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Abstract. We show that a direct tract bounded by a simple curve is a logarithmic tract and
further give sufficient conditions for a direct tract to contain logarithmic tracts. As an application
of these results, it is shown that an example of a function with infinitely many direct singularities,
but no logarithmic singularity over any finite value, is in the Eremenko–Lyubich class.

1. Introduction

Logarithmic tracts, defined below, have found many uses in the iteration of tran-
scendental entire functions. Barański, Karpińska, and Zdunik [2] showed that, if a
meromorphic function f has a logarithmic tract, then the dimension of the Julia set
of f is strictly greater than 1. Rottenfusser, Rückert, Rempe, and Schleicher [11], as
well as Bergweiler, Rippon, and Stallard [4], proved results on the structure of the
escaping set for functions with a logarithmic tract. Also, one can construct orbits
of points that escape slower than any given sequence within a logarithmic tract [12].
These results use the fact that within a logarithmic tract one can define a logarith-
mic transform of f , which gives an expansion estimate due to Eremenko and Lyubich
[6, Lemma 1]. Therefore, it is useful to be able to identify such logarithmic tracts.
This motivates the following standard definition of tract from [4] and the rest of this
paper.

Definition 1.1. Let D be an unbounded domain in C whose boundary consists
of piecewise smooth curves and suppose that the complement of D is unbounded.
Further, let f be a complex valued function whose domain of definition contains
the closure D of D. Then D is called a direct tract of f if f is holomorphic in D,
continuous in D, and if there exists R > 0 such that |f(z)| = R for z ∈ ∂D while
|f(z)| > R for z ∈ D. We call R the boundary value of the direct tract. If, in
addition, the restriction f : D → {z ∈ C : |z| > R} is a universal covering, then D is
called a logarithmic tract.

Also, if f ′(z) = 0 we say z is a critical point and that f(z) is a critical value of
f . Finally, if Γ: [0,∞)→ C with |Γ(t)| → ∞ as t→∞ and f(Γ(t))→ a as t→∞,
then a ∈ Ĉ is an asymptotic value of f associated with the asymptotic path Γ.

Every transcendental entire function has a direct tract. Further, the much studied
Eremenko-Lyubich class B consists of those transcendental entire functions for which
the set of critical and asymptotic values is bounded. All direct tracts of a function
in the class B are logarithmic tracts, for sufficiently large R in the above.

In this paper, we give a sufficient condition for a direct tract to contain loga-
rithmic tracts. We start with a simple geometric condition for a direct tract to be
logarithmic, which perhaps surprisingly does not seem to have been stated previously.
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Theorem 1.1. Let D be a direct tract whose boundary is an unbounded simple
curve. Then D is logarithmic.

While direct tracts bounded by a single curve are logarithmic, logarithmic tracts
need not be bounded by a single curve. The function eez has direct tracts which are
horizontal strips when the boundary value of the direct tract considered is R = 1.
No critical points lie in these direct tracts and the asymptotic values do not lie in
the image of the tracts, so these direct tracts are logarithmic. However, with the
additional assumption that there are no asymptotic paths in a logarithmic tract D
with finite asymptotic values, then the following converse to Theorem 1.1 is true.

Theorem 1.2. Let D be a logarithmic tract containing no asymptotic paths
with finite asymptotic values. Then D is bounded by a single unbounded curve.
Further, if D is a logarithmic tract with boundary value R, then for all R′ > R,
{z ∈ D : |f(z)| > R′} is a logarithmic tract bounded by a simple curve.

Note that, in the first part of the above theorem, D need not be a simple curve.
For example, the function zez with boundary value 1 has a logarithmic tract with a
boundary that self intersects.

In the case where a direct tract is bounded by more than one curve, and possi-
bly by infinitely many curves, we give a sufficient condition for the direct tract to
contain at least one logarithmic tract. In particular, if a simply connected direct
tract is bounded by finitely many curves, we show that the direct tract contains only
logarithmic tracts and asymptotic paths with asymptotic values of modulus equal to
the boundary value of the direct tract. Further, in the case where there are finitely
many boundary curves of a simply connected direct tract, there can be only finitely
many critical points in the direct tract, at most m − 1, where m is the number of
logarithmic tracts contained in it. In order to better describe this situation, we define
an access to a point, as is done in [1], and a channel of a tract, a new concept based
on choosing part of a tract that contains only one access to ∞. Note that, only the
concept of an access to infinity will be used.

