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Abstract. The class of cofinally complete metric spaces lies between the class of complete

metric spaces and that of compact metric spaces. It is known that a metric space (X, d) is cofinally

complete if and only if every real-valued continuous function on (X, d) is cofinally Cauchy regular,

where a function is said to be cofinally Cauchy regular or CC-regular for short if it preserves cofinally

Cauchy sequences. Recently in 2017, Keremedis has defined almost bounded functions and AUC

spaces [22]. We show that an AUC space is nothing but a cofinally complete metric space and

an almost bounded function is nothing but a CC-regular function. Also in this paper, we study

boundedness of various Lipschitz-type functions which are CC-regular as well and find equivalent

characterizations of metric spaces on which such functions are uniformly continuous. Finally we

explore some properties of cofinally Bourbaki–Cauchy regular functions, where a function is said to

be cofinally Bourbaki–Cauchy regular if it preserves cofinally Bourbaki–Cauchy sequences [17] and

find their relation with CC-regular functions.

1. Introduction

The concepts of completeness and compactness play a very important role in the
theory of metric spaces. Some classes of metric spaces satisfying properties stronger
than completeness and weaker than compactness have been the subject of study for
a number of articles over the decades. One such well-known metric space is Atsuji
space, also widely known as UC space. A metric space (X, d) is called a UC space if
every real-valued continuous function on (X, d) is uniformly continuous. According
to [13], the study of UC spaces can be traced back at least to 1947 [14]. Then
Nagata studied such spaces in 1950 in [25], while in 1958 several new equivalent
characterizations of such spaces were studied by Atsuji in [3]. The UC spaces have
been studied by many authors [4, 5, 9]. Moreover, a wide collection of equivalent
conditions for a metric space to be a UC space can be found in the survey article [24]
by Kundu and Jain.

For discussing completeness of a metric space, one has to consider its corre-
sponding Cauchy sequences. In 1971, Howes [19] generalized the notion of Cauchy
sequences in terms of nets, which he called cofinally Cauchy; replacing “residual” by
“cofinal” in the definition of Cauchy sequences, we obtain sequences that are called
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cofinally Cauchy. More precisely, a sequence (xn) in a metric space (X, d) is said to
be cofinally Cauchy if for each ǫ > 0, there exists an infinite subset Nǫ of N such
that for each n, j ∈ Nǫ, we have d(xn, xj) < ǫ. A metric space is said to be cofinally
complete if each cofinally Cauchy sequence in it has a cluster point. A metric space is
called uniformly paracompact [26] if for each open cover V of X, there exists an open
refinement U and δ > 0 such that for each x ∈ X, B(x, δ) intersects only finitely
many members of U . It is well-known that uniform paracompactness and cofinal
completeness are equivalent properties [27] (see also [20, p. 95]). In 2008, Beer [6]
gave a new direction to the study of cofinal complete metric spaces by adding their
various nice and useful characterizations. Actually, the class of cofinally complete
metric spaces lies between the class of complete metric spaces and that of UC spaces.
Motivated by the significance of Cauchy-continuous functions [29, 28], in 2016, Aggar-
wal and Kundu [2] defined another class of functions called cofinally Cauchy regular
(or CC-regular for short). A function f : (X, d) → (Y, ρ) between two metric spaces
(X, d) and (Y, ρ) is called Cauchy-continuous (also referred to as Cauchy-sequentially
regular; CS-regular for short) if for any Cauchy sequence (xn) in (X, d), (f(xn)) is
Cauchy in (Y, ρ), while f is called cofinally Cauchy regular (or CC-regular) if (f(xn))
is cofinally Cauchy in (Y, ρ) for every cofinally Cauchy sequence (xn) in (X, d). In [1],
the authors gave several equivalent characterizations of a cofinally complete metric
space in terms of CC-regular functions.

Functions play a significant role in the theory of metric spaces. Two important
classes of functions, namely the class of continuous functions and that of uniformly
continuous functions, are well-known to all of us. A function f : (X, d) → (Y, ρ)
between two metric spaces (X, d) and (Y, ρ) is called uniformly continuous if ∀ ǫ >
0, ∃ δ > 0 such that for each A ⊆ X with the diameter of A less than δ, the
diameter of f(A) is less than ǫ, that is, f(A) ⊆ B(b, ǫ) for some b ∈ Y . Recently
in 2017, Keremedis [22] generalized the defintion of uniformly continuous functions
and apparently defined a new class of functions which he called almost bounded.
In the definition of uniformly continuous functions, if we replace one open ball of
radius ǫ in the metric space Y by a union of finitely many open balls of radius ǫ
we get the definition of almost bounded functions. More precisely, a function f
from a metric space (X, d) to a metric space (Y, ρ) is called almost bounded if for
∀ ǫ > 0, ∃ δ > 0 such that for each A ⊆ X with the diameter of A less than δ, there
exists a finite subset B = {b1, b2, . . . , bn} of Y such that f(A) ⊆

⋃n

i=1B(bi, ǫ). But an
almost bounded function need not be continuous. Hence Keremedis considered those
functions which are continuous as well as almost bounded and called them almost
uniformly continuous. He also cast light on those metric spaces on which every
continuous function is almost uniformly continuous and called such metric spaces to
be almost uniformly continuous spaces or AUC spaces for short. The class of AUC
spaces lies strictly in between the class of Atsuji spaces and the class of complete
metric spaces.

In Section 2 of this paper, we study the relation between cofinally complete metric
spaces and AUC spaces through certain functions. In fact, we show that an almost
bounded function between two metric spaces is nothing but a CC-regular function
and an AUC space is nothing but a cofinally complete metric space. Consequently
an almost uniformly continuous function between two metric spaces is nothing but a
continuous CC-regular function.

In view of this result, in Section 3, we explore some interesting properties of
continuous CC-regular functions. Recently in [2], the authors have studied several
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interesting classes of bounded real-valued functions on metric spaces in order to
characterize some particular families of metric spaces. In order to study bound-
edness of continuous CC-regular functions, we characterize those metric spaces on
which every such function is bounded. Interestingly such metric spaces are same as
totally bounded metric spaces. We also study boundedness of various combinations
of Lipschitz-type functions with CC-regular functions. We discuss a few properties
of these functions and give some examples in the context of their relation with each
other. Also, using these combinations of functions, we present some new characteri-
zations of cofinally complete metric spaces and UC spaces. Here we should mention
that the metric spaces on which every real-valued uniformly continuous function is
bounded are precisely those which are finitely chainable, see [23]. On the other
hand, the metric spaces on which every real-valued continuous function is bounded
are precisely those which are compact.

To characterize finite chainability sequentially, Garrido and Meroño defined Bour-
baki–Cauchy and cofinally Bourbaki–Cauchy sequences [17]. Corresponding to these
sequences, Garrido and Meroño have introduced two new types of complete metric
spaces, namely Bourbaki-complete metric spaces and cofinally Bourbaki-complete
metric spaces. A metric space (X, d) is said to be (cofinally) Bourbaki-complete if
every (cofinally) Bourbaki–Cauchy sequence in X clusters. The concept of cofinally
Bourbaki–Cauchy sequences is similar to that of cofinally Cauchy sequences, in fact,
every cofinally Bourbaki-complete metric space is cofinally complete. Thus in Sec-
tion 4, we study the functions which preserve cofinally Bourbaki–Cauchy sequences.
We study some equivalent characterizations of such functions, their boundedness to-
gether with some Lipschitz-type functions and also find their relation with CC-regular
functions.

The symbols R and N denote the sets of real numbers and natural numbers
respectively. Unless mentioned otherwise R and its non-empty subsets carry the
usual distance metric and all metric spaces are infinite. If (X, d) is a metric space,
x ∈ X and δ > 0, then B(x, δ) denotes the open ball in (X, d), centered at x with

radius δ. Also, (X̂, d) denotes the completion of a metric space (X, d) and d(A)
denotes the diameter of a subset A of X.

2. CC-regular functions vis-á-vis almost bounded functions

In this section, we study the relation between cofinally complete metric spaces and
AUC spaces. In fact, we show that an almost bounded function between two metric
spaces is nothing but a CC-regular function. Consequently an almost uniformly
continuous function between two metric spaces is nothing but a continuous CC-
regular function. Let us first recall a few relevant definitions.

Definitions 2.1. A sequence (xn) in a metric space (X, d) is called cofinally

Cauchy if ∀ ǫ > 0, there exists an infinite subset Nǫ of N such that for each n, j ∈ Nǫ,
we have d(xn, xj) < ǫ. A metric space (X, d) is said to be cofinally complete if every
cofinally Cauchy sequence in X clusters, while (X, d) is called a UC space if every
real-valued continuous function on X is uniformly continuous.

Definitions 2.2. A function f : (X, d) → (Y, ρ) between two metric spaces is
said to be:

(a) Cauchy-continuous if (f(xn)) is Cauchy in (Y, ρ) for every Cauchy sequence
(xn) in (X, d).
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(b) cofinally Cauchy regular (or CC-regular) if (f(xn)) is cofinally Cauchy in
(Y, ρ) for every cofinally Cauchy sequence (xn) in (X, d).

(c) uniformly locally bounded if ∃ δ > 0 such that ∀ x ∈ X, g(Bd(x, δ)) is a
bounded subset of (Y, ρ).

