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Abstract. We establish a correspondence on a Riemann surface between hyperbolic metrics

with isolated singularities and bounded projective functions whose Schwarzian derivatives have

at most double poles and whose monodromies lie in PSU(1, 1). As an application, we construct

explicitly a new class of hyperbolic metrics with countably many singularities on the unit disc.

1. Introduction

In this manuscript we call a conformal metric of Gaussian curvature −1 on a
Riemann surface a hyperbolic metric. Hyperbolic metrics with isolated singularities
are the main objects of our investigation. Such kind of problems have root in the
classical Uniformization Theory [7, Chapter IV] and the history of them could go
back to Picard [22]. Based on the celebrated result by Nitsche [21] and Heins [11]
that an isolated singularity is either a cone singularity or a cusp one, on a Riemann
surface, not necessarily compact, we establish a correspondence in Theorem 2.2 be-
tween hyperbolic metrics with isolated singularities and bounded projective functions
whose Schwarzian derivatives have at most double poles and whose monodromies lie
in PSU(1, 1). Hence it reduces differential geometric problems about hyperbolic met-
rics into the corresponding complex analytical ones, and particularly makes sense on
noncompact Riemann surfaces since people have already known the classical exis-
tence theorem (Theorem 2.1) of hyperbolic metrics with finitely many singularities
on compact Riemann surfaces by Heins [11, Chapter II]. The referee kindly pointed
out to us that actually this correspondence is a corollary of a more general result
[18, Theorem 1.2], where Kraus and Roth investigated conformal metrics of negative
Gaussian curvature extending continuously to the isolated singularities. However,
our proof of the correspondence is much shorter and substantially different from that
of [18, Theorem 1.2]. Moreover, by using the correspondence, we construct in Ex-
ample 2.1 a new class of hyperbolic metrics with infinitely many singularities on the
disc. We are also informed friendly by the referee that hyperbolic metrics with cone
angles of 2π times positive integers on the disc are relevant to a major problem [17]
in the theory of Bergman spaces, which has been open for 50 years or so.
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We prepare the notions, including the differential geometric concept of cone sin-
gularities and cusp one, provide the details of the background and give the complete
statements for Theorem 2.1, Theorem 2.2 and Example 2.1 in the next section. In
Section 3, we give the complex analytical definition (Definition 3.1) of both cone
singularities and cusp one of a hyperbolic metric and prove that the differential
geometric definition implies the complex analytical one by the PDE method. As a
consequence, we obtain the necessary part of Theorem 2.2. In the last section, we
prove that complex analytical definition implies the differential geometric one, which
also implies the sufficient part of Theorem 2.2. We also provide in this section the
detail of Example 2.1 and propose three questions.

2. Background and the main results

Let X be a compact Riemann surface and D =
∑n

j=1 (θj − 1)Pj be an R-divisor
on X such that 1 6= θj ≥ 0 and P1, · · · , Pn are n distinct points on X. We call
ds2 a conformal metric representing D on X if ds2 is a smooth conformal metric
on X\ suppD := X\{P1, · · · , Pn} and in a neighborhood Uj of Pj, ds

2 has form
e2uj |dz|2, where z is a local complex coordinate defined in Uj centered at Pj and the
smooth real valued function

vj :=

{
uj − (θj − 1) ln |z| if θj > 0,

uj + ln |z| + ln(− ln |z|) if θj = 0,

on Uj\{Pj} extends to a continuous function on Uj . We also say that ds2 has a
cone singularity of angle 2πθj at Pj when θj > 0, and it has a cusp singularity at

Pj when θj = 0. We may think of the above definition of cone/cusp singularity a
differential geometric one. We call ds2 a hyperbolic metric representing D on X if
ds2 is a conformal metric representing D on X whose Gaussian curvature equals −1
identically on X\ suppD. There also exists a unified complex analytical definition
for both cone singularities and cusp one of a hyperbolic metric (Definition 3.1). We
prove in Lemma 3.1 that these two definitions coincide with each other when we
are considering hyperbolic metrics. Nitsche [21] and Heins [11, § 18] proved that
an isolated singularity of a hyperbolic metric must be either a cone singularity or a

cusp one. By the Gauss–Bonnet formula, if ds2 is a hyperbolic metric representing
D =

∑n
j=1 (θj − 1)Pj on X, then there holds

χ(X) +

n∑

j=1

(θj − 1) < 0,

where χ(X) is the Euler number of X. Heins [11] studied the properties of S-K
metrics and applied it to showing

Theorem 2.1. [11, Chapter II] There exists a unique hyperbolic metric repre-
senting an R-divisor D =

∑n
j=1 (θj−1)Pj with θj ≥ 0 on a compact Riemann surface

X if and only if χ(X) +
∑n

j=1 (θj − 1) < 0.