Definition 1.2. Let U be a simply connected domain in C. Fix a point z0 ∈ U .
A homotopy class of curves γ : [0, 1] → Ĉ such that γ([0, 1)) ⊂ U , γ(0) = z0, and
γ(t)→∞ as t→ 1 is called an access from U to ∞.

Definition 1.3. Let D be a direct tract. An unbounded simply connected com-
ponent G of {z ∈ D : |z| > r} for some r > 0 is called a channel of D if there exists
exactly one access to ∞ in G.

Note that such a channel must be bounded by a single unbounded simple curve.

Theorem 1.3. Let D be a direct tract of f , whose boundary includes at least
one, and possibly infinitely many, distinct unbounded simple curves, with |f(z)| = R,
for z ∈ ∂D. Then, for any channel in D, either

• the channel contains a logarithmic tract, or
• f has the same finite asymptotic value of modulus R along all paths to infinity
in the channel.

Moreover, if ∂D consists of m distinct unbounded simple curves, then D contains at
least one logarithmic tract and at most m−1 critical points according to multiplicity.

Note that the tract D need not be simply connected in order to satisfy the
hypotheses of Theorem 1.3.
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We now recall the classification of singularities of the inverse function due to
Iversen [9], using terminology found in [4]. Let f be an entire function and consider
a ∈ Ĉ. For r > 0, let Ur be a component of f−1(D(a, r)) (where D(a, r) is the open
disc centered at a with radius r with respect to the spherical metric) chosen so that
r1 < r2 implies that Ur1 ⊂ Ur2 . Then either

⋂
r Ur = {z} for some unique z ∈ C or⋂

r Ur = ∅. These sets Ur are called tracts for f .
In the first case, we have that a = f(z) and a is an ordinary point if f ′(z) 6= 0, or a

is a critical value if f ′(z) = 0. In the second case, we have a transcendental singularity
over a. The transcendental singularity is called direct if there exists r > 0 such that
f(z) 6= a for all z ∈ Ur. Otherwise it is indirect. Further, a direct singularity over a
is called logarithmic if f : Ur → D(a, r) \ {a} is a universal covering.

There are many entire functions with direct tracts which, while not logarithmic,
do in fact contain a logarithmic tract, as in Theorem 1.3. This containment corre-
sponds to an access to a logarithmic singularity in a direct tract. Simple examples
of this are given in Example 3.1 and Example 3.2. As a more complicated example,
Bergweiler and Eremenko [3] constructed an entire function with infinitely many di-
rect, but no logarithmic singularities over any finite value; see Example 3.3. Using
Theorem 1.1 we show that Bergweiler and Eremenko’s function is in fact in the class
B, thus giving an example of a function in the class B with infinitely many direct
singularities, but no logarithmic singularities over any finite value, which was not
previously known.

The organization of this paper is the following. Section 2 will be devoted to the
proofs of Theorem 1.1, Theorem 1.2, and Theorem 1.3. Section 3 contains three
examples to illustrate applications of these results.

Remark (added in proof). The proofs of all the results about direct tracts
in this paper have made the tacit assumption that any unbounded piecewise smooth
curve in the boundary tends to ∞ at both ends; this would be the case for a direct
tract of a transcendental meromorphic function, and for any subtract {z : |f(z)| >R′},
for R′ > R, of a general direct tract with boundary value R. The author is grateful to
Prof. James Langley for pointing out the theoretical existence of direct tracts whose
boundaries include unbounded smooth curves that accumulate at finite boundary
points, though we do not know of any examples of such tracts.

2. Proofs of Theorem 1.1, Theorem 1.2, and Theorem 1.3

The proof of Theorem 1.1, which states that direct tracts bounded by a simple
curve are logarithmic, is straightforward and similar to the proof of [3, Theorem 5],
though the statement of [3, Theorem 5] is somewhat different. We include this proof
for completeness.

