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Abstract. The closure of the weighted Bergman and Dirichlet spaces in the Bloch norm is

described in terms of a kind of Lusin area function and natural level sets. In certain special cases

simpler characterizations are also offered. The results are applied in the study of interpolating

Blaschke products.

1. Introduction and main results

Let H(D) denote the space of analytic functions in the unit disc D = {z ∈
C : |z| < 1}. For a nonnegative function ω ∈ L1([0, 1)), the extension to D, defined
by ω(z) = ω(|z|) for all z ∈ D, is called a radial weight. For 0 < p < ∞, n ∈ N∪{0}
and such an ω, the space Ap

ω,n consists of f ∈ H(D) such that

‖f‖p
A

p
ω,n

=

ˆ

D

|f (n)(z)|pω(z) dA(z) +
n−1∑

j=0

|f (j)(0)|p < ∞,

where dA(z) = dx dy

π
is the normalized Lebesgue area measure on D. In this definition

we understand that the sum does not exist if n = 0. Throughout this paper ω satisfies

ω̂(z) =
´ 1

|z|
ω(s) ds > 0 for all z ∈ D, for otherwise Ap

ω,n = H(D). We write Ap
ω = Ap

ω,0

and Dp
ω = Ap

ω,1 for the weighted Bergman and Dirichlet spaces, respectively. As
usual, Ap

α and Dp
α denote the classical weighted Bergman and Dirichlet spaces induced

by the standard radial weight ω(z) = (1−|z|2)α, where −1 < α < ∞. For f ∈ H(D)
and 0 < r < 1, set

Mp(r, f) =

(
1

2π

ˆ 2π

0

|f(reit)|p dt

) 1

p

, 0 < p < ∞,

and M∞(r, f) = max|z|=r |f(z)|. For 0 < p ≤ ∞, the Hardy space Hp consists of
f ∈ H(D) such that ‖f‖Hp = sup0<r<1Mp(r, f) < ∞. The Bloch space B consists of
f ∈ H(D) satisfying

‖f‖B = sup
z∈D

|f ′(z)|(1− |z|2) + |f(0)| < ∞.

Finally, a function f ∈ H1 belongs to BMOA if it has bounded mean oscillation on
the boundary T of D, i.e. if it is the Poisson extension of a function in BMO of T.
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Garnett and Jones used the John–Nirenberg inequality [23] to characterize the
closure of L∞ in BMO, and the closure of H∞ in BMOA [14]. Ghatage and Zheng
in turn described the closure of BMOA in the Bloch norm [15], and they attributed
the proof to Jones. A characterization of the closure of Hp ∩ B in B was given by
Galán and Nicolau when 1 < p < ∞ [27], and by Galanopoulos, Galán and Pau
for 0 < p ≤ 1 [12]. Very recently, Galanopoulos and Girela described the closure of
Dp

α ∩ B in B with 1 ≤ p < ∞ [11].
Our main purpose in this paper is to describe the closure of Ap

ω,n ∩ B in the
Bloch space B for all 0 < p < ∞ and n ∈ N ∪ {0}, with relatively weak regularity
hypotheses on the inducing radial weight ω. In particular, our results cover the cases
of the weighted Bergman and Dirichlet spaces for all 0 < p < ∞, and thus complete
in part the recent study by Galanopoulos and Girela. Of course the results are of
interest only if the space in question does not contain the whole Bloch space which
is the case, for example, if ω tends to infinity sufficiently fast when approaching the
boundary.

To state the results, some more definitions are needed. A radial weight ω belongs

to the class D̂ if the tail integral ω̂ satisfies the doubling property ω̂(r) ≤ Cω̂(1+r
2
)

for some constant C = C(ω) ≥ 1 and for all 0 ≤ r < 1. Weights in D̂ can be

characterized in terms of the moments ωx =
´ 1

0
rxω(r) dr of the weight; ω ∈ D̂ if

and only if there exists a constant C = C(ω) > 0 such that ωx ≤ Cω2x for all
x ≥ 1. This is an immediate consequence of [29, Lemma 2.1]. Further, if there exist
K = K(ω) > 1 and C = C(ω) > 1 such that ω̂(r) ≥ Cω̂

(
1− 1−r

K

)
for all 0 ≤ r < 1,

then we write ω ∈

̂
D. We also denote D = D̂ ∩

̂
D for short. Furthermore, if there

exist C = C(ω) > 1 and K = K(ω) > 1 such that ωx ≥ CωKx for all x ≥ 1, we

write ω ∈ M. It is known that D = D̂ ∩ M by [33, Theorem 3] and

̂
D ( M by

[33, Proposition 13]. For basic properties of weights in these classes and more, see
[29, 33, 30, 31, 32] and the references therein.

