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Abstract. First, we show that a projective measured foliation is a Busemann point, in

Gardiner–Masur boundary, if and only if it is indecomposable. Let f : Tg,n → Tg,n be a totally

geodesic homeomorphism and suppose that f admits a homeomorphic extension to ∂GMTg,n. We

show that f induces a simplicial automorphism of curve complex. Moreover, the restriction of f on

Tg,n is an isometry. As an application, we obtain an alternative proof of Royden’s Theorem.

1. Introduction

Let S = Sg,n be a Riemann surface of genus g with n punctures. Denote by Tg,n

the Teichmüller space of S and dT (·, ·) the Teichmüller metric.
Much of the study of the geometry on Teichmüller space is inspired by analogies

with hyperbolic space. When S is a flat torus or a punctured torus, the Teichmüller
metric is isometric to H

2. When 3g − 3 + n ≥ 2, Masur [18] proved that the Teich-
müller metric does not have negative curvature in the sense of Busemann. Masur and
Wolf [19] proved that the Teichmüller metric is not Gromov hyperbolic. However,
there have been various successful attempts to generalize the geometry of H

2 to
Teichmüller spaces of higher dimension [9, 12].

A map from a geodesic metric space to itself is called totally geodesic if it maps
any geodesic to a geodesic. Jeffers [8] showed that:

Theorem 1. Let Hn denote the hyperbolic space of dimension n. Suppose that
f : Hn → H

n(n ≥ 2) is a totally geodesic bijection. Then f is an isometry.

Li and Wang [14] even showed that either the injective or surjective condition of
f is unnecessary.

Motivated by the above works, Lixin Liu suggested the following conjecture:

Conjecture 1.1. Let f be a totally geodesic homeomorphism from the Teich-
müller space Tg,n to itself, with respect to the Teichmüller metric. Then f is an
isometry.

In this paper we make some progresses for the above conjecture.

1.1. Main results. Throughout this paper, we assume that 3g − 3 + n ≥ 2

and endow Tg,n with the Teichmüller metric. Let T̂g,n denote the Gardiner–Masur
compactification of Teichmüller space, and Mod±

g,n be the extended mapping class
group of S, i.e. the group of isotopy classes of diffeomorphisms of S.

Our main results are given as follows:
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Theorem 2. Let f : Tg,n → Tg,n be a totally geodesic homeomorphism and sup-
pose that f admits a homeomorphic extension to ∂GMTg,n. Then f is induced by an
element of the mapping class group Mod±

g,n, except (g, n) = (1, 2). In particular, f
is an isometry.

Remark 1.2. When S = Sg,n is a torus with two punctures, i.e. (g, n) = (1, 2),
we will show that f ∈ Mod±

0,5, which is the isometry group of T1,2 and the automor-
phism group of the complex of curves on S1,2.

The importance of Theorem 2 is to give a new analogies between the geometry
of Teichmüller space and that of the hyperbolic space. The proof of Theorem 2 is
inspired by Ivanov’s proof of Royden’s Theorem [7]. Note that the next two theorems
(Theorem 1.3 and Theorem 1.4) play important roles during the proof of Theorem 2.

Recall that the Gardiner–Masur boundary is the boundary of the Gardiner–
Masur compactification of Tg,n [2]. Moreover, Gardiner and Masur in [2] showed that
the Gardiner–Masur boundary contains the Thurston boundary PMF , the space of
projective measured foliations on S (cf. Section 2.2).

By a result of Liu–Su [16], any isometry of Tg,n admits a homeomorphic extension

to T̂g,n. As an application, Theorem 2 also gives a new proof of Royden’s theorem:

Theorem 3. (Royden) The isometry group of Tg,n endowed with the Teichmüller
metric is Mod±

g,n, except (g, n) = (1, 2) or (2, 0).

Let MF denote the space of measured foliations on S. A measured foliation is
indecomposable if it has only one indecomposable component. We refer to Subsec-
tion 2.2 for the definition of indecomposable components of measured foliations.

Let X ∈ Tg,n and [F ] ∈ PMF . Denote by RX,F : [1,∞) → Tg,n the Teichmüller
geodesic ray associated to [F ] emanating from X (cf. Section 2.3). In [16], Liu
and Su proved that every Teichmüller geodesic ray converges to a unique point on
the Gardiner–Masur boundary. Denote by BX(F) := limK→∞ RX,F(K) the limit of
Teichmüller geodesic ray in Gardiner–Masur boundary. By applying some results of
Walsh in [27], we generalize a result of Miyachi [20] as follows.

Theorem 1.3. For a measured foliation F , the limit BX(F) is equal to the
projective class of some measured foliation if and only if F is indecomposable.

