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Abstract. We study a boundary value problem for the Helmholtz equation with an impedance

boundary condition, in two and three dimensions, modelling the scattering of time harmonic acoustic

waves by an unbounded rough surface. Via analysis of an equivalent variational formulation we prove

this problem to be well-posed when: i) the boundary has the strong local Lipschitz property and

the frequency is small; ii) the rough surface is the graph of a bounded Lipschitz function (with

arbitrary frequency). An attractive feature of our results is that the bounds we derive, on the

inf-sup constants of the sesquilinear forms, are explicit in terms of the wavenumber k, the geometry

of the scatterer and the parameters describing the surface impedance.

1. Introduction

In this paper we study a boundary value problem for the Helmholtz equation
with an impedance boundary condition, modelling the scattering of time harmonic
acoustic waves by an unbounded rough surface that lies within a finite distance of a
plane, due to a source term that is supported within a finite distance of the boundary.
Our assumption throughout is that the surface is the graph of a bounded Lipschitz
function or, for the case of small wavenumber k, simply that the surface possesses
the strong local Lipschitz property (defined below). The mathematical problem we
study (both the 2D and 3D versions) is a standard model of ground effects in outdoor
noise propagation (e.g. [46, 3]), in which application the impedance is complex-valued
and frequency-dependent, and the 2D version of this problem is of relevance also in
electromagnetic scattering (e.g. [53]).

Our aim in this paper is to prove well-posedness of this impedance boundary
value problem, moreover obtaining stability estimates that are expressed explicitly
in terms of the wavenumber and parameters describing the geometry and surface
impedance. In doing this we will extend the methods and results of [21] in which an
equivalent problem but with the simpler Dirichlet boundary condition was studied.
Our approach will entail reformulating our boundary value problem as a variational
problem on a strip above the rough surface. Thus in terms of style and methodology
this paper follows on from [21], which work in turn was inspired, in part, by earlier
work for the special (and simpler) diffraction-grating case where the boundary is
periodic (a diffraction grating) and the variational problem is formulated in a bounded
periodic cell (e.g. [37, 6, 50, 32]).

Rough surface scattering problems are well studied and documented in the lit-
erature. The review of Warnick and Chew [54] summarises numerical strategies for
dealing with this class of problems. A critical survey of scattering approximations is
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carried out in the review of Elfouhaily and Guerin [30]. In the review [49], Saillard
and Sentenac are interested in formulating rough surface scattering problems from a
statistical point of view. In [45] Ogilvy reviews research in this area, again with an
emphasis on random rough surfaces and on numerical techniques. See also the books
by Voronovich [52], Petit [47], Wilcox [55], Pinel and Bourlier [48], and the review of
DeSanto [25].

The above books or review articles, from the physics and engineering literature,
focus on practical computation and the many important application areas, but do
not provide rigorous mathematical theory. The challenges in proving rigorous well-
posedness results are substantial: uniqueness may fail (associated with propagating
surface waves), and radiation conditions may be unclear; standard arguments to prove
Fredholmness, via establishing that operators are compact perturbations of coercive
operators, are no longer applicable when the problem cannot be reformulated on a
bounded domain.

In the last twenty years, however, methods for the mathematical analysis of these
problems have been developed (in large part initiated by the group around Simon
Chandler-Wilde, who supervised the PhD project from which this work emanates),
proving existence, uniqueness and continuous dependence on the data for a range of
scattering scenarios. These mathematical results were proved initially by employing
integral equation methods (see for example [8, 9, 16, 15, 56, 11]), using generalised
collective compactness arguments that apply only for sufficiently smooth boundaries
(C1,α, for some 0 < α ≤ 1), and that require analysis in spaces of bounded continuous
functions on the infinite boundary, so that the methods can only work in two dimen-
sions as the integral operators are not well-defined for general 3D rough surfaces and
bounded continuous densities. Integral equation methods were extended to 3D prob-
lems (the Dirichlet rough surface scattering problem), working in L2 spaces, but still
with sufficiently smooth boundaries, in [17, 18], via Rellich-identity-type arguments.
These results were later extended to Lipschitz rough surfaces in the author’s PhD
thesis [4], combining the methods of these earlier papers with harmonic-analysis-type
estimates for double-layer potential operators on Lipschitz domains [51]. In paral-
lel, in [21], a variational approach was developed to good effect, that established
well-posedness for the 3D Dirichlet rough surface scattering problem with minimal
constraints on boundary smoothness (e.g. the results apply for C0 boundaries), more-
over using Rellich-identity-type arguments that give explicitly the dependence of the
continuity and inf-sup constants in the sesquilinear form on the wavenumber k and
on the maximum elevation of the rough surface.

It is from this latter paper [21] that we will take our lead. Indeed, we note that
the results and methods of [21] have already prompted significant developments of the
same methodology to tackle a wider range of rough surface scattering problems, for
example acoustic scattering by penetrable rough layers [39], electromagnetic rough
surface scattering (e.g. [42, 41]), weighted space methods that allow a wider class
of incident fields (including plane wave incidence in 2D) [13], and elastic scattering
problems [31]. This paper can be viewed as a development of the same methodology,
but in another direction.

Let us turn now to contrasting the current paper with prior work specifically
on the impedance problem that is the focus of this paper, in which a solution u to
the Helmholtz equation ∆u + k2u = g is sought, for which the boundary condition
∂u
∂ν

= ikβu holds. Here k > 0 is the wavenumber, g is the acoustic source term, ν is
the outward unit normal to the boundary and the impedance β is a given function
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defined on the boundary. The authors we quote in the following paragraphs all
assume, as a minimum, that β is bounded (is in L∞(Γ), where Γ is the boundary),
and that Re(β) ≥ 0, this being a necessary and sufficient condition that ensures that
acoustic energy does not flow out of Γ into the domain of propagation.

In [9] Chandler-Wilde showed the impedance problem to be well-posed in 2D
when the boundary is flat, with arbitrary L∞ impedance satisfying that Re(β) ≥ η >
0, for some η > 0 (so that the boundary is strictly energy-absorbing), including, in the
problem formulation, the case of plane wave incidence. The method applied to obtain
these results was to reformulate the problem as an equivalent second kind boundary
integral equation on the real line; then to prove uniqueness of solution; and then to
infer existence of solution by utilizing the results of [7], which established some novel
solvability results for integral equations on the real line. In [56] Zhang and Chandler-
Wilde were able to show, again using boundary integral equation techniques, that
the impedance problem is well-posed in 2D when the boundary is the graph of a
bounded C1,1 function.

In [11], Chandler-Wilde and Peplow consider a 2D impedance problem when the
boundary is flat (and the impedance β constant) except for a local perturbation, this
perturbation directed out of the half-plane. They prove uniqueness of solution in
the case Re(β) > 0 (the boundary is energy-absorbing) and reformulate the problem
as an equivalent boundary integral equation (well-posedness for the corresponding
problem for 3D electromagnetics has recently been established in [26]). This 2D
configuration, but allowing a local perturbation of the flat boundary that may be
partly directed into, partly directed out of the half-plane, has recently been studied
in Bao et al [5], in which well-posedness of a variational formulation in a compact
region enclosing the local perturbation is established in the case that Re(β) > 0 and
Im(β) ≥ 0.

In [27] and [28] Durán, Muga and Nédélec look at the impedance problem (in 2D
and 3D respectively) in the special case that the boundary is flat so that the problem
domain is a half plane or half space, obtaining unique existence of solution to their
problem. In [29] they then extend their results to the case when the boundary is a
locally perturbed half-plane, with constant impedance outside the local perturbation.
In contrast to the paper [9] and also the work that we present here, their problem
set-up differs in that they assume that Re(β) = 0, Im(β) < 0 (the parameter range
in which the surface outside the local perturbation can support surface waves). The
problem formulation developed in this paper (and those, for example, in [9] and [56])
are ill-posed (uniqueness fails) in this particular parameter regime: the authors of [27]
and [28] achieve well-posedness by employing a different radiation condition to the
one used here and in [9], adapted to an assumption that the impedance is constant
outside the local perturbation and the presence of a surface wave.

On the numerical side, Chandler-Wilde et al. in [14], [20] and [38], obtain solutions
to the impedance problem in a half plane, with various restrictions on the impedance
β. They obtain convergence and stability estimates, illustrative of the relevance of
the sort of well-posedness results that we prove in this paper to rigorous numerical
analysis. A full numerical analysis of a coupled finite and boundary element method
for the locally-perturbed impedance half-plane was recently carried out in [5].

The current paper is based on Chapter 3 of the PhD thesis of the author [4].
Compared to the above literature, there are two main novel aspects; in the first
place the results apply in both two and three dimensions; and in the second place
the boundaries to which our results apply are more general. Specifically, we prove
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the impedance boundary value problem to be well-posed for Re(β) ≥ η > 0, when
the boundary is the graph of a bounded Lipschitz function, for all wavenumber k.
Further, for small wavenumber k, we establish well-posedness in the more general
case when the boundary has the strong local Lipschitz property (and lies within a
finite distance of a plane).

