
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 45, 2020, 903–913

GENERAL FRACTIONAL DERIVATIVES

AND THE BERGMAN PROJECTION

Antti Perälä

Chalmers University of Technology and the University of Gothenburg
Department of Mathematical Sciences, Gothenburg SE-412 96, Sweden; antti.perala@gu.se

Abstract. In this note we study some basic properties of general fractional derivatives induced

by weighted Bergman kernels. As an application we demonstrate a method for generating pre-images

of analytic functions under weighted Bergman projections. This approach is useful for proving the

surjectivity of weighted Bergman projections in cases when the target space is not a subspace of

the domain space (such situations arise often when dealing with Bloch and Besov spaces). We also

discuss a fractional Littlewood–Paley formula.

1. Introduction

According to the classical Bergman reproducing formula, for a sufficiently nice
analytic function f defined on the unit disk D = {|z| < 1}, we have

f(z) = (α + 1)

ˆ

D

f(ξ)(1− |ξ|2)α dA(ξ)
(1− zξ)2+α

,

where α > −1 and dA(ξ) = π−1 dx dy (for ξ = x + iy) is the normalized Lebesgue
area measure. Differentiating this identity N times gives us

f (N)(z) = C(α,N)

ˆ

D

f(ξ)ξ
N
(1− |ξ|2)α dA(ξ)

(1− zξ)2+α+N
,

where C(α,N) is the corresponding normalizing constant. It is clear that for many
purposes, the properties of f (N) are the same as the properties of

Rα,Nf(z) =

ˆ

D

f(ξ)(1− |ξ|2)α dA(ξ)
(1− zξ)2+α+N

,

but getting rid of the factor ξ
N

allows us to understand this formula even when N
is not an integer. These observations lead us to the fractional derivatives that were
studied by Zhu in [9]. See also [8] and [10].

In this paper, we will study a related, more general, concept of fractional deriva-
tives. Roughly the idea is that given two radial weights ω and ν, there exists a unique
mapping Rω,ν defined for all analytic functions, and transforming the Bergman kernel
with respect to ω into the Bergman kernel with respect to ν. In many ways, such
operators possess the nice properties of the fractional derivatives defined by Zhu.
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As an application the newly introduced concept, we show that it can be used to
produce pre-images under the weighted Bergman projection Pω. This can be useful
especially, when one wants to prove surjectivity of Pω : X → Y , where Y is not a
subspace of X. In particular, this works when X = L∞ and Y is the Bloch space, and
ω satisfies a two-sided doubling condition. This surjectivity result has been obtained
by Peláez and Rättyä in [4] by using a different method. We note that the present
technique can be also used to prove a similar result when X = Lp

λω
and Y is p-Besov

space (see the corresponding section for definitions). In fact, for many uses it suffices
to consider ω and ωα(z) = ω(z)(1−|z|)α, in which case Rω,ωα can be understood as a
fractional derivative of order α. We hope and expect that over time these fractional
derivatives will find other applications as well.

The paper is organized as follows. In Section 2, we introduce the framework
of weight classes which we will use. Section 3 contains the definition and basic
discussion on the fractional derivatives. Section 4 contains the proof of surjectivity
for the Bloch case, and in Section 5, we will deal with the Besov case. Section 6
is the last part of the paper, and it contains some further remarks, most notably a
fractional generalization of the classical Littlewood–Paley formula.

Throughout the paper, we write a . b to indicate that there exists a constant
C > 0 with a ≤ Cb. The relation a & b is defined in an analogous manner. Finally,
if a . b and a & b, we will write a ≍ b.

2. Weighted Bergman spaces

A non-negative integrable function ω on the unit disk D is called a weight. We
will be mostly interested in radial weights: ω(z) = ω(|z|) for all z ∈ D. For a radial
weight ω we define

ω̂(r) =

ˆ 1

r

ω(s) ds, r ∈ [0, 1),

and we assume that ω̂ is non-zero for 0 ≤ r < 1, for otherwise much of the theory to
follow would lead to trivialities. For convenience, we also agree that for z ∈ D, we
have ω̂(z) := ω̂(|z|). We will focus mainly on the weight classes defined below.