The curve complex C(S) of a surface S was introduced into the study of Teich-
müller space by Harvey [3] as an analogue of the Tits building of a symmetric space.
The vertices of Harvey’s complex are homotopy classes of simple closed curves in S,
and the simplices are collections of curves that can be realized disjointly.

Let S denote the set of homotopy classes of non-trivial and non-peripheral simple
closed curves on S. Then we establish

Theorem 1.4. Let f : Tg,n → Tg,n be a totally geodesic homeomorphism and
suppose that f admits a homeomorphic extension to ∂GMTg,n. Then, the following
hold:

(1) The map f acts homeomorphically on PMF ⊂ ∂GMTg,n.
(2) The restriction of f to PMF preserves S (i.e. f(S) = S) and induces a

simplicial automorphism of the complex of curves.

1.2. Organization of the article. In §2, we give the preliminaries on Te-
ichmüller theory and measured foliations. In §3, we introduce the Gardiner–Masur
boundary and prove that a projective measured foliation in PMF is a Busemann
point if and only if it is “indecomposable". The proof relies on recent work of Walsh
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[26]. In §4, we use the intersection relationship between measured foliations to show
that f induces an automorphism of the complex of curves. Theorem 2 is proved in
§5.

Acknowledgements. The authors are grateful to Lixin Liu and Weixu Su for their
helpful suggestions and discussions.

2. Prelaminaries

In this section, we recall some basic notions in Teichmüller theory and measured
foliations.

2.1. Teichmüller space. Let S be a Riemann surface of genus g with n
punctures, with 3g−3+n ≥ 2. The Teichmüller space Tg,n is the space of equivalence
classes of pairs (X, f), where X is a Riemann surface of analytically finite type (g, n)
and f : S → X is a diffeomorphism (known as a marking). The equivalence relation
is given by (X1, f1) ∼ (X2, f2) if there is a bi-holomorphic mapping φ : X1 → X2 so
that φ ◦ f1 is isotopic to f2. Denote the equivalent class of (X, f) by [(X, f)].

The Teichmüller space Tg,n has a complete metric called the Teichmüller metric.
For any [(X1, f1)], [(X2, f2)] ∈ Tg,n the distance function of the Teichmüller metric is
defined by

dT ([(X1, f1)], [(X2, f2)]) =
1

2
inf
h
logK(h),

where h ranges over all quasiconformal mappings h : X1 → X2 homotopic to f−1
2 ◦f1,

and K(h) is the maximal quasiconformal dilatation of h.
For simplicity, we shall denote a point in Tg,n by a Riemann surface X, without

explicit reference to the marking or to the equivalence relation.

2.2. Measured foliations. A measured foliation F on S is a foliation (with a
finite number of singularities) with a transverse invariant measure. At each singu-
larity p including punctures, there exists k ≥ 1 such that the singularity is locally
modelled on a k-pronged singularity of zk−2dz2, where k ≥ 3 if p is not a puncture. A
leaf of F is called critical if it contains a singularity of F . The union of the compact
critical leaves is called the critical graph.

A measured foliation F on S is said to be minimal if all leaves are either dense
in S or join two singularities - and there must be no cycle of leaves of the latter type.
A measured foliation F is called uniquely ergodic if the support of F is minimal and
admits a unique transverse measure. A measured foliation F ∈ MF is rational if
any non-critical trajectory is closed. It is clear that any rational measured foliation
is identified with a formal sum of mutually disjoint weighted simple closed curves.

The intersection number i(γ,F) of a simple closed curve γ with a measured
foliation F endowed with transverse measure µ is defined by

i(γ,F) = inf
γ′

ˆ

γ′

dµ,

where the infimum is taken over all simple closed curves γ′ in the isotopy class of γ.
Two non-zero measured foliations F and F ′ are measure equivalent if, for all

γ ∈ S, i(γ,F) = i(γ,F ′). Denote by MF = MF(S) the space of equivalence classes
of measured foliations on S.

Two measured foliations F and F ′ are projectively equivalent if there is a constant
b > 0 such that F = b · F ′, i.e. i(γ,F) = b · i(γ,F ′) for all γ ∈ S. The space of
projective equivalence classes of foliations is denoted by PMF .
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Thurston showed that MF is homeomorphic to a 6g − 6 + 2n dimensional ball
and PMF is homeomorphic to a 6g − 7 + 2n dimensional sphere. For more details
on measured foliations see [1].

We will use the ergodic decomposition of a measured foliation later in this pa-
per. By removing the critical graph, a measured foliation F is decomposed into a
finite number of connected components, each of which is either a cylinder of closed
leaves or a minimal component in which every leaf is dense in its support subsurface.
Furthermore, the transverse measure on a minimal component D may be written as
a sum of a finite number of projectively distinct ergodic measures:

µ|D =
∑

k

µD,k.