The most closely related other work is that of [35]. In that paper Hu et al. study
the generalised impedance boundary value problem, solving the Helmholtz equation
with the generalised impedance boundary condition

(1)
∂u

∂ν
= divΓ(µ∇Γu) + ikβu,

for a given parameter µ ∈ C, for the case when the rough surface is the graph of
a bounded Lipschitz function, and Re(β) > 0, Im(β) ≥ 0. However, crucially, their
results do not apply to the special case where µ = 0, when (1) reduces to the classical
impedance boundary value problem that we study here. Thus there is no overlap in
the content of our theorems. Moreover our results hold not only when the boundary
is the graph of a Lipschitz function, but also when it merely has the strong local
Lipschitz property, provided the frequency is small. In addition, our requirements on
the impedance are less restrictive than in [35]. Specifically, unlike in [35], β may take
values in the range Re(β) > 0, Im(β) < 0, which is the range that normally arises in
applications, for example those in outdoor noise propagation (e.g. [19, 3]).

Acknowledgement. The author would very much like to acknowledge the help
and guidance of Simon Chandler-Wilde, without whom this work would not have
been possible.

2. The boundary value problem and variational formulation

In this section we shall define some notation related to the rough surface scatter-
ing problem and write down the boundary value problem and equivalent variational
formulation that will be analyzed in later sections. We introduce the following nota-
tion: for x = (x1, . . . , xn) ∈ R

n (n = 2, 3) let x̃ = (x1, . . . , xn−1) so that x = (x̃, xn).
For H ∈ R let UH = {x : xn > H} and ΓH = {x : xn = H}. Let D ⊂ R

n be an open
connected set, with boundary Γ, such that for some constants f− < f+ it holds that

Uf+ ⊂ D ⊂ Uf−.

In order to make sense of boundary integrals, we will require that for some µ > 0 and
N ∈ N, D be an (L, µ,N) Lipschitz domain, in the sense of the following definition.

Definition 1. Given L ∈ R, µ > 0 and N ∈ N, the set Ω is said to be an
(L, µ,N) Lipschitz domain if there exists a locally finite open cover {Oj}j∈J of Γ,
such that:

i) for each y ∈ Γ, the open ball of radius µ and centre y is a subset of Oi, for
some i ∈ J ;

ii) for each j ∈ J , Oj ∩ Ω = Oj ∩ Ωj , where Ωj is, after a rotation, the epigraph
of a Lipschitz function f : Rn−1 → R such that

(2) |f(x̃)− f(ỹ)| ≤ L|x̃− ỹ|, x̃, ỹ ∈ R
n−1;

iii) every collection of N + 1 of the sets Oj has empty intersection.
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In fact we will mainly be concerned with the case when Γ is the graph of a
Lipschitz function:

(3) Γ := {(x̃, xn) : xn = f(x̃), x̃ ∈ R
n−1},

where f : Rn−1 → R satisfies (2), in which case D is an (L, µ, 1) Lipschitz domain,
for all µ > 0.

Remark 2.1. It is shown in Adams [1] that Definition 1 is equivalent to Ω having
the ‘strong local Lipschitz property’ as defined in [1]. As Adams remarks, in the case
that Ω is bounded, Definition 1 reduces to the standard definition of a Lipschitz
domain.

We denote by ν the outward unit normal to D, which exists almost everywhere
by Rademacher’s theorem. The variational problem will be posed on the open set
SH := D\UH , for some H ≥ f+ + µ, so that SH will be an (L, µ,N + 1) Lipschitz
domain.

We will refer to any function f : Rn−1 → R that satisfies (2) as a Lipschitz
function with Lipschitz constant L. Moreover we introduce the notation

Jf(x̃) =
√

1 + |∇x̃f(x̃)|2, x̃ ∈ R
n−1,

and define L′ =
√
1 + L2, so that Jf ≤ L′.

For a given source function g ∈ L2(D), whose support lies within a finite distance
of the boundary Γ, we will look for a weak solution u of the Helmholtz equation

(4) ∆u+ k2u = g in D,

where k > 0 is the wavenumber, and with an impedance condition

(5)
∂u

∂ν
= ikβu on Γ,

where β ∈ L∞(Γ) is a given function of the boundary.
To complete the problem formulation a radiation condition is required. In this

paper we make use of the so-called upward propagating radiation condition (UPRC).
To state this we introduce the fundamental solution to the Helmholtz equation (4).
This is Φ, given by

Φ(x, y) =







i
4
H

(1)
0 (k|x− y|), n = 2,

exp(ik|x− y|)
4π|x− y| , n = 3,

for x, y ∈ R
n, x 6= y, where H

(1)
0 is the Hankel function of the first kind of order zero.

Φ(x, y) is a solution to the Helmholtz equation (4) in the special case when D = R
n

and g = −δy, a point source located at y ∈ R
n. The UPRC then states that

(6) u(x) = 2

ˆ

ΓH

∂Φ(x, y)

∂xn
u(y) ds(y), x ∈ UH ,

for all H such that the support of g is contained in SH .
The UPRC was proposed in [10]. In the case that the wavenumber k has imagi-

nary part, one can derive this representation for the solution of the Helmholtz equa-
tion in UH , under mild assumptions on the growth of the solution at infinity: see
[9].

In the case that u|ΓH
∈ L2(ΓH) we can rewrite (6) in terms of the Fourier trans-

form of u|ΓH
. For φ ∈ L2(ΓH), which we identify with L2(Rn−1), we denote by
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φ̂ = Fφ the Fourier transform of φ which we define by

(7) Fφ(ξ) = (2π)−(n−1)/2

ˆ

Rn−1

exp(−ix̃ · ξ)φ(x̃) dx̃, ξ ∈ R
n−1.

Our choice of normalization of the Fourier transform ensures that F is a unitary
operator on L2(Rn−1), so that, for φ, ψ ∈ L2(Rn−1),

(8)

ˆ

Rn−1

φψ̄dx̃ =

ˆ

Rn−1

φ̂
¯̂
ψ dξ.

If FH := u|ΓH
∈ L2(ΓH) then (see [12, 2] in the case n = 2), (6) can be rewritten as

(9) u(x) =
1

(2π)(n−1)/2

ˆ

Rn−1

exp(i[(xn −H)
√

k2 − ξ2 + x̃ · ξ])F̂H(ξ) dξ, x ∈ UH .

In this equation
√

k2 − ξ2 = i
√

ξ2 − k2, when |ξ| > k.
Equation (9) is a representation for u, in the upper half-plane UH , as a super-

position of upward propagating homogeneous and inhomogeneous plane waves. A
requirement that (9) holds is commonly used (e.g. [25]) as a formal radiation con-
dition in the physics and engineering literature on rough surface scattering. The
meaning of (9) is clear when FH ∈ L2(Rn−1) so that F̂H ∈ L2(Rn−1); indeed the
integral (9) exists in the Lebesgue sense for all x ∈ UH . Arens and Hohage [2] have
explained, in the case n = 2, in what precise sense (9) can be understood when

FH ∈ BC(ΓH) so that F̂H must be interpreted as a tempered distribution. Arens
and Hohage also show the equivalence of this radiation condition with another known
as the Pole Condition.

We are now in a position to state our boundary value problem.

The Boundary Value Problem. Let D be an (L, µ,N) Lipschitz domain for
some L > 0, µ > 0 and N ∈ N. Given g ∈ L2(D), whose support lies in SH for some
H ≥ f++µ, and given β ∈ L∞(Γ), find u : D → C such that u|Sa

∈ H1(Sa) for every
a ≥ f+ + µ,

(10) ∆u+ k2u = g in D,
∂u

∂ν
= ikβu on Γ,

in a distributional sense (see (13) below), and the radiation condition (9) holds with
FH = u|ΓH

.

Remark 2.2. We note that the solutions of the above problem do not depend
on the choice of H . Precisely, if u is a solution to the above problem for one value
of H ≥ f+ + µ for which supp(g) ⊂ SH , then u is a solution for all H ≥ f+ + µ with
this property. To see that this is true we make analogous arguments to those used
in Remark 2.1 of [21].

It will be convenient to work with wavenumber-dependent norms. We will equip
the standard Sobolev space H1(SH) with the k-dependent norm, equivalent to the
usual norm, given by

‖v‖H1(SH ) :=
{

k2‖v‖2L2(SH ) + ‖∇v‖2L2(SH )

}
1

2

, v ∈ H1(SH).