Definition 1. A radial weight ω belongs to the class D̂ if there exists Cω > 0 so
that

(2.1) ω̂(r) ≤ Cωω̂

(
1 + r

2

)
.

Furthermore, ω belongs to

̂
D, if there exist Kω > 1 and C ′

ω > 1 so that

(2.2) ω̂(r) ≥ C ′
ωω̂

(
1− 1− r

Kω

)
.

A radial weight ω belonging to both D̂ and

̂
D is called (two-sided) doubling, and we

write ω ∈ D.

More properties of the class D̂ can be found in [3]. The class

̂
D was introduced

in [4], and the results that are necessary for the present work can also be found in
[1].

We note that D contains the class R of regular weights. We say that a radial
weight ω belongs to R if

ω̂(r)

1− r
≍ ω(r).
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Note that regular weights are not allowed to have zeroes, as is evident from the defi-
nition. The weights in D can have zeroes, but their zero sets cannot be hyperbolically
very large near the boundary, see [1].

We denote by H the space of all analytic functions on D. It is equipped with
the topology of uniform convergence on compact sets. The weighted Lp

ω quasi-norm
is given by

‖f‖p,ω =

(
ˆ

D

|f(ξ)|pω(ξ) dA(ξ)
)1/p

,

The weighted Bergman space Ap
ω consists of analytic functions in Lp

ω. If ω ∈ D̂, the
space Ap

ω is also a quasi-Banach space. Moreover, A2
ω is a Hilbert space with inner

product

〈f, g〉ω =

ˆ

D

f(ξ)g(ξ)ω(ξ) dA(ξ).

Recall that a doubling weight ω induces a reproducing Bergman kernel Bω
z ∈ A2

ω by
the formula

f(z) =

ˆ

D

f(ξ)Bω
z (ξ)ω(ξ) dA(ξ), f ∈ A2

ω,

and the Bergman projection Pω : L
2
ω → A2

ω is the integral operator induced by Bω
z ;

Pωf(z) =

ˆ

D

f(ξ)Bω
z (ξ)ω(ξ) dA(ξ), f ∈ L2

ω.

We remark that for ω ∈ D̂, the Bergman kernels Bω
z are actually bounded analytic

functions for every z ∈ D. This is evident from the power series expansion

Bω
z (ξ) =

∞∑

k=0

1

ωk

(zξ)k,

where

ωk = 2

ˆ 1

0

r2k+1ω(r) dr

denotes the 2k + 1 moment of ω. Therefore, the two integral formulas listed above
make sense also under L1

ω integrability assumption on f .

3. General fractional derivatives

Following the blueprint of Zhu [9] (see also [8, 10]), we now define the general
fractional differential operators on the disk.

Proposition 2. Let ω and ν be doubling weights. There exists a unique linear
operator Rω,ν : H → H with the following three properties.

(1) Rω,ν : H → H is continuous;
(2) (Rω,νf)r = Rω,νfr for every r ∈ (0, 1);
(3) Rω,νBω

z (ξ) = Bν
z (ξ).

Remark 3. We remark that the present notation is not completely analogous
with the notation Rs,t in [8, 10]. If ω(z) = (α + 1)(1 − |z|2)α and ν(z) = (α + t +
1)(1− |z|2)α+t, then the operator Rα,t in the notation of [8, 10] is the operator Rω,ν

in the present notation.
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Proof. The proof is the same as in [9] apart from some minor modifications to the
setting of general weights. We present the proof for the convenience of the reader.

Uniqueness: By the reproducing formula, if f ∈ H and r ∈ (0, 1), we have

fr(z) =

ˆ

D

fr(ξ)Bω
z (ξ)ω(ξ) dA(ξ).