We refer to [5, 11] for more details.

Definition 2.1. A measured foliation F ′ is an indecomposable component of F
if it is either one of the cylindrical components of F , or it is measure equivalent to
one of the minimal components D ⊂ S with one of the transverse measures µD,k.

Definition 2.2. A measured foliation F is indecomposable if it has only one
indecomposable component, i.e. it is equivalent to either a weighted simple closed
curve or a minimal component on a subsurface with an ergodic measure.

We denote the set of indecomposable measured foliations on S by MF ind. We
can represent any measured foliation F as a finite sum

F =
k∑

i=1

Fi

of mutually non-intersecting (i(Fi,Fj) = 0)indecomposable measured foliations. In
the literature, such a (unique) decomposition is called the ergodic decomposition of
F .

The next lemma will be used later.

Lemma 2.3. [26, Lemma 6.3] Let {Fi}ni=0 be a set of projectively-distinct inde-
composable elements of MF such that i(Fi,Fj) = 0 for all i and j. Then for any
ε > 0, there exists a simple closed curve β ∈ S such that

i(Fi, β) < i(F0, β) ε, ∀ i 6= 0.

2.3. Quadratic differentials. A holomorphic quadratic differential q on X ∈
Tg,n is a tensor locally represented by q = q(z)dz2, where q(z) is a holomorphic
function under the local coordinate z = x + iy. We allow holomorphic quadratic
differentials to have simple poles at the punctures of X. The cotangent space of
Tg,n at X can be identified with the vector space Q(X) of holomorphic quadratic
differentials on X. The L1-norm on Q(X) is defined by

‖q‖ =

ˆ

X

|q|.

It is the dual norm for defining the Teichmüller metric.
A quadratic differential q ∈ Q(X) gives rise to a pair of transverse measured

foliations Fv(q) and Fh(q) on X, called the vertical and horizontal measured foliation

of q, respectively. In natural coordinates such that q = dz2, Fv(q) (Fh(q)) is defined
by the leaves x = constant (y = constant) with the measure |dx| (|dy|).
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According to a fundamental theorem of Hubbard and Masur [4], for any F ∈ MF
and X ∈ Tg,n, there is a unique holomorphic quadratic differential q ∈ Q(X) such
that Fv(q) is measured equivalent to F . We call q the Hubbard–Masur differential of
F on X.

Let X ∈ Tg,n and F ∈ MF . Let q be the Hubbard–Masur differential of F on X.
The Teichmüller geodesic ray RX,F : [0,∞) → Tg,n is defined as a family of Riemann
surfaces Xt = RX,F(t) such that each Xt is the quasiconformal deformation of X
with Beltrami differential

K − 1

K + 1

|q|

q
,

where K = e2t. The parameter t is chosen such that the Teichmüller distance between
Xs and Xt is equal to |s− t|.

2.4. Extremal length. Let X = [(X, f)] ∈ Tg,n. The extremal length ExtX(α)
of a simple closed curve α ∈ S is defined by

ExtX(α) = sup
ρ

ℓρ(f(α))
2

Area(X, ρ)
,

where the supremum is taken over all conformal metrics ρ of finite area and ℓρ(f(α))
denotes the geodesic length of f(α) with respect to the metric ρ.

Kerckhoff [9] proved that there is a unique continuous extension of the extremal
length functions from S to MF where

ExtX(r · α) = r2 ExtX(α), r ∈ R+.

The following formula is due to Kerckhoff [9].

Theorem 2.4. Given X, Y ∈ Tg,n, the Teichmüller distance

dT (X, Y ) =
1

2
log sup

α∈S

(
ExtX(α)

ExtY (α)

)
.

2.5. Curve complex and mapping class group. The curve complex of
a surface was introduced into the study of Teichmüller space by Harvey [3] as an
analogue of the Tits building of a symmetric space. The vertex set of the curve
complex C(S) is given by S. Recall that S is the set of essential and nonperipheral
simple closed curves on S, considered up to isotopy. Two vertices α, β ∈ C(S) are
connected by an edge if they have disjoint representations. For any two vertices
α, β ∈ C(S), we define the distance dS(α, β) to be the minimal number of edges
connecting α and β.

The mapping class group Mod(S) is the group of homotopy classes of orientation-
preserving diffeomorphisms σ : S → S. Every mapping class [σ] acts on Tg,n by
changing the marking:

[(X, f)] → [(X, f ◦ σ−1)].

Denote by Mod±(S) the extended mapping class group, which contains Mod(S) as a
subgroup of index two.