Definitions 2.3. [22] A function f from a metric space (X, d) to a metric space
(Y, ρ) is called almost bounded if ∀ ǫ > 0, ∃ δ > 0 such that for every A ⊆ X with
d(A) < δ, there exists a finite subset B = {b1, b2, . . . , bn} of Y such that f(A) ⊆⋃n

i=1B(bi, ǫ). Moreover, a continuous almost bounded function from a metric space
(X, d) to a metric space (Y, ρ) is called almost uniformly continuous. A metric space
(X, d) is said to be an almost uniformly continuous space or an AUC space if every
continuous real-valued function on (X, d) is almost uniformly continuous.

Remark 2.4. An almost bounded function between two metric spaces need not
be continuous. For example, consider X = {0} ∪ {1/n : n ∈ N} with the usual
distance metric and define g(1/n) = 1 ∀ n ∈ N and g(0) = 0. Also, every uniformly
continuous function between two metric spaces is almost uniformly continuous, but
an almost uniformly continuous function need not be even Cauchy-continuous. For
example, consider X = { 1

n
: n ∈ N} with the usual distance metric and let f : X → R

be defined as:

f

(
1

n

)
=

{
1, n is odd,

2, n is even.

In [6], Beer provided a nice equivalent characterization of cofinally complete met-
ric spaces: A metric space (X, d) is cofinally complete if and only if each continuous

function from (X, d) to any metric space (Y, ρ) is uniformly locally bounded. In fact,
in [1], the authors gave another useful equivalent characterization of cofinally com-
plete metric spaces: A metric space (X, d) is cofinally complete if and only if each

continuous function from (X, d) to any metric space (Y, ρ) is CC-regular.

Now we state relations between the above defined functions which are used to
define AUC spaces and characterize cofinally complete spaces. Consequently, we get
relation between AUC spaces and cofinally complete spaces.

Theorem 2.5. If f is a CC-regular function from a metric space (X, d) to an-

other metric space (Y, ρ), then f is uniformly locally bounded.

Proof. Let f : (X, d) → (Y, ρ) be a CC-regular function. Suppose f is not uni-
formly locally bounded. Therefore ∀n ∈ N, ∃ xn ∈ X such that f(B(xn,

1
n
)) is

not a bounded subset of Y . Let ǫ be any positive real number. Now, ∀n ∈ N,
f(B(xn,

1
n
)) is not bounded in Y . Therefore, ∀n ∈ N, there exits a sequence

(f (xm
n ))m∈N in f

(
B
(
xn,

1
n

))
such that ρ (f (xm

n ) , f (xt
n)) ≥ ǫ for all m, t ∈ N.

Let An = {f(xm
n ) : m ∈ N}. Now we will construct a sequence in Y by induction.

Let F1 = {f(x1
1)}. If d(x1

1, y) < ǫ
2

for every y ∈ A2, then d(y, y′) < ǫ for all
y, y′ ∈ A2. We get a contradiction. Let f(x2

2) (rename if necessary) ∈ A2 such that
ρ(f(x1

1), f(x
2
2)) ≥

ǫ
2
. Similarly, we can choose f(x2

1) ∈ A1\ {f(x
1
1), f(x

2
2)} such that

F2 = {f(x1
1), f(x

2
2), f(x

2
1)} is ǫ

2
discrete. Now suppose a finite subset Fn of

⋃n

i=1Ai is
chosen satisfying: 1) Fn is ǫ

2
discrete, 2) |Fn∩Ai| = n−i+1 for all 1 ≤ i ≤ n. To con-

struct Fn+1, choose f(xn+1
n+1) ∈ An+1 such that Fn ∪

{
f(xn+1

n+1)
}

is ǫ
2

discrete. Suppose
it is not possible, then ρ(y, Fn) <

ǫ
2

for all y ∈ An+1. Since An+1 is infinite and Fn is
finite, there exists y, y′ ∈ An+1\Fn, y 6= y′ such that ρ(y, z) < ǫ

2
and ρ(y′, z) < ǫ

2
for

some z ∈ Fn. This implies ρ(y, y′) < ǫ, but it gives a contradiction. Repeating this



Functions that preserve certain classes of sequences and locally Lipschitz functions 703

process, we construct Fn+1 = Fn

⋃{
f(xn+1

1 ), f(xn+1
2 ), . . . f(xn+1

n+1)
}

such that Fn+1 is
ǫ
2

discrete. Now if we take a sequence in the order we chose the elements of the type
f(xi

j), i, j ∈ N, the sequence is ǫ
2

discrete but its pre-image is cofinally Cauchy as it

consists of infinite elements from each ball B(xn,
1
n
). Since f is CC-regular, we get a

contradiction. �

Remark 2.6. A uniformly locally bounded function between two metric spaces
need not be CC-regular. For example, consider X = { 1

n
: n ∈ N} with the usual

distance metric d and Y = {n : n ∈ N} with the {0, 1} discrete metric ρ. Define f
from (X, d) to (Y, ρ) such that f( 1

n
) = n for all n ∈ N.

Note that the above example shows that even a continuous uniformly locally
bounded function need not be CC-regular. But for a special kind of range, we have
the following result.

Proposition 2.7. Let f : (X, d) → (Y, ρ) be a function between two metric

spaces. Suppose every bounded subset of Y is totally bounded. Then f is CC-regular

if and only if it is uniformly locally bounded.

Theorem 2.8. Let f be a function between two metric spaces (X, d) and (Y, ρ).
Then f is CC-regular if and only if f is almost bounded.

Proof. In a manner similar to the proof of Theorem 2.5, we can prove that every
CC-regular function between two metric spaces is almost bounded. Conversely, let
f : (X, d) → (Y, ρ) be an almost bounded function and let (xn) be a cofinally Cauchy
sequence in X having no constant subsequence. Let ǫ > 0, then there exists a δ >
0 such that for all A ⊆ X with d(A) < δ, there exists {y1, y2, . . . , yn} ⊆ Y such that
f(A) ⊂

⋃n

i=1B(yi, ǫ). Since (xn) is cofinally Cauchy, there exists an infinite subset
Nδ of N such that d(xn, xm) < δ for all n,m ∈ Nδ. Let A = {xn : n ∈ Nδ}. Thus
f(A) ⊂

⋃n

i=1B(yi, ǫ) for some yi ∈ Y, 1 ≤ i ≤ n. Thus, there exists i ∈ N such that
B(yi, ǫ) contains elements of the type f(xk) for infinitely many k ∈ N. Hence the
sequence (f(xn)) is cofinally Cauchy. �

Remark 2.9. Since CC-regular functions are more familiar in the literature,
from now onwards we will call almost bounded functions to be CC-regular functions.

Corollary 2.10. A metric space (X, d) is an AUC space if and only if it is

cofinally complete.

Proof. Since the class of CC-regular functions and that of almost bounded func-
tions are same, by the definition of AUC spaces and by the fact that a metric space
(X, d) is cofinally complete if and only if each real-valued continuous function defined
on it is CC-regular [1], we conclude that a metric space (X, d) is an AUC space if
and only if it is cofinally complete. �

Remark 2.11. It is easy to see that a CC-regular function between two metric
spaces need not be bounded; consider identity function on R with the usual distance
metric. Also note that a bounded function need not be CC-regular. For example,
consider X =

{
1
n
: n ∈ N

}
with the usual distance metric d and Y = N with the

{0, 1} discrete metric d′. Let f : (X, d) → (Y, d′) be defined as:

f

(
1

n

)
= n ∀ n ∈ N.
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In the literature one can find another important generalization of Cauchy se-
quences (other than cofinally Cauchy sequences), known as pseudo-Cauchy sequences.
These sequences play an important role in characterizing UC spaces (discovered by
Toader [30]): a metric space is UC if and only if each pseudo-Cauchy sequence of dis-
tinct points in the space clusters. In [2], the authors studied those functions which
preserve pseudo-Cauchy sequences (called PC-regular functions) and characterized
UC space as follows: a metric space is UC if and only if each real-valued continuous
function defined on it is PC-regular. Our next result gives some equivalent character-
izations of totally bounded metric spaces using CC-regular and PC-regular functions.
Before that we need to recall the following definitions.

Definitions 2.12. A sequence (xn) in a metric space (X, d) is said to be pseudo-

Cauchy if ∀ ǫ > 0 and n ∈ N, ∃ k, j ∈ N such that k, j > n, k 6= j and d(xk, xj) < ǫ.
A function f : (X, d) → (Y, ρ) between two metric spaces is said to be pseudo-Cauchy

regular (or PC-regular for short) if (f(xn)) is pseudo-Cauchy in (Y, ρ) for every
pseudo-Cauchy sequence (xn) in (X, d).

Theorem 2.13. Let (Y, ρ) be a metric space. The following statements are

equivalent:

(a) (Y, ρ) is totally bounded.

(b) If (X, d) is a metric space such that (X̂, d) has an accumulation point, then

every function f : (X, d) → (Y, ρ) is PC-regular.

(c) If (X, d) is a metric space such that (X̂, d) has an accumulation point, then

every function f : (X, d) → (Y, ρ) is CC-regular.

(d) There exists a metric space (X, d) such that (X̂, d) has an accumulation point

and every function f : (X, d) → (Y, ρ) is CC-regular.

Proof. (a) ⇒ (b): Let (X, d) be a metric space such that (X̂, d) has an accumu-
lation point. Since Y is totally bounded, every sequence in (Y, ρ) is pseudo-Cauchy.
Hence every function f : (X, d) → (Y, ρ) is PC-regular.

(b) ⇒ (c): This follows from the fact that every PC-regular function between
any two metric spaces is CC-regular [2].

(c) ⇒ (d): This is immediate.

