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Abstract. We characterize the boundedness of Hankel bilinear forms on a product of general-
%|Z|2Z, for /> 1, a >0 and
p € R. We obtain a weak decomposition of the Bergman kernel with estimates and a Littlewood—

ized Fock—Sobolev spaces on C™ with respect to the weight (1 + |z])Pe™

Paley formula, which are key ingredients in the proof of our main results. As an application,
we characterize the boundedness, compactness and the membership in the Schatten class of small
Hankel operators on these spaces.

1. Introduction

The main goal of this work is the characterization of the boundedness of Hankel
bilinear forms on generalized Fock—Sobolev spaces.

Given a fixed number ¢ > 1, for 1 < p < oo, @ > 0 and p € R, we consider the
space Lg’fp = Lg’fp(C") of all measurable functions f on C" such that

I, = [ 15+ lye 3P av(e) < o
@, p Ccn
that is, LB = LP(C™; (1+]|z])Pe=F 1 4V (2)). Here dV = dV,, denotes the Lebesgue
measure on C" normalized so that the measure of the unit ball B" is 1. As usual,
if p = oo, L := Lf(C") consists of all measurable functions f on C" such that

—_a.2e
1£1l o = esssup.ecn | (2)[(1 + |2])Pe 2

For ao > 0, we define the generalized Fock—Sobolev spaces F. fjﬁ =H ngﬁ), where
H = H(C") is the space of entire functions on C". We also consider the little Fock
space f;f”pg, which is the closure of the space of holomorphic polynomials in F O‘f’p’f.
Note that, for any 1 < p < oo, the holomorphic polynomials are also dense in F7 |
(see, for instance, |28, Chapter 2| and Remark 2.13 below).

Since ¢ > 1 is fixed, from now on we will skip it in our notations. If p = 0 we get

the generalized Fock spaces FE = F[, and we write L?, = L? .

< 00.
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Note that the space L? is a Hilbert space with the inner product given by the
Qa-pairing

‘22

o= [ SR av (),
and F? is a closed linear subspace of L?2.

The Fock-Sobolev spaces F} | are the natural setting when we are dealing with
Fock spaces. For instance, the pointwise estimate of a function in F? as well as the
norm estimates of the Bergman kernel are given in terms of weights corresponding
to Fock—Sobolev spaces (see Corollary 2.9 and Proposition 2.7). Moreover, each
derivative of a Fock function is in a Fock-Sobolev space (see Theorem 1.4). So these
spaces have been subject of interest by several authors in recent years, specially for
the case £ = 1 (see for instance |7, 5, 6, 18] and the references therein). As it happens
for £ =1 (see, for instance, [13], [4] and the references therein), the model spaces F2,
¢ > 1, should be useful to solve certain problems in weighted Fock spaces FPf(w).
This will be the object of forthcoming works.

We recall that a Hankel bilinear form on a product of function spaces is a bilinear
form A satisfying A(f,g) = A(fg,1).

Our first result characterizes the boundedness of the Hankel bilinear forms on
F? Fg ,» Where p’ = p/(p — 1), which extends the classical result in [15] for £ =1
and 0 = 0 (see also the recent paper [24]). In order to state our theorem, we consider
the space E of entire functions of order ¢ and finite type, that is, E = E(C") :=
{f € HIC"): |f(2)] = O(e™!"), for some 7 > 0}, which is dense in foo, and in F? .
1 <p<oo.

Theorem 1.1. Let 1 < p < oo, o, > 0 and p,n € R. A Hankel bilinear form
A E x E — C satisfies \ ( 9l < || HngHgHFp if and only if there exists b €

& . such that A(f,g) = (fg ) . In this case we have ||A|| ~ ||b]| pee

a+[‘3 P*"?;
and there exists ¢ € Lg”_,_, such that tbe bounded bilinear form A : Lt % L’A77 — C,
defined by A(f,g) = (fg, ) a+s, coincides with A on E x E and satisfies ||A]| ~ ||A]|.
2
As a consequence, we obtain a weak factorization of the space F\ .p+n- Werecall
that the weak product FY /O F é’ ;1 < p <00, is the completion of the space of finite
sums h = ). f;g;, f; € F%, and g; € Fj, using the norm

Il oy = inf {Z Iillre, gl o = ijgj} -
J J

We then have:

Corollary 1.2. For 1 <p < oo, a,8> 0 and p,n € R, F} ,© Fg =F) 51
Moreover, Foll,prEC:n:Fal,pQFﬁoo Fi+ﬁp+v7

Usually, necessary conditions for the boundedness of a bilinear form A are ob-
tained by checking the boundedness on adequate testing functions f and g. This is
particularly simple when ¢ =1, « = 5, p = n = 0 and p = 2 (see [15]). In this
classical case, we can take as test functions f and g the square root of the Bergman
kernel, that is f(w) = g(w) = /a"/n! e2*®. Here, for z,w € C", 2w := > iy 205
Then [b(z)| = [(fg,b)a] < IA||If]|%: = [|A]| 1) ¢ which proves that b € E2,. Ob-
serve that the norm estimates of the above test functlons f and g are snmlar to the
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ones of the Bergman kernel. This is not the situation in the general setting. In fact,
although there is a broad literature on pointwise and norm estimates of the Bergman
kernel for generalized Fock spaces (see, for instance, [9], [16], [17], [23], [8] and the
references therein), it is not at all clear how to derive adequate decompositions of
the Bergman kernel from these estimates.

For ¢ > 1 the choice of the test functions is more delicate because the Bergman
kernel K, (z,w) = K, .(w) is given in terms of derivatives of the so called Mittag-
Leffler functions, which have zeros on C (see, for instance, Lemma 2.5 below and |21,
Theorem 2.1.1]). Consequently, it is not clear how to get a strong decomposition as in
the previous case. Instead, using the asymptotic behaviour of the Mittag-Leffler func-
tions, we obtain a weak decomposition of the Bergman kernel with accurate pointwise
and norm estimates of each factor. This will be a key tool to prove Theorem 1.1.

Theorem 1.3. Let 1 < p < oo a,B,7 > 0 and let p,n € R. Then there exist
functions Gy, = Gy .08, Hi = Hyrap € E(C), k=0,---,n, such that

(1.1) Ky(w,2) =Y Gi(wZ)Hy(w?),
k=0
‘2‘22
(1.2) K. ||Fa+6p+n~ZHGk )l ep 1 H (- 2 >||F;; ~ (14 |2|)PHreders

If ¢ =1, then K (w,2) = ZL—!eVzw and in this case (1.1) reduces to

(1.3) K (w,z) = “’—,ea_wﬁ T ears T = ;‘—,iKV (w, ﬁz) K, <w, %z) :

For ¢ > 1, the explicit expression of the functions G} and Hj is quite involved.
A motivated definition of these factors as well as their pointwise and norm estimates
are given in Section 4 (see Definition 4.4 and Theorem 4.5 below). In order to prove
the norm estimates of the functions GG, and Hj,, we use, among other ingredients, the
following Littlewood—Paley type formula, which may be of independent interest by
itself.

