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Abstract. We study the Hilbert boundary value problem for the Beltrami equation in the

Jordan domains satisfying the quasihyperbolic boundary condition by Gehring–Martio, generally

speaking, without (A)-condition by Ladyzhenskaya–Ural’tseva that was standard for boundary value

problems in the PDE theory. Assuming that the coefficients of the problem are functions of countable

bounded variation and the boundary data are measurable with respect to the logarithmic capacity,

we prove the existence of the generalized regular solutions. As a consequence, we derive the existence

of nonclassical solutions of the Dirichlet, Neumann and Poincaré boundary value problems for

generalizations of the Laplace equation in anisotropic and inhomogeneous media.

1. Introduction

Hilbert [31] studied the boundary value problem formulated as follows: To find
an analytic function f(z) in a domain D bounded by a rectifiable Jordan contour C
that satisfies the boundary condition

(1.1) lim
z→ζ

Re {λ(ζ) f(z)} = ϕ(ζ) ∀ ζ ∈ C,

where both the coefficient λ and the boundary date ϕ of the problem are continuously
differentiable with respect to the natural parameter s on C.

Moreover, it was assumed by Hilbert that λ 6= 0 everywhere on C. The latter
allows us, without loss of generality, to consider that |λ| ≡ 1 on C. Note that the
quantity Re {λ f} in (1.1) means a projection of f into the direction λ interpreted as
vectors in R

2.
The reader can find a rather comprehensive treatment of the theory in the new

excellent books [10, 11, 29, 45]. We also recommend to make familiar with the historic
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surveys contained in the monographs [21, 41, 55] on the topic with an exhaustive
bibliography and take a look at our recent papers [26, 28, 47].

In this paper we study the Hilbert boundary value problem in a wider class of
functions than those of analytic. Namely, instead of analytic functions we will con-
sider quasiconformal functions F represented as a composition of analytic functions
A and quasiconformal mappings f , see [38, Chapter VI]. In this connection, we need
to recall some definitions and notations from the theory of quasiconformal mappings
in the plane.

Let D be a domain in the complex plane C and let µ : D → C be a measurable
function with |µ(z)| < 1 a.e. The equation of the form

(1.2) fz̄ = µ(z)fz

where fz̄ = ∂̄f = (fx + ify)/2, fz = ∂f = (fx − ify)/2, z = x + iy, fx and fy are
partial derivatives of the function f in x and y, respectively, is said to be a Beltrami

equation. The equation (1.2) is said to be nondegenerate if ‖µ‖∞ < 1, see e.g. [3],
[14] and [38], that we will assume later on.

Homeomorphic solutions f of a nondegenerate equation (1.2) in the class W 1,2
loc are

called quasiconformal mappings. It is easy to see that every quasiconformal function
F = A ◦ f satisfies the same Beltrami equation as f.

Recall also that the images of the unit disk D = {z ∈ C : |z| < 1} under the
quasiconformal mappings of C onto itself are called quasidisks and their boundaries
are called quasicircles or quasiconformal curves. It is known that every smooth (or
Lipschitz) Jordan curve is a quasiconformal curve and, at the same time, quasicon-
formal curves can be locally nonrectifiable as it follows from the known examples, see
e.g. the point II.8.10 in [38]. On the other hand, see Section 3, quasicircles satisfy
the well-known (A)-condition, which is standard in the theory of boundary value
problems for PDE, see e.g. [36].

Proceeding from the above, the problem under consideration is to find the quasi-
conformal function, satisfying both the Beltrami equation (1.2) in a Jordan domain
D and the Hilbert boundary condition (1.1). We substantially weaken the regularity
conditions both on the functions λ and ϕ in the boundary condition (1.1) and on the
boundary C of the domain D. On the one hand, we will deal with the coefficients λ
of countable bounded variation and the boundary data ϕ which are measurable with
respect to the logarithmic capacity. On the other hand, the fundamental Becker–
Pommerenke result in [9] allows us to study the Hilbert boundary value problem in
domains D with the quasihyperbolic boundary condition introduced in [23], see also
[7]. It is important to note that such domains may fail to satisfy the (A)-condition,
see Section 3.