(d) ⇒ (a): Let (X, d) be a metric space such that (X̂, d) has an accumula-
tion point and every function f : (X, d) → (Y, ρ) is CC-regular. Suppose (Y, ρ) is
not totally bounded. Thus there exists a sequence (yn) in Y and ǫ > 0 such that

ρ (yi, yj) ≥ ǫ for all i, j ∈ N. Since the set of limit points of (X̂, d) is non-empty, there

exists a Cauchy sequence of distinct terms (x̂n) in X̂. Thus there exists a sequence
(xn) in X consisting of distinct terms such that d(xn, x̂n) < 1/n for all n ∈ N. Thus,
(xn) is Cauchy in X. Define a function f : (X, d) → (Y, ρ) as follows:

f(x) =

{
yn if x = xn for some n,

y1 otherwise.

According to the hypothesis, f should be CC-regular, but (xn) is cofinally Cauchy in
X such that (f(xn)) is not cofinally Cauchy. We get a contradiction. Thus (Y, ρ) is
totally bounded. �
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3. Continuous CC-regular functions

In this section, we study continuous CC-regular functions and in the process,
we obtain several new interesting results. Several new characterizations of totally
bounded metric spaces, cofinally complete metric spaces and UC spaces are also
obtained.

It is well-known that continuous functions are characterized by convergent se-
quences, whereas uniformly continuous functions are characterized by asymptotic
sequences. In [1], the authors generalized the notion of asymptotic sequences. Before
proceeding further, let us recall a few definitions.

Definitions 3.1. A pair of sequences (xn) and (yn) in a metric space (X, d) is
said to be:

(a) asymptotic, written (xn) ≍ (yn), if ∀ ǫ > 0, ∃no ∈ N such that d(xn, yn) < ǫ
∀n > no.

(b) uniformly asymptotic, written (xn) ≍u (yn), if ∀ ǫ > 0, ∃no ∈ N such that
d(xm, yn) < ǫ ∀m, n > no.

(c) cofinally asymptotic, written (xn) ≍c (yn), if ∀ ǫ > 0, ∃ an infinite subset Nǫ

of N such that d(xn, yn) < ǫ ∀n ∈ Nǫ.
(d) cofinally uniformly asymptotic, written (xn) ≍

u
c (yn), if ∀ ǫ > 0, ∃ an infinite

subset Nǫ of N such that d(xn, ym) < ǫ ∀n, m ∈ Nǫ.

In [28], Snipes gave a nice characterization of Cauchy-continuous functions in
terms of pairs of uniformly asymptotic sequences: a function f : (X, d) → (Y, ρ)
between two metric spaces is Cauchy-continuous if and only if (xn) ≍

u (zn) in (X, d)
implies (f(xn)) ≍

u (f(zn)) in (Y, ρ). Note that a sequence (xn) in (X, d) is cofinally
Cauchy if and only if (xn)≍

u
c (xn). Thus if f : (X, d) → (Y, ρ) is a continuous function

that preserves cofinally uniformly asymptotic sequences (that is, (xn) ≍
u
c (zn) implies

(f(xn)) ≍
u
c f((zn))), then f is CC-regular, but the converse is not true.

Example 3.2. Consider A =
{

1
n
: n ∈ N

}
with the usual distance metric and

let f : A → R be defined as:

f(1/n) =

{
1, n is odd,

2, n is even.

Clearly, f is continuous and CC-regular, but f does not preserve cofinally uni-
formly asymptotic sequences (for example, take xn = 1

2n−1
and zn = 1

2n
).

Note that the above function also shows that unlike Cauchy-continuous functions,
a continuous CC-regular function on a totally bounded metric space need not be
uniformly continuous.

In [1], the authors have given the following sequential characterization of CC-
regular functions.

Proposition 3.3. [1, Proposition 2.11] Let f : (X, d) → (Y, ρ) be a function

between two metric spaces. The following statements are equivalent:

(a) f is CC-regular.

(b) If (xn) is a cofinally Cauchy sequence in (X, d) and (f(xn)) ≍ (f(zn)), where

(zn) is any sequence in X, then (f(xn)) ≍
u
c (f(zn)).

(c) If (xn) ≍
u
c (zn) and (f(xn)) ≍ (f(zn)), then (f(xn)) ≍

u
c (f(zn)).

Remark 3.4. Note that if we replace (f(xn)) ≍ (f(zn)) by (f(xn)) ≍c (f(zn))
in (b), still the condition will imply the function to be CC-regular but the converse
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may not be true. For example, consider the identity function on X =
{
n, 1

n
: n ∈ N

}

endowed with the usual distance metric. Let (xn) be the sequence 1, 1
2
, 2, 1

3
, 3, 1

4
, 4, . . .

and (zn) be the sequence 1, 10, 2, 10, 3, 10, 4, . . ., here the function is continuous and
CC-regular, and (xn) is cofinally Cauchy such that (f(xn)) ≍c (f(zn)) but (f(xn)) 6≍

u
c

(f(zn)).

In order to characterize continuous CC-regular functions using sequences, we
observe the following sequential characterization of continuous functions.

Proposition 3.5. Let f : (X, d) → (Y, ρ) be a function between two metric

spaces. The following statements are equivalent:

(a) f is continuous.

(b) Whenever (xn) ≍c (x) in (X, d), then (f(xn)) ≍c (f(x)) in (Y, ρ).
(c) Whenever (xn) ≍ (x) in (X, d), then (f(xn)) ≍c (f(x)) in (Y, ρ).

Proof. (a) ⇒ (b): Since (xn) ≍c (x), there exists a subsequence of (xn) which
converges to x. Using the continuity of f , (f(xn)) ≍c (f(x)).

(b) ⇒ (c): This is immediate.
(c) ⇒ (a): Suppose f is not continuous at x. Thus, ∃ ǫ > 0 such that ∀n ∈

N, ∃ xn such that d(xn, x) <
1
n

but ρ(f(xn), f(x)) ≥ ǫ. We get a contradiction. �

Now the following sequential characterization of continuous CC-regular functions
is immediate.

Proposition 3.6. Let f : (X, d) → (Y, ρ) be a function between two metric

spaces. The following are equivalent:

(a) f is continuous and CC-regular.

(b) If (xn) is a cofinally Cauchy sequence and (f(xn)) ≍ (f(zn)), then (f(xn)) ≍
u
c

(f(zn)). Also, if (yn) ≍c (y), then (f(yn)) ≍c (f(y)).
(c) If (xn) ≍u

c (zn) and (f(xn)) ≍ (f(zn)), then (f(xn)) ≍u
c (f(zn)). Also, if

(yn) ≍ (y), then (f(yn)) ≍c (f(y)).

We know that every continuous function on a metric space is CC-regular if and
only if the metric space is cofinally complete. Our next result characterizes those
metric spaces (X, d) such that every CC-regular function from (X, d) to any metric
space (Y, ρ) is continuous. Such metric spaces are also equivalent to those metric
spaces on which every PC-regular function is continuous.

Theorem 3.7. Let (X, d) be a metric space. Then the following are equivalent:

(a) The metric space (X, d) is discrete.

(b) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is CC-regular, then

f is continuous.

(c) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is PC-regular, then

f is continuous.

Proof. The implications (a) ⇒ (b) ⇒ (c) are immediate.
(c) ⇒ (a): Suppose (X, d) is not discrete. Then there exists a non-isolated point

x in X. Hence there exists a sequence (xn) in X such that all the elements of
the sequence are distinct, xn 6= x ∀n ∈ N and (xn) converges to x ∈ X. Define
f : (X, d) → R such that

f(z) =

{
1, if z = xn for some n,

0, otherwise.
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Clearly, f is PC-regular but not continuous. �

Analogously we can characterize those metric spaces on which every CC-regular
and PC-regular functions are Cauchy continuous and uniformly continuous. Every
Cauchy continuous function on a metric space (X, d) is CC-regular if and only if

(X̂, d) is cofinally complete and every Cauchy continuous function on (X, d) is PC-

regular if and only if (X̂, d) is UC space [1]. Also, in the same article it has been
proved that for a metric space (X, d), every CC-regular function on it with values
in any arbitrary metric space (Z, ρ) is uniformly continuous if and only if (X, d) is
uniformly discrete.

Theorem 3.8. Let (X, d) be a metric space. Then the following are equivalent:

(a) The metric space (X, d) is complete and discrete.

(b) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is CC-regular, then

f is Cauchy continuous.

(c) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is PC-regular, then

f is Cauchy continuous.

Proof. (a) ⇒ (b): Let f : (X, d) → (Y, ρ) be CC-regular function. Since (X, d)
is discrete, f is continuous, thus Cauchy continuous because (X, d) is complete.

(b) ⇒ (c): This is immediate.
(c) ⇒ (a): Suppose there exists a Cauchy sequence (xn) in (X, d) such that all

its elements are distinct and it does not converge. Define f : (X, d) → R such that

f(x) =





1, if x = xn for some odd n,

2, if x = xn for some even n,

0, otherwise.

Clearly f is PC-regular but not Cauchy continuous. Thus (X, d) is complete and by
Theorem 3.7, (X, d) is discrete. �

Theorem 3.9. Let (X, d) be a metric space. Then the following are equivalent:

(a) The metric space (X, d) is uniformly discrete.

(b) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is CC-regular, then

f is uniformly continuous.

(c) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is PC-regular, then

f is uniforly continuous.