Theorem 1.4. Let 1 < p < oo, a > 0 and p € R. For an entire function f
in C", let [V™ f| = >, [0"f|, where [v| = v1 4+ -+ v,. Then the following
assertions are equivalent:

(i) feF
(i) For anyk > 1, |[VEf| e LY, o ke-1)-

(iii) For some k > 1, |V*f| € Lap k(20-1)

Moreover, we have

1 £llez, = Z VO + IV
We point out that, in the partlcular case { = 1, a fractional derivative version of
the Littlewood—Paley formula is given in [5] (see also the references therein).
Finally, as an application of Theorems 1.1 and 1.3, we obtain a characterization
of the boundedness, compactness and membership in the Schatten class of the small
Hankel operators.
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Theorem 1.5. Let 1 <p <oo,a>0andp € R. For f € (a,2a) and b € Fge,

let by, be the small Hankel operator defined by by, o(f) := Po(fb), f € E, where P,
is the Bergman projection on F? (see Section 2). Then:

(1) by extends to a bounded (compact) operator from Fpp to FZ, if and only
ifbe Fe (respectively, b € foo) Moreover, ||byallpz, =~ ||b]|poo

(ii) bpa be]ongs to the Schatten class S,(F? F2 ,) if and only 1fb €FY -
27 P

a,p’

Moreover, ||hbaHsp ~ HbHFa .

Unlike the case of small Hankel operators, there is a broad bibliography on the
characterizations of boundedness, compactness and membership in the Schatten class
for Toeplitz operators on large families of weighted Fock spaces (see, for instance, |22,
11, 14, 19, 12] and the references therein). As far as we know, the literature on small
Hankel operators is essentially concentrated around the case ¢ = 1. For instance, in
the recent paper [24] the authors characterize the boundedness and compactness of
small Hankel operators from FP! to F%' 0 < p,q < oo and o > 0. Finally, we remark
that for n =1, p = 0 and / is a positive integer, the boundedness, compactness and
membership in the Hilbert-Schmidt class of the small Hankel operator were studied
in an unpublished manuscript written in collaboration with Pelaez [3].

The paper is organized as follows: In Section 2 we state the main properties of
the Fock-Sobolev spaces FY , and the Bergman projection F,. The Littlewood-Paley
formula of Theorem 1.4 and the weak factorization of Theorem 1.3 will be proved in
Sections 3 and 4, respectively. Section 5 is devoted to the proof of Theorem 1.1 and
Corollary 1.2. Finally, in Section 6 we show Theorem 1.5.

Throughout this paper the notation ® < ¥ means that there exists a constant
C > 0, which does not depend on the involved variables, such that ® < C'¥. We
write ® ~ U if & < ¥ and ¥ < .

2. The Bergman projection on Lg,p

In this section we state some well-known properties of the Bergman projection
and the Fock—Sobolev spaces.

2.1. On the two parametric Mittag-Lefller functions £, ;. The two para-
metric Mittag-Leffler functions are the entire functions on C given by

Fa= 2 sy

(AeC, a,b>0).

Observe that E1()) is just the exponential function e*.

A good general reference for the Mittag-Leffler functions is the book [10].

In this section we recall the asymptotic expansions of the two parametric Mittag-
Leffler functions and their derivatives. Those expansions will be useful to obtain both
pointwise and norm estimates of the Bergman kernel.

Theorem 2.1. |21, Theorem 1.2.1] Let a € (0,1] and let b > 0. Then, for
|A| — oo, we have

(24) Ea b()‘) =

)

INA=DfaA L 0N, if |arg | < T a,
O™, if |arg \| > X a.
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Here, for A € C\ {0}, arg A denotes the principal branch of the argument of A,
that is, —7 < arg A\ < m. Moreover, for 3 € R, \% = |\|feif a8,

By Cauchy’s formula (see |20, Theorem 1.4.2|) we can differentiate the asymptotic
expansion (2.4) on smaller sectors to obtain:

Corollary 2.2. Let a € (0,1], b > 0 and m € N. Then, for |[\| = oo, we have
that
gy = § et L OV + O, if [argA| < Fa
@b O(A—™ 1), if |arg A\| > 37ra
From this result we deduce pointwise estimates of the function E((lng)
state these estimates we introduce the following function.

Definition 2.3. For ¢ > 0, let

leN], if |arg\| < Z,
2.5 c(A) = ’ 2
(25) (M) {1, otherwise.

. In order to

Corollary 2.4. Ifb € (0,1] and m € N, then
(2.6) B O]S (1L A0, (1),

2.2. The Bergman projection. We denote by P, the Bergman projection
from L2 onto F? defined by

Pal$)) = (- Kacda = [ fw)Ka(z,w)e™ ™ aV (w),

where K, is the Bergman kernel and K, .(w) := K, (z,w) = K,(w, 2).

The first result in this section states that the Bergman kernel can be described
in terms of derivatives of the Mittag-Leffler function £/,;/,. In order to do that,
we recall some standard notations. N will denote the set of non-negative entire

numbers. For a multi-index v = (v1,--+,1,) € N" and z = (z1,---,2,) € C", we
use the standard notations 2z = 21" ---zi», vl = !yl and |v| = v + -+ + vy,
We then have (see, for instance, [1, §5]):
v . . 2
Lemma 2.5. The system {”wg)TFg}VEN" is an orthonormal basis for F, so the

Bergman kernel is

Halayw) = -2 ||wv||

veN™

Of‘u‘# n!u! F(—‘"‘Zr")
L (n—=1+|v|)! ?

Namely, since ||w”||F2 = K,(z,w) = H,(2w), where

fa™* i (n—1+k)! oM\ Ea"/ZE(

W T (e = B

Ha(3) = 0/

n!
k=0

In particular, for any 6 > 0 we have
(2.7) K, (z,0w) = K,(6z,w) = 0 "Ky5e (2, w).

As a consequence of (2.6) and the fact that the Taylor coefficients of the function

E 1 are positive, we obtain the following pointwise estimate of the Bergman kernel.

1
7
Proposition 2.6. For a > 0 we have

[Kal(z,w)] S (1+ [21)" Y1+ w])" Vo (20).
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In particular, if |z| < M, then
_ 14 4 4 4
[ Ka(z,w)| S (14 fw])"Y eedvl < gt er,
so K,(-,z) € E, for every z € C".
The next results will be used to prove our main theorems.