It is clear that Mod±(S) acts on the curve complex as a group of automorphisms.

Theorem 2.5. (Ivanov) If S is not a sphere with ≤ 4 punctures, nor a torus
with ≤ 2 punctures, then all automorphisms of C(S) are given by the elements of
Mod±(S).

This famous theorem is due to Ivanov [6] in the case of surfaces of genus at least
two and to Korkmaz [10] in the remaining cases. For the torus with two punctures,
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C(S1,2) is isomorphic to C(S0,5); and the automorphism group of C(S1,2) is Mod±(S0,5)
instead of Mod±(S1,2).

3. Gardiner–Masur boundary and Busemann points

In this section we define and study the Gardiner–Masur boundary of Tg,n. We
show that a projective measured foliation is the limit point of a Teichmüller geodesic
ray if and only if the measured foliation is indecomposable. This generalizes the
works of Miyachi [21, 22].

3.1. Gardiner–Masur boundary. Denote by R
S
+ the space of nonnegative

functions on S, endowed with the weak topology. Let PR
S
+ be the projective space

of RS
+.
By using hyperbolic length functions of S, Thurston defined an embedding of Tg,n

into PR
S
+. The closure of this embedding is compact, called the Thurston compactifi-

cation. Boundary of the Thurston compactification can be identified with PMF , by
representing each [F ] ∈ PMF with the projective class of the intersection function
i(F , ·) : S → R

S
+. Thus PMF is also called the Thurston boundary of Tg,n.

The definition of the Gardiner–Masur compactification is similar. We can define
an embedding of Tg,n into PR

S
+ by

Φ: X 7→ [(
√
ExtX(α))α∈S ].

Gardiner and Masur [2] showed that the closure of Φ(Tg,n) in PR
S
+ is compact.

The boundary of Φ(Tg,n) is the so called the Gardiner–Masur boundary, denoted by
∂GMTg,n. It contains the Thurston boundary as a proper subset. Unlike the Thurston
boundary, the topology of ∂GMTg,n is not clear. However, Miyachi [20] showed that

Theorem 3.1. Any point P ∈ ∂GMTg,n can be represented as a nonnegative
continuous function EP (·) on MF with the following properties:

(1) EP (r · F) = rEP (F) for any r > 0 and F ∈ MF .
(2) The assignment S ∋ α 7→ EP (α) represents P as a point of ∂GMTg,n.

Furthermore, the function EP (·) is unique up to multiplication by a positive constant.

Liu and Su [16] proved that

Theorem 3.2. The Gardiner–Masur boundary of Tg,n is the horofunction bound-
ary of the Teichmüller metric.

We refer to [16, 27] for the definition of horofunction boundary. An immediate
corollary of Theorem 3.2 is that any Teichmüller geodesic ray has a unique limit on
the Gardiner–Masur boundary.

A point in the horofunction boundary is called a Busemann point if it is the limit
point of an almost geodesic ray [23]. In [27], Walsh showed the Busemann points are
exactly the limits of the Teichmüller rays. Hence we can think of Busemann point as
the limit point of a geodesic ray on the horofunction boundary .

Let RX,F : [0,∞) → Tg,n denote the Teichmüller geodesic ray determined by
X ∈ Tg,n and F ∈ MF . Denote the Hubbard–Masur differential of F on X by q.
Using Theorem 3.1, we denote the limit of RX,F on ∂GMTg,n by Eq(·).

With the above notions, we have the following result, proved by Walsh [27].
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Theorem 3.3. Let F =
∑k

i=1Fi be the ergodic decomposition of F . Then the
limit of the Teichmüller geodesic ray RX,F is given by

Eq(·) =

{
k∑

i=1

i(Fi, ·)2

i(Fi,Fh(q))

}1/2

.

3.2. Characterization of Busemann points in PMF . When 3g−3+n ≥ 2,
non-Busemann points do exist in ∂GMTg,n [22]. In [20], Miyachi has shown

Theorem 3.4. For a rational measured foliation G, the limit BX(G) is equal to
the projective class of some measured foliation if and only if the support of G consists
of one simple closed curve.

The following theorem generalizes Theorem 3.4.

Theorem 3.5. A projective measured foliation [F ] ∈ PMF is a Busemann
point if and only if F is indecomposable.

Proof. Suppose that F has more than one ergodic components. Let F =
∑k

i=1Fi

be the ergodic decomposition of F and set

Eq(·) =

{
k∑

i=1

i(Fi, ·)2

i(Fi,Fh(q))

}1/2

.