Let D be a Jordan domain such that it has a tangent at a point ζ ∈ ∂D. A path
in D terminating at ζ is called nontangential if its part in a neighborhood of ζ lies
inside of an angle in D with the vertex at ζ . The limit along all nontangential paths
at ζ is called angular at the point. The latter notion is a standard tool for the study
of the boundary behavior of analytic and harmonic functions, see e.g. [17, 34, 46].
Further, the Hilbert boundary condition (1.1) will be understood precisely in the
sense of the angular limit.

The notion of the logarithmic capacity is the important tool for our research, see
e.g. [15, 42, 43], because the sets of zero logarithmic capacity are transformed under
quasiconformal mappings into the sets of zero logarithmic capacity. Note that, as
it follows from the classic Ahlfors–Beurling example, see [4], the sets of zero length
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as well as the sets of zero harmonic measure are not invariant under quasiconformal
mappings.

Dealing with measurable boundary date functions ϕ(ζ) with respect to the loga-
rithmic capacity, we will use the abbreviation q.e. (quasi-everywhere) on a set E ⊂ C,
if a property holds for all ζ ∈ E except its subset of zero logarithmic capacity, see
[37].

2. Definitions and preliminary remarks

Given a bounded Borel set E in the plane C, a mass distribution on E is a
nonnegative completely additive function ν of a set defined on its Borel subsets with
ν(E) = 1. The function

(2.1) Uν(z) :=

ˆ

E

log

∣

∣

∣

∣

1

z − ζ

∣

∣

∣

∣

dν(ζ)

is called a logarithmic potential of the mass distribution ν at a point z ∈ C. A
logarithmic capacity C(E) of the Borel set E is the quantity

(2.2) C(E) = e−V , V = inf
ν

Vν(E), Vν(E) = sup
z

Uν(z).

It is also well-known the following geometric characterization of the logarithmic
capacity, see e.g. the point 110 in [42]:

(2.3) C(E) = τ(E) := lim
n→∞

V
2

n(n−1)
n

where Vn denotes the supremum of the product

(2.4) V (z1, . . . , zn) =

l=1,...,n
∏

k<l

|zk − zl|

taken over all collections of points z1, . . . , zn in the set E. Following Fékete, see [20],
the quantity τ(E) is called the transfinite diameter of the set E.

Remark 2.1. Thus, we see that if C(E) = 0, then C(f(E)) = 0 for an arbi-
trary mapping f that is continuous by Hölder and, in particular, for quasiconformal
mappings on compact sets, see e.g. Theorem II.4.3 in [38].

In order to introduce sets that are measurable with respect to logarithmic capac-
ity, we define, following [15], inner C∗ and outer C∗ capacities:

(2.5) C∗(E) := sup
F⊆E

C(E), C∗(E) := inf
E⊆O

C(O),

where supremum is taken over all compact sets F ⊂ C and infimum is taken over all
open sets O ⊂ C. A set E ⊂ C is called measurable with respect to the logarithmic

capacity if C∗(E) = C∗(E), and the common value of C∗(E) and C∗(E) is still denoted
by C(E).

A function ϕ : E → C defined on a bounded set E ⊂ C is called measurable with

respect to logarithmic capacity if, for all open sets O ⊆ C, the sets

(2.6) Ω = {z ∈ E : ϕ(z) ∈ O}

are measurable with respect to logarithmic capacity. It is clear from the definition
that the set E is itself measurable with respect to logarithmic capacity.

Note also that sets of logarithmic capacity zero coincide with sets of the so-called
absolute harmonic measure zero introduced by Nevanlinna, see [42, Chapter V]. Hence
a set E is of (Hausdorff) length zero if C(E) = 0, see [42, Theorem V.6.2]. However,
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there exist sets of length zero having a positive logarithmic capacity, see e.g. [15,
Theorem IV.5].