Let D(SH) := {v|SH
: v ∈ C∞

0 (Rn)}, so that D(SH) is dense in H1(SH). Let
γ∗ : D(SH) → L2(Γ) be defined by γ∗φ = φ|Γ for φ ∈ D(SH). Then with SH be-
ing an (L, µ,N + 1) Lipschitz domain, it’s possible to show (see Lemma 5 below)
that γ∗ extends to a bounded linear operator γ∗ : H

1(SH) → L2(Γ).
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Remark 2.3. Trace results on domains with unbounded boundaries appear to
be not well written up in the literature, so we will justify the above statement in the
next section. In fact we expect that a stronger result holds, but stating this would
require defining fractional Sobolev spaces on the boundary Γ of an (L,µ,N) Lipschitz
domain. The above result will be sufficient for our needs.

We now derive a variational formulation of the boundary value problem above.
We will identify ΓH := {x : xn = H} with R

n−1, and then employ standard frac-
tional Sobolev spaces on R

n−1 in order to solve the problem. However, we adopt
a wavenumber-dependent norm, equivalent to the usual norm, and reducing to the
usual norm if the unit of length measurement is chosen so that k = 1. Thus Hs(ΓH),
for s ∈ R, denotes the completion of C∞

0 (ΓH) in the norm ‖ · ‖Hs(ΓH ) defined by

‖φ‖Hs(ΓH ) =

(
ˆ

Rn−1

(k2 + ξ2)s|Fφ(ξ)|2 dξ
)1/2

.

We recall [1] that, for all a > H ≥ f+ + µ, there exist continuous embeddings
γ+ : H

1(UH \ Ua) → H1/2(ΓH) and γ− : H1(SH) → H1/2(ΓH) (the trace operators)
such that γ±φ coincides with the restriction of φ to ΓH when φ is C∞. We recall
also that, if u+ ∈ H1(UH \ Ua), u− ∈ H1(SH), and γ+u+ = γ−u−, then v ∈ H1(Sa),
where v(x) := u+(x), x ∈ UH \ Ua, := u−(x), x ∈ SH . Conversely, if v ∈ H1(Sa)
and u+ := v|UH\Ua

, u− := v|SH
, then γ+u+ = γ−u−. We introduce the operator T , a

Dirichlet to Neumann map on ΓH , defined by

(11) T := F−1MzF ,
where Mz is the operation of multiplying by

z(ξ) :=

{

−i
√

k2 − ξ2 if |ξ| ≤ k,
√

ξ2 − k2 for |ξ| > k.

It was proven in Lemma 2.4 in [21] that T : H1/2(ΓH) → H−1/2(ΓH) is bounded with
||T || = 1.

Since we will make frequent use of it in this paper, we now recall the following
lemma from [21], which describes properties of u, defined by (9).

Lemma 2. If (9) holds, with FH ∈ H1/2(ΓH), then u ∈ H1(UH \ Ua) ∩ C2(UH),
for every a > H ,

∆u+ k2u = 0 in UH ,

γ+u = FH , and

(12)

ˆ

ΓH

v̄T γ+u ds+ k2
ˆ

UH

uv̄ dx−
ˆ

UH

∇u · ∇v̄ dx = 0, v ∈ C∞
0 (D).

Moreover, for all a > H , where Fa ∈ H1/2(Γa) denotes the restriction of u to Γa, (9)
holds with H replaced by a.

We now derive a variational formulation of the boundary value problem making
use of Lemma 2. Suppose that u satisfies the boundary value problem and recall that
D is an (L, µ,N) Lipschitz domain. Then u|Sa

∈ H1(Sa) for every a ≥ f+ + µ, and,
by definition, since (10) holds in a distributional sense,

(13)

ˆ

D

(gv̄ +∇u.∇v̄ − k2uv̄) dx−
ˆ

Γ

ikβγ∗uv̄ ds = 0, v ∈ C∞
0 (Rn).
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Defining w := u|SH
, and applying Lemma 2 it follows that

(14)

ˆ

SH

(gv̄+∇w.∇v̄−k2wv̄) dx+
ˆ

ΓH

v̄T γ−w ds−
ˆ

Γ

ikβγ∗wv̄ ds = 0, v ∈ D(SH).

From the denseness of D(SH) in H1(SH), and the continuity of γ− and γ∗, it follows
that this equation holds for all v ∈ H1(SH).

We let ‖ · ‖2 and (·, ·) denote the norm and scalar product on L2(SH) so that

‖v‖2 =
√

´

SH
|v|2dx and

(u, v) =

ˆ

SH

uv̄ dx,

and define the sesquilinear form c : H1(SH)×H1(SH) → C by

(15) c(u, v) = (∇u,∇v)− k2(u, v) +

ˆ

ΓH

γ−v̄T γ−u ds−
ˆ

Γ

ikβγ∗uγ∗v̄ ds.

Then we have shown that if u satisfies the boundary value problem then w := u|SH

is a solution of the following variational problem: find u ∈ H1(SH) such that

(16) c(u, v) = −(g, v), v ∈ H1(SH).

Conversely, suppose that w is a solution to the variational problem and define u(x)
to be w(x) in SH , and to be the right hand side of (9) in UH , with FH := γ−w.
Then, by Lemma 2, u ∈ H1(UH\Ua) for every a > H , with γ+u = FH = γ−w. Thus
u|Sa

∈ H1(Sa) for all a ≥ f+ + µ. From (12) and (14), it follows that (13) holds, so
u satisfies (10).

We have thus proved the following theorem.

Theorem 3. If u is a solution of the boundary value problem then u|SH
satisfies

the variational problem (16). Conversely, if u satisfies the variational problem, FH :=
γ−u, and the definition of u is extended to D by setting u(x) equal to the right hand
side of (9), for x ∈ UH , then the extended function satisfies the boundary value
problem, with g extended by zero from SH to D.

3. Analysis of the variational problem for low frequency

Let H1(SH)
∗ denote the dual space of H1(SH), i.e. the space of continuous anti-

linear functionals on H1(SH). Then our analysis of the variational problem will
also apply to the following slightly more general situation: given G ∈ H1(SH)

∗ find
u ∈ H1(SH) such that

(17) c(u, v) = G(v), v ∈ H1(SH).

We define the dimensionless wavenumber

κ = k(H − f−),

and assume throughout that β ∈ L∞(Γ) is such that

(18) −π
2
≤ arg β(y) ≤ π

for almost all y ∈ Γ. Clearly (18) holds if Re(β) ≥ 0, the case of prime practical
interest, since Re(β) ≥ 0 if and only if the boundary Γ does not emit acoustic energy.
We then define the angle Φ ∈ [−π/2, 0], by

(19) Φ := min

{

0, ess inf
y∈Γ

argβ(y)

}

.
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In order to show the boundary value problem is well-posed we will make some as-
sumptions on β ∈ L∞(Γ). In the 2D case, when Γ is a straight line and β is a
constant, it is well-known that the boundary value problem is ill-posed if β = −is,
for some s > 0. This motivates the following condition, that

(20) dist[β(Γ), {−is : s ≥ 0}] > 0,

where β(Γ) is the essential range of β.
Our main results will require that one or other of the following assumptions on

β ∈ L∞(Γ) hold.
Assumption 1 (A1). For some α1 ∈ [0, π/2), η > 0, it holds that

(21) Im[eiα1β] ≥ η for almost all y ∈ Γ.

When we make use of (A1) it will be convenient to employ the notation ηα = η secα1.
Assumption 2 (A2). For some η > 0,

Re(β) ≥ η for almost all y ∈ Γ.

Note that both these assumptions imply that β satisfies both (18) and (20).

Remark 3.1. Our analysis of the variational problem under assumption (A1)
will not be applicable to the limiting case when α1 = π/2, so a different study of
the variational problem will be made under (A2). Note that if β satisfies (A2),
then it satisfies (A1), but results with less restriction on κ are obtained under (A2).
Moreover, a series of functions βn satisfying (A2) for some η > 0, will satisfy (A1)
for some values ηαn

> 0. However these values ηαn
could become arbitrarily small.

It thus makes sense to study the problem separately under (A2).

Our main theorem of this section is then the following:

Theorem 4. i) Suppose (A1) holds and that

κ <
2ηα

1 +
√

1 + 2η2α
.

Then for some constant C1 > 0 such that

C1 ≤ secα1

[

2ηα + ηακ
2 + 4κ+

√

[ηα(2 + κ2)− 4κ]2 + 16κ3ηα

6ηα − ηακ2 − 4κ−
√

[ηα(2 + κ2)− 4κ]2 + 16κ3ηα

]

it holds that

|c(u, u)| ≥ C−1
1 ‖u‖2H1(SH ), u ∈ H1(SH),

so that the variational problem (17) is uniquely solvable, and the solution satisfies
the estimate

(22) ‖u‖H1(SH ) ≤ C1‖G‖H1(SH )∗ .