It suffices to prove that Eq(·) 6= i(G, ·) for any G ∈ MF .
Suppose to the contrary that Eq(·) = i(G, ·) for some G ∈ MF . Since Eq(G) =

i(G,G) = 0, by Proposition 5.1 in [20], we have i(F ,G) = 0. Thus we can write G as

G =
k∑

i=1

biFi + µ,

where µ ∈ MF , bi ≥ 0.
For simplicity, we set

mi :=
1

i(Fi,Fh(q))
.

Then

(1)

k∑

i=1

mii(Fi, γ)
2 =

(
k∑

i=1

bii(Fi, γ) + i(µ, γ)

)2

for all γ ∈ S.
First we observe that µ = 0. If not, by Lemma 2.3, for any ǫ > 0, there exists

β ∈ S such that i(Fi, β) < i(µ, β)ǫ. It follows from (1) that

i(µ, β)2 <

(
∑

i

mi

)
i(µ, β)2ǫ2.

Thus (
∑

i

mi

)
ǫ2 > 1,

which is impossible since ǫ can be arbitrary small. It follows that

k∑

i=1

mii(Fi, γ)
2 =

(
k∑

i=1

bii(Fi, γ)

)2

.
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By a similar argument, we can check that mi = b2i . Thus we obtain

(2)

k∑

i=1

b2i i(Fi, γ)
2 =

(
k∑

i=1

bii(Fi, γ)

)2

, ∀γ ∈ S.

By expanding equation (2), the non-negativeness of the intersection number implies
that bi = 0, i = 1, . . . , k. Hence we obtain

G =
k∑

i=1

biFi + µ = 0.

This leads to a contradiction. �

4. Totally geodesic homeomorphisms

Throughout this section, we let T̂g,n denote the Gardiner–Masur compactification
of Teichmüller space, and let f : Tg,n → Tg,n be a totally geodesic homeomorphism
and suppose that f admits a homeomorphic extension to ∂GMTg,n.

Denote the set of Busemann points in T̂g,n by B. Then f defines a map f : B → B.
Using the fact that any two points in Tg,n can be connected by a unique geodesic,
one can check that the inverse map f−1 is also totally geodesic and f−1 : B → B.

4.1. Uniquely ergodic measured foliations.

Definition 4.1. Let P,Q ∈ B. We say P and Q are connected by a Teichmüller
geodesic if there exists a complete Teichmüller geodesic R(t) such that

lim
t→+∞

R(t) = P and lim
t→−∞

R(t) = Q.

Denote the above relation by P ⊖Q.

Let PMFUE denote the set of uniquely ergodic projective measured foliations.

Lemma 4.2. Let P = [F ] ∈ PMFUE. Then for any Q ∈ B, Q 6= P , satisfies
P ⊖Q.

Proof. We can assume that Q is represented by

EQ(·) =

(
k∑

i=1

mii(Gi, ·)
2

)1/2

.

Set bi = mii(Gi,F) > 0. We take

G =
k∑

i=1

bi · Gi.

There exists a unique quadratic differential q such that

Fh(q) = F and Fv(q) = G.

Denote by R(t) the Teichmüller geodesic directed by q. It follows Theorem 3.3 that
as t → +∞, R(t) converges to

Eq(·) =

(
k∑

i=1

i(biGi, ·)2

i(biGi,F)

)1/2

=

(
k∑

i=1

bi
i(Gi,F)

i(Gi, ·)
2

)1/2

=

(
k∑

i=1

mii(Gi, ·)
2

)1/2

.
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Thus

lim
t→+∞

R(t) = Q.

On the other hand, since F is uniquely ergodic,

lim
t→−∞

R(t) = [F ].

Thus R(t) connects P and Q. �

The converse statement is also true:

Lemma 4.3. Let P ∈ B be a Busemann point. If P ⊖Q for all Q ∈ B, Q 6= P ,
then P = [F ] ∈ PMFUE.

Proof. If P ∈ B is not the projective class of any uniquely ergodic measured
foliation, then we can represent P as (some F =

∑k
i=1Fi)

EP (·) =

(
k∑

i=1

i(Fi, ·)2

i(Fi,Fh(q))

)1/2

.

We can always choose G ∈ MF ind such that i(F ,G) = 0 and [G] 6= [F ]. Then P and
[G] could not be connected by any Teichmüller geodesic. �

Since the relation P ⊖ Q is preserved by f , by Lemma 4.2 and Lemma 4.3, we
have

f(PMFUE) = PMFUE .

By the density of PMFUE in PMF and the continuity of f , we have

f(PMF) = PMF .

By Theorem 3.5, we also have

f(PMF ind) = PMF ind.

Note that PMF ind = B ∩ PMF .

4.2. Complex of curves. The set of simple closed curves S is a subset of
PMF ind. We will prove that f(S) = S. Moreover, f will induce an automorphism
of C(S), the complex of curves on S.