Remark 2.2. It is known that Borel sets and, in particular, compact and open
sets are measurable with respect to logarithmic capacity, see e.g. [15, Lemma I.1 and
Theorem III.7]. Moreover, as it follows from the definition, any set E ⊂ C of finite
logarithmic capacity can be represented as a union of a sigma-compactum (union
of countable collection of compact sets) and a set of logarithmic capacity zero. It
is also known that the Borel sets and, in particular, compact sets are measurable
with respect to all Hausdorff’s measures and, in particular, with respect to measure
of length, see e.g. [52, Theorem II(7.4)]. Consequently, any set E ⊂ C of finite
logarithmic capacity is measurable with respect to measure of length. Thus, on such
a set any function ϕ : E → C being measurable with respect to logarithmic capacity
is also measurable with respect to measure of length on E. However, there exist
functions that are measurable with respect to measure of length but not measurable
with respect to logarithmic capacity, see e.g. [15, Theorem IV.5].

We call λ : ∂D → C a function of bounded variation, write λ ∈ BV(∂D), if

(2.7) Vλ(∂D) := sup

j=k
∑

j=1

|λ(ζj+1)− λ(ζj)| < ∞,

where the supremum is taken over all finite collections of points ζj ∈ ∂D, j = 1, . . . , k,
with the cyclic order meaning that ζj lies between ζj+1 and ζj−1 for every j = 1, . . . , k.
Here we assume that ζk+1 = ζ1 = ζ0. The quantity Vλ(∂D) is called the variation of

the function λ.

Remark 2.3. It is clear by the triangle inequality that if we add new intermedi-
ate points in the collection ζj, j = 1, . . . , k, then the sum in (2.7) does not decrease.
Thus, the given supremum is attained as δ = supj=1,...k |ζj+1 − ζj| → 0. Note also
that by the definition Vλ(∂D) = Vλ◦h(∂D), i.e., the variation is invariant under every
homeomorphism h : ∂D → ∂D and, thus, the definition can be extended in a natural
way to an arbitrary Jordan curve in C.

The following statement was proved as Proposition 5.1 in the paper [18] where
the function αλ has been called by a function of argument of λ.

Proposition 2.4. For every function λ : ∂D → ∂D of the class BV(∂D) there
is a function αλ : ∂D → R of the class BV(∂D) with Vαλ

≤ Vλ 3π/2 such that
λ(ζ) = exp{iαλ(ζ)} for all ζ ∈ ∂D.

Now, we call λ : ∂D → C a function of countable bounded variation, write λ ∈
CBV(∂D), if there is a countable collection of mutually disjoint arcs γn of ∂D, n =
1, 2, . . ., on each of which the restriction of λ is of bounded variation Vn and the
set ∂D \

⋃

γn has logarithmic capacity zero. In particular, the latter holds true if
∂D \

⋃

γn is countable. Choosing smaller γn, we may assume that supn Vn < ∞. It
is clear, such functions can be singular enough, see e.g. [16].

The definition is also extended in the natural way to an arbitrary Jordan curve
Γ in C. Later on, L∞

c (Γ) denotes the class of all functions α : Γ → R which are
measurable with respect to logarithmic capacity such that α is q.e. bounded on Γ.