For ζ = reiθ ∈ D \ {0}, a non-tangential approach region with vertex at ζ is

defined by Γ(ζ) = {z ∈ D : |θ − arg z| < 1
2
(1 − |z|

r
)}. For f ∈ H(D), m ∈ N and

ε > 0, denote Ωm,ε(f) = {z ∈ D : |f (m)(z)|(1− |z|2)m ≥ ε}. For a subspace X of the
Bloch space, let CB(X) denote the closure of the space X in the Bloch norm.

The first main result of this study reads as follows.

Theorem 1. Let 0 < p < ∞, n ∈ N ∪ {0}, ω ∈ D̂ and f ∈ B. Then f ∈
CB(A

p
ω,n ∩ B) if and only if

ˆ

D

(
ˆ

Γ(ζ)∩Ωn+1,ε(f)

dA(z)

(1− |z|2)2(n+1)

)p

2

ω(ζ) dA(ζ) < ∞

for all ε > 0.

By putting [27, Theorem 1] and [12, Theorem 1] together, we see that f ∈ B
belongs to CB(H

p ∩ B) if and only if

ˆ

T

(
ˆ

Γ(ζ)∩Ω1,ε(f)

dA(z)

(1− |z|2)2

) p

2

|dζ | < ∞

for all ε > 0. This is the natural limit case of Theorem 1 with n = 0.
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If p = 2 in Theorem 1, then Fubini’s theorem and the fact that the integral over
the tent T (z) = {ζ ∈ D : z ∈ Γ(ζ)} with respect to ωdA is comparable to ω̂(z)(1−|z|)

for all z ∈ D by [29, Lemma 2.1] if ω ∈ D̂, yields the following result.

Corollary 2. Let n ∈ N∪{0}, ω ∈ D̂ and f ∈ B. Then f ∈ CB(A
2
ω,n ∩B) if and

only if
ˆ

Ωn+1,ε(f)

ω̂(z)

(1− |z|2)2n+1
dA(z) < ∞

for all ε > 0.

In comparison to existing literature an interesting phenomenon occurs here.
Namely, if we choose n = 1, then Corollary 2 implies f ∈ CB(D

2
ω ∩ B) if and only if

(1.1)

ˆ

Ω2,ε(f)

ω̂(z)

(1− |z|2)3
dA(z) < ∞

for all ε > 0. But, by [11, Theorem 2], for each 1 ≤ p < ∞ and −1 < α < ∞
satisfying p− 2 < α ≤ p− 1, we have f ∈ CB(D

p
α ∩ B) if and only if

(1.2)

ˆ

Ω1,ε(f)

dA(z)

(1− |z|2)p−α
< ∞

for all ε > 0. Now the integrand in (1.1) for ω(z) = (1 − |z|2)α is comparable to
(1 − |z|2)α−2, which is the integrand in (1.2) for p = 2. However, the level sets are
different: in (1.1) we integrate over Ω2,ε(f) while (1.2) involves Ω1,ε(f). The question
then arises of when CB(A

p
ω,n∩B) can be characterized in terms of a simpler condition

such as that of Corollary 2 but involving the level set Ωn,ε(f). The following result is
a generalization of [11, Theorem 2] for doubling weights, and answers this question
in the affirmative in certain cases.

Theorem 3. Let 1 ≤ p < ∞, n ∈ N and ω ∈ D be such that
ˆ r

0

ω(t)

(1− t)np+1
dt .

ω̂(r)

(1− r)np+1
, 0 ≤ r < 1,

and
ˆ 1

r

ω(t)

(1− t)n(p−1)
dt .

ω̂(r)

(1− r)n(p−1)
, 0 ≤ r < 1.

Then f ∈ B satisfies f ∈ CB(A
p
ω,n ∩ B) if and only if

ˆ

Ωn,ε(f)

ω̂(z)

(1− |z|2)np+1
dA(z) < ∞

for all ε > 0.