In particular, the scattering problem (16) is uniquely solvable and the solution sat-
isfies the bound

(23) k‖u‖H1(SH ) ≤ C1‖g‖2.
ii) Suppose (A2) holds and that κ <

√
2. Then for some constant C2 > 0 such

that

C2 ≤
6 + κ2

2− κ2

[

1 +
1

η2

(

η tan(−Φ) +
8κ

6 + κ2
(2 + κ2)

(2− κ2)

)2
]

1

2
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it holds that

|c(u, u)| ≥ C−1
2 ‖u‖2H1(SH ), u ∈ H1(SH),

so that the variational problem (17) is uniquely solvable, and the solution satisfies
the estimate

(24) ‖u‖H1(SH ) ≤ C2‖G‖H1(SH )∗ .

In particular, the scattering problem (16) is uniquely solvable, and the solution sat-
isfies the bound

(25) k‖u‖H1(SH ) ≤ C2‖g‖2.
Theorem 4 will be proved via a sequence of lemmas. Our first aim is to show that

the sesquilinear form c is bounded. For this we will need the following trace results
which are proved by combining standard methods of proof used for trace theorems
on bounded domains, together with the proof of [21, Lemma 3.4]. The proof can be
found in the appendix of [4].

Lemma 5. Let D be an (L, µ,N) Lipschitz domain, and let SH = D\UH for
H ≥ f+ + µ. For u ∈ H1(SH),

‖γ−u‖H 1
2 (ΓH )

≤
√

(

1 +
1

kµ

)

‖u‖H1(SH ),

and the map γ∗ : D(SH) → L2(Γ) such that γ∗u is u restricted to Γ, for u ∈ D(SH),
extends to a bounded linear operator γ∗ : H

1(SH) → L2(Γ) with

k‖γ∗u‖2L2(Γ) ≤ NL′

(

1 +
1

kµ

)

‖u‖2H1(SH ).

Let B := ‖β‖L∞(Γ). Let us now show that the sesquilinear form c(., .) is bounded.

Lemma 6. Let D be an (L, µ,N) Lipschitz domain and let SH = D\UH for
H ≥ f+ + µ. For all u, v ∈ H1(SH),

|c(u, v)| ≤
(

1 + (1 +BNL′)

[

1 +
1

kµ

])

‖u‖H1(SH )‖v‖H1(SH ).

Proof. This follows from the definition of c(., .), the Cauchy–Schwarz inequality,
Lemma 5 and the mapping properties of T . �

We now prove an important Friedrich’s type inequality.

Lemma 7. Let SH be an (L, µ,N + 1) Lipschitz domain. Then for all w ∈
H1(SH) and for all ζ > 0

‖w‖22 ≤ (1 + ζ)
(H − f−)

2

2

∥

∥

∥

∥

∂w

∂xn

∥

∥

∥

∥

2

2

+

(

1 +
1

ζ

)

(H − f−)‖w‖2L2(Γ).

Proof. For x = (x̃, xn) ∈ SH , define xB : SH → R by xB = max{t : t ≤
xn and (x̃, t) ∈ Γ}. Note that because Γ possesses the strong local Lipschitz property,
xB is Borel measurable.



Existence, uniqueness and explicit bounds for acoustic scattering. . . 795

Now for w ∈ D(SH),

|w(x)|2 =
∣

∣

∣

∣

ˆ xn

xB

∂w(x̃, yn)

∂yn
dyn + w(x̃, xB)

∣

∣

∣

∣

2

≤
(
ˆ xn

xB

∣

∣

∣

∣

∂w(x̃, yn)

∂yn

∣

∣

∣

∣

dyn + |w(x̃, xB)|
)2

≤ (xn − xB)

ˆ xn

xB

∣

∣

∣

∣

∂w(x̃, yn)

∂yn

∣

∣

∣

∣

2

dyn

+ 2|w(x̃, xB)|
ˆ xn

xB

∣

∣

∣

∣

∂w(x̃, yn)

∂yn

∣

∣

∣

∣

dyn + |w(x̃, xB)|2

≤ (1 + ζ)(xn − xB)

ˆ xn

xB

∣

∣

∣

∣

∂w(x̃, yn)

∂yn

∣

∣

∣

∣

2

dyn +

(

1 +
1

ζ

)

|w(x̃, xB)|2

≤ (1 + ζ)(xn − f−)

ˆ

R

1SH
(x̃, yn)

∣

∣

∣

∣

∂w(x̃, yn)

∂yn

∣

∣

∣

∣

2

dyn +

(

1 +
1

ζ

)

|w(x̃, xB)|2 ,

so that, since
´

R
1SH

(xn − f−)dxn ≤ (H − f−)
2/2, we have, using Fubini’s Theorem,

ˆ

SH

|w(x)|2dx

≤ (1 + ζ)

ˆ

Rn−1

ˆ

R

1SH
(x̃, xn)(xn − f−) dxn

(

ˆ

R

1SH
(x̃, yn)

∣

∣

∣

∣

∂w(x̃, yn)

∂yn

∣

∣

∣

∣

2

dyn

)

dx̃

+

(

1 +
1

ζ

)
ˆ

R

ˆ

Rn−1

1SH
(x̃, xn)|w(x̃, xB)|2dx̃ dxn

≤ (1 + ζ)
(H − f−)

2

2

ˆ

Rn−1

ˆ

R

1SH
(x̃, yn)

∣

∣

∣

∣

∂w(x̃, yn)

∂yn

∣

∣

∣

∣

2

dyndx̃

+

(

1 +
1

ζ

)

(H − f−)

ˆ

Γ

|w(s)|2ds,

and the result follows for w ∈ D(SH). By the density of this space in H1(SH), the
result holds for all w ∈ H1(SH). �

We now recall Lemma 3.2 from [21].

Lemma 8. For all φ, ψ ∈ H1/2(ΓH),
ˆ

ΓH

φTψ ds =

ˆ

ΓH

ψTφ ds.

For all φ ∈ H1/2(ΓH),

Re

ˆ

ΓH

φ̄ Tφ ds ≥ 0, Im

ˆ

ΓH

φ̄ Tφ ds ≤ 0.

Employing this lemma it is easy to verify the following important symmetry
property of c: for all u, v ∈ H1(SH)

(26) c(v, u) = c(ū, v̄).

We now introduce α2 ∈ (−Φ, π/2] such that

(27) tanα2 =
1

η

[

η tan(−Φ) +
8κ

6 + κ2
(2 + κ2)

(2− κ2)

]

.
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We then define the sesquilinear forms c1, c2 : H
1(SH)×H1(SH) → C via

c1(u, v) = eiα1c(u, v), c2(u, v) = eiα2c(u, v), u, v ∈ H1(SH).

(Note that the definition of α2 was motivated in trying to show ellipticity of c2
and recall that α1 was defined when we wrote down (A1).) We now show that the
sesquilinear forms c1, c2 are elliptic for small κ.

Lemma 9. i) If (A1) holds, then for all w ∈ H1(SH)

Re[c1(w,w)] ≥ C‖w‖H1(SH ),

where

C = cosα1

(

6ηα − ηακ
2 − 4κ−

√

[ηα(2 + κ2)− 4κ]2 + 16κ3ηα

2ηα + ηακ2 + 4κ+
√

[ηα(2 + κ2)− 4κ]2 + 16κ3ηα

)

.

ii) If (A2) holds, then for all w ∈ H1(SH)

Re[c2(w,w)] ≥ C‖w‖H1(SH ),

where

C =
2− κ2

6 + κ2

[

1 +
1

η2

(

η tan(−Φ) +
8κ

6 + κ2
(2 + κ2)

(2− κ2)

)2
]− 1

2

.

Proof. i) For w ∈ H1(SH)

Re[c1(w,w)] = cosα1[‖∇w‖22 − k2‖w‖22] + Re

[

eiα1

ˆ

ΓH

γ−w̄Tγ−wds

]

+ k

ˆ

Γ

Im[eiα1β]|w|2 ds.

By Lemma 8, arg{
´

ΓH
γ−w̄Tγ−wds} ∈ [−π/2, 0], so that

Re

[

eiα1

ˆ

ΓH

γ−w̄Tγ−w ds

]

≥ 0,

because α1 ∈ [0, π/2). Hence, using Lemma 7 with ζ > 0, noting Im[eiα1β] ≥ η, and,
where θ > 0, we have

Re[c1(w,w)] ≥ cosα1

(

1− (1 + ζ)
κ2

2
(1 + θ)

)

‖∇w‖22

+ k(η − cosα1(1 + ζ−1)(1 + θ)κ)

ˆ

Γ

|w|2 ds+ cosα1θk
2‖w‖22.

To obtain from this estimate the optimal ellipticity bound we need to make

η − cosα1(1 + ζ−1)(1 + θ)κ = 0 and θ = 1− (1 + ζ)
κ2

2
(1 + θ).