Proposition 2.5. For every function λ : ∂D → ∂D in the class CBV(∂D) there
is a function αλ : ∂D → R in the class L∞

c (∂D) ∩ CBV(∂D) such that

(2.8) λ(ζ) = exp{iαλ(ζ)} q.e. on ∂D.
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Proof. Denote by λn the function on ∂D that is equal to λ on γn and to 1
outside of γn. Let αn correspond to λn by Proposition 2.4. Then its variation
V ∗
n ≤ Vn 3π/2. With no loss of generality we may assume that αn ≡ 0 outside of

γn. Set α =
∑∞

n=1 αn. Then α ∈ CBV(∂D) and λ(ζ) = exp{iα(ζ)} q.e. on ∂D.
Applying the corresponding shifts (divisible 2π), we may change αn on γn through
α∗
n with |α∗

n| ≤ π at the middle point of γn. Then it is clear that the new function
α∗ ∈ CBV(∂D) and λ(ζ) = exp{iα∗(ζ)} q.e. on ∂D and, moreover, |α∗| ≤ π+Vn 3π/2
on every γn, i.e. |α∗| is bounded on the set ∂D\

⋃

γn. In addition, by the construction,
the function α∗ is continuous q.e. on ∂D. Hence α∗ ∈ L∞

c (∂D). �

We say that a Jordan curve Γ in C is almost smooth if Γ has a tangent quasi-
everywhere. Here we say that a straight line L in C is tangent to Γ at a point z0 ∈ Γ
if

(2.9) lim sup
z→z0,z∈Γ

dist(z, L)

|z − z0|
= 0.

In particular, Γ is almost smooth if Γ has a tangent at all its points except a countable
set. The nature of such Jordan curves Γ is complicated enough because the countable
set can be everywhere dense in Γ.

Remark 2.6. By Corollary of Theorem 1 in [9], a conformal mapping of a Jordan
domain D in C with the quasihyperbolic boundary condition, see the definition in
Section 3, onto the unit disk D, as well as its inverse are Hölder continuous in the
closure of D and D, respectively. Thus, by Remark 2.1 these mappings keep the
sets of the logarithmic capacity zero on boundaries of D and D. Consequently,
by Remark 2.2, such mappings also keep boundary functions which are measurable
with respect to the logarithmic capacity. These facts are key for the research of the
boundary value problems in the given domains.

3. On domains with quasihyperbolic boundary condition

Let D be a domain in C. As usual, here kD(z, z0) denotes the quasihyperbolic

distance between points z and z0 in D,

(3.1) kD(z, z0) := inf
γ

ˆ

γ

ds

d(ζ, ∂D)
,

introduced in the paper [24], see also the monographs [5] and [56]. Here d(ζ, ∂D)
denotes the Euclidean distance from the point ζ ∈ D to ∂D and the infimum is taken
over all rectifiable curves γ joining the points z and z0 in D.

Further, it is said that a domain D satisfies the quasihyperbolic boundary condition

if

(3.2) kD(z, z0) ≤ a ln
d(z0, ∂D)

d(z, ∂D)
+ b ∀ z ∈ D

for constants a and b and a point z0 ∈ D. The latter notion was introduced in [23]
but, before it, was first applied in [9].

Remark 3.1. Quasidisks D satisfy the quasihyperbolic boundary condition. In-
deed, as well-known the Riemann conformal mapping ω : D → D is extended to a
quasiconformal mapping of C onto itself, see e.g. [38, Theorem II.8.3]. By one of the
main Bojarski results, see [12] and [13], Theorem 3.5, the derivatives of quasiconfor-
mal mappings in the plane are locally integrable with some power q > 2. Note also
that its Jacobian J(w) = |ωw|2−|ωw̄|2, see e.g. [3, I.A(9)]. Consequently, in this case
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J ∈ Lp(D) for some p > 1 and we have the desired conclusion by the criterion in [7,
Theorem 2.4].

Recall that a domain D in R
n, n ≥ 2, is called satisfying (A)-condition if

(3.3) mesD ∩B(ζ, ρ) ≤ Θ0mesB(ζ, ρ) ∀ ζ ∈ ∂D, ρ ≤ ρ0

for some Θ0 and ρ0 ∈ (0, 1), see [36, 1.1.3]. Recall also that a domain D in R
n,

n ≥ 2, is said to be satisfying the outer cone condition if there is a cone that makes
possible to be touched by its top to every boundary point of D from the completion
of D after its suitable rotations and shifts. It is clear that the outer cone condition
implies (A)-condition. It is well known that the above conditions are standard in the
theory of boundary value problems for the partial differential equations.