From this, we obtain

(3.1) Rω,νfr(z) =

ˆ

D

fr(ξ)Bν
z (ξ)ω(ξ) dA(ξ).

Since this integral can be approximated by finite sums of the kernel functions,
uniformly on compact sets, this clearly implies the uniqueness.

Existence: For a function f(z) =
∑

fkz
k, which is analytic on a larger disk, we

can obviously define

(3.2) Rω,νf(z) =

ˆ

D

f(ξ)Bν
z (ξ)ω(ξ) dA(ξ) =

∞∑

k=0

(
ωk

νk

)
fkz

k.

From this it is easy to see that for such f , the condition (2) is satisfied. Also, by the
reproducing formula, the condition (3) holds. For a general f ∈ H and z ∈ D, we
note that there exists r ∈ (0, 1) and z′ ∈ D with r = rz′. We may then define

Rω,νf(z) := Rω,νfr(z
′).

We remark that if z = r1z1 = r2z2 with r1 = rr2, (z1, z2 ∈ D, 0 < r1 < r2 < 1 and
r ∈ (0, 1)), then

Rω,νfr1(z1) = Rω,νfrr2(z1) = Rω,νfr2(rz1) = Rω,νfr2(z2),

since rz1 = z2. We see that Rω,ν : H → H is well-defined and satisfies (2). Also, it is
clear that Rω,ν is linear; to see that Rω,νf is analytic, just notice that any dilatation
(Rω,νf)r clearly is.

We finally show the continuity. To this end, suppose that fk → f in H (uniformly
on compact sets). Then, for the dilatations fk(rz) → f(rz) uniformly on D, where
r ∈ (0, 1). Using formula (3.2) and (2), we see that

Rω,νfk(rz) =

ˆ

D

fk(
√
rξ)Bν√

rz
(ξ)ω(ξ) dA(ξ)

→
ˆ

D

f(
√
rξ)Bν√

rz
(ξ)ω(ξ) dA(ξ) = Rω,νf(rz)

uniformly on z ∈ D. We get Rω,νfk → Rω,νf uniformly on compact sets, since
r ∈ (0, 1) is arbitrary. This finishes the proof of existence, and we are done. �

We remark that Rω,ν is actually a Taylor coefficient multiplier, mapping f(z) =∑
fkz

k to

Rω,νf(z) =
∞∑

k=0

(
ωk

νk

)
fkz

k.

It can be shown that if f is analytic on D, then so is Rω,νf . An alternative method
to prove Proposition 2 can be found in Proposition 1.14 of [10].

By looking at the discussion in [9], it seems possible that this idea of fractional
derivatives can be extended to much more general classes of even non-radial weights.
However, the weights being radial guarantee that the kernel functions are bounded
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analytic functions. This makes it possible to adapt many results from the more stan-
dard cases with little analysis. Fractional derivatives induced by non-radial weights
seem an intriguing topic, but they are not considered in this paper.

Note that if f is an analytic function defined in terms on a finite Borel measure
µ as

f(z) =

ˆ

D

Bω
z (ξ) dµ(ξ),

then we have

Rω,νf(z) =

ˆ

D

Bν
z (ξ) dµ(ξ).

In particular, if f ∈ A1
ω, then

(3.3) Rω,νf(z) =

ˆ

D

f(ξ)Bν
z (ξ)ω(ξ) dA(ξ),

or simply Rω,νf(z) = 〈f, Bν
z 〉ω. When f /∈ A1

ω a nice integral formula can still often
be obtained. For this purpose, let ω be a radial, integrable weight and set

ω+(r) = 2

ˆ 1

r

ω(s)
ds

s
.

Further, we understand ω = ω+0 and set ω+n = (ω+(n−1))+. An easy calculation
using Fubini’s theorem reveals us

(3.4) (ω+)n = 4

ˆ 1

0

r2n+1

ˆ 1

r

ω(s)

s
ds dr = 4

ˆ 1

0

ω(s)

s

ˆ s

0

r2n+1 dr ds =
ωn

n+ 1
.