Proof. The implications (a) ⇒ (b) ⇒ (c) are immediate.
(c) ⇒ (a): In a manner similar to the proof of Theorem 2.8 in [1], we can prove

the result. �

It is well-known that the set of all real-valued continuous functions defined on a
metric space (X, d) forms a ring with respect to the usual addition and multiplication
of real-valued functions, but this is not true in case of uniformly continuous func-
tions [11]. We have the following nice observation regarding continuous CC-regular
functions.

Theorem 3.10. Let (X, d) be a metric space and let A be the set of all real-

valued continuous CC-regular functions on X. Then A is a ring with respect to the

usual addition and multiplication of real-valued functions.

Proof. A function f : (X, d) → R is CC-regular if and only if it is uniformly
locally bounded (see Proposition 2.7). Let f, g : (X, d) → R be two continuous
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CC-regular functions. So there exists a δ > 0 such that ∀ x ∈ X, f(B(x, δ)) and
g(B(x, δ)) are bounded subsets of R. Thus (f + g)(B(x, δ)) and (f ∗ g)(B(x, δ)) are
also bounded subsets of R. Thus f + g and f ∗ g are also continuous CC-regular
functions. Hence the set of all real-valued continuous CC-regular functions on X
forms a ring with respect to the usual addition and multiplication of real-valued
functions. �

In analysis, there is a well-known form of continuity which is even stronger than
uniform continuity, namely Lipschitz continuity. In [8, 9, 10, 16], Beer, Garrido and
Jaramillo considered various functions of Lipschitz-type, the definitions of which are
recalled below.

Definitions 3.11. A function f : (X, d) → (Y, ρ) between two metric spaces is
said to be:

(a) Lipschitz if there exists k > 0 such that ρ(f(x), f(x′)) ≤ kd(x, x′).
(b) Lipschitz in the small if there exist δ > 0 and k > 0 such that ρ(f(x), f(x′)) ≤

kd(x, x′), whenever d(x, x′) < δ.
(c) uniformly locally Lipschitz if there exists δ > 0 such that for every x ∈ X,

there exists kx > 0 such that ρ(f(u), f(w)) ≤ kxd(u, w), whenever u, w ∈
B(x, δ).

(d) Cauchy–Lipschitz if f is Lipschitz when restricted to the range of each Cauchy
sequence (xn) in X.

(e) locally Lipschitz if for each x ∈ X, there exists δx > 0 such that f restricted
to B(x, δx) is Lipschitz.

It is immediate that every Lipschitz in the small function between two metric
spaces is uniformly locally Lipschitz. Moreover, it is shown in [10] that the collection
of Cauchy–Lipschitz functions is contained in the class of locally Lipschitz functions
where the collection itself contains the uniformly locally Lipschitz functions. But the
reverse implications are not in general true. In [11], it has been proved that a metric
space (X, d) is UC if and only if the reciprocal of each never zero real-valued uniformly
continuous function is uniformly continuous. We now find some analogous conditions
in terms of CC-regular functions, locally Lipschitz functions and PC-regular functions
for cofinally complete spaces and UC spaces (see also Theorem 4.8).

Theorem 3.12. Let (X, d) be a metric space. Then the following statements

are equivalent:

(a) (X, d) is a cofinally complete metric space.

(b) Whenever f : (X, d) → R is a locally Lipschitz CC-regular function such that

f is never zero, then 1
f

is also locally Lipschitz and CC-regular.

(c) Whenever f : (X, d) → R is a continuous CC-regular function such that f is

never zero, then 1
f

is also continuous and CC-regular.

Proof. The implications (a) ⇒ (b) and (a) ⇒ (c) are immediate as every real-
valued continuous function on a cofinally complete metric space is CC-regular.

(b) ⇒ (a): If (X, d) is not cofinally complete, then there exists a cofinally Cauchy
sequence (xn) of distinct points in (X, d) with no cluster point. Thus the set A =
{xn : n ∈ N} is closed. Consequently, ∀n ∈ N, ∃ ǫn > 0 such that d(xm, xn) >
ǫn ∀m 6= n. Let δn = min{1/n, ǫn/3}. Define a function f : (X, d) → [0, 2] as follows:

f(x) =

{
1
n
− 1

nδn
d(x, xn), x ∈ B(xn, δn) for some n ∈ N,

0, otherwise.
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Clearly, f restricted to each ball B(xn, δn) is Lipschitz. Let x ∈ X. Since x is not a
cluster point of the sequence (xn) and ǫn ≤ 1/n ∀n ∈ N, ∃ δx > 0 such that B(x, δx)
intersects at most one of the balls B(xn, δn). Thus f is locally Lipschitz. Since the
range of f is totally bounded, f is CC-regular as well. Now define another function
g : (X, d) → R as follows:

g(x) = f(x) + d(x,A)

Since the sum of two real-valued locally Lipschitz functions on a metric space is also
locally Lipschitz, g is locally Lipschitz. Also, by Theorem 3.10, g is CC-regular. By
the hypothesis, 1

g
should also be CC-regular since g is never zero. But (xn) is a

cofinally Cauchy sequence such that 1
g
(xn) = n ∀n ∈ N. We get a contradiction.

Hence (X, d) is cofinally complete.
(c) ⇒ (a): If (X, d) is not cofinally complete, then there exists a cofinally

Cauchy sequence (xn) of distinct points in (X, d) with no cluster point. Thus,
A = {xn : n ∈ N} is closed and discrete. Define

f : A −→ (0, 2),

xn 7−→
1

n
.

Clearly, f is a continuous CC-regular function. By Theorem 5.1 in [15, p. 149],
f can be extended to a function F : X → (0, 2), such that F is continuous. Since
(0, 2) is totally bounded in R, F is CC-regular. Cleary F is never zero but 1

F
is not

CC-regular, as (xn) is cofinally Cauchy but (n) is not cofinally Cauchy in R. We get
a contradiction. �

In a manner similar to the proof of the above result, we can prove the following
result.

Theorem 3.13. Let (X, d) be a metric space. Then the following statements

are equivalent:

(a) (X, d) is a UC space.

(b) Whenever f : (X, d) → R is a continuous PC-regular function such that f is

never zero, then 1
f

is also continuous and PC-regular.

Remark 3.14. Note that if the completion (X̂, d) of a metric space (X, d) is cofi-
nally complete, then the following statement need not hold: whenever f : (X, d) → R

is a Cauchy-continuous CC-regular function such that f is never zero, then 1
f

is also

Cauchy-continuous and CC-regular. For example, consider the identity function f on
(X, d), where X = {1/n : n ∈ N} and d is the usual distance metric on X. The met-
ric space (X, d) has a cofinal completion. Also, f is Cauchy-continuous, CC-regular
and is never zero, but 1

f
is not CC-regular.

We know that CC-regular and PC-regular functions between two metric spaces
need not be continuous. The following example shows that a uniformly locally Lips-
chitz function between two metric spaces need not be CC-regular.

Example 3.15. Consider the real Hilbert space l2. Let X =
⋃

n∈NAn, where
An = {en + 1

n
ek : k ∈ N}, and {en : n ∈ N} is the standard orthonormal basis of

l2. Let d be the metric on X induced by the l2 norm. Consider Y = {n : n ∈ N}
with the {0, 1} discrete metric ρ. Let {Mj : j ∈ N} be a pairwise disjoint family of
infinite subsets of N. Let Mn = {xn

1 , x
n
2 , x

n
3 , . . .} for all n ∈ N. Define f from (X, d)
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to (Y, ρ) such that ∀ k, n ∈ N

f

(
en +

1

n
ek

)
= xn

k

Now for each z ∈ X, there exists exactly one natural number n such that B(z, 1) ∩
An 6= ∅. Choose kz > n√

2
, thus ρ(f(u), f(w)) ≤ kzd(u, w), whenever u, w ∈ B(z, 1).

Hence the function is uniformly locally Lipschitz. The function is not CC-regular
because if we enumerate the elements of X, we will get a cofinally Cauchy sequence
but its image is certainly not cofinally Cauchy.

Remark 3.16. Since a PC-regular function between two metric spaces is CC-
regular, every uniformly locally Lipschitz function between two metric spaces need
not be PC-regular.

We know that a metric space (X, d) is compact if and only if every real-valued
continuous function defined on it is bounded. Our next result characterizes in partic-
ular those metric spaces on which every real-valued continuous CC-regular function is
bounded. We also study boundedness of various combinations of Lipschitz-type func-
tions with CC-regular functions. Note that a function f : (X, d) → (Y, ρ) between
two metric spaces is called bounded if f(X) is bounded in (Y, ρ).

Theorem 3.17. Let (X, d) be a metric space. Then the following are equivalent:

(a) The metric space (X, d) is totally bounded.

(b) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is continuous and

CC-regular, then f is bounded.

(c) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is locally Lipschitz

and CC-regular, then f is bounded.

(d) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is Cauchy-Lipschitz

and CC-regular, then f is bounded.

(e) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is uniformly locally

Lipschitz and CC-regular, then f is bounded.

(f) Whenever f is a real-valued uniformly locally Lipschitz and CC-regular func-

tion on (X, d), then f is bounded.

Proof. The implications (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) are all immediate.
(a) ⇒ (b): Let f be a continuous and CC-regular function from (X, d) to (Y, ρ).

It is easy to see that a metric space is totally bounded if and only if every sequence
in it is cofinally Cauchy. Thus f(X) is a totally bounded subset of (Y, ρ).