Proposition 2.7. Let 1 <p < oo, a,7 >0 and p € R. Then

, 2
||K,y(-’ Z)HFg,p ~ (1 + |Z|)P+2n(€—1)/p 6;—a|z|25 (Z e CTL)

The proof of Proposition 2.7 for p = 0 is in [1|, while the general case can be
found in |2, Corollary 2.11].

Proposition 2.8. Let 1 <p < oo and p € R. If 0 < a < 2v then the Bergman
projection P, is bounded from L% , onto F? 22 /(29—a)p° Moreover, P, is the identity
operator on FY . In particular, Py: Lt ) — Ff”7 is bounded.

The condition o < 27 ensures that the projection is well defined, in the sense
that it ¢ € LF  then p K, . € L1 The proof of this proposition when p = 0
can be found in [15] (¢ = 1) and in [1] (¢ > 1). The general case can be found in
|2, Proposition 4.2]. Observe that by Proposition 2.8 f = P,(f), for any f € FP
Hence Holder’s inequality and Proposition 2.7 give the following elementary pointwise
estimate.

Corollary 2.9. Let 1 <p <oo,a >0 and p € R. Then
lf(2)] < ||fHF£’p(1 + |Z‘)—p+2n(€—1)/p€%\z‘2l (feF am secm),

and so Fp — Fap 2n(¢—1)/p-

Using Corollary 2.9 and simple pointwise estimates of the weights, it is easy to
prove the following result. A detailed proof can be found in [2|, where we give a
complete characterization of the embbedings F} 5 — F g -

Corollary 2.10. Let 1 < p,q < oo, a >0 and p,n € R.
(i) If B > «, then F} , — Fj§ and F} , < §%,.
(ii) If p+2n(l — 1)/p <, then E, < F? .

The next interpolation result will be used in the forthcoming sections (see, for
instance, [2, Lemma 3.10]).

Lemma 2.11. Let 1 < p < oo. Then for 6 = 1/p" we have
1 oo
(Fopr Fop)io = £2,-

a,p?
Next lemma studies the action of dllatlons on Fock—Sobolev spaces.

Lemma 2.12. Let 1 <p < o0, a, >0 and p € R. For 6 > 0 we have:

(i) The dilation operator f — f(d-) is a topological isomorphism from FY , onto
Fg;la o

(11> If.f g€ E; then <.fa g>a = 52n<f(')ag(52')>52ea'

(ii) If f € E, g € Fy, and 6*° < 2/, then f(-) g(6*) € Ly,

Proof. The change of variables w = §z easily gives (i). The same change of
variables together with the orthogonality of the monomials give (ii), since (f, g)o =
62 (f(0-),g(0°))s2e = 62 f, g(0%))s2¢. Finally, assertion (iii) follows from (i) and
(ii). O
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Remark 2.13. As it happens in the classical case £ = 1 and p = 0 (see, for
instance, |28, Proposition 2.9|), Lemma 2.12 (i) and Corollary 2.10 allow us to prove
the density of the holomorphic polynomials in FY ,, 1 < p < co. Indeed, if f € F
and fs := f(0-), 0 < § < 1, then f5 € Ffﬂam C Fazla,p C FY,. Now, standard
arguments give ||fs — f||ng — 0 as § — 17. Finally, for fixed 0 < § < 1 there
is a sequence of polynomials {gsx}x such that ||f5s — gsxll F 0 as k — 00, so

/s = gs.llpg, — 0.

We finish this section with a duality result that we will use later. Its proof is
standard, but since we have not found an explicit reference, for a sake of completeness
we supply a sketch of the proof.

Proposition 2.14. If 1 < p < oo and a/2 < 7y < 2a, then the dual (FY )" of
F?  (with respect to the y-pairing) is ¥ . . Moreover, the dual of foo, is F,

o 14 7’_p
Proof. First we prove that if g € Fé K then f € E — (f,g), extends to a

o

bounded linear form on FY¥ . Since 0 < a < 2v, Proposition 2.8 gives F' f , =

R,(Lg;_a,_p). Therefore, if g € Fé ) then there exists ¢ € Lé’;_a,_p such that

g=P,(¢) and |l¢]l,» =gl .+ " As a consequence,
L2’y7a F.Y2

o TP

(g0l =Kok < Nl W llez, = gllp 1 llez,  (f € E).

oo P

In order to prove the converse, observe that Lemma 2.12(i) with 6% = ~/a reduces
the proof to the case ¥ = a. Namely, b € Fgf_p if and only if g = b(6*") € Ff; ,
-p

and, since by hypothesis v?/a < 27, we have that for any f € E fg € L%Vaand

(f,b)a = (f,9). From the classical LP-duality it is easy to check that the dual of
L% , with respect to the a-pairing is LZ:_ ,- This result together with Proposition 2.8,
for a = 3, prove the duality for F7 .

Next we deal with the duality of f3°,. Note that if b € F, _ then (-,b)s € (f3,)*
and [[(-, b)all(rze,)+ < 0l Fz -

Conversely, given u € (f,)", we are going to prove that there is b € F, i_ , such
that u = (-, b), and ||b||F;77p S [Jullgee,)«- Choose a/2 < B < «. By Corollary 2.10
we have F g — fa, and so the restriction of u to FB2 is a bounded linear form on this
space. It follows that there is g € F3 such that u(f) = (f,g)s, for every f € E.
Now, by Lemma 2.12 with 6* = ¢ < 2, we have b = ¢g(6*) € F2%,, = F?, and

5

g I
u(f) = (f, bla, for any f € E.
Thus it only remains to prove that [|bl|,1 < Jlullgz,)--

For f € C.(C"), let Tf(2) := f(2)(1 + |z])re2l* € Ly, Then we have
| Po(T )z, SIT fllzee, = || fllz- Since f is compactly supported, Proposition 2.6

a,p N

gives that P,(Tf) € E. Then, by duality,

by = sup [(Tf.b)al = sup [u(Pu(TF)| S Jullge-- 0
' fec.(Cm) fec.(Ccn)
||f||L°° =1 ||f||Lo<> =1
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3. Proof of Theorem 1.4

We begin the section with the following technical lemma.