We can now present an analog of Proposition 5 in [8]. In a way, the following
result is even stronger, as there is no polynomial “error” factor present. We remark
that since the spaces covered in the present paper are very small in nature, using the
following proposition will not be necessary. Nevertheless, it might be useful in future
works.

Proposition 4. Let ω, ν ∈ D̂. Then

Rω,νBω+N
z = Bν+N

z ,

for every N ∈ N. Moreover, we have Rω,ν = Rω+N ,ν+N for every N .

Proof. Since both Rω,ν and Rω,ω+N are Taylor coefficient multipliers, one obtains

Rω,νBω+N

z (ξ) = Rω,νRω,ω+NBω
z (ξ) = Rω,ω+NBν

z (ξ).

The claim now follows by iterating (3.4). �

It follows that if there exists N ∈ N so that f ∈ A1
ω+N

, then

Rω,νf(z) =

ˆ

D

f(ξ)B
ν+N
z (ξ)ω+N(ξ) dA(ξ).

Such is the case, whenever f belongs to any L1 space induced by a standard weight.
We finally point out the obvious identities

Rω,νRη,σ = Rη,σRω,ν , Rω,νRη,ω = Rη,ν , Rω,νRν,ω = Rν,ωRω,ν = I

It is perhaps a good idea to keep in mind that ν being "smaller" than ω means
roughly that the operator Rω,ν is of derivative type. When the roles are reversed,
the operator should be understood as integration.
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4. Bloch space

Recall that the Bloch space B consists of analytic functions f : D → C with

‖f‖B = sup
z∈D

(1− |z|2)|f ′(z)|+ |f(0)| < ∞.

In this section we show that the Bergman projection Pω induced by ω ∈ D is
surjective from L∞ onto B. The original proof of the surjectivity belongs to Peláez
and Rättyä [4]. However, the proof presented here is simpler, and gives a way to
construct several pre-images of a given Bloch function, and therefore of independent
interest. Also, the proof of Theorem 5 is imporant for understanding the next section
of the paper. We remark that the boundedness of this operator is true even under

the weaker assumption ω ∈ D̂, and it is easy to deduce from the kernel estimates in
[3].

For a radial weight ω, let us denote

ωα(r) = (1− r)αω(r); ω̃(r) =
ω̂(r)

1− r
; ω∗(r) =

ˆ 1

r

ω(s)s log(s/r) ds.

The associated weight ω∗ arises from the Littlewood–Paley formula, which is valid
for all radial ω and analytic functions f, g ∈ A2

ω.

(4.1)

ˆ

D

f(ξ)g(ξ)ω(ξ) dA(ξ) = 4

ˆ

D

f ′(ξ)g′(ξ)ω∗(ξ) dA(ξ) + ω(D)f(0)g(0).

The formula (4.1) can be found in [2], where is is presented in the case f = g. By
orthogonality, the present formulation follows easily.

It is well-known that for any radial weight ω, one has

ω∗(z) ≍ ω̂(z)(1− |z|), |z| → 1−,

and that ω∗ has a logarithmic singularity at the origin.
Moreover (see, for instance [1]), if ω ∈ D, then there exist a, b > 0 so that

r 7→ ω̂(r)

(1− r)a

is essentially decreasing, and

r 7→ ω̂(r)

(1− r)b

is essentially increasing. A function ζ : [0, 1) → [0,∞) is essentially decreasing, if
there exists C > 0 so that for every 0 ≤ r ≤ t < 1, one has Cζ(r) ≥ ζ(t). Being
essentially increasing is defined in a similar manner.

The following properties of ω ∈ D are known, and they can be obtained from the
essential monotonicity results above.