A bounded analytic function is an inner function if it has unimodular radial limits
almost everywhere on the boundary T. The question of when the derivative of an
inner function belongs to the Hardy or the Bergman spaces has been a subject of
research since 1970’s. Membership of the derivative in the Hardy space Hp and its
Banach envelope Bp, with 0 < p < 1, was studied in [1, 4, 3, 6, 22, 35]. Derivatives of
inner functions in the weighted Bergman space Ap

α has been studied in [2, 21, 24], see
[10, 16, 17, 18, 19, 20, 25, 37, 36] for recent developments. See also the monographs
[8] and [26]. Many known results concerning derivatives of inner functions in the
classical weighted Bergman space Ap

α were recently generalized in [5] to the setting of
Ap

ω induced by a normal weight ω in the sense of Shields and Williams [38]. Further
generalizations to the case of doubling weights can be found in [34].
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For a given sequence {zn} in D for which
∑

n(1 − |zn|) converges, the Blaschke
product associated with the sequence {zn} is defined as

B(z) =
∏

n

|zn|

zn

zn − z

1− znz
.

Recall that {zn}
∞
n=1 is uniformly separated, if there exists a constant δ > 0 such that

inf
n∈N

∏

k 6=n

∣∣∣∣
zk − zn
1− zkzn

∣∣∣∣ = δ.

A Blaschke product is interpolating if its zero sequence is uniformly separated. Our
last main result is the following characterization of such Blaschke products in CB(D

p
ω∩

B).

Theorem 4. Let B be an interpolating Blaschke product, and let 1 < p < ∞
and ω ∈ D such that

(1.3)

ˆ r

0

ω(t)

(1− t)p
dt .

ω̂(r)

(1− r)p
, 0 ≤ r < 1,

and

(1.4)

ˆ 1

r

ω(t)

(1− t)p−1
dt .

ω̂(r)

(1− r)p−1
, 0 ≤ r < 1.

Then the following statements are equivalent:

(i) B ∈ CB(D
p
ω ∩ B);

(ii) B ∈ Dp
ω;

(iii)
∑

n

ω̂(zn)

(1− |zn|)p−1
< ∞.

It is known that, under the hypotheses of Theorem 4 on p and ω, the Blaschke
product B associated with a finite union of separated sequences belongs to Dp

ω if and
only if the sum in (iii) converges [34, Theorem 1]. Therefore our contribution consists
of showing that (i) and (iii) are equivalent. This equivalence is the counterpart of
[11, Theorem 7] for weighted Dirichlet spaces induced by doubling weights.

The rest of the paper is organized as follows. In the next section we establish sets
of necessary conditions for a function to belong to CB(A

p
ω,n∩B). Sufficient conditions

are considered in Section 3. The results on closures stated in the introduction are
immediate consequences of these necessary and sufficient conditions. For convenience
of the reader, this is detailed in Section 4, where also a proof of Theorem 4 is given.

Before proving the results, a word about the notation used. The letter C = C(·)
will denote an absolute constant whose value depends on the parameters indicated
in the parenthesis, and may change from one occurrence to another. We will use
the notation a . b if there exists a constant C = C(·) > 0 such that a ≤ Cb for
all a and b under consideration, and a & b is understood in an analogous manner.
In particular, if a . b and a & b, then we write a ≍ b and say that a and b are
comparable.
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2. Necessary conditions

It is known [40, Theorem 5.4] that for each k ∈ N we have

(2.1) ‖f‖B ≍ sup
z∈D

|f (k)(z)|(1− |z|2)k +
k−1∑

j=0

|f (j)(0)| = ‖f‖B,k, f ∈ H(D).

Proposition 5. Let 0 < p < ∞, n ∈ N, 0 < ε < ∞ and ω a radial weight, and

let f ∈ CB(A
p
ω,n ∩ B). Then the following statements hold:

(1)

ˆ

Ωn,ε(f)

ω(z)

(1− |z|2)np
dA(z) < ∞;

(2)

ˆ

Ωm,ε(f)

ω(z)

(1− |z|2)np
dA(z) < ∞ for all m ≥ n, provided ω ∈ D̂;

(3)

ˆ

Ωm,ε(f)

ω̂(z)

(1− |z|2)np+1
dA(z) < ∞ for all m ≥ n, provided ω ∈ D.

Proof. Let f ∈ CB(A
p
ω,n ∩ B) and ε > 0. Then, by (2.1), for each k ∈ N there

exists g ∈ Ap
ω,n ∩ B such that

(2.2) sup
z∈D

∣∣f (k)(z)− g(k)(z)
∣∣ (1− |z|2)k <

ε

2
.