Lemma 3.1. For ¢ € R, let . .(w) := p.(wZ), where ¢, is defined by (2.5).
Then, for any 1 <p < oo, a >0, p€ R and ¢ € [0, a],

| |2Z

1e2lluz, = (14 M)z Dires

Proof. Let 1 < p < o0. Given z € C", pick an unitary mapping U, on C” which
maps z to (|z],0) € C x C"1. Then making the change of variables v = U,w and
integrating in polar coordinates (see |2, Lemma 2.9| for a detailed proof of the second
equivalence) we get

— 9P (| 24|
19l = [ plleton? [ fol e E O v @) da)
- / el (1 + [u] =200 =1 g A ()
C
:/ (1 + ‘u‘)pp—2(n—1)(f—1) ‘ clz |Zu _g|u‘2£‘p dA(U)
{lul>1,| argul< 2}
+ / (1 + |u] )PP 2= DED) | el =S Hl* P g 4 ()
{lul<1,largu| <37}
+/ (1 |u|)P= 200D o= B0 gA(y) = I, + I, + I5.
{largul> )

For |argu| < 2@, we have Re(cu|2|") — 2|ul* = £z — &

change \ = uf gives

AR ue‘z. Hence, the

I _ S l“/ (1 + [u] )20 DD o | Lizte—ut|” dA(u)
{Ju|>1 |argu|<2l}

~Y

c2 —2n(0—1) ap| c 2
<e2—5lzlz‘/(1+w>7pp P e Tla Al gao
C

< (14 |2])r2nl= 1)62 |22

The proof of the last inequality for |z| <1 is clear. For |z| > 1, splitting the integral
over C as a sum of the integral on the set

A={NeC: £lz' < })\} 221}

and the integral on C\ A, it is easy to check that I; < (1+ |z|)eP=2n(=1) 4 e=<l=l* for
some ¢ > 0, which proves the result (see |2, Lemma 2.10] for more details).
The estimates of Iy and I3 are much easier. Clearly I3 < 1 and, since \ec\z\% <
, for |u| < 1, we also have I, < el? 2ff , which completes the case p < oco.
Next assume p = co. In this case, arguing as above,

||®c,z||L3° &~ Sup ¢C(|Z|Ul) sup (1 + |Ul| + |U/|)p 6_%(“}1‘24_'”,‘2)[
’ v1€C Ulecnfl

It is easy to check that

%|v1‘2l

sup (14 |vg] + [V'])? o= 3 (v P+ ) o (14 |v1])Pe”
veCn—1
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S0 H(I)c,z||Lg<jp = MC(Z> + LC(Z), where

M.(2) = sup  @o(|zu)(1 + |u])? e 5l
|arg u|<g;

Lo(z) = sup @o(|zu)(1 + |u])? e 51>
|arg u|>g;

Now

22 g‘g ¢ }2

M(z) B sup (14 A5l
|arg A< ]

2

2P sup(1 + r)?/* e‘%‘i‘z‘e”‘ .
r>0

2
—e2a|

It is easy to check that the last supremum is equivalent to (1 + c/*|z|)? (see for
instance |2, Lemma 2.8]). Moreover, L.(z) ~ 1. Hence

1Pezllzge, = (1 + CW\ZD”@?O" P+ 01/£|Z\)”62a‘z‘ ’
which ends the proof. O

Proof of Theorem 1.4. The proof of the theorem is a consequence of the following
assertions:

1) The linear operators f ~ 4., f are bounded from F} , to F? 120"
2) The linear operators

5,(9)(2) = 2 / g(tz)dt, j=1,-n,

are bounded from F?

P
a,p+1-2¢ to Fa,p

Taking for granted these results it is easy to prove the case k = 1. Indeed, assertion 1)
shows that if f € F? ,, then |[Vf| € L} ., 5, Moreover, the identity

noonl
0) + Z/ 20, f(tz)dt, fe€ H(C"),
j=1"0
together with assertion 2) give the converse. Combining these results we have

117z, = [FON+ IVl L, ~ [£O)]+ ) 0., Sler
j=1

[terating this argument we prove the general case.

Next, we prove the two assertions. We begin showing that the linear operator
[ 8ij is bounded from FY% ) to I} ., ,,. By interpolation (see Lemma 2.11) it is
sufficient to prove this result for p=1and p = oco.

By Proposition 2.8, f = P,(f), so
0, 1(2) = | F(w) 0., Koz, w) e aV (w).
Cn
Therefore Lemma 2.5 and Corollary 2.4 imply

02, Kol )] = [ () (02)| S ol (14 |]) 0D (2m),
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where ¢, is defined by (2.5). Hence
0.5 S [ 1F) Ttz w)e ™ avw),

where T,,(z,w) := (1 4 |2])*FVED (1 4 |w|)+HDEDH G, (2am). Thus

_awZZ

10, fllrs 0 S / FNTa 0y, e aV (w)
_Q 2¢

10,71, o S 1z, s1p (14 =)~ T, 2. ) -

Now Lemma 3.1 shows

& )20
||Ta('7w)HL}1’ (1—|—‘U)|) n(e= 1+Z||(I)aw||L ~ (1+‘U)|)p62| *

p—20+1 ptn(—1)—£L

and
1Ta(z My =1+ \z|)(”+”“_1’!|<1>a,zllu

Hence |0, fHF
have

~ (14 |2]) P2t ™,

—p+n(£—1)+£

S S I fllgz, for p =1 and p = co. Consequently, for any p, we
a,p—

O+ IVl o, S W,

To complete the proof we show that the operators S; map F” apr1—2e O LI p=1
and p = oco. Indeed, Proposition 2.8 gives

/ / ) otz w)e ™ gV (w) dt.

Therefore Proposition 2.7 gives

19;(9) 11 / / W) Kl 1)l e 4V (w) de
< [ totwle [l SO (),
" 0

and

20
1S5, S Nl sup(1+ [2)7He=%+ / a2y,

S HgHLa p+1—20 Slip(l + ‘ZD PHle=3lz |2£/0 (1 +t‘z|)2z_l’—1 e%(ﬂzDze dt.
Therefore, the norm estimates 15;(o)ley, S gl and 155(0) s, S Nollrz, o

follow from .
/ (14 ta)™ P Gt < c.(14 a) 2 e™  (a > 0),
0

which can be easily derived by splitting the integral as a sum of the integrals from 0
to 1/2 and from 1/2 and 1.
Altogether gives that

11z, < PO+ IV e

a,p+172€’

which ends the proof of Theorem 1.4. O

As a consequence, we deduce the following result that will be used in the next
section.

Corollary 3.2. Let f € E(C) and let k =0,1,--. Then:
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(i) There exists T = 7(k) > 0 such that |f*) (wZ)| = O(eT|Z|Z‘w|Z). In particular,
f®(.z) € E(C"), for every z € C".
(ii) For any 1 < p < oo we have

IFPCDNer oy S A+EDTFNCDR, (2] 2 1).

Proof. Let us begin by observing that if f € E(C), then f®) ¢ E(C). This
proves (i).
For 2z # 0, pick a unitary mapping U, which maps z to (|z[,0) € C x C"L.