This is achieved by setting

θ =
2− κ2[1 + ζ ]

2 + κ2[1 + ζ ]

and

ζ =
1

2ηακ2

(

−
[

ηα
(

2 + κ2
)

− 4κ
]

+

√

[ηα (2 + κ2)− 4κ]2 + 16κ3ηα

)

.
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ii) As in part i) we have, for w ∈ H1(SH), and θ > 0, ζ > 0

Re[c2(w,w)] ≥ cosα2

(

1− (1 + ζ)
κ2

2
(1 + θ)

)

‖∇w‖22

− k cosα2(1 + ζ−1)(1 + θ)κ

ˆ

Γ

|w|2 ds

+ k

ˆ

Γ

Im[eiα2β]|w|2 ds+ cosα2θk
2‖w‖22.(28)

Now, if η(α2) := ess infy∈Γ Im[eiα2β], it is evident, since α2 > −Φ, that

η(α2) ≥ Im
[

ei(α2+Φ) η

cosΦ

]

=
η sin(α2 + Φ)

cosΦ
= η[sinα2 + cosα2 tanΦ].

So making the (optimal) choices

ζ =
1

κ2
− 1

2
and θ =

2− κ2

6 + κ2

(28) becomes

Re[c2(w,w)] ≥ cosα2

[

2− κ2

6 + κ2

]

‖w‖H1(SH )

+ k

[

η(sinα2 + cosα2 tanΦ)− cosα2
(2 + κ2)

(2− κ2)

(

8κ

6 + κ2

)]
ˆ

Γ

|w|2 ds,

so that the desired bound holds because (27) implies that
[

η(sinα2 + cosα2 tanΦ)− cosα2
(2 + κ2)

(2− κ2)

(

8κ

6 + κ2

)]

= 0,

and because

cosα2 =
1

√

1 + tan2 α2

. �

Using Lemmas 6 and 9, we can now prove Theorem 4.

Proof. By Lemma 9 and under the assumption that κ < 2ηα/(1 +
√

1 + 2η2α)

(respectively κ <
√
2), one can verify that c1, (resp. c2) is elliptic. Lemma 6 implies

that c1 (resp. c2) is bounded and hence by the Lax–Milgram lemma the existence of
a unique solution u to

(29) c1(u, v) = G(v) (resp. c2(u, v) = G(v))
for a given G ∈ H1(SH)

∗ and for all v ∈ H1(SH) is assured, assuming (A1), (resp.
(A2)). It is then trivial to show that for a given G ∈ H1(SH)

∗ there exists a unique
solution to the problem

c(u, v) = G(v), v ∈ H1(SH).

Moreover, the estimates (22), (24) also follow from the Lax–Milgram lemma and the
simple relationship between c1 (resp. c2) and c. In the particular case G(v) = −(g, v),
for some g ∈ L2(SH) we have

‖G‖H1(SH )∗ = sup
φ∈H1(SH )

|(g, φ)|
‖φ‖H1(SH )

≤ ‖g‖2 sup
φ∈H1(SH )

‖φ‖2
‖φ‖H1(SH )

≤ 1

k
‖g‖2,

so that (23) and (25) hold. �
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4. Analysis of the variational problem at arbitrary frequency

The sesquilinear form c is not elliptic if the wavenumber k is large. In this section,
we will assume that Γ is the graph of a Lipschitz function. Under this restriction we
will employ Babuška’s generalised Lax–Milgram theorem to show that the boundary
value problem is well-posed.

Our main result is obtained for β ∈ L∞(Γ) satisfying assumption (A2), i.e. that
Re(β) ≥ η for some η > 0, for almost all y ∈ Γ. This implies that

Φ ∈
(

− π

2
, 0
]

,

where Φ is given by (19). Note that

secΦ ≤
√

η2 +B2

η
,

where B = ‖β‖L∞(Γ). Clearly sec Φ = 1 if 0 ≤ arg β(y) < π
2

for almost all y ∈ Γ.

Theorem 10. If Γ is given by (3) with f satisfying (1), and (A2) holds then the
variational problem (17) has a unique solution u ∈ H1(SH) for every G ∈ H1(SH)

∗

and

(30) ‖u‖H1(SH ) ≤ sec Φ(1 + 2E)‖G‖H1(SH )∗

where

(31) E =

(

2
√
2κ

[

2 + κ2(1 +B2(1 + L))

η
+ κ[

√
2 + sec Φ]

]

+
sec Φ

4
√
2

)

.

In particular, the boundary value problem and the equivalent variational problem
have exactly one solution, and the solution satisfies the bound

k‖u‖H1(SH ) ≤ E‖g‖2.
To apply the generalised Lax–Milgram theorem we need to show that c is bounded,

which we have done in Lemma 6; to establish the inf-sup condition that

(32) χ := inf
06=u∈H1(SH )

sup
06=v∈H1(SH )

|c(u, v)|
‖u‖H1(SH )‖v‖H1(SH )

> 0;

and to establish a “transposed” inf-sup condition. It follows easily from (26) that a
transposed inf-sup condition can be automatically deduced if (32) holds, i.e. that the
following lemma (cf. [21, Lemma 4.2]) is true.

Lemma 11. If (32) holds, then for all non-zero v ∈ H1(SH),

sup
06=u∈H1(SH )

|c(u, v)|
‖u‖H1(SH )

> 0.

The following result follows from [36, Theorem 2.15] and Lemmas 6 and 11.

Corollary 12. If (32) holds, then the variational problem (17) has exactly one
solution u ∈ H1(SH) for all G ∈ H1(SH)

∗. Moreover,

‖u‖H1(SH ) ≤ χ−1‖G‖H1(SH )∗ .

To show (32) we will establish an apriori bound for solutions of (17), from which
the inf-sup condition will follow by the following easily established lemma (see [36,
Remark 2.20]).
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Lemma 13. Suppose that there exists C > 0 such that, for all u ∈ H1(SH) and
G ∈ H1(SH)

∗ satisfying (17) it holds that

(33) ‖u‖H1(SH ) ≤ C‖G‖H1(SH )∗ .

Then the inf-sup condition (32) holds with χ ≥ C−1.

The following lemma reduces the problem of establishing (33) to that of estab-
lishing an a priori bound for solutions of the special case (16).

Lemma 14. Suppose there exists C∗ > 0 such that, for all u ∈ H1(SH) and
g ∈ L2(SH) satisfying (16) it holds that

(34) ‖u‖H1(SH ) ≤ k−1C∗ ‖g‖2.
Then, for all u ∈ H1(SH) and G ∈ H1(SH)

∗ satisfying (17), the bound (33) holds
with

C ≤ secΦ(1 + 2C∗).

Proof. Let ĉ : H1(SH)×H1(SH) → C be defined by

ĉ(u, v) := e−iΦ[c(u, v) + 2k2(u, v)]

= e−iΦ

[

(∇u,∇v) + k2(u, v) +

ˆ

ΓH

γ−v̄ T γ−u ds−
ˆ

Γ

ikβγ∗uγ∗v̄ ds

]

,

for u, v ∈ H1(SH). For u ∈ H1(SH) we see that

Re[ĉ(u, u)] ≥ Re(e−iΦ‖u‖2H1(SH )) = cosΦ‖u‖2H1(SH ).

This follows because by Lemma 8, arg
{

´

ΓH
γ−ūTγ−uds

}

∈ [−π/2, 0], whilst Φ ∈
(−π/2, 0], so that, noting the definition of Φ, it holds that

Re

(

e−iΦ

ˆ

ΓH

γ−ūTγ−u ds

)

≥ 0, Re

(

−e−iΦ

ˆ

Γ

ikβ|u|2 ds
)

≥ 0.

Thus given G ∈ H1(SH)
∗, it follows, by the Lax–Milgram lemma, that there exists

unique u0 ∈ H1(SH) satisfying

(35) ĉ(u0, v) = G(v), v ∈ H1(SH),

and moreover u0 satisfies the estimate

(36) ‖u0‖H1(SH ) ≤ sec Φ‖G‖H1(SH )∗ .

Now suppose u ∈ H1(SH) and G ∈ H1(SH)
∗ satisfy

(37) c(u, v) = G(v), v ∈ H1(SH),

and denote by u0 ∈ H1(SH) the unique solution of (35). Then, defining w = u −
e−iΦu0, we see that

c(w, v) = c(u, v)− ĉ(u0, v) + e−iΦ2k2(u0, v)

= G(v)− G(v) + e−iΦ2k2(u0, v) = e−iΦ2k2(u0, v),

for all v ∈ H1(SH). Thus w satisfies (16) with g = −e−iΦ2k2u0. It follows, using (34)
and (36), that

(38) ‖w‖H1(SH ) ≤ k−1C∗‖2k2u0‖2 ≤ 2C∗ secΦ‖G‖H1(SH )∗ .

The bound (33), with C ≤ sec Φ(1 + 2C∗), follows from (36) and (38). �
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We now turn to establishing the a priori bound (34), at first just for the case
when Γ is the graph of a smooth Lipschitz function and β ∈ C∞(Γ) ∩ L∞(Γ).