Actually the history of this problem goes back to Picard [22], who studied the
hyperbolic metrics with cone singularities. After Heins’ work [11], both McOwen
[20] and Troyanov [26], who were unaware of Heins’ work [11] apparently, proved
the theorem for the case of θj > 0 by using different PDE methods. Moreover, the
hyperbolic metrics on the Riemann sphere with three singularities were expressed
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explicitly in [1, 19, 28] by using the Gauss hypergeometric functions and some refined
properties of the metrics were also studied there.

In this manuscript, by using developing map [24, § 3.4] and [4, Sections 2–3]
and Complex Analysis, we investigate more general hyperbolic metrics with isolated
singularities on Riemann surfaces, which are not necessarily compact. To this end,
we need to prepare some notions at first. Let X be a Riemann surface and D =∑

j (θj − 1)Pj an R-divisor on X such that θj ≥ 0 and P1,P2, · · · are mutually
distinct points on X, which form a closed and discrete subset of X. We denote
{P1,P2, · · · } by suppD, which is at most countable. We could give the definition of
the conformal metric representing D on X in the similar way as the first paragraph of
this section. We say a multi-valued locally univalent meromorphic function f : S →
P

1 := C ∪ {∞} on a Riemann surface S a projective function if the monodromy of
f lies in the group PSL(2,C) consisting of all Möbius transformations. We say a
projective function f on X\ suppD compatible with D if and only if the Schwarzian

derivative {f, z} =
(

f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2
of f has the form of

1−θ2j
2z2

+
bj
z
+ hj(z) near

each Pj , where z is a complex coordinate centered at Pj , bj is a constant, and hj(z)
is holomorphic near Pj . We note that both the constant bj and the holomorphic
function hj(z) depend on the choice of the complex coordinate z, but the principal

singular term
1−θ2j
2z2

of {f, z} does not.

Theorem 2.2. There exists a hyperbolic metric ds2 representing an R-divisor
D =

∑
j(θj − 1)Pj with θj ≥ 0 on a Riemann surface X if and only if there exists

a projective function f : X\ suppD → D := {w ∈ C : |w| < 1} such that f is
compatible with D and the monodromy of f lies in the holomorphic automorphism
group

PSU(1, 1) =

{
w 7−→ aw + b

bw + a
: a, b ∈ C, |a|2 − |b|2 = 1

}

of D. Moreover, ds2 coincides with the pullback f ∗gst of the standard hyperbolic

metric gst := 4|dw|2
(1−|w|2)2 on D by f . We say f a developing map of the metric ds2,

which is uniquely determined up to a post-composition with an automorphism of D.

Remark 2.1. Luo [16] also mentioned the same result as Theorem 2.2 for hyper-
bolic metrics with only cone singularities on compact Riemann surfaces. Kraus–Roth
[18, Theorem 1.2] proved a more general result than Theorem 2.2 where they inves-
tigated conformal metrics with negative Gaussian curvature extending continuously
to the isolated singularities. Our proof of Theorem 2.2 is an alternative and much
shorter one for the hyperbolic case of their theorem. In particular, ours is reduced to
showing that the differential geometric definition coincides with the complex analyt-
ical one for cusp singularity of a hyperbolic metric. The proof of the coincidence is
interesting because we need to do some subtle analysis for a second order nonlinear
elliptic partial differential equation.