(f) ⇒ (a): Suppose (X, d) is not totally bounded. Therefore, ∃ δ > 0 and a
sequence (xn) in X such that d(xn, xm) > δ ∀n, m ∈ N (n 6= m). Define a function
f : (X, d) → R as follows:

f(x) =

{
n− 4n

δ
d(x, xn), x ∈ B

(
xn,

δ
4

)
for some n ∈ N,

0, otherwise

The function f is uniformly locally Lipschitz because ∀ x ∈ X, B(x, δ
4
) intersects at

most one of the balls B(xm,
δ
4
) and f restricted to each ball B(xm,

δ
4
) is Lipschitz.

To see f is CC-regular, let (zn) be a cofinally Cauchy sequence in (X, d). If there
exists an infinite subset N ′ of N such that zk /∈

⋃
i∈N B(xi,

δ
4
) ∀ k ∈ N ′, then (f(zn))

is a cofinally Cauchy sequence as f(zk) = 0 ∀ k ∈ N ′. If that is not the case, then
there exists an infinite subset N ′ of N such that ∀ k ∈ N ′, zk ∈ B(xm,

δ
4
) for some

m ∈ N, because otherwise for δ
4
> 0, there would not be any infinte subset N δ

4
of N
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such that d(zn, zm) <
δ
4
∀n, m ∈ N δ

4
, which contradicts the fact that (zn) is cofinally

Cauchy. Thus for some t ≥ m, f(zk) ∈ [0, t] ∀ k ∈ N ′. Enumerate the elemets of N ′

in increasing order and let N ′ = {k1, k2, k3, . . .}. Since [0, t] is totally bounded in R,
(f(zkn)) is cofinally Cauchy. Thus (f(zn)) is cofinally Cauchy. Hence f is CC-regular
and uniformly locally Lipschitz but unbounded. We get a contradiction. �

We know that a metric space (X, d) is UC if and only if each sequence (xn) in
X satisfying limn→∞ I(xn) = 0 clusters, where I(x) = d(x,X \ {x}) measures the
isolation of x in the space [3, 24]. Similarly, a metric space (X, d) is cofinally complete
if and only if each sequence (xn) in X satisfying limn→∞ ν(xn) = 0 clusters, where
ν(x) = sup{ǫ > 0: cl(Bd(x, ǫ)) is compact} if x has a compact neighborhood, and
ν(x) = 0 otherwise [6]. This geometric functional is called the local compactness

functional on X. The set {x ∈ X : ν(x) = 0} is the set of points of non-local
compactness of X, which is denoted by nlc(X). Thus a metric space is said to be
locally compact if ν(x) > 0 ∀ x ∈ X, while it is called uniformly locally compact if
inf{ν(x) : x ∈ X} > 0. Now we are ready to give a few more results.

We have already noted that every uniformly continuous function between two
metric spaces is continuous and CC-regular. We now look for the conditions under
which the converse is true.

Theorem 3.18. Let (X, d) be a metric space. Then the following are equivalent:

(a) (X, d) is a UC space.

(b) Each continuous CC-regular function from (X, d) with values in a metric space

(Y, ρ) is uniformly continuous.

(c) Each locally Lipschitz CC-regular function from (X, d) with values in a metric

space (Y, ρ) is uniformly continuous.

(d) Each real-valued locally Lipschitz CC-regular function on (X, d) is uniformly

continuous.

(e) Each continuous PC-regular function from (X, d) with values in a metric space

(Y, ρ) is uniformly continuous.

(f) Each locally Lipschitz PC-regular function from (X, d) with values in a metric

space (Y, ρ) is uniformly continuous.

(g) Each real-valued locally Lipschitz PC-regular function on (X, d) is uniformly

continuous.

(h) Each continuous uniformly locally bounded function from (X, d) with values

in a metric space (Y, ρ) is uniformly continuous.

(i) Each locally Lipschitz uniformly locally bounded function from (X, d) with

values in a metric space (Y, ρ) is uniformly continuous.

(j) Each real-valued locally Lipschitz uniformly locally bounded function on (X, d)
is uniformly continuous.

Proof. The statements (a) ⇒ (b) ⇒ (c) ⇒ (d), (a) ⇒ (e) ⇒ (f) ⇒ (g) and
(a) ⇒ (h) ⇒ (i) ⇒ (j) are all immediate.

(d) ⇒ (a): First we prove that (X, d) is complete. Suppose (xn) is a Cauchy
sequence of distinct points in (X, d) such that it does not converge. Thus the set
A = {xn : n ∈ N} is closed and discrete. Consequently, ∀n ∈ N, ∃ ǫn > 0 such that
d(xm, xn) > ǫn ∀m 6= n. Let δn = min{1/n, ǫn/3}. Define a function f : (X, d) →
[0, 2] as follows:
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f(x) =





1− 1
δn
d(x, xn), x ∈ B(xn, δn) for some odd n ∈ N,

2− 2
δn
d(x, xn), x ∈ B(xn, δn) for some even n ∈ N,

0, otherwise.

Clearly, f restricted to each ball B(xn, δn) is Lipschitz. Let x ∈ X, since x is not a
cluster point of the sequence (xn) and ǫn ≤ 1/n ∀n ∈ N, ∃ δx > 0 such that B(x, δx)
intersects at most one of the balls B(xn, δn). Thus f is locally Lipschitz. Since
the range of f is totally bounded, f is CC-regular as well, but f is not uniformly
continuous since every uniformly continuous functions is Cauchy-continuous. We get
a contradiction. Hence (X, d) is a complete metric space.

To see that (X, d) is a UC space, let (xn) be a sequence of distinct points in X
such that limn→∞ I(xn) = 0. Suppose the sequence does not cluster. Since (X, d)
is complete, (xn) has no Cauchy subsequence. Thus ∃ δ > 0 such that by passing
to a subsequence, if needed, the family of open balls {B(xn, δ) : n ∈ N} is pairwise
disjoint. Also, limn→∞ I(xn) = 0 implies that we can assume I(xn) < min{δ, 1

n
} ∀n ∈

N. Let δn = min{δ, 1
n
} ∀n ∈ N. Consequently, ∀n ∈ N, we can choose yn 6= xn such

that d(xn, yn) < δn. Let ǫn = d(xn, yn) ∀n ∈ N. Define a function f : (X, d) → [0, 1]
as follows:

f(x) =

{
1− 1

ǫn
d(x, xn), x ∈ B(xn, ǫn) for some n ∈ N,

0, otherwise.

Note that f is locally Lipschitz and CC-regular but not uniformly continuous as
d(xn, yn) tends to 0 but |f(xn)− f(yn)| = 1 ∀n ∈ N. We get a contradiction. Thus
(X, d) is a UC space.

In a manner similar to the proof of (d) ⇒ (a), the implications (g) ⇒ (a) and (j)
⇒ (a) can be proved. �

Here we would like to mention that if we consider the function in Example 3.15
with the usual metric on the set Y , the function would be Cauchy-Lipschitz but not
uniformly locally bounded. Thus a Cauchy-Lipschitz function between two metric
spaces need not be uniformly locally bounded.

Since a UC space is complete, it is natural to consider the metric spaces whose
completions are UC. In our next theorem, we present some new equivalent conditions
for such metric spaces.

Theorem 3.19. Let (X, d) be a metric space. Then the following are equivalent:

(a) The completion (X̂, d) of (X, d) is a UC space.

(b) Each Cauchy-continuous CC-regular function from (X, d) with values in a

metric space (Y, ρ) is uniformly continuous.

(c) Each Cauchy–Lipschitz CC-regular function from (X, d) with values in a met-

ric space (Y, ρ) is uniformly continuous.

(d) Each uniformly locally Lipschitz CC-regular function from (X, d) with values

in a metric space (Y, ρ) is uniformly continuous.

(e) Each real-valued uniformly locally Lipschitz CC-regular function on (X, d) is

uniformly continuous.

(f) Each Cauchy-continuous PC-regular function from (X, d) with values in a

metric space (Y, ρ) is uniformly continuous.

(g) Each Cauchy–Lipschitz PC-regular function from (X, d) with values in a met-

ric space (Y, ρ) is uniformly continuous.
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(h) Each uniformly locally Lipschitz PC-regular function from (X, d) with values

in a metric space (Y, ρ) is uniformly continuous.

(i) Each real-valued uniformly locally Lipschitz PC-regular function on (X, d) is

uniformly continuous.

(j) Each Cauchy-continuous uniformly locally bounded function from (X, d) with

values in a metric space (Y, ρ) is uniformly continuous.

(k) Each Cauchy–Lipschitz uniformly locally bounded function from (X, d) with

values in a metric space (Y, ρ) is uniformly continuous.

(l) Each real-valued Cauchy–Lipschitz uniformly locally bounded function on

(X, d) is uniformly continuous.

Proof. The implications (b) ⇒ (c) ⇒ (d) ⇒ (e), (f) ⇒ (g) ⇒ (h) ⇒ (i), (j) ⇒
(k) ⇒ (l) are all immediate. The implications (a) ⇒ (b), (a) ⇒ (f) and (a) ⇒ (j)

follow from the fact that the completion (X̂, d) of a metric space (X, d) is a UC space
if and only if every Cauchy-continuous function f : (X, d) → (Y, ρ), where (Y, ρ) is
any metric space, is uniformly continuous [21].