Proof of Theorem 1.1. Let φ : D → D be a Riemann map, where D denotes
the open unit disc. The following construction is illustrated in Figure 1. The set
D is a Jordan domain in the Riemann sphere with boundary ∂D ∪ {∞}, so φ ex-
tends continuously and one-to-one to ∂D, by Carathéodory’s Theorem ([5] and [7,
Theorem I.3.1]), and without loss of generality φ(1) =∞. So,

u(t) = log
|f(φ(t))|

R
, for t ∈ D,

is a positive harmonic function in D with u(t) = 0 if t ∈ ∂D \ {1}. Therefore u is a
positive multiple of the Poisson kernel in D with singularity at 1. For a discussion of
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Figure 1. Construction in the proof of Theorem 1.1.

positive harmonic functions, and the Poisson kernel and its properties, see [7] or [8],
for example. Hence,

u(t) = cRe

(
1 + t

1− t

)
, where c > 0.

Now we can define an analytic branch g of log f/R in D by the monodromy
theorem, since D is simply connected and any local branch g of log f/R can be
analytically continued along any path in D. Then,

g(φ(t)) = log
f(φ(t))

R
, for t ∈ D,

is analytic in D, with

Re g(φ(t)) = log
|f(φ(t))|

R
= cRe

(
1 + t

1− t

)
.

Hence, for some constant θ ∈ R, we have

g(φ(t)) = c
1 + t

1− t
+ iθ =⇒ f(φ(t)) = Reiθ exp

(
c
1 + t

1− t

)
, for t ∈ D,

=⇒ f(z) = Reiθ exp

(
c
1 + φ−1(z)

1− φ−1(z)

)
, for z ∈ D.(1)

It follows immediately that f has no critical points in D. Also, there are no
asymptotic paths in D with finite asymptotic values, as the exponential function has
none in H = {z : Re z > 0}. Indeed, if γ → ∞ in D, then φ−1(z) → 1 along γ. So,
(1+φ−1(z))/(1−φ−1(z))→∞ in H as z →∞ for z ∈ γ. Hence, by (1), f(z) cannot
tend to a finite limit as z →∞ for z ∈ γ. �

Now, we prove Theorem 1.2, giving a converse to Theorem 1.1.

Proof of Theorem 1.2. LetD be a logarithmic tract with boundary value R. Then
the function g(z) = log f(z) is a univalent map from D onto HR = {t : Re t > logR},
with a univalent inverse function h : HR → D.

Now, D is simply connected and ∂D consists of piecewise smooth curves. Thus,
on the Riemann sphere, the boundary of D is the curve ∂D ∪ {∞} (not necessarily
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a simple curve). Therefore, by [10, Theorem 2.1], the univalent function h extends
continuously to ∂HR ∪{∞}, with values in ∂D∪{∞}. If there exists t0 ∈ ∂HR such
that h(t0) =∞, then the function g = h−1 has asymptotic value t0 in D. So, by our
assumption, h(t) must be finite for all t ∈ ∂HR. Hence, h(∂HR) = ∂D is a single
unbounded curve, possibly with self-intersection.

The final part of the theorem follows immediately from the above discussion of
g and h, since

{z ∈ D : |f(z)| = R′} = h(LR′),

where LR′ = {t : Re t = logR′} and R′ > R. �

The proof of Theorem 1.3 uses similar machinery, but is rather more complicated.

Proof of Theorem 1.3. Consider a direct tract D bounded by more than one
unbounded curve with |f(z)| = R, for z ∈ ∂D. If it exists, choose some channel,
G of D. Then either |f(z)| will be unbounded or bounded within this channel. Let
φ : D→ G be a Riemann map with φ(z)→∞ as z → 1 for z ∈ D. This is possible
by the definition of a channel. Then, φ extends continuously and one-to-one to ∂D
by Carathéodory’s Theorem, and once again φ(1) =∞.

Let E be the subset of ∂G where |f(z)| 6= R. Then,

u(t) = log
|f(φ(t))|

R
, for t ∈ D,

is a positive harmonic function in D. Also, the set φ−1(E) is contained in a closed
arc of ∂D which does not contain 1. Note that φ−1(E) may be disconnected.

