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Abstract. By means of a counter-example we show that the multilinear fractional operator Z,
(1 <7 < 2) is not bounded from H'(R) x H?(R) into HY(R), for 0 < p <~ and % =1+ % — .

1. Introduction

Given positive integers m,n and a real number 0 < v < mn, it is define the
multilinear fractional operator Z, by

o fi1) - fon(Ym)
I’Y(flaafm)(x)_/ mym (|$—y1|—|— +|x_ym|)nm_-y

Lin and Lu in [3] proved Hardy space estimates for the multilinear fractional
operator Z.,. More precisely, they proved that if 0 < v <n, 0 < pi,...,pm,q < 1,
andqsuchthat%:I%l+~--+l%—%>0,then

125 (frse s Fd e < Cllfallen - - - [ fonl[ o

Recently, Cruz-Uribe, Moen and Nguyen in [1] generalized the result of Lin and Lu
to weighted Hardy spaces on the full range 0 < v < nm.

The purpose of this note is to give a counter-example to show that the multilinear
fractional operator Z, is not bounded from a product of Hardy spaces into a Hardy
space. For them, we considern =1, m=2,vy=a+1with0<a<1l,s0l<vy<2
2 — v =1 — « and the multilinear fractional operator Z,.; in this case is given by

(s)fa(t)
Lot (f1, fo) (= //R2 |:E—s|+|:)s—t|)1 —dsdt, zecR.

We will prove that the operator Z,.; is not bounded from H'(R) x HP(R) into
HIR),for 0 <p<(a+1)"and ;= —a.

We briefly recall the definition of Hardy space on R"™. The Hardy space H?(R")
(for 0 < p < o0) consists of tempered distributions f € S’(R™) such that for some

Schwartz function ¢ with [ ¢ = 1, the maximal operator
(Mo f)(x) = sup |(pe * f)(@)]

is in LP(R"), where ¢;(z) := 7¢(%). In this case we define ||f[|, = [Mfl,
as the H? “norm”. It can be shown that this definition does not depend on the
choice of the function ¢. For 1 < p < oo, it is well known that H?(R") = L?(R"),
H'(R"™) C L*(R") strictly, and for 0 < p < 1 the spaces H?(R") and LP(R") are not
comparable.

dyy - - dy,, € R"
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The following sentences hold in Hardy spaces HP(R™) for 0 < p < 1 (see pp.
128-129 in [4]):
(S1) A bounded compactly supported function f belongs to H?(R") if and only if
it satisfies the moment conditions [ 2”f(z)dz =0 for all || < n(p~' —1).
(S2) If f € L*(R") N HP(R™), then [ f(z)dx = 0, whenever 8] < n(p™' — 1)
and the function 27 f(z) is in LY(R").
To obtain our result we will compute explicitly in Section 2 the Fourier transform
of the kernel (|2 — s| + | — t|)*”" in the x variable, this allows us to get the following

identity
-1
/Ia+1(a1,a2)(x) dr =2 // a1(s) an(t) |t — s|” ds dt
R « R2

valid for bounded functions a; and as having compact support with [a; = 0 or
[ az = 0. Then, from (S2), the counter-example will follow to consider a; € H'(R)
and a; € H?(R) such that [[g, ai(s) ax(t) |t — s|*dsdt # 0.

Notation. We use the following convention for the Fourier transform in R
= [ f(x)e"™ dz. As usual we denote with S(R) the Schwartz space on R.

2. Preliminaries

We start with the following lemma.

Lemma 1. For 0 < a <1 ands #1 € R fixed, let K¢, be the function defined
in R by
K(x) = (|v — s[ + [z — th*", zeR.

Then
Tra a : (a — 1)71- —a a—1 ! —ixé

Kg(§) = —2°T'(a) sin 5 +t—s|sgn(t—s) [ e dx
=

t— s .. t— 20 Eem (T 1
_ Qe‘l(—g% Cos <| s|§) + 1 e / z® sin(x§) dx
0

o 2 o

in the distributional sense.

Proof. First we assume that s < ¢t. Then for each ¢ € S(R) fixed, we have

(K5 o) = (K2.3) / K ()

= Kst d:c+/K§t ) dx + th (z)é(z)
t

=I+11+1I1.