Remark 2.2. Chen, Wang, Wu and the last author [4, Theorem 3.4] proved
an analogue of Theorem 2.2 for cone spherical (constant curvature one) metrics on
compact Riemann surfaces, which motivated us to come up with Theorem 2.2. For
the convenience of the readers, we state a more general version of [4, Theorem 3.4] as

follows: There exists a conformal cone spherical metric d̃s2 representing an R-divisor
D =

∑
j(θj − 1)Pj with θj > 0 on a Riemann surface X if and only if there exists

a projective function f̃ : X\ suppD → P
1 such that f̃ is compatible with D and the
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monodromy of f̃ lies in the group

PSU(2) =

{
w 7−→ aw + b

−bw + a
: a, b ∈ C, |a|2 + |b|2 = 1

}

consisting of all the Möbius transformations preserving the standard spherical metric
4|dw|2

(1+|w|2)2 on the Riemann sphere P
1 . Moreover, d̃s2 = f̃ ∗

(
4|dw|2

(1+|w|2)2

)
. Of course, the

proof of the preceding statement in [4, Theorem 3.4] was much simpler than that of
Theorem 2.2 because a spherical metric with finite area has no cusp singularity.

As an application of Theorem 2.2, we find the following new example of hyperbolic
metrics with countably many singularities.

Example 2.1. Let
∑∞

j=1 an be a convergent series of positive numbers and

{zj}∞j=1 a closed discrete subset of D. Then h(z) :=
∑∞

j=1
aj

z−zj
is a meromorphic func-

tion on D and there exists a real number λ0 and a one-parameter family {ds2λ : λ > λ0}
of hyperbolic metrics representing the same Z-divisor D = (h) on D. That is, these
metrics have cusp singularities at zj ’s and a cone singularity of angle 2π

(
1+ordw(h)

)

at each zero w of h. We obtain a similar statement if we use the finite sum
∑N

j=1 an

of positive numbers and a finite subset {zj}Nj=1 of D, where
∑N

j=1
aj

z−zj
has (N − 1)

zeros (counting multiplicities) on D.
It is an easy observation that h has no zero on {z ∈ C : |z| ≥ 1}. Borcea [3]

proposed a conjecture that h has infinitely many zeros in {z ∈ C : |z| ≥ 1} if zk
converges to a point on the unit circle {z ∈ C : |z| = 1}, which was disproved by
Langley [13]. Langley op. cit. also gave a sufficient condition about {zj} under which
h(z) has infinitely many zeros converging to a point on the unit circle {z ∈ C : |z| =
1}. There also exist a few of recent papers [5, 6, 14, 15] concerned zeros of h(z). We
show for

h0(z) =

∞∑

j=1

1

2j3(2j + 1)
· 1

z −
(
1− 1

2j−1

)

that there exists a unique zero wj of h0(z) lying on the interval
(
1− 1

2j−1
, 1− 1

2j+1

)

for all j = 1, 2, · · · and {wk} forms the zero set of h0(z).

Remark 2.3. Using the punctured disc case of Theorem 2.2, Feng, Shi and the
last author [8] obtained an explicit local model of an isolated singularity of a hyper-
bolic metric in a suitably chosen complex coordinate around the singularity. Also
motivated by Theorem 2.2, Feng, Shi and the last author [9] found the preceding
local model by merely using Complex Analysis. Moreover, based on the correspon-
dence in Theorem 2.2 and following the ideas in [4, 23], Feng, Shi, Song and the
last author [10] have been investigating systematically new hyperbolic metrics with
isolated singularities on noncompact Riemann surfaces by using both subharmonic
functions and meromorphic (quadratic) differentials.

3. The complex analytical definition

At first we give the complex analytical definition of cone/cusp singularity of a
hyperbolic metric. Consider a hyperbolic metric ds2 = e2u|dz|2 on the punctured disc
U∗ := U − {0} = {0 < |z| < 1/2}, where U = {|z| < 1/2}. By the similar argument
as [4, Lemma 2.1], there exists a projective function f : U∗ → D with monodromy
in PSU(1, 1) such that ds2 = f ∗gst. We say f a developing map of the hyperbolic
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metric ds2, which is unique up to a post-composition by a Möbius transformation in
PSU(1, 1). Moreover, the Schwarzian derivative {f, z} of f is meromorphic in U∗.