First, assume f is unbounded in G and denote by P (t, ζ) the Poisson kernel in D
with singularity at ζ. Since f is unbounded in G, it follows from the Poisson integral
formula (see [8, Theorem 1.16]) that

(2) u(t) = cP (t, 1) +

ˆ
φ−1(E)

P (t, ζ)u(ζ) dλ(ζ), for t ∈ D,

where c > 0 and λ(ζ) is the normalized Lebesgue measure on ∂D. Now, choose ε > 0
and δ > 0 such that

(3)
ˆ
φ−1(E)

P (t, ζ)u(ζ) dλ(ζ) < ε,

for |t− 1| < δ and t ∈ D. Then, choose R2 > R1 > 0 such that the horodiscs

Hj = {t ∈ D : cP (t, 1) > Rj}, for j = 1, 2,

lie inside D(1, δ) and R2 > R1 + 2ε. So, for t ∈ H2, u(t) > cP (t, 1) > R2. Let Ω be
the component of {t ∈ D : u(t) > R2} that contains H2. For t ∈ Ω, u(t) > R2, so

cP (t, 1) > R2 −
ˆ
φ−1(E)

P (t, ζ)u(ζ) dλ(ζ).

Hence, by (2) and (3), cP (t, 1) > R2 − ε > R1, for t ∈ Ω. Therefore, H2 ⊂ Ω ⊂ H1,
as shown in Figure 2.
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Figure 2. H2 ⊂ Ω ⊂ H1 ⊂ D.

We next claim that Ω is bounded by a single curve if R2 is sufficiently large.
To prove this, consider the Riemann map ψ : D → H given by ψ(t) = 1+t

1−t . Then,
consider the positive harmonic function U on H defined by

U(x+ iy) = u(ψ−1(x+ iy))

= cP (ψ−1(x+ iy), 1) +

ˆ
ψ(φ−1(E))

P (ψ−1(x+ iy), ψ−1(s))u(ψ−1(s))
ds

1 + s2

= cx+ x

ˆ
ψ(φ−1(E))

U(s)ds

x2 + (y − s)2
, for x+ iy ∈ H.

We have
∂U(x+ iy)

∂x
= c+

ˆ
ψ(φ−1(E))

U(s) ds

x2 + (y − s)2
+ x

∂

∂x

ˆ
ψ(φ−1(E))

U(s) ds

x2 + (y − s)2

≥ c−
ˆ
ψ(φ−1(E))

2x2U(s)

(x2 + (y − s)2)2
ds

≥ c− 2

x2

ˆ
ψ(φ−1(E))

U(s) ds > 0

for x sufficiently large and y ∈ R, since ψ(φ−1(E)) is contained in a bounded interval
of the imaginary axis and U(s) is bounded on ψ(φ−1(E)). So, ∂U(x+iy)

∂x
> 0 in the half-

plane ψ(H1) for sufficiently small δ. Therefore, U(x+iy) is monotonic with respect to
x in the half-plane ψ(H1) for any fixed y. Hence {x+ iy : U(x+ iy) > R2} is bounded
by a single simple unbounded curve, and so Ω = ψ−1({x+ iy : U(x+ iy) > R2}) is
a Jordan domain bounded by a simple curve. Thus, by Theorem 1.1, φ(Ω) is a
logarithmic tract in G.

Now, assume that f is bounded in G. Then there exists K such that u(t) < K for
t in a neighborhood of the boundary singularity at 1. On the boundary of D, u(t) ≡ 0
for t in a neighborhood of 1 except possibly at 1. So, by the extended maximum
principle [8, Theorem 5.16], u has boundary value 0 at 1. We want to show that
f(φ(t)) → α as t → 1, where |α| = R. Since u ≡ 0 on ∂D in a neighborhood of
1, we deduce, by the reflection principle [8, Example 1, p. 35], that we can find a
neighborhood, N say, of 1 in C to which u extends harmonically. Therefore, there
exists a complex conjugate v of u so that u+ iv is analytic on this neighborhood. Let

g(z) = R exp(u(φ−1(z)) + iv(φ−1(z))), for z ∈ φ(N ∩D).