Remark 4.1. If v ∈ H1(SH), then γ∗v ∈ L2(Γ) by Lemma 5. For Lemma 15 it

will be necessary to know that γ∗v ∈ H
1

2

loc
(Γ), as defined in [44]. This follows from

[44, Theorem 3.37].

We recall that ν is the outward unit normal to SH and νn = ν · en is the nth
(vertical) component of ν.

Lemma 15. Suppose Γ is given by (3) with f satisfying (2) and with f ∈
C∞(Rn−1). Let H ≥ f+ + µ, g ∈ L2(SH) and let β ∈ C∞(Γ) ∩ L∞(Γ) be such that
(A2) holds. Suppose w ∈ H1(SH) satisfies

(39) b(w, φ) = −(g, φ), φ ∈ H1(SH).

Then

k‖w‖H1(SH ) ≤
(

2
√
2κ

[

2 + κ2(1 +B2(1 + L))

η
+ κ[

√
2 + sec Φ]

]

+
sec Φ

4
√
2

)

‖g‖2.

Proof. Setting φ = w in (39) and, multiplying through by e−iΦ, and taking real
parts (c.f. the proof of Lemma 14) we derive the estimate

(40) ‖∇w‖22 ≤ k2‖w‖22 + sec Φ‖g‖2‖w‖2.

Setting φ = w in (39) and taking imaginary parts, and writing γ∗w as w, gives

Im

ˆ

ΓH

γ−w̄Tγ−w ds−
ˆ

Γ

kRe(β)|w|2 ds = −Im(g, w),

so that from Lemma 8 and assuming (A2) we get

(41) η

ˆ

Γ

k|w|2 ds ≤ ‖g‖2‖w‖2.

From Lemma 7 with ζ = 1, we have

(42) k2‖w‖22 ≤ κ2
∥

∥

∥

∥

∂w

∂xn

∥

∥

∥

∥

2

2

+ 2kκ

ˆ

Γ

|w|2 ds.

Extending the definition of w to D by defining w in UH by (9) with FH := γ−w, it
follows from Theorem 3 that w satisfies the boundary value problem, with g extended
by zero from SH to D.

With β ∈ C∞(Γ) ∩ L∞(Γ) and w|Γ ∈ H
1

2

loc(Γ) it follows (e.g. [44, Theorem 3.20])

that βw ∈ H
1

2

loc(Γ). Together with the assumptions that g ∈ L2(D), and that the
boundary is smooth, regularity theory implies that w ∈ H2

loc(D) (e.g. [44, Theo-
rem 4.18]).

Let r = |x̃|. For A ≥ 1 let φA ∈ C∞
0 (R) be such that 0 ≤ φA ≤ 1, φA(r) = 1 if

r ≤ A and φA(r) = 0 if r ≥ A + 1 and finally such that ‖φ′
A‖∞ ≤ M for some fixed

M independent of A.
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In view of this regularity and since w satisfies the boundary value problem, we
have

2Re

ˆ

SH

φA(r)(xn −H)g
∂w̄

∂xn
dx = 2Re

ˆ

SH

φA(r)(xn −H)(∆w + k2w)
∂w̄

∂xn
dx

=

ˆ

SH

{

2Re

{

∇ ·
(

φA(r)(xn −H)
∂w̄

∂xn
∇w
)}

− 2φA(r)

∣

∣

∣

∣

∂w

∂xn

∣

∣

∣

∣

2

− 2Re

[

(xn −H)φA(r)
∂∇w̄
∂xn

· ∇w
]

− 2φ′
A(r)(xn −H)

x̃

|x̃| · Re
(

∇x̃w
∂w̄

∂xn

)

+ 2Re

[

k2(xn −H)φA(r)
∂w̄

∂xn
w

]

}

dx.

Using the divergence theorem and integration by parts

2Re

ˆ

SH

φA(r)(xn −H)g
∂w̄

∂xn
dx

= −
ˆ

Γ

(xn −H)φA(r)

{

νn(|∇w|2 − k2|w|2)− 2Re

(

∂w̄

∂xn

∂w

∂ν

)}

ds

+

ˆ

SH

{

φA(r)

(

|∇w|2 − k2|w|2 − 2

∣

∣

∣

∣

∂w

∂xn

∣

∣

∣

∣

2
)

− 2φ′
A(r)(xn −H)Re

(

∂w̄

∂xn

∂w

∂r

)

}

dx.

Now, on Γ ∩ supp(φA(r))

∂w

∂xn
= en · ∇w = en ·

(

∇Γw +
∂w

∂ν
ν

)

,

where ∇Γw, the tangential part of ∇w, is given by

∇Γw := ∇w − ∂w

∂ν
ν.

So

Re

(

∂w̄

∂xn

∂w

∂ν

)

=

∣

∣

∣

∣

∂w

∂ν

∣

∣

∣

∣

2

νn + Re

(

(en · ∇Γw̄)
∂w

∂ν

)

.

Also

|∇w|2 = |∇Γw|2 +
∣

∣

∣

∣

∂w

∂ν

∣

∣

∣

∣

2

,

so that

νn|∇w|2 − 2Re

(

∂w̄

∂xn

∂w

∂ν

)

= νn|∇Γw|2 − νn

∣

∣

∣

∣

∂w

∂ν

∣

∣

∣

∣

2

− 2Re

(

(en · ∇Γw̄)
∂w

∂ν

)

.
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Rearranging terms and noting that ∂w/∂ν = ikβw on supp(φA(r))∩ Γ, we find that

2

ˆ

SH

φA(r)

∣

∣

∣

∣

∂w

∂xn

∣

∣

∣

∣

2

dx−
ˆ

Γ

φA(r)(H − xn)νn|∇Γw|2 ds(43)

=

ˆ

SH

{

φA(r)
(

|∇w|2 − k2|w|2
)

− 2φ′
A(r)(xn −H)Re

(

∂w̄

∂xn

∂w

∂r

)}

dx

− 2Re

ˆ

SH

φA(r)(xn −H)g
∂w̄

∂xn
dx−

ˆ

Γ

(H − xn)φA(r)νnk
2(1 + |β|2)|w|2 ds

− 2k

ˆ

Γ

(H − xn)φA(r)Re((en · ∇Γw̄)iβw) ds.

Now, where L′ =
√
1 + L2,

(44) −en · ν = −νn ≥ 1

L′

and

(45) |en · ∇Γw| ≤
L

L′
|∇Γw|,

so
∣

∣

∣

∣

2k

ˆ

Γ

(H − xn)φA(r)Re((en · ∇Γw̄)iβw) ds

∣

∣

∣

∣

≤ 2kL

L′

ˆ

Γ

φA(r)|∇Γw|B|w|(H − xn) ds(46)

≤ 1

L′

ˆ

Γ

φA(r)|∇Γw|2(H − xn) ds+
k2L2

L′

ˆ

Γ

φA(r)(H − xn)B
2|w|2 ds,

while
∣

∣

∣

∣

2Re

ˆ

SH

φA(r)(H − xn)g
∂w̄

∂xn
dx

∣

∣

∣

∣

≤
ˆ

SH

φA(r)

∣

∣

∣

∣

∂w

∂xn

∣

∣

∣

∣

2

dx

+

ˆ

SH

φA(r)(H − xn)
2|g|2 dx.(47)

Combining (43), (46), (47) and noting (44) we have
ˆ

SH

φA(r)

∣

∣

∣

∣

∂w

∂xn

∣

∣

∣

∣

2

dx(48)

≤
ˆ

SH

{

φA(r)
(

|∇w|2 − k2|w|2
)

− 2φ′
A(r)(xn −H)Re

(

∂w̄

∂xn

∂w

∂r

)}

dx

+

ˆ

SH

φA(r)(H − xn)
2|g|2 dx

−
ˆ

Γ

(H − xn)φA(r)νnk
2(1 +B2)|w|2 ds+ k2L2

L′

ˆ

Γ

(H − xn)φA(r)B
2|w|2 ds.