Definition 4.4. Let F ,G ∈ MF ind. Define [F ] ⊲⊳ [G] if there exist two sequences
{Xn,Fn}, {Yn,Gn} ∈ Tg,n ×MF such that

• limn→∞Fn = F and limn→∞ Gn = G,
• for each n, the rays RXn,Fn

and RYn,Gn
converge to the same Busemann point.

Note that ⊲⊳ is not an equivalence relation.

Lemma 4.5. The relation ⊲⊳ on PMF ind is preserved by f .

Proof. Let [µ], [ν] ∈ PMF ind be two indecomposable measured foliations and
[µ] ⊲⊳ [ν]. There exist two sequences {xn, µn}, {yn, νn} ∈ Tg,n ×MF satisfying

• limn→∞ µn = µ and limn→∞ νn = ν,
• for every n, the geodesic rays Rxn,µn

and Ryn,νn converge to the same Buse-
mann point.

For the restriction of f to PMF is a self-homeomorphism of PMF , we have

lim
n→∞

f([µn]) = f([µ]) and lim
n→∞

f([νn]) = f([ν]).
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At the same time, we have

Rf(xn),f [µn] = f(Rxn,µn
) and Rf(yn),f [νn] = f(Ryn,νn),

converge to the same Busemann point.
The proof is completed. �

Lemma 4.6. [F ] ⊲⊳ [G] if and only if i(F ,G) = 0.

Proof. Suppose [F ] ⊲⊳ [G]. By definition, there exist

{Xn,Fn}, {Yn,Gn} ∈ Tg,n ×MF

such that

lim
n→∞

Fn = F , lim
n→∞

Gn = G,

and, RXn,Fn
and RYn,Gn

converge to the same Busemann point. If i(F ,G) > 0, then
as n is sufficiently large, i(Fn,Gn) > 0. This contradicts Theorem 3.3.

For the converse, suppose i(F ,G) = 0. If F = G, this lemma follows from the
definition of “⊲⊳”. Hence we assume F 6= G. For any n ∈ N+, we can find two
uniquely ergodic measured foliations Fn,Gn satisfying the following conditions:

(3)

{
i(F ,Fn) ≤

1
n
, i(G,Fn) ≥ 1,

i(G,Gn) ≤
1
n
, i(F ,Gn) ≥ 1.

In fact, for any n ∈ N
+, by applying Lemma 2.3, there are two simple closed curves

α, β ∈ S such that
i(F , α)

i(G, α)
<

1

n+ 1
,

i(G, β)

i(F , β)
<

1

n+ 1

Moreover, there exist two uniquely ergodic measured foliations F ′
n,G

′
n such that

i(F ,F ′
n)

i(G,F ′
n)

<
1

n
,

i(G,G ′
n)

i(F ,G ′
n)

<
1

n
,

since the set of uniquely ergodic measured foliations is dense in MF and the inter-
section function is continuous. We always can choose two constants sn and tn such
that

i(G, snF
′
n) = 1 and i(F , tnG

′
n) = 1.

This implies that

i(F , snF
′
n) <

1

n
and i(G, tnG

′
n) <

1

n
.

Let Fn = snF ′
n and Gn = tnG ′

n. Hence, we obtain the inequalities (3).
Let

an =
i(F ,Fn)

i(F ,Gn)
and bn =

i(G,Gn)

i(G,Fn)
.

By (3), we have

lim
n→∞

an = 0 and lim
n→∞

bn = 0.

Construct two sequences of measured foliations

{νn} = {anF + G} and {µn} = {F + bnG}.

It is clear that

µn → F and νn → G.
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Let q′n (respectively, q′′n) be the quadratic differential such that Fv(q
′
n) = νn and

Fh(q
′
n) = Fn (respectively, Fv(q

′′
n) = µn and Fh(q

′′
n) = Gn). We assume q′n ∈ Q(Xn)

and q′′n ∈ Q(Yn). Then

RXn,νn(t) →

{
an

i(F ,Fn)
i(F , ·)2 +

1

i(G,Fn)
i(G, ·)2

}1/2

and

RYn,µn
(t) →

{
1

i(F ,Gn)
i(F , ·)2 +

bn
i(G,Gn)

i(G, ·)2
}1/2

.

Note that
an

i(F ,Fn)
=

1

i(F ,Gn)
,

1

i(G,Fn)
=

bn
i(G,Gn)

.

Thus RXn,µn
(t) and RYn,νn(t) converge to the same Busemann point. By the above

construction, we know that [F ] ⊲⊳ [G]. �

Let [F ] ∈ PMF ind. Denote by

N ([F ]) = {[G] ∈ PMF ind | i(F ,G) = 0}.