By choosing k = n, it follows that

∞ >

ˆ

D

|g(n)(z)|pω(z) dA(z)

≥

ˆ

Ωn,ε(f)

|f (n)(z)− f (n)(z) + g(n)(z)|p(1− |z|2)np

(1− |z|2)np
ω(z) dA(z)

≥

ˆ

Ωn,ε(f)

(
|f (n)(z)|(1− |z|2)n − |f (n)(z)− g(n)(z)|(1− |z|2)n

)p

(1− |z|2)np
ω(z) dA(z)

>
(ε
2

)pˆ

Ωn,ε(f)

ω(z)

(1− |z|2)np
dA(z),

and thus (1) is proved.

Next, observe that if ω ∈ D̂, then for each m ≥ n we have

(2.3)

ˆ

D

|g(n)(z)|pω(z) dA(z) &

ˆ

D

|g(m)(z)|p(1− |z|2)p(m−n)ω(z) dA(z), g ∈ H(D),

by [33, Theorem 6]. Pick g ∈ Ap
ω,n ∩ B such that (2.2) is satisfied for k = m. By

following the proof above we deduce (2).
To see (3), observe first that if ω ∈ D, then ω[p(m−n)] ∈ D for m ≥ n, where

ω[β](z) = ω(z)(1 − |z|2)β for all z ∈ D. Namely, D = D̂ ∩

̂
D = D̂ ∩ M by [33,

Theorem 3], and [33, (1.2) and (1.3)] yield
(
ω[p(m−n)]

)
x
≍ x−p(m−n)ωx for all x ≥ 1

if ω ∈ D. Therefore
(
ω[p(m−n)]

)
x
≍ ωxx

−p(m−n) . ω2x(2x)
−p(m−n) ≍

(
ω[p(m−n)]

)
2x

by [29, Lemma 2.1], and thus ω[p(m−n)] ∈ D̂ by the same lemma. The fact that

ω[p(m−n)] ∈ D̂ whenever ω ∈ D can also be deduced by using [34, (2.5)]. Now that

ω[p(m−n)] trivially belongs to

̂
D because (1 − r)p(m−n) is decreasing in r, we deduce
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ω[p(m−n)] ∈ D whenever ω ∈ D. Therefore (2.3) and [31, Theorem 1] yield
ˆ

D

|f (n)(z)|pω(z) dA(z) &

ˆ

D

|f (m)(z)|p(1− |z|2)p(m−n)ω(z) dA(z)

&

ˆ

D

|f (m)(z)|p(1− |z|2)p(m−n) ω̂(z)

1− |z|2
dA(z)

(2.4)

for all f ∈ H(D), provided I(r) . II(r) for all 0 ≤ r < 1, where

I(r) =

ˆ 1

r

ω̂(t)

1− t
(1− t)p(m−n) dt and II(r) =

ˆ 1

r

ω(t)(1− t)p(m−n) dt, 0 ≤ r < 1.

To prove this, note that the hypothesis ω ∈ D ⊂

̂
D yields

I(r) =

ˆ 1− 1−r
K

r

ω̂(t)

1− t
(1− t)p(m−n) dt+

ˆ 1

1− 1−r
K

ω̂(t)

1− t
(1− t)p(m−n) dt

=

ˆ 1− 1−r
K

r

ω̂(t)

1− t
(1− t)p(m−n) dt+

1

Kp(m−n)

ˆ 1

r

ω̂
(
1− 1−s

K

)

1− s
(1− s)p(m−n) ds

≤

ˆ 1− 1−r
K

r

ω̂(t)

1− t
(1− t)p(m−n) dt+

I(r)

CKp(m−n)
,

which together with the hypothesis ω ∈ D =

̂
D ∩ D̂ and [29, Lemma 2.1] give

(
1−

1

CKp(m−n)

)
I(r) ≤

ˆ 1− 1−r
K

r

ω̂(t)

1− t
(1− t)p(m−n) dt ≤ ω̂(r)(1− r)p(m−n) logK

. ω̂

(
1−

1− r

K

)
(1− r)p(m−n)C − 1

C − 1

≤ (1− r)p(m−n) ω̂(r)− ω̂
(
1− 1−r

K

)

C − 1

≤
Kp(m−n)

C − 1

ˆ 1− 1−r
K

r

ω(t)(1− t)p(m−n) dt . II(r).