We now wish to let A → ∞. The only problem is the term involving φ′
A which

we estimate as follows. Let Sb
H = {x ∈ SH : |x̃| < b} for b ≥ 1. Then

∣

∣

∣

∣

ˆ

SH

{

2φ′
A(r)(xn −H)Re

(

∂w̄

∂xn

∂w

∂r

)}

dx

∣

∣

∣

∣

≤ 2M(H − f−)

ˆ

SA+1

H
\SA

H

|∇w|2 dx→ 0
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as A → ∞, where the convergence follows from the fact that w ∈ H1(SH). Now
letting A→ ∞ and using Lebesgue’s dominated convergence theorem gives,
ˆ

SH

∣

∣

∣

∣

∂w

∂xn

∣

∣

∣

∣

2

dx ≤
ˆ

SH

(

|∇w|2 − k2|w|2
)

+

ˆ

SH

(H − xn)
2|g|2 dx

−
ˆ

Γ

(H − xn)νnk
2(1 +B2)|w|2 ds+ k2L2

L′

ˆ

Γ

(H − xn)B
2|w|2ds.(49)

Use of (40) leads to

ˆ

SH

∣

∣

∣

∣

∂w

∂xn

∣

∣

∣

∣

2

dx ≤ sec Φ‖g‖2‖w‖2 +
κ2

k2
‖g‖22

+ kκ

ˆ

Γ

|νn|(1 +B2)|w|2 ds+ kκL2

L′

ˆ

Γ

B2|w|2 ds(50)

≤ sec Φ‖g‖2‖w‖2 +
κ2

k2
‖g‖22 + kκ

ˆ

Γ

[

1 +B2

(

1 +
L2

L′

)]

|w|2 ds

≤ sec Φ‖g‖2‖w‖2 +
κ2

k2
‖g‖22 + kκ[1 +B2(1 + L)]

ˆ

Γ

|w|2 ds.

Combining (42) and (50) gives

k2‖w‖22 ≤ κ2 sec Φ‖g‖2‖w‖2 +
κ4

k2
‖g‖22 + kκ[2 + κ2(1 +B2(1 + L))]

ˆ

Γ

|w|2 ds.

Using (41) we get

k2‖w‖22 ≤
[

κ2 sec Φ +
2κ+ κ3(1 +B2(1 + L))

η

]

‖g‖2‖w‖2 +
κ4

k2
‖g‖22

≤ 1

2
k2‖w‖22 +

κ2

k2

[

κ2 +
1

2

[

κ sec Φ +
2 + κ2(1 +B2(1 + L))

η

]2
]

‖g‖22,

so that, using
√
a2 + b2 ≤ a+ b, for a, b > 0,

k‖w‖2 ≤
κ

k

[

2κ2 +

[

κ sec Φ +
2 + κ2(1 +B2(1 + L))

η

]2
]

1

2

‖g‖2

≤ κ

k

[√
2κ +

[

κ sec Φ +
2 + κ2(1 +B2(1 + L))

η

]]

‖g‖2.

Defining

F := κ

[

κ
[√

2 + sec Φ
]

+
2 + κ2(1 +B2(1 + L))

η

]

,

and using (40) we get

k2‖w‖2H1(SH ) ≤ 2k4‖w‖22 + secΦk2‖g‖2‖w‖2 ≤ [2F 2 + sec ΦF ]‖g‖22
so that

k‖w‖H1(SH ) ≤
(

2
√
2F +

secΦ

4
√
2

)

‖g‖2. �

Combining Lemmas 15, 14 and 13 with Corollary 12, we have the following result.



804 Thomas Baden-Riess

Lemma 16. If Γ is given by (3) with f satisfying (2) and with f ∈ C∞(Rn−1)
and β ∈ C∞(Γ)∩L∞(Γ) such that (A2) holds, then the variational problem (17) has
a unique solution u ∈ H1(SH) for every G ∈ H1(SH)

∗ and the solution satisfies the
estimate (30).

Before we extend Lemma 16 to non-smooth surfaces we will need two preliminary
and standard lemmas. The first concerns approximation of a Lipschitz function by
smooth Lipschitz functions. The proof can be found in [4].

Lemma 17. Let f : Rn−1 → R be a Lipschitz function with Lipschitz constant
L. Then for all ǫ > 0, there exists fǫ : R

n−1 → R such that

i) fǫ ∈ C∞(Rn−1),
ii) fǫ is Lipschitz and |fǫ(x̃)− fǫ(ỹ)| ≤ L|x̃− ỹ|, x̃, ỹ ∈ R

n−1,
iii) fǫ ≥ f + ǫ/6,
iv) ‖fǫ − f‖L∞(Rn−1) < ǫ,
v) for i ∈ {1, . . . , n− 1}, ǫ̃ > 0, and compact K ⊂ R

n−1,
∥

∥

∥

∥

∂f

∂xi
− ∂fǫ
∂xi

∥

∥

∥

∥

Lp(K)

< ǫ̃,

for 1 < p <∞, provided ǫ is sufficiently small.

In the next lemma we extend, by reflection, a test function onto a larger domain.
We will not make use of standard extension theorems because we need to know
explicit bounds. Again, the proof can be found in [4].

Lemma 18. Let H ≥ f+ + µ and suppose Γ is given by (3) with f Lipschitz
with Lipschitz constant L. Let f ∗ ∈ C∞(Rn−1) be such that, for x̃, ỹ ∈ R

n−1,

|f ∗(x̃)− f ∗(ỹ)| ≤ L|x̃− ỹ|, f ∗(x̃) ≥ f(x̃),

and such that

(51) f ∗(x̃) + (f ∗(x̃)− f(x̃)) < H.

Let S∗
H = D∗\UH , where D∗ is the epigraph of f ∗. Then, for all v ∈ D(S∗

H), we can
extend v to a function on SH such that v ∈ H1(SH), v|SH\S∗

H
∈ D(SH\S∗

H) and

(52) ‖v‖H1(SH\S∗

H
) ≤ 2

√

(1 + 4(n− 1)L2)‖v‖H1(S∗

H
).

We next show that Lemmas 15 and 16 hold for domains with boundaries given
by arbitrary Lipschitz graphs.

Lemma 19. Suppose Γ is given by (3) with f Lipschitz with Lipschitz constant
L, H ≥ f+ + µ, g ∈ L2(SH), and β ∈ C(Γ) ∩ L∞(Γ) is such that β is the restriction
to Γ of

β∗ ∈ C∞(Rn) ∩ L∞(Rn) such that
∂β∗

∂xn
= 0, and such that Re(β∗) ≥ η > 0.

Suppose that w ∈ H1(SH) satisfies

(53) c(w, v) = −(g, v), v ∈ H1(SH).

Then

k‖w‖H1(SH ) ≤ E‖g‖2,
where E is given by (31).
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Proof. Fix a sequence ǫm → 0 such that ǫm+1 < ǫm/6, for m ∈ N. By Lemma 17,
there exists a sequence of Lipschitz functions fǫm ∈ C∞(Rn−1), with Lipschitz con-
stant L, such that ‖f − fǫm‖L∞(Rn−1) < ǫm, such that fǫm ≥ f + ǫm/6, and we may
assume that 2fǫm − f < H for all m ∈ N. Note that the fǫm are decreasing. For
each m ∈ N, let Dm ⊆ R

n, denote the epigraph of fǫm , let Sm
H = Dm\UH and let

Γm = ∂Dm.
Let cm : H1(Sm

H ) × H1(Sm
H ) → C, be defined by (15) with SH ,Γ replaced by

Sm
H ,Γm and β replaced by β∗.

Fix m ∈ N. Every v ∈ D(Sm
H ) can be extended to an element of H1(SH) by

Lemma 18 such that

(54) ‖v‖H1(SH\Sm
H
) ≤ 2

√

(1 + 4(n− 1)L2)‖v‖H1(Sm
H
).

Now, let v ∈ D(Sm
H ), fix δ > 0 and choose wk ∈ D(SH) such that ‖w−wk‖H1(SH ) <

δ. Then

cm(wk, v) =

ˆ

Sm
H

∇wk · ∇v̄ − k2wkv̄ dx+

ˆ

ΓH

v̄T γ−wk ds−
ˆ

Γm

ikβ∗wkv̄ ds

= c(wk, v)−
ˆ

SH\Sm
H

∇wk · ∇v̄ − k2wkv̄ dx+

ˆ

Γ

ikβwkv̄ ds

−
ˆ

Γm

ikβ∗wkv̄ ds(55)

= c(w, v) + c(wk − w, v)−
ˆ

SH\Sm
H

∇wk · ∇v̄ − k2wkv̄ dx+

ˆ

Γ

ikβwkv̄ ds

−
ˆ

Γm

ikβ∗wkv̄ ds(56)

= −
ˆ

Sm
H

gv̄ dx+ c(wk − w, v)−
ˆ

SH\Sm
H

∇wk.∇v̄ − k2wkv̄ + gv̄ dx

+

ˆ

Γ

ikβwkv̄ ds−
ˆ

Γm

ikβ∗wkv̄ ds.(57)

Now define Hm : D(Sm
H ) → C by

(58) Hm(v) := −
ˆ

SH\Sm
H

∇wk ·∇v̄−k2wkv̄+gv̄ dx+

ˆ

Γ

ikβwkv̄ ds−
ˆ

Γm

ikβ∗wkv̄ ds.