Then, g is analytic on φ(N ∩D) ⊂ G and |g(z)| = |f(z)| in φ(N ∩D). Non-constant
analytic maps are open, so g(z) = cf(z) in φ(N ∩ D), where |c| = 1. Therefore,
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arg f(z) tends to a finite limit as z → ∞ in φ(N ∩ D), and hence in G, since any
sequence tending to infinity in G is eventually contained in φ(N ∩ D). Therefore,
there exists α such that f(z)→ α as z →∞ in G, with |α| = R.

Finally, if D is bounded by m distinct unbounded simple curves, then following
the method in the proof of Theorem 1.1, we again define the positive harmonic
function

u(t) = log
|f(φ(t))|

R
, for t ∈ D,

where φ : D → D is a conformal map and each access to infinity in D corresponds
under φ to a family of paths tending to a point on ∂D along which u tends to either 0
or∞. Suppose there exist n ≤ m accesses to infinity on which f is unbounded. Then,
there exist n points ζ1, . . . , ζn ∈ ∂D such that u is a positive harmonic function in D
with u(t) = 0, for t ∈ ∂D \ {ζ1, . . . , ζn}. Therefore u is a sum of positive multiples of
the Poisson kernel in D with singularities at ζ1, . . . , ζn. Hence,

u(t) =
n∑
k=1

ck Re

(
ζk + t

ζk − t

)
, where ck > 0, for k = 1, . . . , n.

Now, again, we can define an analytic branch g of log f/R in D by the monodromy
theorem, since D is simply connected and any local branch g of log f/R can be
analytically continued along any path in D. Then,

g(φ(t)) = log
f(φ(t))

R
, for t ∈ D,

is analytic in D, with

Re g(φ(t)) = log
|f(φ(t))|

R
=

n∑
k=1

ck Re

(
ζk + t

ζk − t

)
.

Hence, for some constant θ ∈ R, we have

g(φ(t)) =
n∑
k=1

ck
ζk + t

ζk − t
+ iθ =⇒ f(φ(t)) = Reiθ exp

(
n∑
k=1

ck
ζk + t

ζk − t

)
, for t ∈ D.

The critical points of f(φ(t)) for t ∈ D are the solutions of
n∑
k=1

ck
2ζk

(ζk − t)2
= 0,

for which there are at most 2n− 2 solutions in C. Further, by the Cauchy–Riemann
equations, critical points of f(φ(t)) occur if and only if |∇u(t)| = 0, where∇u denotes
the gradient of u. For a point t ∈ D, noting that ζk = 1/ζk gives that

Re

(
ζk + t

ζk − t

)
= −Re

(
ζk + 1/t

ζk − 1/t

)
, for k = 1, . . . , n.

Hence, each Poisson kernel is ‘symmetric’ under reflection in the unit circle and so a
sum of Poisson kernels is as well. Further, no solutions of |∇u(t)| = 0 lie on ∂D, by
the behavior of the Poisson kernel near ∂D. So, the solutions of |∇u(t)| = 0 occur
in pairs and are symmetric with respect to ∂D. Therefore, D contains at most n− 1
critical points of f(φ(t)) and hence D contains at most n− 1 critical points of f . �
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3. Examples

In this section, we give three examples to show the kinds of direct tracts that can
exist, and to which we can apply Theorem 1.1 and Theorem 1.3. First, to illustrate
Theorem 1.3, we give a simple example of a transcendental entire function with a
simply connected direct tract bounded by finitely many boundary curves.

Example 3.1. Consider G(z) = 2 exp(z4). Note that G is in the class B.

Figure 3. The tract of 2 exp(z4) in white with its complement in black.

First, G(z)→∞ as z →∞ along the real and imaginary axes, and G(z)→ 0 as
z → ∞ along the rays with angle an odd multiple of π/4. With a boundary value
of R = 1, as in Figure 3, a neighborhood about the origin is contained in the direct
tract. Further, on the lines with angle an odd multiple of π/8 the modulus of G
is 2. Hence, G has one direct tract bounded by four unbounded simple curves. By
Theorem 1.3, G contains at most three critical points, and in fact, contains a single
critical point of multiplicity 3 at 0. The direct tract of G has four channels on which
f is unbounded and hence contains four logarithmic tracts.

Next, we illustrate Theorem 1.3 by giving an example of a direct non-logarithmic
tract with infinitely many logarithmic tracts inside it.