Then making the change of variables v = U,w and defining g¢.(vy,v") = f(|z]v1),
Theorem 1.4 gives
_ ok g,
1FOCDMer, = 17|52
a,p—k(2¢—1)
S 1 sy, = L 1Dl s

4. Proof of Theorem 1.3

From the asymptotic expansion (2.4) it is easy to check the following result.
Lemma 4.1. For 0 < 0 < 1 there exists Ryy € H(C) such that

(4.8) Evjea/e(N) = cooBy 001 (0Y°X) By ea (1= 0)Y°A) + Reg(N),
where ¢, 9 = w. Moreover, by (2.6),

(4.9) B e (07°2)] S (1+ A= 00N,

(4.10) By e (1= 0)V0)] S (14 A)T @10(3),

(4.11) [ReoN S 1+ M) (2o(N) + 16N,

where ¢, is the function defined by (2.5).
For ¢ = 1 the identity (4.8) reduces to e* = eel1=9* and R, 4 = 0.
Corollary 4.2. Let § € (0,1) and let =1 — 6. Then

K(zw) = Cuyo Y ("0 By ((07) 2000 By L70(6) 7 2m)
k=0
EVTL/Z n—1 1
+ TRE,G \(vi2w),
n/lcl o
where Cy 9 = ——
Observe that if £ =1, and § = _%5 this decomposition is just (1.3).
In order to prove (1.1) we mtroduce the following definitions. For k =0,--- ,n—1,
let
ety ok O 1/¢
(4'12) Gk;y,e()\) = ( k )91“/ ol Eé £+1((97) )‘)
(4.13) () = (1 9)"*%*’“13;’7;;’“(((1 — 0N,
g,yn/é e 1
(4.14) Ruro(N) = —— Ry V().

We claim that:
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Proposition 4.3. Let v > 0 and 0 € (0,1). Then, for any z € C", the functions
Grno(-Z), Henyo(-2), B =0,- — 1, and R, (- Z) belong to E. Moreover, for
1 <p<oo, a>0andp€Rwehave

2.2
(415)  [|Ghno(-2) g, S (14 |2y HEDEA=2m ST g, — 1,

(4,16) HRn - 9(. E)HF” < (1 4 |Z‘)p+(f—1)(2n/p/_1) (69222 |2[2¢ i 6%"2‘2[)_
K K ayp Y

Observe that replacing Gy .9 by Hy 0 and p, o, p,0,k by o', 8,n,1—0,n—1—k,
respectively, we obtain

(4.17) | Hyro(-Z )HFP, < (1 4 || D eIk +1=20/p') %‘2‘227
( 70)2 2
(4.18) HRn,%G('z)HFﬂ <(1+ |Z‘)77+(£—1)(2n/p—1) (e 213 2 |22 n 6127[37‘2‘%)'
Bym

Taking for granted these estimates, we conclude the proof of Theorem 1.3.
We first state the following definition.

Definition 4.4. For o, 5,7 > 0 and kK = 0,--- ;n — 1, we define the following
entire functions on C given by:

Ge() = G (V) HilN) 1= Hir o (V)
Gn(A) == Ry 2 (A),  Ho(A):=1, ifa>p,
Gn(A) =1, Hp(A):= Ry o (A), ifa<p.

Proof of Theorem 1.3. By Corollary 4.2, it is clear that the functions G and
Hy, in Definition 4.4 satisfy equation (1.1).
Next we prove (1.2). By Proposition 2.7 and Hélder’s inequality we have

(1 -+ [2lyremam o ~ 1K Ale, <Z||Gme Meg, 1 Hioo( 2 gy -

[e3

y (4.15) and (4.17),

n—1

2

S Gk D i oDl S (1 [ nem VO
B:m

k=

o

where ¢(0) = % 4 ! . Since (6) > w(ﬁ) = ﬁ,

n—1
ZIIGk(-?)Ilpg,pllHk( Ay <L+ |Z|)p+”62<“+‘”‘z‘
k=

Assume o > . Now (4.16), with 6 = shows that

e

, ‘ 8242 | 120
G2 e (g S (1 el (et panlitoa )

~

2
< (L4 J2])rtrexcm o,
By using (4.18) we obtain the same estimate for ao < f. O

For further references, we consider convenient to state the following more precise
version of Theorem 1.3, which provides an explicit decomposition of the Bergman
kernel K, with norm-estimates of the factors.
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Theorem 4.5. Let 1 <p < oo a, 5,7 >0 and let p,n € R. Then,

(4.19) Ky(w,2) =Y Gry o (W) Hyy, o (W) + Ryy o (w3),

and, fork=0,--- ,n—1,

(4.20) ”kaa%g('z)HFé’p <(1+ |Z|)P+(€—1)(2k+1—2n/p)e2(§+z)2\2\22’
(4.21) HHkv%aig( )HFP’ < (1 + |2])rH(ED@n/p—2k- 1)62(a+6)2| |2"
(422)  |[Ruy 2 (-B)llpz, SO+ o e D T e > g
(428)  1Bus gy (Dl S+ B e A W)

Therefore, defining

ety = R, 5 N and H, Nty = 1, ifa>p,
nyaty = L and H, sty = anﬁﬂ, ifa < f,
we obtain
22
1Ky elr,, NZHGM,M Mg, 25 (2l = (1 2]y e

Next we prove Proposmon 4.3.

Proof of Proposition 4.3. In order to simplify the notations, for k =0,--- ;n—1
we write G, and Hj, instead of Gy, g and Hy,, ¢, respectively, and R, instead of Iz, - 4.

By Corollary 2.4 all the Mittag-Leffler functions in the identity (4.8) are in E(C),
so Ryg € E(C). Therefore, Corollary 3.2(i) shows that Gy(-Z), Hi(-Z) and R,(-2)
are in E£(C").

Next, we prove (4.15) and (4.16). Since Gy and R, are in E, there exists
7 > 0 such that, for every |z| < 1, |G4(-2)], |Ru(-2)] < ™" and consequently
1Gx(D) ez, 1 Ra() ez, S 1.

Next consider |z| > 1. The estimate (4.15) follows from Corollary 3.2(ii), (4.9)
and Lemma 3.1. Indeed,

1B, (- (02l S (14 |2 HIEy 12 (- 0)72) gy

a,p+k(20—1)
A R
S A+l T

Z

A
>
3
&
=

apt+ 5t pr(2e-1)

<(1+ |Z‘)p+(f—1)(2k+1—2n/p)60232|z|2l'

In order to prove (4.16) for |z| > 1, we follow the same arguments used to
prove (4.15). Note that (4.11) shows that Ry gsatisfies an estimate similar to the one
satisfied by F 1o

22720

(4.24) [Rea(N)] S (L4 [AD)T (00(N) + 01-6(N)).
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Then Corollary 3.2(ii), (4.24) and Lemma 3.1 give
n— 1 n
IRy (v D) re, S L+ 2D [ Reo(- v 72) | o
S+]2)) 7 "[[@grcla

pt(n—1)(20-1)

p+F 4 (n—1)(20-1)