Again the assertion follows as in the case (1). �

Proposition 6. Let 0 < p < ∞, n ∈ N∪{0}, 0 < ε < ∞ and ω a radial weight,

and let f ∈ CB(A
p
ω,n ∩ B). Then the following statements hold:

(1)

ˆ

D



ˆ

Γ(ζ)∩Ωm,ε(f)

(
1−

∣∣∣zζ
∣∣∣
)2(m−n)−2

(1− |z|2)2m
dA(z)




p

2

ω(ζ) dA(ζ) < ∞ for all m ≥

n + 1;

(2)

ˆ

D



ˆ

Γ(ζ)∩Ωk,ε(f)

(
1−

∣∣∣zζ
∣∣∣
)2(k−m)−2

(1− |z|2)2k
dA(z)




p

2

(1 − |ζ |)(m−n)pω(ζ) dA(ζ) < ∞

for all k − 1 ≥ m ≥ n, provided ω ∈ D̂;

(3)

ˆ

D



ˆ

Γ(ζ)∩Ωk,ε(f)

(
1−

∣∣∣zζ
∣∣∣
)2(k−m)−2

(1− |z|2)2k
dA(z)




p

2

(1−|ζ |)(m−n)p−1ω̂(ζ) dA(ζ) < ∞

for all k − 1 ≥ m ≥ n, provided ω ∈ D.
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Proof. (1) Let f ∈ CB(A
p
ω,n ∩B) and ε > 0. Then, by (2.1), for each k ∈ N there

exists g ∈ Ap
ω,n ∩ B such that (2.2) holds. Moreover, for each m ≥ n + 1 and radial

weight ω we have

‖h‖p
A

p
ω,n

≍

ˆ

D

(
ˆ

Γ(ζ)

|h(m)(z)|2
(
1−

∣∣∣∣
z

ζ

∣∣∣∣
)2(m−n)−2

dA(z)

) p

2

ω(ζ) dA(ζ)

+
m−1∑

j=n

|h(j)(0)|p

(2.5)

for all h ∈ H(D), by [30, Theorem 4.2]. Pick g ∈ Ap
ω,n ∩B such that (2.2) is satisfied

for k = m, and then continue as in the proof of Proposition 5 with the aid of (2.5)
to get

∞ > ‖g‖p
A

p
ω,n

&

ˆ

D

(
ˆ

Γ(ζ)

|g(m)(z)|2
(
1−

∣∣∣∣
z

ζ

∣∣∣∣
)2(m−n)−2

dA(z)

) p

2

ω(ζ) dA(ζ)

≥

ˆ

D



ˆ

Γ(ζ)
⋂

Ωm,ε(f)

|f (m)(z)− f (m)(z) + g(m)(z)|2(1− |z|2)2m
(
1−

∣∣∣zζ
∣∣∣
)−2(m−n)+2

(1− |z|2)2m
dA(z)




p

2

ω(ζ) dA(ζ)

≥

ˆ

D



ˆ

Γ(ζ)
⋂

Ωm,ε(f)

(
|f (m)(z)|(1−|z|2)m − |f (m)(z)− g(m)(z)|(1−|z|2)m

)2
(
1−

∣∣∣zζ
∣∣∣
)−2(m−n)−2

(1− |z|2)2m
dA(z)




p
2

· ω(ζ) dA(ζ)

≥
(ε
2

)p ˆ

D



ˆ

Γ(ζ)∩Ωm,ε(f)

(
1−

∣∣∣zζ
∣∣∣
)2(m−n)−2

(1− |z|2)2m
dA(z)




p

2

ω(ζ) dA(ζ),

and (1) follows.
To prove (2), observe first that for all k − 1 ≥ m ≥ n we have

‖g‖p
A

p
ω,n

&

ˆ

D

|g(m)(z)|p(1− |z|2)(m−n)pω(z) dA(z)

≍

ˆ

D

(
ˆ

Γ(ζ)

|g(k)(z)|2
(
1−

∣∣∣∣
z

ζ

∣∣∣∣
)2(k−m)−2

dA(z)

) p

2

(1− |ζ |2)(m−n)pω(ζ) dA(ζ)

by (2.3) and (2.5). By following the proof above we get the assertion. The last
assertion (3) follows by using (2.4) and the arguments above. �

3. Sufficient conditions

Proposition 7. Let 1 ≤ p ≤ ∞, n ∈ N and ω a radial weight such that
ˆ r

0

ω(t)

(1− t)np+1
dt .

ω̂(r)

(1− r)np+1
, 0 ≤ r < 1,(3.1)

ˆ 1

r

ω(t)

(1− t)n(p−1)
dt .

ω̂(r)

(1− r)n(p−1)
, 0 ≤ r < 1.(3.2)
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If f ∈ B satisfies

(3.3)

ˆ

Ωm,ε(f)

ω̂(z)

(1− |z|2)np+1
dA(z) < ∞

for all ε > 0 and for some m ∈ N such that m ≤ n, then f ∈ CB(A
p
ω,n ∩ B).