Let us now proceed to compute each one of these integrals,

I = / X(t+00)(T) (22 — (s + N> o(x) da
R

=2 [ e )
R

:201—1/ l,(jf_ 1(6 Z()(s+t)¢) ([L’) dx_Qa—l/ xa_1X(0’t*TS)(x)(e_i(.)
R R

- 2/ 257 (e 9) (@) do
R
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yort / (t—s)7e 5
R 2%

to compute I11 we proceed as in I, thus

e dx) e o(e) e,

[I7 = 9o / 227 (e O ) (1) da
R
ot | <(t2_af;) gz [ xaemfdfﬂ> e (6 de,
R 0

SO

I+I[I:2a‘1/ 2|1 (e7 52 $) () da
R

_ /R @e—i@§ cos (%) P(€) d¢

s+t (t—s)

i20¢e” ) e
—i—/R <#/0 % sin(x€) dx) (&) dE.

Now 1 is easy, indeed

1= /qu,t)(x)(t— $)°7 pla) do = /R ((t— 5)* 7 /St et dx) ¢(&) dE.

Since

() = ~2r(@ysin (50T g

(see equation (12), p. 173, in [2]), the lemma follows for the case s < t. Finally,
exchanging the roles of s and ¢ we obtain the statement of the lemma. 0

Corollary 2. Ifa, and ay are two bounded functions on R with compact support
and such that fal =0 or fag = 0, then

/ Tos (a1, a2)(x) do = ©
R

Proof. It is easy to check that Ia+1(a1,a2)(-) € L'(R). Let ¢ € S(R) be an
even function such that ¢(0) =1 and for € > 0 let p.(x) = ¢(ex). Since

/RIa+1(a17a2)($) dr = lim [ Zyii(ar, a2)()pe(z) da,

e—0t R

a1 ) as(t) |t — s|* dsdt.

we will proceed to compute this limit.

lim [ Zoii(ar, a)(@)pe(z) dz = lim //R ai()as(t)

=0T Jr e—0t

Kg(x)pe( )dz) ds dt
R

(
- //R ar(#)as(?) ( | K5(©24) dg) ds dt
B //R (s)ealf) li \ ( /R K(c©)P(9) dg) ds di

1
_— // as(t) |t — | ds dt,
R2
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where the last equality follows from Lemma 1, the moment condition of a; (or as)
and that ¢(0) = 1. O

3. A counter-example
We take a1(s) = x(—1,0)(s) — X(o,l)( s) and as(t) = ai(t — 2). From (S1) it follows
that a; € H'(R) and a; € H@*D(R) for each 0 < a < 1. A computation gives

4 - 3a+2 4a+2 —6- 2a+2 +4
)t — s|*dsdt = )
//“1 sax(B)]t = s ds @+ D(a+2) 70

From (S2) and corollary 2 it obtains that Z, (a1, a2)(-) ¢ H'(R), foreach 0 < o < 1.
For0 < p < (a+1)~! and % = %—a, we take N as any fixed integer with N > p=t1—1,
then the set of all bounded, compactly supported functions for which [ z” f(z) dz = 0,
for all |f] < N is dense in H"(R) for each p < r < 1 (see 5.2 b), pp. 128, in
[4]). In particular, there exists b € HP(R) such that |lai|g:|az — b|| yasn-—1 <
| [g Za+1(a1, az)(x) dz| /2C. Then

/R T 11(a0, b)(z) dz| > /R Ti1(ar, a2)(x) da

- /R Tos(a1, a2 — b)(2)] de

> / T (ar, a2) () d| — Cllar i llas — bl e
R
1
> = /Ia+1(a1,a2)($)d95 >0,
21/r

where the second inequality follows from Theorem 1.1 in [1] with p; = 1, py =

(a+1)7! and ¢ = 1. But then the operator Z, is not bounded from H'(R)x H?(R)

into HY(R) for 0 <p < (+1)"" and ¢ = 5 — a, since [ Zat1(ar,b)(x) dx # 0.
We conclude this note by summarizing our main result in the following theorem.

Theorem 3. For1 <« < 2, let 7, be the multilinear fractional integral operator

given by
Z,(f1, f2)(x // (5)/2(t) dsdt, x= € R.
R2

x—s|+|x—t|)2 g
Then the operator Z, is not bounded from H*(R)x H?P(R) into H(R) for0 < p < 47!
and % =1+ % — 7.
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