Definition 3.1. We say that z = 0 is a cusp singularity of a hyperbolic metric
ds2 on U∗ if and only if near z = 0 there holds {f, z} = 1

2z2
+ b0

z
+ h(z), where b0 is a

constant and h(z) is holomorphic near z = 0. We say that z = 0 is a cone singularity

with angle 2πθ > 0 of ds2 if and only if near z = 0 there holds {f, z} = 1−θ2

2z2
+ c0

z
+g(z),

where c0 is a constant and g(z) is holomorphic near z = 0.

Lemma 3.1. The differential geometric definition of cone/cusp singularity of a
hyperbolic metric in U∗ in the first paragraph of Section 2 coincides with the complex
analytical one as in Definition 3.1.

We leave to the next section the proof that the complex analytical definition
implies the differential geometric one. We shall prove the implication of the opposite
direction in what follows.

Suppose that in the differential geometric sense, z = 0 is a cone singularity of
angle 2πθ > 0 of the hyperbolic metric ds2 = e2u|dz|2 in U∗ = {0 < |z| < 1/2}.
Then, by the similar computation in [4, Lemma 3.1] and [25, Lemma, Section 3], we

find that the Schwarzian derivative of f equals 2
(

∂2u
∂z2

− (∂u
∂z
)2
)
, which has the form

of 1−θ2

2z2
+ c0

z
+g(z), where c0 is a constant, and g(z) is holomorphic near z = 0. Hence,

z = 0 is also a cone singularity in the sense of Definition 3.1. However, the same
argument could not go through for {f, z} if z = 0 is a cusp singularity of ds2 in the
differential geometric sense. In the remaining part of this section, we shall show by
a different PDE method from [25, Lemma, Section 3] that f is a cusp singularity in
the sense of Definition 3.1.

Suppose that z = 0 is a cusp singularity of the hyperbolic metric ds2 = e2u|dz|2
in U∗ = {0 < |z| < 1/2} in the differential geometric sense. Then

v := u+ ln |z|+ ln(− ln |z|)

is continuous on U , and we have

ds2 = e2u|dz|2 = f ∗gst =
4|f ′|2|dz|2
(1− |f |2)2 and u = ln 2 + ln |f ′| − ln (1− |f |2).

It suffices to show that {f, z} = 1
2z2

+ d
z
+ ψ(z), where d is a constant and ψ is

holomorphic in U . By computation, there holds in U∗ that

{f, z} = 2

(
∂2u

∂z2
−
(
∂u

∂z

)2
)

=
1

2z2
+

2

z

(
∂v

∂z

(
1 +

1

ln |z|

)
+ z

∂2v

∂z2
− z

(
∂v

∂z

)2
)
,

which is holomorphic in U∗ since ds2 is hyperbolic there [25, Lemma, Section 3]. The
problem is reduced to showing

Lemma 3.2. The holomorphic function

F (z) :=
∂v

∂z

(
1 +

1

ln |z|

)
+ z

∂2v

∂z2
− z

(
∂v

∂z

)2

in U∗ extends to z = 0.

We need two lemmas for the proof of Lemma 3.2.
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Lemma 3.3. Denote D := {|z| < 1/5} ⊂ U . Then
´

D
|∇v|2 < +∞. Here and

later on we omit in the integrals the standard Lebesgue measure
√
−1
2

dz ∧ dz̄ on the
Euclidean plane C ⊃ D.

Proof. The proof is divided into three steps.

Step 1. Since g = e2u |dz|2 is a hyperbolic metric on U∗, we have ∆u = 4 ∂2u
∂z∂z̄

= e2u

on U∗. Since v = u+ ln |z|+ ln(− ln |z|), we rewrite ∆u = e2u as

(1) ∆v = h :=
e2v − 1

|z|2(ln |z|)2 in U∗.

Recall that v is continuous in U and h is locally integrable in U . Hence, both sides
of (1) can be thought of as distributions in U . Now we shall prove that (1) holds in
U in the sense of distribution.

As a distribution, the support of ∆v − h is contained in {z = 0}. By [12,
Theorem 2.3.4], ∆v − h equals a linear combination of the Dirac delta function δ0
and its partial derivatives, i.e. ∆v − h =

∑
Cα∂

αδ0, where there are at most finitely
many nonzero constants Cα. Take an arbitrary multi-index α and fix it. We can
choose a function φ ∈ C∞

0 (U) such that ∂αφ(0) 6= 0 and ∂βφ(0) = 0 for all β 6= α.
Denote φk(z) = φ(kz). Then

h(φk) =

ˆ

U

hφk ≤ sup |φk|
ˆ

suppφk

h→ 0 as k → ∞.