Proof. We may assume without loss of generality that f(0) = f ′(0) = · · · =
f (m−1)(0) = 0. Since f ∈ B by the hypothesis, we may use [40, Proposition 4.27] to
write f = f1 + f2, where

f1(z) =
1

m!

ˆ

Ωm,ε(f)

f (m)(ζ)(1− |ζ |2)m

(1− zζ)2ζ
m dA(ζ), z ∈ D,

f2(z) =
1

m!

ˆ

D\Ωm,ε(f)

f (m)(ζ)(1− |ζ |2)m

(1− zζ)2ζ
m dA(ζ), z ∈ D.

We have

(1− |z|2)m|f
(m)
2 (z)| ≤ (m+ 1)(1− |z|2)m

ˆ

D\Ωm,ε(f)

|f (m)(ζ)|(1− |ζ |2)m

|1− zζ |2+m
dA(ζ)

≤ (m+ 1)ε(1− |z|2)m
ˆ

D\Ωm,ε(f)

dA(ζ)

|1− zζ |2+m

≤ (m+ 1)ε(1− |z|2)m
ˆ

D

dA(ζ)

|1− zζ |2+m
≍ ε, z ∈ D,

and hence ‖f − f1‖B,m = ‖f2‖B,m . ε. Since f ∈ B by hypothesis, we also have
f1 ∈ B. To complete the proof, it remains to show that f1 ∈ Ap

ω,n. To see this,
observe first that the hypothesis p ≥ 1 and Fubini’s theorem yield

ˆ

D

|f
(n)
1 (z)|pω(z) dA(z) ≤ ‖f1‖

p−1
B,n

ˆ

D

|f
(n)
1 (z)|

ω(z)

(1− |z|2)n(p−1)
dA(z)

. ‖f1‖
p−1
B,n

ˆ

D

ω(z)

(1− |z|2)n(p−1)

(
ˆ

Ωm,ε(f)

|f (m)(ζ)|(1− |ζ |2)m

|1− zζ |2+n
dA(ζ)

)
dA(z)

. ‖f1‖
p−1
B,n ‖f‖B,m

ˆ

Ωm,ε(f)

(
ˆ

D

ω(z)

(1− |z|2)n(p−1)|1− zζ |2+n
dA(z)

)
dA(ζ),

where
ˆ

D

ω(z)

(1− |z|2)n(p−1)|1− zζ |2+n
dA(z) .

(
ˆ |ζ|

0

+

ˆ 1

|ζ|

)
ω(r)

(1− r)n(p−1)(1− |ζ |r)1+n
dr

≤

ˆ |ζ|

0

ω(r)

(1− r)np+1
dr +

1

(1− |ζ |)1+n

ˆ 1

|ζ|

ω(r)

(1− r)n(p−1)
dr .

ω̂(ζ)

(1− |ζ |)np+1
, ζ ∈ D,

by the hypotheses (3.1) and (3.2). Therefore
ˆ

D

|f
(n)
1 (z)|pω(z) dA(z) . ‖f1‖

p−1
B,n ‖f‖B,m

ˆ

Ωm,ε(f)

ω̂(z)

(1− |z|)np+1
dA(z) < ∞,

and thus f1 ∈ Ap
ω,n. �

To shorten the notation, for f ∈ H(D), m ∈ N and ζ ∈ D \ {0}, denote

Am(f)(ζ) =

(
ˆ

Γ(ζ)

|f (m)(z)|2
(
1−

∣∣∣∣
z

ζ

∣∣∣∣
)2m−2

dA(z)

) 1

2
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and

Φm,ε(f)(ζ) =

(
ˆ

Γ(ζ)∩Ωm,ε(f)

dA(z)

(1− |z|2)2m

) 1

2

.(3.4)

An application of [30, Theorem 4.2] shows that

‖f‖p
A

p
ω,n

≍ ‖Am(f
(n))‖p

L
p
ω
+

n+m−1∑

j=0

|f (j)(0)|p, f ∈ H(D).(3.5)

Proposition 8. Let 0 < p < ∞, n ∈ N ∪ {0}, ω ∈ D̂ and f ∈ B. If Φn+1,ε(f) ∈
Lp
ω for all ε > 0, then f ∈ CB(A

p
ω,n ∩ B).