+ (14 [2) TRy lzr

ap+ 5t £ (n—1)(20-1)

| IZZ

< (1 + |z|)rHE-DEn/p =D (e 2 Y e O

1—6
( 2LW ‘2‘25)‘

Remark 4.6. If / is a positive integer, then e * is a zero-free entire function.
Therefore, we have the strong decomposition

K (w,z) = [e;_ge(m)l] . [e_aa_ﬁﬁ(zmz K. (w, Z)} ,
whose terms can be estimated with the same methods used above (forn =1, a =f
and o =n =0, see [3].)
5. Proof of Theorem 1.1 and Corollary 1.2

5.1. Proof of Theorem 1.1. Assume that [A(f,g)| < ||fHng||fHFp , for

f,g € E. The first observation is that if there exists v >0, 7 € R and b € F°° such
that A(f,9) = (fg,b),, for f,g € E, then Proposition 2.8 and Theorem 1.3 glve

| IZZ

|b(2>| = |<K“{('7Z)7 b>fy‘ < Z |A(Gk(z), Hk(z)” 5 HAH(l + ‘Z|)p+7762(z;ﬁ,8) z

Thus b € F'*, and ||b||Foo < A
otpr aFp

Therefore it is enough to prove that there exists b € F'3 ais such that A(f,g) =

(fg, )aTw, for every f,g € E.
Let E? , = (E,||-||pz,) and assume « > . The boundedness of the bilinear form

Aon EL , x Ef " implies that f — A(f,1) is a bounded linear form on EPL . Since
o‘+ﬁ < a, Corollary 2.10 shows that E'! atn _ = ER

a,p?

forany 7 < —p—2n(l—1)/p.
In particular, f — A(f,1) is a bounded hnear form on EY asa - Therefore, using
that A is a Hankel form and the fact that de dual of an __ with respect to the

O‘+B -pairing is F'35, (see Proposition 2.14), we obtain the result. The case a < (8
T

can be proved in a similar way.
Next we prove the converse. By Proposition 2.8, if b € F ats then there

oo, such that PQTHB (¢) =band [lol[rg ||b]|poo . Therefore

T
A(f,9) =(fg,b)ars = (fg,¢)ass, for f,g € E. Hence Fublnl s theorem and Holder’s
2 2
inequality give

exists ¢ € Lg°

Al < Mol 1 lle, gl -
§o if we consider the form A : Lh % L’ém — C defined by K(f, 9) = (fg,¢)a we have
A=Aon F x E and
lellze.,, ||b||FQ+B ~ A < A< Nelleg, -
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5.2. Proof of Corollary 1.2. First we consider the case 1 < p < oo.
By Holder’s inequality it is clear that Ff 5 © Fg, — Fl artB.o+n° Since FE is
dense in both spaces, in order to prove that they coincide it is enough to prove

that ||h|| ~ || A 2 , for h € E.

F};,poFg a+8,p

It is easy to check that the dual of F}  © Fg is isometrically isomorphic to
the space of bounded Hankel bilinear forms on FY , x F é’ ,» Which we denote by H.
Namely, any ¥ € (F} , © F§ 4 ;) defines a bounded bilinear form on FZ  x Fg:n by
A(f,9) = V(f9), f,9 e E, Wthh satisfies |A|| = [|¥||. Conversely, eaoh ANe H
defines a form ¥ on F} © Fé’m V>, fig) = >2;A(fi,95) and [[W[| = [A]l.
By Theorem 1.1, the map b — Ab = (-, b) ats is a topological isomorphism from

o _,_, onto H. Therefore the duality (F 5 ,,,) = LH; s with respect to the

4 )

O‘+B -pairing (see Proposition 2.14) gives

il = sup [W(h)|= — sup  [(h,D)ers| = |[h]|F

a+B,p4+n
=1 bl poe, =1
otB _

/
FCZ:»PQ Fg,n

e—n

The proof of the case p = 1 is similar. It is clear that Fip O Fg, < F! i
By Proposition 2.14 we have (37, 5 p+17) FQH; Cpe with respect to the < T-palrmg.

Hence, arguing as above, we have ||h||Fa1,p®fg , = | HF§+6 . and

1 1 0 1 1
F+6p+77_Favp®fﬁ,n;>Fa,p®FBn;>F

which ends the proof.

+8,0+1°

6. Proof of Theorem 1.5

We begin observing that by dilation we can reduce the proof of Theorem 1.5 to
the case a = 1. As usual, we denote S,(FZ2 , F2 ) by S,(FZ2 ).

a,p?
By Lemma 2.12(i), the dilation operator \Ifa(f)(z) ‘= f(a=z) is a topological
isomorphism from L2, Sonto L? ;1 <p < oo, 7 > 0, such that W,(F?, ) = F? and

TO,p T,p? TO,p

U, (FE.,) = F?,. Moreover, for f € E,
—1

Uo (B0l £))(2) = (Kol 0% 2) f,b)e = (Ka(a? -, 2) f,b)a.
Therefore Lemma 2.12(ii) and (2.7) give
Valbra(£)(2) = a7 (Kala ™+, 2) Wa(f), Valb)
= (K1(, 2) Walf), Wa(b))r = bwam)a (Yalf))(2):

So the boundedness (compactness) of the operator b, on F: 4, 1s equivalent to the
boundedness (respectively, compactness) of by, @)1 on Fﬁ , and

1De.allrz, > IDwae.illey -

Similarly, by € Sp(F7 ) if and only if by, @)1 € Sp(FT,), with equivalent norms
(see, for instance, [25, Theorem 7.8]). Moreover

s, aleg, = o)y <= [Bnaleg = bl rg.
and

[bwa@alls,ez,y = 1Wa®lley = [Osallsyrz,) = Wblley 0,
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Hence from now on we only consider the case @ = 1 and we will simplify the
notations by writing (-, -), by, K, P, ..., instead of (-, )1, by, K1, P, ...
In order to prove Theorem 1.5, we will use (4.19) with v = 1 and o = § = 1,
that is,
n—1
(6.25) K(w,2) =) Gyia(w2)Hy 1 (w2)+ R, 1 (w3).
k=0
According to the choice in the statement of Theorem 4.5, we write G = G 1,1/2,
Hy = Hk,1,1/27 k=0,---,n—-1 G, = Rn,l,l/z and H, = 1.
Let b € Fig°, 0 < 8 < 2. Since b(z) = (K(-, 2),b), (6.25) shows that
(6.26) b(z) = Y (Hi(2),0,(Gr(-2))) = Y _(Ga(-2), bo(Hi(-2)))-
k=0 k=0
This representation formula is the main tool to prove Theorem 1.5.