Example 3.2. Consider f(z) = exp(sin(z)− z). Note that f is not in the class
B as it has critical values at e2kπ for all k ∈ Z.

Figure 4. The tracts of exp(sin(z)− z) in white with their complement in black.
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First, f(z) → ∞ as z → ∞ along the negative real axis and f(z) → ∞ as
z →∞ along translates of the imaginary axis by π

2
+ 2kπ, for k ∈ Z. Also, f(z)→ 0

as z → ∞ along the positive real axis and along translates of the imaginary axis
by 3π

2
+ 2kπ, for k ∈ Z. So, f will have infinitely many direct tracts in the right

half-plane and one direct tract in the left half-plane, with |f(z)| = R on ∂D for
some suitable R > 0. See Figure 4, where R = 1. Further, f has no zeros and its
only finite asymptotic value is 0, along the positive real axis and translates of the
imaginary axis by 3π

2
+ 2kπ, for k ∈ Z. Hence, by Theorem 1.3, the direct tract in

the left half-plane contains infinitely many logarithmic tracts, each corresponding to
channels about translates of the positive and negative imaginary axes by π

2
+ 2kπ,

for k ∈ Z. In contrast, the tracts in the right half-plane are themselves logarithmic
tracts in their own right.

Finally, we use our results to show that an entire function constructed by Berg-
weiler and Eremenko [3] to have no logarithmic singularities over any finite value is,
moreover, in the class B. Note that the reciprocal of this function is an example of
a function with a direct tract which, while simply connected, does not contain any
channels.

Example 3.3. Consider the entire function

h(z) = exp(g(z)), where g(z) =
∞∑
k=1

( z
2k

)2k
.

Then, h has infinitely many direct singularities, but no logarithmic singularity over
any finite value, and is in the class B.

Figure 5. The direct tracts of h over ∞ in white with the direct tract over 0 in black, for
0 ≤ Re z ≤ 250 and 0 ≤ Im z ≤ 250.

The first two statements are proved in [3], so it remains to check that h is in the
class B. In order to see this, we will show that every direct tract (over ∞) for some
fixed boundary value is bounded by a single curve, and so all the direct tracts are
logarithmic by Theorem 1.1. This implies that no critical points lie in these tracts
and no asymptotic paths for finite asymptotic values, and so the singular values of h
form a bounded set. We then conclude that h is in the class B.

Following the notation and construction in [3], fix ε with 0 < ε ≤ 1
8
and set

rn = (1 + ε)2n+1 and r′n = (1 − 2ε)2n+2 for n ∈ N. Then for j ∈ {0, 1, · · · , 2n − 1}
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we define the sets

Bj,n =

{
r exp

(
πi

2n
+

2πij

2n

)
: rn ≤ r ≤ r′n

}
and

C±j,n =

{
r exp

(
πi

2n
+

2πij

2n
± r − r′n
rn+1 − r′n

πi

2n+1

)
: r′n ≤ r ≤ rn+1

}
.

Bergweiler and Eremenko [3, Section 6] show that every unbounded simple path
starting at 0 and lying in the infinite tree,

T = [−ir1, ir1] ∪
∞⋃
n=1

2n−1⋃
j=1

(Bj,n ∪ C±j,n),

is an asymptotic curve along which the function tends to 0. Further,
Re g(z) < −22n for z ∈ Bj,n ∪ C±j,n.

So, if some direct tract (over ∞) with a sufficiently large boundary value was not
bounded by a single curve, then at least one of the following three possibilities would
occur:

(1) there would be another direct tract over a finite value,
(2) the tract would have to cross the infinite tree T ,
(3) there would be zeros of the function h.

The first case is shown not to happen in [3, Section 6] by proving that arg g(reiθ) is an
increasing function of θ, that it increases by 2n2π as θ increases by 2π, and then using
a counting argument to show that all the direct tracts are accounted for and there
can be no others. We can assume that the tract does not cross the infinite tree T ,
since h(z) is bounded on T by a value smaller than the tract boundary value. Finally,
the last case cannot happen since the exponential function omits 0. Therefore, each
direct tract (over∞) is bounded by a single curve, so by Theorem 1.1 we can deduce
that h ∈ B.
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