ω̂α(z) ≍ ω̂(z)(1 − |z|)α, α ≥ 0;(4.2)

ω̃(z) ∈ R;(4.3)

̂̂ω(z) ≍ ω̂(z)(1 − |z|).(4.4)

Norm estimates for the derivatives of Bergman kernels are crucial in the proof.
We note that from the power series representation, it is easily read that for a radial
ω, we have

(4.5) ∂n
zB

ω
z (ξ) =

(
ξ

z

)n

(Bω
z )

(n)(ξ).
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It follows easily that

‖∂n
zB

ω
z ‖Ap

ν
≍ ‖(Bω

z )
(n)‖Ap

ν
, |z| → 1−

for every radial ν and p ∈ (0,∞).
We want to point out that, aside from the formula of an explicit pre-image,

the following theorem is not new, as it is proven in [4]. In fact, this result was
already mentioned in [7]. However, there it is noted that obtaining the pre-image
can be laborious. The merit of the result below is that it shows that this is not that
laborious after all! Peláez and Rättyä have been able to prove even the converse; the
class D is precisely the class of radial weights, for which the theorem below holds.

Theorem 5. Let ω ∈ D. Then the Bergman projection Pω : L
∞ → B is bounded

and onto. Moreover, if α > 0 and h ∈ B, then

gα(z) := (1− |z|)αRω,ωαh(z)

belong to L∞ and Pω(gα) = h.

Proof. The estimate ‖Pω(Φ)‖B . ‖Φ‖∞ follows from the kernel estimates in [3]

and holds even under ω ∈ D̂. We may assume that h ∈ B and h(0) = 0. Let α > 0.
Then both h and Bωα

z belong to A2
ωα

, and we can use the Littlewood–Paley formula
to obtain

Rω,ωαh(z) = 4

ˆ

D

h′(ξ)(Bωα
z )′(ξ)ω∗(ξ) dA(ξ)

= 4

ˆ

D

(1− |ξ|)h′(ξ)(Bωα
z )′(ξ)

ω∗(ξ)

1− |ξ| dA(ξ).

Next, recall that there exists R ∈ (0, 1) so that ω∗(ξ) . ω̂(ξ)(1 − |ξ|) for ξ ∈
D \ D(0, R). On the other hand, if ξ ∈ D(0, R), then |(Bωα

z )′(ξ)| ≤ C(ωα, R) for
every z ∈ D.

Together with Theorem 1 of [3] these observations yield

|Rω,ωαh(z)| . ‖h‖B
ˆ

D

|(Bωα

z )′(ξ)|ω̂(ξ) dA(ξ)

. ‖h‖B
ˆ |z|

0

̂̂ω(t) dt
ω̂(t)(1− t)α(1− t)2

. ‖h‖B
ˆ |z|

0

dt

(1− t)α+1
. ‖h‖B

1

(1− |z|)α , |z| → 1−.

In other words, the function gα(z) = (1 − |z|)αRω,ωαh(z) belongs to L∞, so that
Rω,ωαh ∈ A1

ωα
. Therefore, by (3.3), we finally note that

Pω(gα) = Rωα,ωRω,ωαh = h. �

The above theorem has a simple and natural corollary. Let C denote the space
of complex-valued functions that are continuous in the closed unit disk, and C0 its
subspace consisting of functions with zero boundary values. Recall also that the little
Bloch space B0 is the subspace of B consisting of functions f with

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.

We have the following.

Corollary 6. Let ω ∈ D. Then the Bergman projection Pω : X → B0 is bounded

and onto, where X is either C or C0.
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Proof. Clearly, it suffices to prove the boundedness claim for X = C, and the
onto part for X = C0. Note first that by orthogonality, if Φ is a a trigonometric
polynomial, then Pω(Φ) is a polynomial; in particular Pω(Φ) ∈ B0. The first claim
now follows from the norm estimate together with the Stone–Weierstrass theorem.

As for the onto part, we need to show that if h ∈ B0 and α > 0, then the
function gα(z) = (1 − |z|)αRω,ωαh(z) belongs to C0. By the proof of Theorem 5, we
know that h 7→ gα is bounded B → L∞. If h is a polynomial, then since Rω,ωα is a
Taylor coefficient multiplier, also Rω,ωαh is a polynomial. It follows that in this case
gα ∈ C0. By continuity and completeness, the holds for the closure of polynomials,
which is B0. �

We remark that the above method gives infinitely many pre-images. Such infor-
mation might be useful for some other problems.