Moreover, since
´

U
∆φ = 0 and v is continuous at z = 0, we have

|∆v(φk)| =
∣∣∣∣
ˆ

U

v(z/k)∆φ −
ˆ

U

v(0)∆φ

∣∣∣∣ ≤
ˆ

U

|v(z/k)− v(0)||∆φ| → 0.

Hence (∆v−h)(φk) → 0 as k → ∞. On the other hand, (∆v−h)(φk) = Cαk
|α|∂αφ(0),

which implies Cα = 0. Thus ∆v = h on U as distributions.

Step 2. Recall that v is smooth in U∗ and continuous at z = 0. We shall prove

ˆ

D∗

|∇v|2 < +∞.

Choose a family {χǫ : ǫ > 0} of compactly supported non-negative smooth functions
in C such that

´

C
χǫ = 1 and suppχǫ ⊂ {|z| ≤ ǫ}. Since v is continuous on U , the

convolutions vk := χ 1

k
∗ v, k = 5, 6, 7, · · · , are well defined smooth functions in D,

which converge uniformly to v on D as k → ∞. Moreover, since v ∈ C∞(D∗), as
k → ∞, |∇vk|2 → |∇v|2 uniformly in any compact subsets of D∗. By Fatou’s lemma,
we have

ˆ

D∗

|∇v|2 ≤ lim inf
k

ˆ

D∗

|∇vk|2.

Then we show that the integrals
´

D∗
|∇vk|2 are uniformly bounded for all k =

5, 6, 7, · · · . Using integration by parts, we have

ˆ

D∗

|∇vk|2 =
ˆ

D

|∇vk|2 = −
ˆ

D

vk∆vk +

ˆ

∂D

vk
∂vk
∂~n

.
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Recall that vk → v uniformly on D and ∂vk
∂~n

→ ∂v
∂~n

uniformly on ∂D. The problem is
reduced to showing that

´

D
|∆vk| is uniformly bounded. Actually, as k ≥ 5, we have

ˆ

D

|∆vk| =
ˆ

|z|<1/5

∣∣∣∣
ˆ

|z̃|<2/5

χ1/k(z − z̃)∆v(z̃)

∣∣∣∣

≤
ˆ

C

χ1/k

ˆ

|z|<2/5

|∆v| =
ˆ

|z|<2/5

|h| <∞.

Thus we conclude
´

D∗
|∇v|2 < +∞.

Step 3. Denote the standard coordinate z in D ⊂ C by z = x +
√
−1y. Then

w := ∂v
∂x

is a smooth and square integrable function on D
∗, which can be thought of

as an square integrable function and then a distribution in D. The partial derivative
∂v
∂x

of the continuous function v in D is also a distribution in D. We shall show that

the two distributions ∂v
∂x

and w coincide. Take a smooth test function φ supported in
D. By the Fubini theorem and integration by parts, we have

(
∂v

∂x
− w

)
(φ) =

¨

(
−v∂φ

∂x
− wφ

)
= lim

ǫ→0+

ˆ ∞

−∞
dy

ˆ

|x|>ǫ

(
−v∂φ

∂x
− wφ

)
dx

= lim
ǫ→0+

ˆ ∞

−∞
(v(ǫ, y)φ(ǫ, y)− v(−ǫ, y)φ(−ǫ, y))dy = 0.

The similar statement holds for ∂v
∂y

. Therefore, we complete the proof. �

Lemma 3.4. F (z) is in L2−ǫ(D) for all 0 < ǫ < 1. In particular, z = 0 is at
most a simple pole of F (z).

Proof. By Lemma 2.1, both ∂v
∂z

and ∂v
∂z̄

belong to L2(D). Then the first summand
∂v
∂z

(
1 + 1

ln |z|
)

in F (z) also lies in L2(D). Defining ṽ := zv, we have

∆ṽ = 4
∂v

∂z̄
+ z∆v.