Remark 3.2. Note that quasidisks D satisfy (A)-condition. Indeed, the qua-
sidisks are the so-called QED-domains by Gehring–Martio, see [22, Theorem 2.22],
and the latter satisfy the condition

(3.4) mesD ∩ B(ζ, ρ) ≥ Θ∗mesB(ζ, ρ) ∀ ζ ∈ ∂D, ρ ≤ diamD,

for some Θ∗ ∈ (0, 1), see [22, Lemma 2.13], and quasidisks (as domains with quasi-
hyperbolic boundary condition) have boundaries of the Lebesgue measure zero, see
e.g. [7, Theorem 2.4]. Thus, it remains to note that, by definition, the completions
of quasidisks D in the the extended complex plane C := C∪{∞} are also quasidisks
up to the inversion with respect to a circle in D.

As we know, the first example of a simply connected plane domain D with the
quasihyperbolic boundary condition which is not a quasidisk was constructed in [9,
Theorem 2]. However, this domain had (A)-condition.

Remark 3.3. Probably one of the simplest examples of a domain D with the
quasihyperbolic boundary condition and without (A)-condition is the union of 3 open
disks with the radius 1 centered at the points 0 and 1± i. It is clear that the domain
has zero interior angle at its boundary point 1 and by Remark 3.2 it is not a quasidisk.
Note that ∂D is almost smooth. Thus, there exist almost smooth Jordan curves with
the quasihyperbolic boundary condition that are not quasiconformal curves.

From now on we will naturally assume that the boundary Jordan curves Γ := ∂D
are almost smooth.

4. Boundary correlation of conjugate harmonic functions

It is known the very delicate observation due to Lusin that harmonic functions
in the unit circle with continuous (even absolutely continuous !) boundary data
can have conjugate harmonic functions whose boundary data are not continuous
functions, furthemore, they can be even not essentially bounded in neighborhoods
of each point of the unit circle, see e.g. [8, Theorem VIII.13.1]. Thus, a correlation
between boundary data of conjugate harmonic functions is not a simple matter, see
e.g. [34, I.E], see also [50] and [51].

The following statement was first proved for the case of bounded variation in
[18]. Here we give an alternative proof of this significant fact and extend it to the
case of countable bounded variation.
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Lemma 4.1. Let α : ∂D → R be in the class L∞
c (∂D) ∩ CBV(∂D) and let

u : D → R be a bounded harmonic function such that

(4.1) lim
z→ζ

u(z) = α(ζ)

at every point of continuity of α and let v be its conjugate harmonic function. Then
v has the angular limit

(4.2) lim
z→ζ

v(z) = β(ζ) q.e. on ∂D,

where the function β : ∂D → R is measurable with respect to the logarithmic capac-
ity.

Proof. Let us start from the case α ∈ BV(∂D). In this case α has at most a
countable set S of points of discontinuity and, consequently, S is of zero logarithmic
capacity. Hence by the generalized maximum principle, see e.g. the point 115 in [42],
such a function u is unique and, thus, u can be represented as the Poisson integral
of the function α, see e.g. [34, Theorem I.D.2.2],

(4.3) u(reiϑ) =
1

2π

ˆ π

−π

1− r2

1− 2r cos(ϑ− t) + r2
α(eit) dt.