The following lemma can be prove by using [6, Theorem 4.1].

Lemma 4.7. Let [F ], [G] ∈ PMF ind. Then N ([F ]) = N ([G]) if and only if F
and G are topological equivalent.

Proposition 4.8. Let f : Tg,n → Tg,n be a totally geodesic homeomorphism and
suppose that f admits a homeomorphic extension to ∂GMTg,n. Then f induces an
automorphism of C(S).

Proof. It suffices to show that f(S) = S. Then it follows from Lemma 4.5,
Lemma 4.6, and Lemma 4.7 that the condition i(α, β) = 0, α, β ∈ S is preserved
under f .

Let γ ∈ S. Denote [G] = f([γ]) ∈ PMF ind. Denote by G̃ the unmeasured
foliation obtained from G by forgetting the measure.

First, we observe that the dimension of the space of measures on G̃ is one. If
not, there exists some other G ′ ∈ PMF ind such that G ′ is topological equivalent
to G, but not projectively equivalent. Denote [F ] = f−1([G ′]) ∈ PMF ind. Since
N ([G]) = N ([G ′]) and f−1 preserves the relation ⊲⊳, we have

N ([γ]) = N ([F ]).

By Lemma 4.7, we have [γ] = [F ], i.e. f−1([G ′]) = f−1([G]), which is impossible.
It follows that G can should one of the following:
(a) G ∈ S. In this case, we are done.
(b) G is uniquely ergodic. This is impossible, since f and f−1 preserve PMFUE .
(c) The remaining case is that G is uniquely ergodic on X0, which is a proper

subsurface of S. Let β be a boundary component of X0. Denote [F ] = f−1(β). Then
F is either a simple closed curve or a minimal ergodic component. In both cases,
there always exists α ∈ S such that i(F , α) 6= 0 and i(γ, α) = 0. Then we have

i(β, f(α)) 6= 0, i(G, f(α)) = 0.

Due to our construction, any measured foliation that is intersect with the boundary
component β should be also intersect with G (since the measured foliation must cross
the collar neighborhood of β and G is filling on the subsurface X0). This leads to a
contraction. �
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5. Proof of Theorem 2

Let q ∈ Q(X) be a holomorphic quadratic differential. Define D(q) be the
Teichmüller disk in Tg,n generated by q. That is, D(q) is the image of the holomorphic
isometry from the Poincaré disk D to Tg,n, defining by

z → Xz,

where Xz is the quasiconformal deformation of X with Beltrami differential zq̄/|q|.

Proof of Theorem 2. According to Proposition 4.8, f induces an automorphism
of C(S). By composition with an isometry induced by a mapping class, we may
assume that f = id on S.

Choose any pair of simple closed curves {α, β} that fills the surface. There exists
a holomorphic quadratic differential q whose horizontal and vertical foliations are
equivalent to α and β, respectively. Denote by R1 the Teichmüller geodesic directed
by q. R1 is contained in the Teichmüller disk Dq.

We claim that f(Dq) = Dq.
Let τα and τβ denote the Dehn-twists along α and β, respectively. According to

Lemma 3.2 in [17], we know that τα(Dq) = Dq and τβ(Dq) = Dq. Let τ = τα ◦ τ−1
β .

From Theorem 7 in [25], τ is a pseudo-Anosov map. Let F and G be the stable and
unstable foliations of τ , and let R2 denote the Teichmüller geodesic determined by
F and G. Then R2 ⊂ Dq and τ acts on R2 as a translation.

Since f = id on S, f(R1) is also a Teichmüller geodesic terminating at the pro-
jective classes of α and β (in the Gardiner–Masur boundary). Therefore, f(R1) is
the Teichmüller geodesic of the holomorphic quadratic differential whose horizontal
and vertical foliations are α and β. Such a Teichmüller geodesic is unique [2, The-
orem 5.1] and thus f(R1) = R1. Similarly, we have f(R2) = R2. This shows that
f(Ri) ⊂ Dq, i = 1, 2.

For any X ∈ Dq not on R1 ∪R2, we can take a geodesic R3 passing through X
and intersecting with R1 = f(R1) and R2 = f(R2). This implies that X ∈ f(Dq).
On the other hand, since the image f(R3) is a geodesic, and it intersects R1 and
R2, by uniqueness of Teichmüller geodesics, f(R3) must contained in Dq. Thus
f(X) ∈ Dq.

Using Theorem 1 to Dq, we have f |Dq
= id.