5. Besov spaces

Recall that the Möbius invariant measure is given by

dλ(z) =
dA(z)

(1− |z|2)2 .

For 1 ≤ p < ∞ and N ∈ {2, 3, . . . }, we define the Besov spaces Bp to consist of
analytic functions f with

‖f‖Bp =

(
ˆ

D

|f (N)(z)|p(1− |z|)Np dλ(z)

)1/p

+
N−1∑

j=0

|f (j)(0)| < ∞.

It is well-known that for fixed p, any two choices of N yield the same space, as long
as Np > 1 (choosing N = 1 would exclude that case p = 1, so we choose N ≥ 2).

Denote by Lp
λω

the spaces of p-integrable functions with respect to the measure

dλω(z) =
ω(z) dA(z)

ω̂(z)(1− |z|) .

The following theorem will be the main result of this section.

Theorem 7. Let ω ∈ D and 1 ≤ p ≤ ∞. Then the Bergman projection Pω :
Lp
λω

→ Bp is bounded and onto.

Proof. We remark that the claimed result is equivalent to obtaining the bound-
edness of

TΦ(z) = (1− |z|2)2
ˆ

D

Φ(ξ)(∂2
zB

ω
z )(ξ)ω(ξ) dA(ξ)

acting Lp
λω

→ Lp
λ. Furthermore, this result has already been established for the case

p = ∞, which corresponds to Pω : L
∞ → B. Therefore, by the Riesz–Thorin complex

interpolation theorem, we will only need to show the boundedness in the case p = 1.
However, by the dualities (L1

λ)
∗ ∼ L∞ and (L1

λω
)∗ ∼ L∞, this reduces to showing the

boundedness of

T ∗Φ(z) = ω̂(z)(1 − |z|)
ˆ

D

Φ(ξ)(Bω
z )

′′(ξ) dA(ξ).

on L∞. But by Theorem 1 of [3], we have
ˆ

D

|(Bω
z )

′′(ξ)| dA(ξ) ≍
ˆ |z|

0

(1− r)

ω̂(r)(1− r)3
.

1

ω̂(z)(1− |z|) .

From this estimate, the claim regarding boundedness is immediate.
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As for the surjectivity. Let h ∈ Bp and, without loss of generality, assume that
h(0) = h′(0) = h′′(0) = 0. By the proof of Theorem 5, it suffices to show that if
h ∈ Bp, then the function gα(z) = (1 − |z|2)αRω,ωαh(z) belongs to Lp

λω
, whenever

α > 1. By denoting w∗2 = (ω∗)∗, and using the Littlewood–Paley identity twice, we
obtain

Rω,ωαh(z) = 16

ˆ

D

h′′(ξ)(Bωα
z )′′(ξ)ω∗2(ξ) dA(ξ).

Clearly, it will be enough to show the boundedness of S acting Lp
λ → Lp

λω
, where

SΦ(z) = (1− |z|)α
ˆ

D

Φ(ξ)(Bωα
z )′′(ξ)

|ξ|ω∗2(ξ)

(1− |ξ|)2 dA(ξ).

Here the factor |ξ| can be added, since we assumed h′′(0) = 0. This amounts only to
small detail in the proof and is really quite irrelevant.

First, we deal with S : L∞ → L∞. Note that since ω ∈ D, we have

|ξ|ω∗2(ξ) . ω̂(ξ)(1− |ξ|)3.

Again, Theorem 1 of [3] gives

|SΦ(z)| . ‖Φ‖∞(1− |z|)α
ˆ |z|

0

ω̂(r)(1− r)2

ω̂(r)(1− r)3+α
dr . ‖Φ‖∞.