Here the Poisson kernel is a real part of the analytic function (ζ+ z)/(ζ − z), ζ = eit,
z = reiϑ, and by the Weierstrass theorem, see e.g. [25, Theorem 1.1.1], the Schwartz
integral

(4.4) f(z) :=
1

2πi

ˆ

∂D

α(ζ)
ζ + z

ζ − z

dζ

ζ

gives the analytic function f = u+ iv in D with u = Re f , v = Im f , and

(4.5) f(z) =
1

2π

ˆ π

−π

α(eit)
eit + z

eit − z
dt = C +

z

π

ˆ π

−π

F (t)

1− e−itz
dt

where F (t) = e−itα(eit) and C = 1
2π

´ π

−π
α(eit) dt. By Theorem 2(c) in [54] the

function f(z) has angular limits f(ζ) as z → ζ q.e. on ∂D because the function
F is of bounded variation. It remains to note that f(ζ) = limn→∞ fn(ζ), where
fn(ζ) = f(rnζ), for an arbitrary sequence rn → 1 − 0 as n → ∞ q.e. on ∂D and,
thus, f(ζ) is measurable with respect to logarithmic capacity because the functions
fn(ζ) are so as continuous functions on ∂D, see e.g. [19, 2.3.10].

Now, let α ∈ CBV(∂D). Then its set of points of discontinuity is at most of zero
logarithmic capacity. Hence again by the generalized maximum principle the bounded
function u satisfying (4.1) is unique. Moreover, α ∈ L∞

c (∂D) and, consequently, u
can be represented by the Poisson integral (4.3) and the Schwartz integral (4.4) gives
the analytic function f = u+ iv in D, where

(4.6) v(reiϑ) =
1

2π

ˆ π

−π

2r sin(ϑ− t)

1− 2r cos(ϑ− t) + r2
α(eit) dt.

Let us apply the linearity of the integral operator (4.6). Namely, denote by χ
the characteristic function of an arc γ∗ of ∂D where α is of bounded variation from
the definition of CBV . Setting α∗ = αχ and α0 = α−α∗, we have that α = α∗ +α0.
Then v = v∗ + v0 where v∗ and v0 correspond to α∗ and α0 by formula (4.6). By the
first item of the proof, there exists the angular limit limz→ζ v∗(z) = β∗(ζ) q.e. on ∂D
where β∗ : ∂D → R is a measurable function with respect to the logarithmic capacity.
Moreover, it is evident from formula (4.6) that v0(z) → β0(ζ) as z → ζ for all ζ ∈ γ∗
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where β0 : γ∗ → R is continuous on γ∗. Thus, setting β = β∗ + β0 on γ∗, we obtain
the conclusion of Lemma 4.1, because the collection of such arcs γ∗ is countable and
the completion of this collection on ∂D has zero logarithmic capacity. �

5. The Hilbert problem for analytic functions in the disk

Now we are ready to give a solution to the Hilbert boundary value problem for
analytic functions in the unit disk, assuming that the coefficient λ is of countable
bounded variation and the boundary date ϕ is measurable with respect to the loga-
rithmic capacity.

Theorem 5.1. Let λ : ∂D → ∂D be in the class CBV(∂D) and ϕ : ∂D → R

be measurable with respect to the logarithmic capacity. Then there is an analytic
function f : D → C that has the angular limit

(5.1) lim
z→ζ

Re[λ(ζ)f(z)] = ϕ(ζ) q.e. on ∂D.

Proof. By Proposition 2.5, the function αλ ∈ L∞
c (∂D) ∩ CBV(∂D). Therefore

g(z) :=
1

2πi

ˆ

∂D

αλ(ζ)
z + ζ

z − ζ

dζ

ζ
, z ∈ D,

is analytic function with u(z) = Re g(z) → αλ(ζ) as z → ζ for every ζ ∈ ∂D except
a set of the discontinuity points for the function αλ, which has zero logarithmic
capacity, see e.g. [25, Corollary IX.1.1] and [34, Theorem I.D.2.2]. Note that the
function A(z) := exp{ig(z)} is also analytic.