6.1. Proof of Theorem 1.5(i). In this section we prove that b, extends to a
bounded (compact) operator from FY, to FY, if and only if b € F7° (respectively,
2

be f?), and in this case ||hb||F1pp ~ [|b]| pee.
’ 2

6.1.1. Proof of the sufficient condition. Assume b € F°. By Proposi-
2
tion 2.8, there exists ¢ € L such that P(¢) = b and [|p||r~ =~ [[b||pe. Therefore
2

ho(f)(2) = (f K(-,2), b) = (f K(+, 2), ), and consequently

(6.27) 6u(/)(2)] < Nl f] K- 2)])-
By Proposition 2.7,

—p 1
o)< Nl f e 1K G2 S ol [Lf e (L4 |2]) €2
80 ||Bp,allree S [0l pee. Next, (6.27), Fubini’s theorem and Proposition 2.7 give
3P 3
IsaDller, S Il F @) 15wl )
1128
Sl (I f ()], 1+ [w)?ezl™) = Jlol| | fll 7,

which proves that ||bb,oc||F11’p S 1[0l e

‘25

By Lemma 2.11 we obtain ||hb,a2||Fﬁp S ||b||F%>o, for 1 < p < 0.

Now assume that b € §¥°. Since §7° is the closure of the polynomials in Ft°,
there is a sequence of polynQOmials {qk}leN such that [[gy — bl|pe — 0. Therefore
1Bg. — bollrp — 0, because i

90, = ull, = Iasollez, S llas — bl
Since {bg, }ren is a sequence of finite rank operators, it follows that by, : FY, — ﬁpm

is compact.

Remark 6.1. Using the above arguments we have that if b € F° then b, is
2
bounded on §7°,. Indeed, by (6.27) and Proposition 2.6,

0o(H S (nlfl, 1K C2)) + (0= xa) £ 1K 2))
< eV Ly + 10 = xm) fllaz, 1K )l

L—p
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where f € fi°, and xr denotes the characteristic function of the ball centered at 0
and radius R. By Proposition 2.7

— L2 _1y,2¢ g
(L+ 127 e 2P0 ho(F) ()] S N f s, 72D (1= xR) fllase -
Since f € fi,, (1 = xr)fllzzz, = 0 as R — oo. Moreover, for any R > 0, (1 +
2] )P ezl HEFD S 5 0 as |2] — co. That proves that by(f) € f15,-

6.1.2. Proof of the necessary condition. First we prove that if b, is bounded
on Y, then b € F7°.

2
For £ =0,--- ,n, let us consider the “normalized” functions

‘2Z

ék,z( ) (1+ |ZD —(6—1)(2k+1— 2n/p) Gk(wz),
1228

Hy,.(w) = (14 |z])p~E0Cp=2k=1) =5 [, (7).

By (4.20)—(4.22) we have Hék,zHF{’p < 1and ||ﬁ[k,ZHFp/ < 1. Using the representa-

tion formula (6.26) we have

b(z) = Z(flmm>,

k=0

(6.28)

s0, by Schwarz’s inequality, [[b]|pe S beHF{’p-
I :

Now assume that b, is compact on Fﬁp, 1 < p < 0. By (6.28) we have

S0y -

Consequently, in order to show that b € §%°, it is enough to prove that ||b,(Gy..)| o
: :

0 as |z| = oo. Since, for |w| < R, |Gr(wz)| < @+ G, . converges uniformly
to 0 on compact sets as |z| — oo. This fact together with HG’WHF{'} S 1 easily
shows that Gy . — 0 weakly in FY, as |2| — oo (see, for instance, [3, Lemma 5.1]).
Therefore, the compactness of b, implies that [[by(Gr,:)||rp, — 0 as |z[ — oo.

The same argument proves that if b, is compact on §7°,, then b € f?

Next we use this result to prove that if h, is compact on Fl1 then b € f°°

If b, is compact on Fl1 , then it is bounded, so b € F °. By Remark 6.1 we have

that by is bounded on 3° ,. The duality (§°_,)" = F!, together with the fact that
(0s(f),9) = (f.bs(9)) = (fg,b), give that by is compact in F}, if and only if it is
compact in f7°_,, which implies b € f°°

Finally, if by is compact in FT) then be F°° and b, is bounded on F1 . So it is

compact on Fp7 if and only if it is compact on Fll_ which implies that b €.
’ : 2

6.2. Proof of Theorem 1.5(ii). In this section we prove that b, is in
Sp(Ft,) = Sp(F? F2 )1fand0nly1fb€F

oo and, in this case, ||hb||5p(F12,p) ~
161l 2

,2n(4—1)/p’
1 2n(—1)/p
We start this section recalling some well-known results concerning to the Schatten

class S,(Ho, Hy), where Hy and H; are separable complex Hilbert spaces. See, for
instance, [25, Chapter 7].
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Let T be a compact linear operator from Hy to H,. Then |T| := (T*T)"? is
a compact positive operator on Hj, so we may consider its sequence of eigenvalues
{sk(T)}ken, which are usually called the singular values of T'.

For 0 < p < oo, the Schatten class S,(Hy, Hy) consists of all compact linear
operators T' from H, to H; such that

o

|7 Hsp Ho,Hy) "~ Z sk(T)" < oo.

k=1

Moreover, Sy, (Hy, Hy) is the space of all the bounded linear operators from Hj to
H,.

Note that (S,(Ho, H1), || - ||s,(#0,m,)) s @ Banach space for p > 1 and a quasi-
Banach space for p < 1. Moreover, since ||T'||s,(#o,mr) < |1 ||, (Ho, ) for p < q and
T € S,(Hy, Hy), we have the embedding

Sp(Ho, Hy) < Sy(Ho, Hy), (0<p<gq<o00).

By using the polar decomposition of 7', it turns out that there exist two orthonor-
mal systems {uy tren and {vg }ren of Hy and Hy, respectively, such that

Zsk S k)

Note that if Ty(f) := sk(T)(f,uk>Hka, then ||T%||s,(mo,m1) = sk(T). So if T' €
S1(Ho, Hy), then the rank one operators T}, satisfy

(6.29) ZTk—>T in S, (Ho, H;) and HZT
k=1

= T
S\ (Ho, H1) ZH |y (o, 1)

We end this section by recalling the interpolation identity
(630) (Sl(Ho, Hl), SOO(H(], Hl))[@] = Sl/(l—@) (H(], Hl) (O <f< 1)
See, for instance, |27, Theorem 2.6].

The following lemma is easy to check.

Lemma 6.2. T": Fﬁp — ﬁ%p is a bounded linear operator of rank one if and only
if there are non zero functions g € F{_, and h € F}, such that T(f) = (f, g)h, for
any f € F?,. Moreover, in this case, HTHSP(FEP) ~ HQHFE,,)HhHFEP: for 1 < p < oc.

6.2.1. Proof of the sufficient condition. The sufficient condition is a direct
consequence of the following result.

Proposition 6.3. For1 < p < oo, the operator b — b, is bounded from F? ,,,_,,
PRl

to Sy(F7,).
In order to prove Proposition 6.3, we will need the following interpolation Lemma.