Proof. Assume without loss of generality that f(0) = f ′(0) = · · · = f (n)(0) = 0.
Let γ > 0 to be fixed later depending on ω. Since f ∈ B by the hypothesis, we have

f(z) =
1

(γ + 2) · · · (γ + n+ 1)

ˆ

D

f (n+1)(ζ)(1− |ζ |2)n+1+γ

ζ
n+1

(1− zζ)2+γ
dA(ζ), z ∈ D,

by [40, Propostion 4.27]. Write f = f1 + f2, where

f1(z) =
1

(γ + 2) · · · (γ + n + 1)

ˆ

Ωn+1,ε(f)

f (n+1)(ζ)(1− |ζ |2)n+1+γ

ζ
n+1

(1− zζ)2+γ
dA(ζ), z ∈ D,

f2(z) =
1

(γ + 2) · · · (γ + n + 1)

ˆ

D\Ωn+1,ε(f)

f (n+1)(ζ)(1− |ζ |2)n+1+γ

ζ
n+1

(1− zζ)2+γ
dA(ζ), z ∈ D.

Clearly,

|f
(n+1)
2 (z)| ≤ (n+ 2 + γ)ε

ˆ

D

(1− |ζ |2)γ

|1− ζz|n+3+γ
dA(z), z ∈ D,

and hence ‖f − f1‖B ≍ ‖f2‖B,n+1 . ε by (2.1) and the classical Forelli–Rudin es-
timates from [40, Lemma 3.10]. To complete the proof it remains to show that
f1 ∈ Ap

ω,n. This will be done by using the equivalent norm given by (3.5). First
observe that

|f
(n+1)
1 (z)|2 . ‖f‖2B,n+1

(
ˆ

Ωn+1,ε(f)

(1− |ζ |2)γ

|1− zζ|n+3+γ
dA(ζ)

)2

, z ∈ D,

where by the Cauchy–Schwarz inequality and the Forelli–Rudin estimates we have
(
ˆ

Ωn+1,ε(f)

(1− |ζ |2)γ

|1− zζ |3+n+γ
dA(ζ)

)2

=

(
ˆ

Ωn+1,ε(f)

(1− |ζ |2)
γ

2

|1− zζ |
3+γ

2
+n

(1− |ζ |2)
γ

2

|1− zζ |
3+γ

2

dA(ζ)

)2

≤

ˆ

Ωn+1,ε(f)

(1− |ζ |2)γ

|1− zζ |3+2n+γ
dA(ζ)

ˆ

D

(1− |ζ |2)γ

|1− zζ |3+γ
dA(ζ)

.

ˆ

Ωn+1,ε(f)

(1− |ζ |2)γ

|1− zζ |3+2n+γ
dA(ζ)(1− |z|2)−1, z ∈ D.

Therefore Fubini’s theorem yields

A1(f
(n)
1 )(ξ)

2
.

ˆ

Ωn+1,ε(f)

(
ˆ

Γ(ξ)

dA(z)

|1− zζ |3+2n+γ(1− |z|2)

)
(1− |ζ |2)γ dA(ζ).
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If z ∈ Γ(ξ) where ξ ∈ D \ {0}, then

1

2

(
1−

∣∣∣∣
z

ξ

∣∣∣∣
)

≥ |arg ξ − arg z| ≍

∣∣∣∣
ξ

|ξ|
−

z

|z|

∣∣∣∣ =
∣∣∣∣1−

ξz

|ξ||z|

∣∣∣∣ ,

and hence

1− |z| ≤ |1− ξz| =

∣∣∣∣1−
ξz

|ξ||z|
+

ξz

|ξ||z|
− ξz

∣∣∣∣

.
1

|ξ|
(|ξ| − |z|) + (1− |ξ||z|) . (1− |z|), |ξ| ≥

1

2
.

It follows that (1 − |z|2) ≍ |1 − zξ| for all z ∈ Γ(ξ) and ξ ∈ D \ {0}. Therefore an
application of [28, Lemma 2.5] with r = t = 3 + 2n+ γ and s = 2 + 2n+ γ yields

ˆ

Γ(ξ)

dA(z)

|1− zζ |3+2n+γ(1− |z|2)
.

ˆ

D

(1− |z|2)2+2n+γ

|1− zζ|3+2n+γ |1− zξ|3+2n+γ
dA(z)

.
1

|1− ζξ|2+2n+γ

for all ζ ∈ D and ξ ∈ D \ {0}. Hence

‖A1(f
(n)
1 )‖p

L
p
ω
.