Since both ∂v
∂z̄

and z∆v = e2v−1
|z|(ln |z|)2 belong to L2(D), we have ∆ṽ ∈ L2(D) and then

ṽ ∈ W 2,2(D). By the Sobolev embedding theorem, we obtain ∂ṽ
∂z

= v + z ∂v
∂z

∈ Lp(D)

for any p > 1. Since v ∈ Lp(D) as well ,we have z ∂v
∂z

∈ Lp(D) for any p > 1. We now

claim that the third summand z
(
∂v
∂z

)2
in F (z) belongs to L2−ǫ(D) for all 0 < ǫ < 1.

In fact, defining 1
p
:= ǫ

2
and 1

q
:= 2−ǫ

2
, by the Hölder inequality, we obtain

ˆ

D

∣∣∣∣∣z
(
∂v

∂z

)2
∣∣∣∣∣

2−ǫ

≤
(
ˆ

D

∣∣∣∣z
∂v

∂z

∣∣∣∣
(2−ǫ)p

)1/p(
ˆ

D

∣∣∣∣
∂v

∂z

∣∣∣∣
(2−ǫ)q

)1/q

<∞.

As long as the the second summand z ∂2v
∂z2

in F (z) is concerned, since ∂2ṽ
∂z2

= 2∂v
∂z
+z ∂2v

∂z2
∈

L2(D), we have z ∂2v
∂z2

∈ L2(D). Therefore, we have proved F (z) ∈ L2−ǫ(D). Since F
is holomorphic and integrable in D

∗, z = 0 is at most a simple pole of F . �

Proof of Lemma 3.2. We prove by contradiction. Suppose that F (z) has a simple
pole at z = 0 with residue −λ2/4, where λ ∈ C

∗ and ℜλ ≥ 0. Take a developing
map f : U∗ → D of the restriction of the hyperbolic metric ds2 to U∗. Moreover, we

have {f, z} = 1
2z2

− 2F (z)
z

= 1−λ2

2z2
+ d

z
+ ψ for some constant d and a holomorphic

function ψ in U . In each small disc lying in U∗ := U\{0}, f is the ratio of two linear
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independent solutions of the following Fuchsian equation d2y
dz2

+ 1
2

(
1−λ2

2z2
+ d

z
+ψ
)
y = 0,

whose two indicial exponents are (1 + λ)/2 and (1− λ)/2 with difference λ.
If λ /∈ Z, it follows from the Frobenius method [27, p.39] that there exists a small

neighborhood, say V , of z = 0, and another complex coordinate ξ of V centered at
z = 0 such that f has the form of ξλ in each small disk of V ∗ := V \{0}, where the
details of computation is the same with [8]. Since f takes values in D

∗, λ must be
positive and z = 0 is a cone singularity of ds2 with angle 2πλ. Contradiction!

If λ ∈ Z6=0, then by a combination of the Frobenius method and the fact that
f takes values in D

∗ and has monodromy in PSU(1, 1), we find that λ is a positive
integer and f has form ξλ in another complex coordinate chart (V, ξ) centered at
z = 0. It implies that z = 0 is also a cone singularity of ds2 of angle 2πλ. This is a
contradiction. �

At last we prove

The necessary part of Theorem 2.2. By the similar argument as [4, Lemma 2.1],
there exists a projective function f : X\ suppD → D with monodromy in PSU(1, 1)
such that ds2 = f ∗gst. We say f a developing map of the hyperbolic metric ds2,
which is unique up to a post-composition of a Möbius transformation in PSU(1, 1).
It follows from the proven part of Lemma 3.1 that f is compatible with D.

4. Sufficient part of Theorem 1.2, an example and three questions

To complete the proof of Lemma 3.1, we need only to show that Definition 3.1
for cone and cusp singularities of a hyperbolic metric ds2 in U∗ = {0 < |z| < 1/2}
implies the differential geometric definition of them. Actually, the argument is similar
as in the proof of Lemma 2.2. If θ /∈ Z, then by only using the Frobenius method,
we find easily that z = 0 is a cone singularity of angle 2πθ as θ > 0, and it is a cusp
singularity as θ = 0. If θ is an integer greater than one, since |f | < 1, we could rule
out the possibility that f may have the logarithmic singularity at z = 0 and find that
z = 0 is a cone singularity of angle 2πθj .