(e) ⇒ (a): Suppose (X̂, d) is not a UC space. Then there exists a sequence
(xn) of distinct points with limn→∞ I(xn) = 0 such that (xn) does not have any
Cauchy subsequence [21]. Thus ∃ δ > 0 such that by passing to a subsequence, if
needed, the family of open balls {B(xn, δ) : n ∈ N} is pairwise disjoint. Let δn =
min{ δ

4
, 1
n
} ∀n ∈ N. Also, limn→∞ I(xn) = 0 implies that we can assume I(xn) < δn

∀n ∈ N. Consequently, ∀n ∈ N, we can choose yn 6= xn such that d(xn, yn) < δn.
Let ǫn = d(xn, yn) ∀n ∈ N. Define a function f : (X, d) → [0, 1] as follows:

f(x) =

{
1− 1

ǫn
d(x, xn), x ∈ B(xn, ǫn) for some n ∈ N,

0, otherwise.

The function f is uniformly locally Lipschitz because ∀ x ∈ X, B(x, δ
4
) intersects at

most one of the balls B(xm,
δ
4
) and f restricted to each ball B(xm,

δ
4
) is Lipschitz.

Since [0, 1] is totally bounded in R, f is CC-regular as well. Thus f is uniformly
locally Lipschitz and CC-regular but not uniformly continuous, a contradiction.

(i) ⇒ (a): In a manner similar to the proof of (e) ⇒ (a), (i) ⇒ (a) can be proved.

(l) ⇒ (a): Let f : (X̂, d) → R be a locally Lipschitz uniformly locally bounded

function. Since (X̂, d) is a complete metric space, by Theorem 3.5 in [10], f is Cauchy-
Lipschitz. This implies f |X is Cauchy-Lipschitz and uniformly locally bounded and

hence uniformly continuous. We claim that f : (X̂, d) → R is uniformly continuous
as well. For ǫ > 0, ∃ δ > 0 such that ∀ x, y ∈ X with d(x, y) < δ, |f(x)−f(y)| < ǫ/3.

Let x̂, ŷ ∈ X̂ such that d(x̂, ŷ) < δ/4. Since x̂, ŷ ∈ X̂, there exists sequences (xn)
and (yn) in X such that (xn) converges to x̂ and (yn) converges to ŷ. Thus, there
exists n0 ∈ N such that d(xn, x̂) < δ/2, d(yn, ŷ) < δ/4, |f(x̂) − f(xn)| < ǫ/3 and
|f(yn)− f(ŷ)| < ǫ/3 ∀n ≥ n0. Thus for all n ≥ n0,

d(xn, yn) ≤ d(xn, x̂) + d(x̂, ŷ) + d(yn, ŷ) < δ

Therefore,

|f(x̂)− f(ŷ)| ≤ |f(x̂)− f(xn0)|+ |f(xn0)− f(yn0)|+ |f(yn0)− f(ŷ)| < ǫ.

Thus by Theorem 3.18, (X̂, d) is a UC space. �

Now we study how the isolation functional I and the local compactness functional
ν are linked with continuous CC-regular functions.



714 Lipsy Gupta and Subiman Kundu

Theorem 3.20. Let f be a function from a metric space (X, d) to another metric

space (Y, ρ). If for some ǫ > 0, f is uniformly continuous on {x ∈ X : I(x) < ǫ}, then

f is continuous and CC-regular on X.

Proof. Let (xn) be a sequence of distinct points in X converging to a point x ∈ X.
Then there exists n0 ∈ N such that d(xn, xm) <

ǫ
2
∀n, m ≥ n0. Thus, f is uniformly

continuous on the set {x} ∪ {xn : n ≥ n0}. But this implies that (f(xn)) converges
to f(x). Hence the function is continuous.

Now suppose the function is not CC-regular. Therefore ∃ ǫo > 0 such that ∀n ∈
N, ∃ xn ∈ X such that f(B(xn,

1
n
)) cannot be contained in any finite union of open

balls of radius ǫo in Y . Using the same technique as in Theorem 2.5, we can choose
a sequence (zn) in X consisting of infinite elements from each ball B(xn,

1
n
) such

that the image of the sequence is ǫo
2

discrete. Choose 1
no

< ǫ. Since the function is

uniformly continuous on the set A = {x ∈ X : I(x) < ǫ}, ∃ δ > 0 such that ∀ x, y ∈ A
with d(x, y) < δ, ρ(f(x), f(y)) < ǫo

2
. Choose 2

m
< min{ 1

no
, δ}. Let {y, z} ⊂ B(xm,

1
m
),

where y 6= z such that {y, z} ⊂ {zn : n ∈ N}. Now, {y, z} ⊂ A with d(y, z) < δ but
ρ(f(y), f(z)) > ǫo

2
. We get a contradiction. �

Remark 3.21. The converse of the above result may not be true. For example,
the function f defined in Remark 2.4 is continuous and CC-regular, but there does
not exist any ǫ > 0 such that f is uniformly continuous on {x ∈ X : I(x) < ǫ}.

Also, if we replace the isolation functional with the local compactness functional
in the hypothesis of the previous result, then f need not be continuous. For example,
take any discontinuous function from R to R. For the local compactness functional,
we have the following analogous result which can be proved in a manner similar to
that of Theorem 3.20.

Theorem 3.22. Let f be a continuous function from a metric space (X, d)
to another metric space (Y, ρ). If for some ǫ > 0, f is uniformly continuous on

{x ∈ X : ν(x) < ǫ}, then f is CC-regular on X.

Theorem 3.23. Let (X, d) be a metric space. Suppose for every real-valued

continuous function f defined on it, there exists some λ > 0 such that f is uniformly

continuous on {x ∈ X : ν(x) < λ}. Then (X, d) is cofinally complete.

Proof. Let (xn) be a cofinally Cauchy sequence of distinct points in X. By
Proposition 2.4 in [6], there exists a pairwise disjoint family {Mj : j ∈ N} of infinite
subsets of N such that if i ∈ Mj and l ∈ Mj then d(xi, xl) < 1

j
. Suppose the

sequence (xn) does not cluster, thus the set A = {xn : n ∈ N} is closed and discrete.
Enumerate the elements of Mn as ln1 , l

n
2 , l

n
3 , . . . for each n ∈ N. Therefore, for each

n, there exists unique i, k ∈ N such that n = lki . Define a function f on A such
that ∀ k ∈ N, f(xlki

) = 1 if i is even and f(xlki
) = 2 if i is odd. Since f is continuous

and CC-regular on A, extend it to a function F on X such that F is continuous and
CC-regular.

We claim that there does not exist any λ > 0 such that F is uniformly continuous
on {x ∈ X : ν(x) < λ}. Suppose the claim is not true. Therefore ∃λ > 0 such that
F is uniformly continuous on {x ∈ X : ν(x) < λ}. Choose 1

no
< λ, consequently

ν(xk) <
1
no

< λ ∀ xk ∈
⋃

n>no
Mn. But F is not uniformly continuous on

⋃
n>no

Mn.
We arrive at a contradiction. �
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4. Cofinally Bourbaki–Cauchy regular functions

vis-á-vis CC-regular functions

In order to sequentially characterize the metric spaces on which every real-valued
uniformly continuous function is bounded, recently in 2014 Garrido and Meroño
[17] defined two new classes of sequences which they called Bourbaki–Cauchy and
cofinally Bourbaki–Cauchy. Cofinally Bourbaki–Cauchy sequences are weaker than
Bourbaki–Cauchy sequences as well as cofinally Cauchy sequences. In this section,
we deal with cofinally Bourbaki–Cauchy regular functions and their relation with
CC-regular functions. Let us first mention some relevant definitions.

Definitions 4.1. Let (X, d) be a metric space and ǫ be a positive number, then
an ordered set of points {x0, x1, . . . , xm} in X satisfying d(xi−1, xi) < ǫ for i =
1, 2, . . . , m, is said to be an ǫ-chain of length m from xo to xm. We call X ǫ-chainable

if each two points in X can be joined by an ǫ-chain, and X is called chainable if
X is ǫ-chainable for every ǫ > 0. Let A be a subset of X. Then, A is said to be
finitely chainable in X if for every ǫ > 0, there are finitely many points p1, p2, . . . , pr
in X and a positive integer m such that every point of A can be joined with some
pj, 1 ≤ j ≤ r by an ǫ-chain of length m.

These finitely chainable sets are also called Bourbaki-bounded sets in the litera-
ture, [8, 9, 17], because these sets were considered in the book of Bourbaki [12]. These
sets are simply called bounded sets in [12, 18], where these sets are considered in the
frame of uniform spaces. Observe that every totally bounded subset of a metric space
(X, d) is finitely chainable in (X, d). Also, a bounded subset of a metric space (X, d)
need not be finitely chainable in (X, d), for example, consider any infinite subset of
a metric space (X, d), where d is the zero-one metric.

Definitions 4.2. Let (X, d) be a metric space. A sequence (xn) is said to be:

(a) Bourbaki–Cauchy in X if for every ǫ > 0, there exist m ∈ N and no ∈ N such
that whenever n > j ≥ no, the points xj and xn can be joined by an ǫ-chain
of length m.

(b) cofinally Bourbaki–Cauchy in X if for every ǫ > 0, there exist m ∈ N and an
infinite subset Nǫ of N such that the points xj and xn can be joined by an
ǫ-chain of length m for every j, n ∈ Nǫ.

Moreover, a metric space (X, d) is said to be (cofinally) Bourbaki-complete if every
(cofinally) Bourbaki–Cauchy sequence in (X, d) clusters.

Definitions 4.3. A function f from a metric space (X, d) to another metric space
(Y, ρ) is said to be Bourbaki–Cauchy regular (or BC-regular for short) if (f(xn)) is
Bourbaki–Cauchy in (Y, ρ) for every Bourbaki–Cauchy sequence (xn) in (X, d). A
function f from a metric space (X, d) to another metric space (Y, ρ) is said to be
cofinally Bourbaki–Cauchy regular (or CBC-regular for short) if (f(xn)) is cofinally
Bourbaki–Cauchy in (Y, ρ) for every cofinally Bourbaki–Cauchy sequence (xn) in
(X, d).