According to Proposition 2.2 in [13], we know that the set of geodesics determined
by pairs of simple closed curves that fill the surface is dense. This implies that the
union of Teichmüller disks which contain such geodesics is dense in Tg,n. Hence, we
conclude that f is the identity on Tg,n. �

References

[1] Fathi, A., F. Laudenbach, and V. Poénaru: Thurston’s work on surfaces. - Math. Notes,
Princeton Univ. Press, 2013.

[2] Gardiner, F. P., and H. Masur: Extremal length geometry of Teichmüller space. - Complex
Var. Elliptic Equ. 16, 1991, 209–237.

[3] Harvey, W. J.: Boundary structure of the modular group. - In: Riemann surfaces and related
topics, Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook,
N.Y., 1978), Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, N.J., 1981, 245–251.

[4] Hubbard, J., and H. Masur: Quadratic differentials and foliations. - Acta Math. 142, 1979,
221–274.



Totally geodesic homeomorphisms between Teichmüller spaces 685

[5] Ivanov, N.V.: Subgroups of Teichmüller modular groups. - Transl. Math. Monogr. 115, Amer.
Math. Soc., Providence, RI, 1992.

[6] Ivanov, N.V.: Automorphisms of complexes of curves and of Teichmüller spaces. - Int. Math.
Res. Not. IMRN 14, 1997, 51–666.

[7] Ivanov, N.V.: Isometries of Teichmüller spaces from the point of view of Mostow rigidity. -
In: Topology, Ergodic Theory, Real Algebraic Geometry, Amer. Math. Soc. Transl. Ser. 2, 202,
Adv. Math. Sci., 50, Amer. Math. Soc., Providence, RI, 2001, 131–149.

[8] Jeffers, J.: Lost theorems of geometry. - Amer. Math. Monthly 107, 2000, 800–812.

[9] Kerckhoff, S.: The asymptotic geometry of Teichmüller space. - Topology 19, 1980, 23–41.

[10] Korkmaz, M.: Complexes of curves and mapping class groups. - Ph.D. Thesis, Michigan State
University, 1996.

[11] Lenzhen, A., and H. Masur: Criteria for the divergence of pairs of Teichmüller geodesics. -
Geom. Dedicata 144, 2010, 191–210.

[12] Masur, H.: Transitivity properties of the horocyclic and geodesic flows on moduli space. - J.
Anal. Math. 39, 1981, 1–10.

[13] Masur, H.: Dense geodesics in moduli space. - In: Riemann surfaces and related topics, 2016,
417–438.

[14] Li, B., and Y. Wang: Transformations and non-degenerate maps. - Sci. China Ser. A 48,
2005, 195–205.

[15] Li, B., and Y. Wang: Fundamental theorem of geometry without the surjective assumption.
- Trans. Amer. Math. Soc. 368, 2016, 6819–6834.

[16] Liu, L., and W. Su: The horofunction compactification of the Teichmüller metric. - In: Hand-
book of Teichmüller theory. Volume IV, IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc.,
Zürich, 2014, 355–374.

[17] Marden, A., and H. Masur: A foliation of Teichmüller space by twist invariant disks. -
Math. Scand. 36, 1975, 211–228.

[18] Masur, H.: On a class of geodesics in Teichmüller space. - Ann. of Math. 102, 1975, 205–221.

[19] Masur, H., and M. Wolf: Teichmüller space is not gromov hyperbolic. - Ann. Acad. Sci.
Fenn. Ser. A I Math. 20, 1995, 259–267.

[20] Miyachi, H.: Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space. -
Geom. Dedicata 137, 2008, 113–141.

[21] Miyachi, H.: Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space II. -
Geom. Dedicata 162, 2013, 283–304.

[22] Miyachi, H.: Extremal length boundary of the Teichmüller space contains non-Busemann
points. - Trans. Amer. Math. Soc. 366, 2014, 5409–5430.

[23] Rieffel, M.A.: Group C∗-algebras as compact quantum metric spaces. - Doc. Math. 7, 2002,
605–651 (electronic).

[24] Royden, H. L.: Automorphisms and isometries of Teichmüller space. - In: Advances in the
Theory of Riemann Surfaces, Ann. of Math. Stud. 66, 1970, 369–383.

[25] Thurston, W.P.: On the geometry and dynamics of diffeomorphisms of surfaces. - Bull.
Amer. Math. Soc. (N.S.) 19:2, 1988, 417–431.

[26] Walsh, C.: The horoboundary and isometry group of Thurston’s Lipschitz metric. - In: Hand-
book of Teichmüller theory. Volume IV, IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc.,
Zürich, 2014, 327–353.

[27] Walsh, C.: The asymptotic geometry of the Teichmüller metric. - Geom. Dedicata 200:1,
2019, 115–152.

Received 14 January 2019 • Accepted 9 September 2019