By Lemma 4.1 there is a function β : ∂D → R that has the angular limit v(z) =
Im g(z) → β(ζ) as z → ζ q.e. on ∂D and β is measurable with respect to the
logarithmic capacity. Thus, by Corollary 4.1 in [18] there exists an analytic function
B : D → C that has the angular limit U(z) = Re B(z) → ϕ(ζ) exp{β(ζ)} as z → ζ
q.e. on ∂D. Finally, an elementary computation shows that the desired function has
the form f = AB. �

6. The Hilbert problem for the Beltrami equation

We say that a function f : D → C is a regular solution of the Beltrami equa-

tion (1.2) if f is continuous, discrete and open, has the first generalized derivatives
and satisfies (1.2) a.e. in D. We also say that f is a regular solution of the Hilbert

boundary value problem (1.1) for the Beltrami equation (1.2) if f in addition satis-
fies (1.1) q.e. on ∂D along nontangential paths in D.

Recall that a mapping f : D → C is called discrete if the pre-image f−1(z)
consists of isolated points for every z ∈ C, and open if f maps every open set U ⊆ D
onto an open set in C. By the known Stoïlow result, see e.g. [53], every regular
solution f of (1.2) has the representation f = h ◦ g where g is a homeomorphic
solution of (1.2) and h is an analytic function.

Theorem 6.1. Let D be a Jordan domain with the quasihyperbolic boundary
condition and let ∂D have a tangent q.e. Suppose that µ : D → C is in L∞(D) with
||µ||∞ < 1, λ : ∂D → C, |λ(ζ)| ≡ 1, is in CBV(∂D) and ϕ : ∂D → R is a measurable
function with respect to the logarithmic capacity. Then the Hilbert problem (1.1)
for the Beltrami equation (1.2) has a regular solution.
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Proof. Let g be a conformal mapping of D onto D that exists by the Riemann
mapping theorem, see e.g. [25, Theorem II.2.1]. Setting in the unit disk D

(6.1) ν(w) :=

(

µ
g′

g′

)

◦ g−1(w) ,

we see that ν ∈ L∞(D) and ‖ν‖∞ = ‖µ‖∞ < 1. Hence, by the Measurable Riemann
Mapping theorem, see e.g. [3], [14] and [38], there is a quasiconformal mapping G of
D onto itself, G(0) = 0, satisfying the Beltrami equation Gw̄ = ν(w)Gw a.e. in D.

By the reflection principle, see e.g. [38, Theorem I.8.4], G can be extended to a

quasiconformal mapping G̃ of C onto itself. Both functions G∗ := G̃|∂D and G−1
∗ are

Hölder continuous, see [13, Theorem 3.5], and also [38, Theorem II.4.3].
Now, by the Carathéodory theorem, see e.g. [25, Theorem II.3.4], g is extended

to a homeomorphism g̃ of D onto D. By [9, Corollary of Theorem 1], g∗ := g̃|∂D and
its inverse function are Hölder continuous.

Thus, the mapping h∗ := G∗ ◦ g∗ : ∂D → ∂D and its inverse are also Hölder
continuous. In particular, then Λ := λ ◦ h−1

∗ ∈ CBV(∂D) and Φ := ϕ ◦ h−1
∗ is

measurable with respect to logarithmic capacity by Remarks 2.1 and 2.6.
Next, by Theorem 5.1 there is an analytic function A : D → C that has the

angular limit

(6.2) lim
ω→η

Re {Λ(η)A(ω)} = Φ(η) q.e. on ∂D.

Setting h := G ◦ g, we see, by an elementary computation, see e.g. [3, (1.C.1)],

that hz = Gw ◦g(z) g
′(z) and hz̄ = Gw̄ ◦g(z) g′(z) a.e. in D, i.e. h is a quasiconformal

mapping of D onto D satisfying equation (1.2) a.e. in D.
Let us consider the function f := A ◦ h. Since fz = A′ ◦ h(z) hz and fz̄ =

A′ ◦ h(z) hz̄ a.e. in D, we see that f satisfies the equation (1.2). On the other hand,
the mapping f is continuous, open and discrete, and therefore f is the regular solution
of (1.2). It remains to show that f satisfies also the boundary condition (1.1).