First we study an interesting characterization of CBC-regular functions which
is similar to a characterization of CC-regular functions (see Theorem 2.8). Note
that for a subset A of a metric space (X, d) and ǫ > 0, Aǫ =

⋃
{B(x, ǫ) : x ∈ A},

B1(x, ǫ) = B(x, ǫ) and for every n ≥ 2, Bn(x, ǫ) = (Bn−1(x, ǫ))ǫ.

Theorem 4.4. Let f be a function from a metric space (X, d) to another metric

space (Y, ρ). The following statements are equivalent:
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(a) f is CBC-regular.

(b) ∀ ǫ > 0, ∃ δ > 0 such that ∀ x ∈ X and m ∈ N, ∃n ∈ N and {y1, y2, . . . yk} ⊆

Y such that f
(
Bm(x, δ)

)
⊆

⋃k

i=1B
n(yi, ǫ).

Proof. (a) ⇒ (b): Suppose ∃ ǫ > 0 such that ∀ δ > 0, ∃ xδ and mx such that
f(Bmx(xδ, δ)) cannot be bounded by any finite union of nthǫ- enlarged open balls.
For each n ∈ N, let δn = 1

n
, thus there exists xn and mxn

(say mn) such that

f(Bmn(xn,
1
n
)) cannot be contained in any finite union of the type

⋃k

i=1B
l(yi, ǫ)

for all k, l ∈ N. Let an1 ∈ f(Bmn(xn,
1
n
)). Since f(Bmn(xn,

1
n
)) ( B(an1 , ǫ),

there exists an2 ∈ f(Bmn(xn,
1
n
)) such that an2 /∈ B(an1 , ǫ). Similarly, there exists

an3 ∈ f(Bmn(xn,
1
n
)) such that an3 /∈ B2(an1 , ǫ) ∪ B2(an2 , ǫ). Thus we get a sequence

(anm)m∈N ⊆ f(Bmn(xn,
1
n
)) such that anj cannot be bound with ani by an ǫ-chain of

length j−1 for 0 < i < j. Let An = {anm : m ∈ N}. Now we will construct a sequence
in Y . Let F1 = {a1α1

} where α1 > 1. Let a2α2
∈ A2 (α2 > 2) such that a2α2

cannot
be joined with a1α1

by an ǫ-chain of length 1. It is possible because if there does not
exist such a2α2

, then all the elements (anm)m>max{α1,2} can be joined by an ǫ-chain of
length 2, but it is a contradiction. Similarly, choose a1α3

∈ A1 (α3 > 3) such that
a1α3

cannot be joined by an ǫ- chain of length 2 with the elements a1α1
and a2α2

. Let

F2 = {a1α1
, a2α2

, a1α3
}. Now suppose a finite subset Fn =

{
a1α1

, a2α2
, a1α3

, . . . a1αn(n+1)
2

}

of
⋃n

i=1Ai is chosen such that alαj
cannot be bound with amαi

by an ǫ-chain of length

j − 1 for all 0 < i < j (1 6 l, m 6 n) and |Fn ∩ Ai| = n − i + 1 for all 1 ≤ i ≤ n.
Now we construct Fn+1 as follows. First we claim that there exists an+1

αn(n+1)
2 +1

∈ An+1

such that it cannot be joined with any member of Fn by an ǫ-chain of length n(n+1)
2

.

Let k > max{αn(n+1)
2

, n(n+1)
2

+ 1}. Consider {am : m ≥ 2k}. Since {am : m ≥ 2k} is

infinite and Fn is finite, there exists y, y′ ∈ {am : m > 2k}\Fn, y 6= y′, such that y

and z can be joined by an ǫ-chain of length n(n+1)
2

and y′ and z can also be joined

by an ǫ-chain of length n(n+1)
2

. Thus y and y′ can be joined by an ǫ-chain of length
n(n+ 1). We get a contradiction. Repeating this process for i = n, n− 1, . . . , 1 and

for the set Fn∪

{
an+1
αn(n+1)

2 +1

, anαn(n+1)
2 +2

, . . . , aiαn(n+1)
2 +(n−i+2)

}
together with the infinite

set Ei, we get the desired set Fn+1. Now, if we choose a sequence in the order we
picked the elements, that is, a1α1

, a2α2
, a1α3

, a3α4
,. . . , then this sequence is not cofi-

nally Bourbaki–Cauchy, but its preimage is cofinally Bourbaki–Cauchy. We get a
contradiction.

(b) ⇒ (a): Let (xn) be a cofinally Bourbaki–Cauchy sequence. We claim that
(f(xn)) is cofinally Bourbaki–Cauchy. Let ǫ > 0. Thus ∃ δ > 0 such that ∀ x ∈ X

and m ∈ N, ∃n ∈ N and {y1, y2, . . . yk} ⊆ Y such that f(Bm(x, δ)) ⊆
⋃k

i=1B
n(yi, ǫ).

Since (xn) is cofinally Bourbaki–Cauchy, there exist m ∈ N and an infinite subset
Nδ of N such that the points xj and xn can be joined by an δ-chain of length m
for every j, n ∈ Nδ. Let t ∈ Nδ and consider Bm(xt, δ). Therefore, ∃n ∈ N

and {y1, y2, . . . yk} ⊆ Y such that f(Bm(xt, δ)) ⊆
⋃k

i=1B
n(yi, ǫ). Atleast one of these

Bn(yi, ǫ) will contain elements of the type f(xk) for infinite values of k. Hence (f(xn))
is cofinally Bourbaki–Cauchy. �

Now we would like to discuss a sequential characterization of CBC-regular func-
tions for which the following definitions are required.



Functions that preserve certain classes of sequences and locally Lipschitz functions 717

Definitions 4.5. A pair of sequences (xn) and (yn) in a metric space (X, d) is
said to be:

(a) Bourbaki asymptotic, written (xn) ≍b (yn), if ∀ ǫ > 0, ∃ m, no ∈ N such that
xn and yn can be joined by an ǫ-chain of length m ∀n ≥ no.

(b) cofinally Bourbaki asymptotic, written (xn) ≍cb (yn), if ∀ǫ > 0, ∃m ∈ N and
an infinite subset Nǫ of N such that xn and yn can be joined by an ǫ-chain of
length m ∀n ∈ Nǫ.

(c) cofinally Bourbaki uniformly asymptotic, written (xn) ≍
u
cb (yn), if ∀ǫ > 0, ∃m ∈

N and an infinite subset Nǫ of N such that xn and yk can be joined by an
ǫ-chain of length m ∀n, k ∈ Nǫ.

As an immediate consequence of these definitions, we have the following propo-
sition, whose routine proof is omitted.

Proposition 4.6. Let (xn) and (yn) be sequences in a metric space (X, d).

(a) (xn) is cofinally Bourbaki–Cauchy in (X, d) if and only if (xn) ≍
u
cb (xn).

(b) If (xn) ≍
u
cb (yn), then (xn) and (yn) are cofinally Bourbaki–Cauchy sequences.

Now we state another characterization of CBC-regular functions, which can be
proved by using the above proposition.

Proposition 4.7. Let f : (X, d) → (Y, ρ) be a function between two metric

spaces. The following statements are equivalent:

(a) f is CBC-regular.

(b) If (xn) is a cofinally Bourbaki–Cauchy sequence in (X, d) and (f(xn)) ≍b

(f(zn)), where (zn) is any sequence in X, then (f(xn)) ≍
u
cb (f(zn)).

(c) If (xn) ≍
u
cb (zn) and (f(xn)) ≍b (f(zn)), then (f(xn)) ≍

u
cb (f(zn)).

Theorem 4.8. Let (X, d) be a metric space. Then the following statements are

equivalent:

(a) (X, d) is cofinally Bourbaki-complete.

(b) Whenever f : (X, d) → R is a continuous CBC-regular function such that f
is never zero, then 1

f
is also continuous and CBC-regular.

Proof. (a) ⇒ (b): Since every real-valued continuous function on a cofinally
Bourbaki-complete metric space is CBC- regular [2], the statement holds.

(b) ⇒ (a): If (X, d) is not cofinally Bourbaki-complete, then there exists a co-
finally Bourabki-Cauchy sequence (xn) of distinct points in (X, d) with no cluster
point. Thus, A = {xn : n ∈ N} is closed and discrete. Define a function f from A
to R such that f(xn) =

1
n
∀n ∈ N. Clearly, f is continuous and CBC-regular. By

Theorem 5.1 in [15, p. 149], there exists a continuous function F : X → (0, 2) which
extends f . Now (0, 2) is finitely chainable in R and since every sequence in a finitely
chainable metric space is cofinally Bourbaki–Cauchy [17], F is CBC-regular. Now,
F is never zero but 1

F
is not CBC-regular, as (xn) is cofinally Bourbaki–Cauchy but

(n) is not cofinally Bourbaki–Cauchy in R. �

It is evident that cofinally Bourbaki-complete metric spaces are stronger than
Bourbaki-complete metric spaces as well as cofinally complete metric spaces. In [2],
it has been shown that neither a CC-regular function between two metric spaces need
to be CBC-regular nor a CBC-regular function between two metric spaces need to be
CC-regular. Similar observation has also been given for BC-regular and CBC-regular
functions. In our next results, we establish some relations between the aforesaid
functions. In the process, we find some equivalent conditions under which cofinally
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complete metric spaces and Bourbaki-complete metric space are cofinally Bourbaki-
complete.