ˆ

D

(
ˆ

Ωn+1,ε(f)

(1− |ζ |2)γ

|1− ξζ|2(n+1)+γ
dA(ζ)

)p

2

ω(ξ) dA(ξ)

=

ˆ

D

(
ˆ

D

(
1− |ζ |2

|1− ξζ|

)2(n+1)+γ

dµn,f(ζ)

)p

2

ω(ξ) dA(ξ),

where

dµn,f(ζ) =
χΩn+1,ε(f)(ζ) dA(ζ)

(1− |ζ |2)2(n+1)
, ζ ∈ D.

By choosing γ = γ(ω) > 0 sufficient large, [31, Lemma 4] implies

‖A1(f
(n)
1 )‖p

L
p
ω
.

ˆ

D

(
ˆ

Γ(ξ)∩Ωn+1,ε(f)

dA(ζ)

(1− |ζ |2)2(n+1)

)p
2

ω(ξ) dA(ξ) = ‖Φn+1,ε(f)‖
p

L
p
ω
,

and thus f ∈ Ap
ω,n by (3.5) and the hypothesis Φn+1,ε(f) ∈ Lp

ω. �

4. Proofs of main results

Theorem 1 is an immediate consequence of Proposition 6(1), with m = n+1, and
Proposition 8. Further, Theorem 3 is an immediate consequence of Propositions 5(3)
and 7 with m = n. It remains to prove our last main result that concerns Blaschke
products.

Proof of Theorem 4. As mentioned in the introduction, (ii) and (iii) are equiva-
lent (even for Carleson–Newman Blaschke products) by [34, Theorem 1]. To complete
the proof, we show that (i) and (iii) are equivalent. Assume first B ∈ CB(D

p
ω ∩ B).

Then, by Theorem 3, we have
ˆ

Ω1,ε(B)

ω̂(z)

(1− |z|2)p+1
dA(z) < ∞

for all ε > 0. Further, since B is interpolating, [19, Lemma 3.5] implies the existence
of ε > 0 and δ > 0 such that the pseudohyperbolic discs ∆(zn, δ) = {z ∈ D : |zn −
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z|/|1−znz| < δ} are pairwise disjoint and |B′(z)|(1−|z|) ≥ ε for all z ∈
⋃

n ∆(zn, δ).
Therefore

⋃
n∆(zn, δ) ⊂ Ω1,ε(B). An application of [29, Lemma 2.1] shows that

ω̂(z) ≍ ω̂(zn) for all z ∈ δ(zn, δ) and each n, and hence

∞ >

ˆ

Ω1,ε(B)

ω̂(z)

(1− |z|2)p+1
dA(z)

≥
∑

n

ˆ

∆(zn,δ)

ω̂(z)

(1− |z|2)p+1
dA(z) ≍

∑

n

ω̂(zn)

(1− |zn|)p−1
.

Thus (iii) is satisfied.
Conversely, assume (iii). For each z ∈ Ω1,ε(B) we have

ε

1− |z|2
≤ |B′(z)| ≤

∑

n

1− |zn|
2

|1− znz|2
.

Hence
ˆ

Ω1,ε(B)

ω̂(z)

(1− |z|2)p+1
dA(z) .

∑

n

(1− |zn|)

ˆ

D

ω̂(z)

(1− |z|)p|1− znz|2
dA(z)

≍
∑

n

(1− |zn|)

ˆ 1

0

ω̂(r)

(1− r)p(1− |zn|r)
dr . I1 + I2,

where

I1 =
∑

n

(1− |zn|)

ˆ |zn|

0

ω̂(r)

(1− r)p+1
dr

and

I2 =
∑

n

ˆ 1

|zn|

ω̂(r)

(1− r)p
dr.

Fubini’s theorem, (1.3) and the hypothesis yield

I1 =
∑

n

(1− |zn|)

(
ω̂(zn)

ˆ |zn|

0

dr

(1− r)p+1
+

ˆ |zn|

0

(
ˆ |zn|

r

ω(s) ds

)
dr

(1− r)p+1

)

≍
∑

n

ω̂(zn)

(1− |zn|)p−1
+
∑

n

(1− |zn|)

ˆ |zn|

0

ω(s)

(1− s)p
ds .

∑

n

ω̂(zn)

(1− |zn|)p−1
< ∞.

Similarly, Fubini’s theorem, (1.4) and the hypothesis yield

I2 =
∑

n

ˆ 1

|zn|

ω(s)

(
ˆ s

|zn|

dr

(1− r)p

)
ds .

∑

n

ˆ 1

|zn|

ω(s)

(1− s)p−1
ds

.
∑

n

ω̂(zn)

(1− |zn|)p−1
< ∞.

Thus B ∈ CB(D
p
ω ∩ B) by Theorem 3. �
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