To show that Hm defines a continuous anti-linear functional on H1(Sm
H ), we first of

all note that
∣

∣

∣

∣

∣

ˆ

SH\Sm
H

gv̄ +∇wk · ∇v̄ − k2wkv̄ dx

∣

∣

∣

∣

∣

(59)

≤
(

k−1‖g‖L2(SH\Sm
H
) + ‖∇wk‖L2(SH\Sm

H
) + k‖wk‖L2(SH\Sm

H
)

)

· 2
√

(1 + 4(n− 1)L2)‖v‖H1(Sm
H
)

using (54).
To estimate the second term on the right hand side of (58), define

h : SH \ Sm
H → R by h(x̃, xn) = Jf (x̃) =

√

1 + |∇f(x̃)|2 for all x̃ at which f is
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differentiable. In addition let K = supp(wk), let ‖ · ‖ denote ‖ · ‖L∞(Rn), and let

l(x̃) =

(
ˆ

Rn−1∩K

∣

∣Jfǫm (x̃)− Jf(x̃)
∣

∣

2
)

1

2

.

Then
∣

∣

∣

∣

ˆ

Γm

ikβ∗wkv̄ ds−
ˆ

Γ

ikβwkv̄ ds

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

Rn−1

Jfǫm (x̃)ikβ
∗wkv̄(x̃, fǫm(x̃)) dx̃−

ˆ

Rn−1

Jf(x̃)ikβwkv̄(x̃, f(x̃)) dx̃

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

ˆ

Rn−1

Jf(x̃)

ˆ fǫm (x̃)

f(x̃)

∂

∂xn
(ikβ∗wkv̄)(x) dxn dx̃

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

ˆ

Rn−1∩K

(

Jfǫm (x̃)− Jf (x̃)
)

ikβ∗wkv̄(x̃, fǫm(x̃)) dx̃

∣

∣

∣

∣

≤
√
1 + L2







(

ˆ

SH\Sm
H

k2|β∗|2|wk|2 dx
)

1

2
(

ˆ

SH\Sm
H

∣

∣

∣

∣

∂v

∂xn

∣

∣

∣

∣

2

dx

)
1

2

+

(

ˆ

SH\Sm
H

|β∗|2
∣

∣

∣

∣

∂wk

∂xn

∣

∣

∣

∣

2

dx

)
1

2
(

ˆ

SH\Sm
H

k2|v|2 dx
)

1

2







+ l(x̃)

(
ˆ

Rn−1

|ikβ∗wkv̄(x̃, fǫm(x̃))|2 dx̃
)

1

2

≤
√
1 + L2







k‖β∗‖
(

ˆ

SH\Sm
H

|wk|2 dx
)

1

2

+ ‖β∗‖
(

ˆ

SH\Sm
H

∣

∣

∣

∣

∂wk

∂xn

∣

∣

∣

∣

2

dx

)
1

2







·
√

2(1 + 4(n− 1)L2)‖v‖H1(Sm
H
)(60)

+ l(x̃)‖β∗‖‖wk‖k
1

2

√

√
1 + L2

(

1 +
2

kµ

)

‖v‖H1(Sm
H
),(61)

using Lemma 5 and assuming that Sm
H is an (L, µ/2, 1) Lipschitz domain, which it

is, provided ǫm < µ/2.
We may now write (57) as

(62) cm(wk, v) = −
ˆ

Sm
H

gv̄ dx+ c(wk − w, v) +Hm(v), v ∈ D(Sm
H ).

By the density of D(Sm
H ) in H1(Sm

H ), and the continuity of cm, c and Hm, (62) must
hold for all v ∈ H1(Sm

H ). Since Γm ∈ C∞(Rn−1) and β∗ ∈ C∞(Γm) then by Lemma 16
there exist unique w′, w′′ such that

cm(w
′, v) = −

ˆ

Sm
H

gv̄ dx, cm(w
′′, v) = c(wk − w, v) +Hm(v)

and by Lemmas 15 and 16

‖w′‖H1(Sm
H
) ≤ k−1E‖g‖L2(Sm

H
),

‖w′′‖H1(Sm
H
) ≤ secΦ(1 + 2E)

{

‖Hm‖H1(Sm
H
)∗ + ‖c‖‖wk − w‖H1(SH )

}

.
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By Lemma 17 and the fact that ∂β∗/∂xn = 0, E and sec Φ are independent of m.
Clearly wk = w′ + w′′. So

‖wk‖H1(Sm
H
) ≤ k−1E‖g‖L2(Sm

H
)

+ sec Φ(1 + 2E)
{

‖Hm‖H1(Sm
H
)∗ + ‖c‖‖wk − w‖H1(SH )

}

.(63)

Now let m → ∞, using (61) to estimate ‖Hm‖H1(Sm
H
)∗ , using Lebesgue’s monotone

convergence theorem to show that the terms ‖ · ‖L2(SH\Sm
H
) → 0, and using Lemma 17

part v) we see that

‖wk‖H1(SH ) ≤ k−1E‖g‖2 + sec Φ(1 + 2E)‖c‖δ.
Finally arbitrariness of δ > 0 gives the result. �

Combining Lemmas 19, 14 and 13 with Corollary 12, we have the following result.

Lemma 20. If Γ is given by (3) with f Lipschitz with Lipschitz constant L,
and β ∈ C(Γ) ∩ L∞(Γ) satisfies the hypotheses of Lemma 19, then the variational
problem (17) has a unique solution u ∈ H1(SH) for every G ∈ H1(SH)

∗ and the
solution satisfies the estimate (30).

We now show that Lemmas 19 and 20 hold for more general β ∈ L∞(Γ).

Lemma 21. Suppose Γ is given by (3) with f Lipschitz with Lipschitz constant
L. Let H ≥ f+ + µ, g ∈ L2(SH), and β ∈ L∞(Γ) be such that assumption (A2)
holds, and suppose w ∈ H1(SH) satisfies

(64) b(w, v) = −(g, v), v ∈ H1(SH).

Then

k‖w‖H1(SH ) ≤ E‖g‖2,
where E is given by (31).

Proof. For δ > 0 let ψδ ∈ C∞
0 (Rn) be such that ψδ > 0, ψδ(x) = 0 if |x| > δ, and

such that
´

Rn ψδ(x) dx = 1 Then define, βδ ∈ C∞(Rn−1) by

βδ(x̃) =

ˆ

Rn−1

β(x̃− ỹ, f(x̃− ỹ))ψδ(ỹ) dỹ,

and then extend βδ to a function βδ ∈ C∞(Rn) via βδ(x̃, xn) = βδ(x̃). It follows that
βδ ∈ C(Γ) and that βδ is the restriction to Γ of a function βδ ∈ C∞(Rn) such that
∂βδ/∂xn = 0. Note that, for x̃ ∈ R

n−1,

Re(βδ(x̃)) = Re

ˆ

Rn−1

β(x̃− ỹ, f(x̃− ỹ))ψδ(x̃) dx̃

=

ˆ

Rn−1

ψδ(x̃)Reβ(x̃− ỹ, f(x̃− ỹ)) dx̃ ≥ η,

and

|βδ(x̃)| ≤
ˆ

Rn−1

ψδ(x̃)|β(x̃− ỹ, f(x̃− ỹ))| dx̃ ≤ B =⇒ ‖βδ‖L∞(Rn−1) ≤ B.

Further, since Re(e−i(π/2+Φ)β) ≥ 0, it follows, by arguing as above, that Re(e−i(π/2+Φ)

·βδ) ≥ 0. This ensures that Φδ := min{0, infx∈Rn arg βδ} ≥ Φ, which in turn means
that sec Φδ ≤ sec Φ.
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Fix ǫ > 0, and choose wm ∈ D(SH) such that ‖wm − w‖H1(SH ) < ǫ. Stan-
dard arguments (e.g. [44, Theorem 3.4]) show that βδ → β in the normed space
L2(supp(wm) ∩ Γ). Thus if we choose δ sufficiently small then

(65)

(
ˆ

Γ

k|βδ(s)− β(s)|2|wm(s)|2 ds
)

1

2

<
√
k‖wm‖L∞(Γ)‖βδ − β‖L2(supp(wm)∩Γ) < ǫ.

Now

(66) c(wm, v) = −(g, v) + c(wm − w, v), v ∈ H1(SH),

so that, for v ∈ H1(SH),
ˆ

SH

∇wm · ∇v̄ − k2wmv̄ dx+

ˆ

ΓH

γ−v̄Twm ds−
ˆ

Γ

ikβδwmγ∗v̄ ds

= −
ˆ

SH

gv̄ dx+ c(wm − w, v)−
ˆ

Γ

ik(βδ − β)wmγ∗v̄ ds.

Since βδ satisfies the hypotheses of Lemma 19, then, by Lemmas 20, 19 and 5, (cf.
proof of Lemma 19) we obtain

‖wm‖H1(SH ) ≤ k−1E‖g‖2 + sec Φ(1 + 2E)

[

‖c‖ǫ+ ǫ

√

√
1 + L2

(

1 +
1

kµ

)

]

,

and the result follows by arbitrariness of ǫ > 0. �

Theorem 10 now follows by combining Lemmas 21, 14 and 13 with Corollary 12.
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