Theorem 4.9. Let (X, d) be a metric space. Then the following statements are

equivalent:

(a) (X, d) is cofinally Bourbaki-complete.

(b) (X, d) is cofinally complete and every CC-regular function from (X, d) to any

other metric space (Y, ρ) is CBC-regular.

(c) (X, d) is cofinally complete and every real-valued CC-regular function on

(X, d) is CBC-regular.

(d) (X, d) is cofinally complete and every cofinally Bourbaki–Cauchy sequence in

(X, d) is cofinally Cauchy.

Proof. The implications (b) ⇒ (c) and (d) ⇒ (a) are immediate.
(a) ⇒ (b): Let f : (X, d) → (Y, ρ) be a CC-regular function. Let (xn) be a

cofinally Bourbaki–Cauchy sequence. Since (X, d) is cofinally Bourbaki-complete,
there exists a convergent subsequence (xnk

) of (xn). This implies (xnk
) is cofinally

Cauchy and so is (f(xnk
)). Thus, (f(xn)) is cofinally Bourbaki–Cauchy, which implies

f is CBC-regular.
(c) ⇒ (d): Suppose there exists a cofinally Bourbaki–Cauchy sequence (xn) of

distinct points in (X, d) such that it is not cofinally Cauchy. Now, define a function
f : X → R as

f(x) =

{
n, x = xn for some n ∈ N,

0, otherwise.

Clearly, f is CC-regular but not CBC-regular, a contradiction. �

Theorem 4.10. Let (X, d) be a metric space. Then the following statements

are equivalent:

(a) (X̂, d) is cofinally Bourbaki-complete.

(b) (X̂, d) is cofinally complete and every CC-regular function from (X, d) to any

other metric space (Y, ρ) is CBC-regular.

(c) (X̂, d) is cofinally complete and every real-valued CC-regular function on

(X, d) is CBC-regular.

(d) (X̂, d) is cofinally complete and every cofinally Bourbaki–Cauchy sequence in

(X, d) is cofinally Cauchy.

Proof. (a) ⇒ (b): Since (X̂, d) is cofinally Bourbaki-complete, every cofinally
Bourbaki-sequence in it has a Cauchy subsequence and hence is cofinally Cauchy.

(b) ⇒ (c): This is immediate.
(c) ⇒ (d): This can be proved in a manner similar to the proof of (c) ⇒ (d) in

Theorem 4.9.
(d) ⇒ (a): This follows from the fact that (X̂, d) is cofinally Bourbaki-complete if

and only if every cofinally Bourbaki–Cauchy sequence in it has a Cauchy subsequence.
�

Remark 4.11. Note that if a metric space (X, d) or its completion (X̂, d) is cofi-
nally Bourbaki-complete, then every cofinally Bourbaki–Cauchy sequence in (X, d) is
cofinally Cauchy. But the converse need not hold. For example, as a metric subspace
of the Hilbert space l2, consider X = {en +

1
n
ek : n, k ∈ N}. Then (X, d) is complete
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and every cofinally Bourbaki–Cauchy sequence in (X, d) is cofinally Cauchy (the met-
ric d is induced by the l2-norm), but (X, d) is not cofinally Bourbaki-complete. Thus

the conditions that (X, d) is cofinally complete and (X̂, d) is cofinally complete in
Theorem 4.9 and Theorem 4.10 respectively, cannot be dropped.

In a manner similar to the proof of Theorem 4.9, we can prove the following
result.

Theorem 4.12. Let (X, d) be a metric space. Then the following statements

are equivalent:

(a) (X, d) is cofinally Bourbaki-complete.

(b) (X, d) is Bourbaki-complete and every BC-regular function from (X, d) to any

other metric space (Y, ρ) is CBC-regular.

(c) (X, d) is Bourbaki-complete and every real-valued BC-regular function on

(X, d) is CBC-regular.

(d) (X, d) is Bourbaki-complete and every cofinally Bourbaki–Cauchy sequence

in (X, d) has a Bourbaki–Cauchy subsequence.

In a manner similar to the proof of Theorem 4.10, we can prove the following
result.

Theorem 4.13. Let (X, d) be a metric space. Then the following statements

are equivalent:

(a) (X̂, d) is cofinally Bourbaki-complete.

(b) (X̂, d) is Bourbaki-complete and every BC-regular function from (X, d) to

any other metric space (Y, ρ) is CBC-regular.

(c) (X̂, d) is Bourbaki-complete and every real-valued BC-regular function on

(X, d) is CBC-regular.

(d) (X̂, d) is Bourbaki-complete and every cofinally Bourbaki–Cauchy sequence

in (X, d) has a Bourbaki–Cauchy subsequence.

Remark 4.14. Note that if a metric space (X, d) or its completion (X̂, d) is co-
finally Bourbaki-complete, then every cofinally Bourbaki–Cauchy sequence in (X, d)
has a Bourbaki–Cauchy subsequence. But the converse need not hold. For example,
consider the real Hilbert space l2. Let X ⊆ l2 be defined as X = C(0, 2) (closed
ball around 0 of radius 2). The metric space (X, d) is finitely chainable. Thus ev-
ery cofinally Bourbaki–Cauchy sequence in it has a Bourbaki–Cauchy subsequence
(every sequence in a finitely chainable metric space has a Bourbaki–Cauchy sub-
sequence [17]). (X, d) is complete but not cofinally Bourbaki-complete because if
we enumerate the elements of A = {en + 1

n
ek : n, k ∈ N} ⊂ X, we will get a cofi-

nally Bourbaki–Cauchy sequence which does not have any cluster point in X. Thus
the conditions that (X, d) is Bourbaki-complete and (X̂, d) is Bourbaki-complete in
Theorem 4.12 and Theorem 4.13 respectively cannot be dropped.

In 1958, Atsuji proved: every real-valued uniformly continuous function on a
metric space (X, d) is bounded if and only if (X, d) is finitely chainable [3]. It is
known that the finite chainability of (X, d) is also characterized by the boundedness
of each Lipschitz in the small function on the space. This is implicit in Atsuji’s
proof and very explicit in [8]. In our next result, we study the boundedness of some
combinations of Lipschitz-type functions with CBC-regular functions. The metric
spaces on which every real-valued continuous CBC-regular function is bounded are
equivalent to finitely chainable metric spaces.
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Theorem 4.15. Let (X, d) be a metric space. Then the following are equivalent:

(a) (X, d) is finitely chainable.

(b) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is continuous and

CBC-regular, then f is bounded.

(c) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is locally Lipschitz

and CBC-regular, then f is bounded.

(d) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is Cauchy-Lipschitz

and CBC-regular, then f is bounded.

(e) Whenever (Y, ρ) is a metric space and f : (X, d) → (Y, ρ) is uniformly locally

Lipschitz and CBC-regular, then f is bounded.

(f) Whenever f is a real-valued uniformly locally Lipschitz and CBC-regular

function on (X, d), then f is bounded.

Proof. The implications (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) are all immediate.
(a) ⇒ (b): Let f be a continuous CBC-regular function from (X, d) to (Y, ρ).

Since a metric space (X, d) is finitely chainable if and only if every sequence in it is
cofinally Bourbaki–Cauchy [17], f(X) is a finitely chainable subset of (Y, ρ).

(f) ⇒ (a): Suppose (X, d) is not finitely chainable. Therefore, there exists ǫ > 0
such that for any finite subset {x1, x2, . . . xn} of X and for every m ∈ N, there exists
x ∈ X such that x cannot be joined with any xi by an ǫ-chain of length m. Consider
a1 ∈ X. Then for m = 1, there exists a2 ∈ X such that a2 cannot be bound with a1
by an ǫ-chain of length 1. By induction there exists {an : n ∈ N} where aj cannot
be bound with ai by an ǫ-chain of length j − 1, for 0 < i < j. Define a function
f : (X, d) → R as follows:

f(x) =

{
n− 4n

ǫ
d(x, an), x ∈ B

(
an,

ǫ
4

)
for some n ∈ N,

0, otherwise.

Then, as in Theorem 3.17, the function f is uniformly locally Lipschitz. To see f is
CBC-regular, let (zn) be a cofinally Bourbaki–Cauchy sequence in (X, d). If there
exists an infinite subset N ′ of N such that zk /∈

⋃
i∈NB(ai,

ǫ
4
) ∀ k ∈ N ′, then (f(zn))

is a cofinally Bourbaki–Cauchy sequence as f(zk) = 0 ∀ k ∈ N ′. If that is not the
case, then there exists an infinite subset N ′ of N such that ∀ k ∈ N ′, zk ∈ B(al,

ǫ
4
) for

some l ∈ N, because otherwise for ǫ
4
> 0, there would not be any infinte subset N ǫ

4

of N and m ∈ N such that the points zj and zn can be joined by an ǫ
4
-chain of length

m for every j, n ∈ N ǫ
4
, which contradicts the fact that (zn) is cofinally Bourbaki–

Cauchy. Thus for some t ≥ l, f(zk) ∈ [0, t] ∀ k ∈ N ′. Enumerate the elemets of N ′

in increasing order and let N ′ = {k1, k2, k3, ...}. Since [0, t] is finitely chainable in R,
(f(zkn)) is cofinally Bourbaki–Cauchy. Thus (f(zn)) is cofinally Bourbaki–Cauchy.
Hence f is CBC-regular and uniformly locally Lipschitz but unbounded. We get a
contradiction. �
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