni=1 has the p.c.f. property, and p ∈ Ki ∩
Kj, i 6= j. Then

(i) there exists k0 (independent of i, j) such that for |ω| = |ω′| > k0, Kiω ∩Kjω′

contains at most one point.
(ii) suppose ω, ω′ are such that Kω ∩Kω′ = ∅, and

ω = iθ1 ξ · · · ξ︸ ︷︷ ︸
n2k

ξ′ := iθ1ξ
n2kξ′, ω′ = jθ2 η · · · η︸ ︷︷ ︸

n1k

η′ := jθ2η
n1kη′

where iθ1ξ̇, jθ2η̇ are as in (8.1) with |ξ| = n1, |η| = n2, and |ξ′|, |η′| ≤ n1n2.
Then

(8.2) dist
(
Kω, Kω′

)
= ρn1n2kdist

(
Kiθ1ξ′ , Kjθ2η′

)
.

Proof. The p.c.f. assumption implies that the intersection Ki ∩ Kj is a finite
set for any i 6= j. Let ki,j be sufficiently large such that for any ω, ω′ ∈ Σ∗ with
|ω|, |ω′| ≥ ki,j, Kiω ∩Kjω′ contains at most one point. Since there are only finitely
many such pair i, j, we take k0 = maxi,j{ki,j} and it will satisfy the assertion in (i).

To prove (ii), we let p̄ξ = limn→∞Kξn . Then p̄ξ is a fixed point of Fξ, and by
observing that |ξ| = n1, we have for any n ≥ 1, Fξn(x) = ρn1n(x− p̄ξ) + p̄ξ. Also let
p̄iθ1 be the fixed point of Fiθ1 , then by (8.1), we have

p = ρ|θ1|+1(p̄ξ − p̄iθ1) + p̄iθ1 .
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It follows that

Kiθ1ξn2kξ′ − p = ρ|θ1|+1(Kξn2kξ′ − p̄iθ1) + p̄iθ1 − p
= ρ|θ1|+1(Kξn2kξ′ − p̄ξ)
= ρ|θ1|+1+n1n2k(Kξ′ − p̄ξ)
= ρn1n2k(Kiθ1ξ′ − p).

Similarly, we have Kjθ2ηn1kη′ − p = ρn1n2k(Kjθ2η′ − p). This implies (8.2). �

Proof of Proposition 2.5. Note that the number of triples (i, j, p) in Lemma 8.1 is
finite, and for each (i, j, p), the total number of words iθ1ξ

′, jθ2η
′ are finite. By (8.2),

there exists c1 > 0, such that for |ω| = |ω′| = m with the form as in Lemma 8.1(ii)
and Kω ∩Kω′ = ∅, then
(8.3) dist

(
Kω, Kω′

)
≥ c1ρ

m.

Next, let k0 be as in Lemma 8.1(i). Consider any two finite words ω and ω′ of
length m ≥ 2k0, and Kω ∩Kω′ = ∅, we let ω|n and ω′|n denote the initial segments
of ω and ω′ of length n. We observe the following two cases:

(i) If Kω|k0 ∩Kω′|k0
= ∅, then we simply have

dist
(
Kω, Kω′

)
≥ dist

(
Kω|k0 , Kω′|k0

)
≥ c ≥ c2ρ

m,

where c > 0 is the minimum of the distances of disjoint cells with word length ≤ k0.
(ii) Otherwise, let n0 be the smallest k0 < n ≤ m such that

Kω|n0 ∩Kω′|n0 = ∅.

As k0 ≤ n < n0, by Lemma 8.1(i), we see thatKω|n∩Kω′|n has exactly one intersection
point, then Kω|n0 and Kω′|n0 has the form as in Lemma 8.1(ii). By (8.3), we have

dist
(
Kω, Kω′

)
≥ dist

(
Kω|n0 , Kω′|n0

)
≥ c1ρ

n0 ≥ c1ρ
m.

Let c0 = min{c1, c2}, then condition (H) follows. �
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