Lemma 6.4. Let 1 < p < oo. Then

(6.31) (L1/2 2n(0—1)» Lcﬁz)[l/p’] = L11)/272n(g_1)/p> and
(6.32) (F1/2 2n(0—1)> Fffz)[l/p’] = Ff/2,2n(€—1)/p7

_2¢
Proof. We begin with the proof of (6.31). Since f — f(z)e_% is an isometric
isomorphism from L117/2 an(e—1y/p OO0 L (14 |2])2"*=Y) @V (2)), Riesz-Thorin theorem

gives (6.31).
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By Proposition 2.8, Pl is bounded from L11)/2,2n(f—1)/p to F1/2 n(e—1)/p and it
. . . p
is the identity on F1/2 on(e—1)/p L1/2 2n(—1) /p- Thus F1/272n(é_1)/p is a retract of

L’l’/2 on(t—1y/p> 1 < P < 00 and, consequently, (6.32) follows from (6.31). O

Proof of Proposition 6.3. By the interpolation identities (6.32) and (6.30) it is
enough to prove the result for p = 1 and p = co. Since the last case has been done
in the previous section, we only have to deal with the case p = 1.

Assume b € Fél,zn(z_n' By Corollary 2.9, b € Fgo and b = P%b. Therefore, for

f € E we have

(0s(f) (2) = [ f(u)b(u) K (u, z) e ™ aV (u)

Ccn
_‘w‘QZ

(
:/cnfm) /Cnmf@(w,u)e TV (w) K (u,2) e MV (u),

and Fubini’s theorem gives

(6.3 0N &) = [ 5] Oy e av ).

C?’L
This allows us to consider the following Bochner integral

(6.34) /C b(w) b, () 4V (w).

By Bochner’s integrability theorem (see for instance [26, p. 133]), the Si(F7,)-
convergence of the Bochner’s integral (6.34) means that the integrand

S(w) = @ bK1/2('7w)

is an Sy (F},)-valued strongly measurable function on C which satisfies

(6.35) /||S Vs y e 5 dV (w) < 0.

We are going to show that S(w) is an operator of rank at most one, for every
w € C, and next we estimate its 5 ( fﬁ) norm.
For any w € C and f € F, we have

(6.36) by o) (F)(2) = 27 K (- 27 ) K (27w, 2).
Indeed, by (2.7), K1 jo(-,w) = 27K (-, 2~ /w). Therefore
By oty (F)(2) = 27V FKC (-, 2), K (- 27 Vo)) = 27/ (27 Vo) K (27w, 2)
2/ f K (-, 27 V)Y K (27w, ).

S0 B, (w) 18 an operator of rank one and, by Lemma 6.2 and Proposition 2.7,
we obtain

056y lssce ) = 1K 27 4w) [ 1K (27w [z
~ (14 w7 (ED ¢

Observe that (6.36) shows that S is an Sy (F{,)-valued function on C. Moreover,
it is Sy (F7,)-strongly measurable because

(6.37)

we Cr— hK1/2(~,w) € Sl(Fl%p)
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is continuous. That follows because b, Ja(ew) — bk, e v») has rank at most 2 and so

HbKuz( hK1/2 ||S1(F12 <2 Hh{Kuz( w)=Kyjo(-v }”Soo(Fﬁp)

e8]
S K2 w) — Ko, 0) || pse

1/2

() 3)
S K (s w) — Kol )HF} e, 0
as w — v, where (1), (2) and (3) are consequences of Theorem 1.5(i), Corollary 2.9
and the dominated convergence theorem, respectively.
Now (6.37) gives (6.35):
‘25

/ ISy, ey e dV(w) S / 1bw)| (1 + [ D" av ().
C
Therefore, by (6.33), b, € Sl(Fﬁp) and ||f)b||51(F < 1Bl g O

1/2,2n(6—1)

6.2.2. Proof of necessary condition. The following definition is motived
by (6.26).

Definition 6.5. For T' € So(F7,), let

Or(2) =Y (Hi(-2),T(Gx(-7))) (z€C).
k=0
Observe that ®,, = b, by (6.26). Therefore the necessary part in Theorem 1.5(ii)
is a direct consequence of the following proposition.

Proposition 6.6. For 1 < p < oo, the linear operator T' — P is bounded from
Sp(FE,) t0 L 1y oo 1y

Proof. 1t is easy to check that ®r is a continuous function on C. Indeed, if
z; — z in C, estimates (4.15) and (4.16) and the dominated convergence theorem

imply that
Hk(‘gj) — Hk(g) in F12’_p and Gk(zj) — Gk(g) in F12,p
So, taking into account the interpolation identities (6.30) and (6.31), it is enough

to prove the proposition for p =1 and p = cc.
The case p = oo follows from Schwarz inequality, the boundedness of T" and (1.2):

‘2‘22
)6 4

|[@7(2)| S T llswr2,) ZIIGk ez I1Hi(2)] p2

~ |7
1,—p SOO 1

P

Now we prove the case p = 1, that is,
(6.38) @7 1 STz, (T € Si(FY,))-

By (6.29) we only have to prove (6.38) for operators of rank one. So, taking into
account Lemma 6.2, we may assume that T satisfies

T(f)={f.o)h (f€FL,),

for some functions g € Fﬁ_p and h € Fﬁp.
In this case,

1/2,2n(6—1)

n

Or(z) = Y (Gi(-2),9) (Hi(-2), ),

k=0
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and Schwarz inequality gives

@rlley, S D dide
k=0

where
2] 20

I,f ::/ |(Gk(~§),g)| (1+|2])” 2p+2(6-1)(2n—2k—1) ,— TdV(z)

2¢
Ji ::/ [(Hi(-2), )[* (14 [2]) 2205 gy (2).
Next we prove that I, < ||gHF2 and J; S HhHFfp’ which, by Lemma 6.2, give
ey, S ol Whlleg, = 1T,

1,—p
In order to prove the estimate Iy < ||glp2_ , first note that Schwarz’s inequality
. sTP
gives

uaazme:;/ 9(w)|G(w3)]e

n

Jw? ‘25

w) [ 16wl av(u)

Then, by (4.15) and (4.16), we obtain

4120 w2t
(Gr(-2), )P < (1 + |2 D@12 B [ 002Gy (Bw) e 2 dV (w).
Cn

Therefore Proposition 4.3 with vy =1, a = i and 6 = % gives

w2
5 [ Pl o, e dV(w)
n 1. —2p+(-1)(2n—2k-1)
_ —lw|2¢
S [ o)+ ful) e avw) = gl

Similarly, replacing p and k by —p and n — 1 — k, respectively, we obtain J, <
17l p2 - O
0
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