Next, we deal with S : L1
λ → L1

λω
. By duality, it will be enough to study

S∗Φ(z) = |z|ω∗2(z)

ˆ

D

Φ(ξ)(∂2
zB

ωα
z )(ξ)

ω(ξ)(1− |ξ|)α
ω̂(ξ)(1− |ξ|) dA(ξ)

acting of L∞. Note that ω∗2 is not bounded, but we are saved by the factor |z| and

|z|ω∗2(z) . ω̂(z)(1− |z|)3.

Note that by Lemma 4 in [1], since α > 0, we have

ˆ 1

r

ω(s)(1− s)α−1

ω̂(s)
ds ≍ (1− r)α−1.

Another application of Theorem 1 in [1] finally gives us

|S∗Φ(z)| . ‖Φ‖∞ω̂(z)(1 − |z|)3
ˆ |z|

0

(1− r)α−1

ω̂(r)(1− r)3+α
dr . ‖Φ‖∞.

The proof is completed by an application of the Riesz–Thorin interpolation the-
orem as done before. �

We point of that if ω ∈ R, then Lp
λ = Lp

λω
and the proof is more standard.

However, when ω ∈ D, it might have singularities and zeroes inside the disk. In
general, neither Lp

λ ⊂ Lp
λω

, nor Lp
λω

⊂ Lp
λ holds, and for f ∈ Lp

λ, the integral

Pωf(z) =

ˆ

D

f(ξ)Bω
z (ξ)ω(ξ) dA(ξ)

might not be well-defined. Also, to the author’s knowledge the proof for surjec-
tivity in [4] does not, in an obvious way, carry over to the Besov space setting.
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6. Final remarks

We note that if ω ∈ R, it is possible to extract the pre-image h of an analytic f
under Pω by writing

h(z) = f(0) +
ω̂(z)

|z|ω(z)(2zf
′(z) + f(z)− f(0)).

If, for instance, f is Bloch function, it is not difficult to see that h will be bounded.
However, if ω ∈ D, the h above might very well fail to be bounded; ω might be
zero on a set of positive measure, for instance. The author thinks that the fractional
derivatives studied here are rather convenient for this purpose.

It is also clear that the seminorm of Pω : L
∞ → B equals

sup
z∈D

(1− |z|2)‖∂zBω
z ‖A1

ω
.

If ω = 1, this number equals 8/π, and the actual norm is then 8/π + 1; see [5, 6].
It is possible to use (3.4) to obtain a fractional Littlewood–Paley identity. By

calculating with power series, one sees

(6.1)

ˆ

D

f(z)g(z)ω(z) dA(z) =

ˆ

D

Rη,η+N f(z)Rν,ν+Mg(z)ω+N+M(z) dA(z).

Here ω and η can be chosen freely, but in practice it might be advantageous to choose
them small enough so that the fractional derivatives become integral operators.

Note that by (4.1)

(| · |2ω)n =

ˆ

D

|z|2n+2ω(z) dA(z) = 4(n+ 1)2
ˆ

D

|z|2nω∗(z) dA(z) = 4(n+ 1)2ω∗
n,

so 4ω∗ = (| · |2ω)+2. In a way the advantage of (6.1) is that N +M need not be even.
Noting that

Rω,ω+f(z) = (zf)′ = f(z) + zf ′(z),

it is possible to easily characterize the Bloch, little Bloch and Besov spaces in terms
of these derivatives. Then formula (6.1) can be used to obtain a perhaps little bit
cleaner proof of the Theorems 5 and 7 as well the Corollary 6. The details are left to
the reader. Notice also that (4.1) is a consequence of (6.1) by the following reasoning.
Given an analytic function h, we set h0 = (h−h(0))/z, which is also analytic. Notice
that Rη,η+h0 = h′. By (6.1), we have

ˆ

D

f0(z)g0(z)|z|2ω(z) dA(z) = 4

ˆ

D

f ′(z)g′(z)ω∗(z) dA(z).

By analyzing the left-hand-side above, we obtain (4.1).
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