Then we prove

The sufficient part of Theorem 2.2. Suppose that f : X\ suppD → D is a pro-
jective function which is compatible with D and has the monodromy in PSU(1, 1).
Then f ∗gst is a hyperbolic metric on X\ suppD. It follows from Lemma 3.1 that the
metric f ∗gst represents D.

Before giving the details of Example 2.1, we need an equivalent version of Theo-
rem 2.2 as follows.

There exists a hyperbolic metric ds2 representing an R-divisor D =
∑

j (θj−1)Pj

with θj ≥ 0 on a Riemann surface X if and only if there exists a projective function
f : X\ suppD → H := {w ∈ C : ℑw > 0} such that f is compatible with D and the
monodromy of f lies in the holomorphic automorphism group

PSL(2,R) =

{
w 7−→ aw + b

cw + d
: a, b, c, d ∈ R, ad− bc = 1

}

of H. Moreover, ds2 coincides with the pullback f ∗g̃st of the standard hyperbolic

metric g̃st :=
4|dw|2
(ℑw)2

on H by f . We say f a developing map of the metric ds2, which

is uniquely determined up to a post-composition with an automorphism of H.
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Denote ω := −
√
−1 h(z) dz =

∑∞
j=1

(
−
√
−1 aj

z−zj

)
dz. Since

∑∞
n=1 an is a conver-

gent series of positive numbers, we observe that the multi-valued function
´ z

0
ω on

D\{zj}∞j=1 has monodromy in {w 7→ w + t : t ∈ R} ⊂ PSL(2,R) such that its imag-

inary part ℑ
(
´ z

0
ω

)
is single-valued and has a lower bound. Hence, there exists a

real number λ0 such that for all z ∈ D\{zj}∞j=1

λ0 + ℑ
(
ˆ z

0

ω

)
≥ 0.

Hence

fλ(z) =
√
−1λ+

ˆ z

0

ω, λ ∈ (λ0,∞),

is a family of projective functions on D\{zj}∞j=1 taking values in H and having

monodromy in {w 7→ w + t : t ∈ R} ⊂ PSL(2,R). We claim that ds2λ := f ∗
λ

(
g̃st
)

is a family of hyperbolic metrics representing the divisor D = (h), i.e. ds2λ has cusp
singularities at simple poles of h, and has a cone singularity at each zero w of h with
cone angle 2π

(
1 + ordw(h)

)
. Actually, fλ(z) equals (−

√
−1 aj) log(z − zj) plus a a

multi-valued holomorphic function near zj , so {f, z} = 1
(z−zj)2

+ · · · there. Hence

zj is a cusp singularity of ds2λ. Near each zero w of h(z) with multiplicity ℓ, we
have d

dz
(fλ(z)) = (−

√
−1)h(z) = (z − w)ℓg(z), where g(z) is holomorphic at w and

g(w) 6= 0. Hence near w, {f, z} = 1−(ℓ+1)2

(z−w)2
+ · · · , which implies that w is a cone

singularity of ds2λ with angle 2π(1 + ℓ).
By now, we have proved the statements in the first paragraph of Example 2.1.

For the second one, we need the following elementary lemma.

Lemma 4.1. Let a1, · · · , aN be N ≥ 2 positive numbers and z1, · · · , zN be
distinct complex numbers in the disc {|z| < R}, where R is a positive constant.

Then, the rational function
∑N

j=1
aj

z−zj
has (N − 1) zeros (counting multiplicities) on

the disc {|z| < R}. The meromorphic function h on C\{|z| = 1} in Example 2.1 has
no zero in {z ∈ C : |z| ≥ 1}.

Proof. Taking a complex number ξ such that ℑξ ≤ −R, we find

ℑ (ξ − zj) < 0 and ℑ aj
ξ − zj

> 0,

which implies
∑N

j=1
aj

ξ−zj
6= 0. Observing that ℑ z = −R is a tangent line to the circle

{|z| = R}, we could prove the first statement by arguing on each half plane defined
by each tangent line to the circle and disjoint from the disc {|z| < R}. The second
one follows from the similar argument. We also note that h extends holomorphically
to each point on the circle ∂D = {|z| = 1}, which is not a limit point of {zj}. �

Then we prove that h0(z) =:
∑∞

j=1
aj

z−zj
has the same number of zeros as fN (z) :=∑

|zj |≤rN

aj
z−zj

on the disc {|z| < rN := 1 − 1
2N

} when N is sufficiently large, where

aj =
1

2j3(2j+1)
and zj = 1− 1

2j−1
. At first we show that on the circle {|z| = rN} there

holds |fN(z)| > |gN(z)| when N is sufficiently large, where

gN(z) := h0(z)− fN (z) =
∑

|zj |>rN

aj
z − zj

.
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In fact, on the circle {|z| = rN}, we have

|gN(z)| ≤
∑

|zj |>rN

aj
|zj| − rN

≤ 2N(2N + 1)
∑

|zj |>rN

aj ≤
∑

j>N

1

j2
.

Moreover, denoting by z = irNe
iθ a point z on this circle, by computation, we have

fN(z) = e−iθ
∑

|zj |<rN

aj
irN − zje−iθ

= e−iθ
∑

|zj |<rN

aj(−irN − zje
iθ)

|irN − zje−iθ|2 ,

and recalling z1 = 0, we obtain

|fN(z)| = |eiθfN (z)| ≥
∣∣ℑ(eiθfN(z))

∣∣ =
∑

|zj |<rN

aj(rN + zj sin θ)

|irN − zje−iθ|2 ≥ a1
rN

≥ a1

and prove the inequality |fN(z)| > |gN(z)| on the circle. Since both h0 and fN have
N simple poles on the disc {|z| < rN} and |h0(z)− gN(z)| = |fN(z)| > | − gN(z)| on
the circle {|z| = rN}, by the Rouché theorem, h0(z) has the same number of zeros as
fN(z) on the disc {|z| < rN}. By Lemma 4.1, counting multiplicities, we find that
fN(z) has (N − 1) zeros on the disc.

Restricting h0(z) to the interval
(
1− 1

2j−1
, 1− 1

2j+1

)
, we find by the intermediate

value theorem that h0(z) has a zero wj lying on this interval. Since h0(z) has at most
(N − 1) zeros (counting multiplicities) on the interval (0, 1 − 1

2N
) by the result in

the above paragraph, all the zeros of h0(z) lie on the interval (0, 1) and wj is the

unique zero of h0(z) lying in
(
1− 1

2j−1
, 1− 1

2j+1

)
. By now we have completed the

explanation of Example 2.1.

At last, we propose the following two questions.

Question 4.1. Use the notions in Theorem 1.1 and assume that θj ’s are non-
negative rational numbers. What is the necessary and sufficient condition for D =∑n

j=1 (θj − 1)Pj under which the monodromy group of the developing map f of the

hyperbolic metric ds2 representing D on a compact Riemann surface X is discrete in
PSU(1, 1)? It is the case when θj ∈ {0, 1/2, 1/3, · · · } by the Uniformization Theory.
Also a conceptual necessary and sufficient condition was given in [2, Theorem 3.29]
for the case of 3 singularities on the Riemann sphere, which has yet to be expressed
in terms of θ1, θ2 and θ3.

Question 4.2. It is interesting for us to investigate the existence and the unique-
ness of hyperbolic metrics with isolated singularities on noncompact Riemann sur-
faces, which seems to be an open problem to the best of our knowledge. A major
problem [17] in the theory of Bergman spaces, which has been open for 50 years
or so, forms a special case of the existence problem of singular hyperbolic metrics.
Precisely speaking, the problem mentioned in [17] asks for a characterization of the
critical set of a holomorphic self-map of the unit disc. On the other hand, it follows
from Theorem 2.2 that such a self-map is equivalent to a hyperbolic metric with cone
singularities of cone angles of 2π times positive integers on the unit disc.

Question 4.3. Given a convergent series
∑∞

j=1 an of positive numbers and a
sequence of positive integers m1, m2, · · · , does there exist a closed discrete subset
{zj} of D such that h(z) =

∑∞
j=1

aj
z−zj

have infinitely many zeros w1, w2, · · · with
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multiplicities m1, m2, · · · , respectively? This question is motivated by the relation-
ship between the multiplicities of zeros of h(z) and the cone angles of the hyperbolic
metrics ds2λ in Example 2.1, and its answer is positive if 1 = m1 = m2 = · · · .
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