Indeed, by the Lindelöf theorem, see e.g. [34, Theorem II.C.2], if ∂D has a tangent
at a point ζ , then arg [g(ζ)− g(z)]− arg [ζ − z] → const as z → ζ . In other words,
the images under the conformal mapping g of sectors in D with a vertex at ζ is
asymptotically the same as sectors in D with a vertex at w = g(ζ). Consequently,
nontangential paths in D are transformed under g into nontangential paths in D and
inversely q.e. on ∂D and ∂D, respectively, because D is almost smooth and g∗ and
g−1
∗ keep sets of logarithmic capacity zero.

Moreover, it is known that the distortion of angles under a quasiconformal map-
ping is bounded, see e.g. [1, 2, 44]. Hence the mapping G̃ : C → C and its inverse also
transform nontangential paths into nontangential paths and G∗ and G−1

∗ keep sets of
logarithmic capacity zero. Consequently, h : D → D and h−1 : D → D also transform
nontangential paths into nontangential paths q.e. on ∂D and ∂D, respectively. Thus,
(6.2) implies the existence of the angular limit (1.1) q.e. on ∂D. �

Remark 6.2. The regular solution f of the Hilbert boundary value problem
for the Beltrami equation given in Theorem 6.1 has the following representation
f = A ◦ G ◦ g. Here g : D → D stands for a conformal mapping, G : D → D

is a quasiconformal mapping, normalized by G(0) = 0 and satisfying the Beltrami
equation with the coefficient ν in (6.1). Finally, A : D → C is the analytic solution
of the Hilbert problem with coefficient Λ = λ ◦ h−1

∗ and boundary data Φ = ϕ ◦ h−1
∗ ,
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where h = G ◦ g and h∗ is the corresponding boundary homeomorphism of ∂D onto
∂D.

7. On Dirichlet, Neumann and Poincare problems

We reduce these boundary value problems to suitable Hilbert problems studied
above and start with the Laplace equation. In particular, choosing µ ≡ 0 and λ ≡ 1 in
Theorem 6.1, we immediately obtain the following solution of the Dirichlet boundary
value problem.

Corollary 7.1. Let D be a Jordan domain with the quasihyperbolic boundary
condition and let ∂D have a tangent q.e. Suppose ϕ : ∂D → R is measurable with
respect to the logarithmic capacity. Then there exists a harmonic function u : D → C

that has the angular limit

(7.1) lim
z→ζ

u(z) = ϕ(ζ) q.e. on ∂D.

We proceed to the study of nonclassical solutions of the Neumann boundary
value problem. For this goal, we will study the more general problem on directional

derivatives, that in turn is a partial case of the Poincare boundary value problem.
First of all, let us recall the classical setting of the problem on directional deriva-

tives for the Laplace equation in the unit disk D: To find a twice continuously dif-
ferentiable function u : D → R that admits a continuous extension to the boundary
∂D together with its first partial derivatives, satisfies the Laplace equation

(7.2) ∆u :=
∂2u

∂x2
+

∂2u

∂y2
= 0 ∀ z ∈ D

and the boundary condition

(7.3)
∂u

∂ν
= ϕ(ζ) ∀ ζ ∈ ∂D.

Here ϕ : ∂D → R stands for a prescribed continuous function and ∂u
∂ν

denotes the
derivative of u at the point ζ in the direction ν = ν(ζ), |ν(ζ)| = 1, i.e.,

(7.4)
∂u

∂ν
:= lim

t→0

u(ζ + t ν)− u(ζ)

t
.

The Neumann boundary value problem for the Laplace equation is a special case
of the above problem with the following boundary condition

(7.5)
∂u

∂n
= ϕ(ζ) ∀ ζ ∈ ∂D,

where n denotes the unit interior normal to ∂D at the point ζ .
Let us note that the above problem on directional derivatives is a partial case of

the Poincare boundary value problem

(7.6) au+ b
∂u

∂ν
= ϕ(ζ) ∀ ζ ∈ ∂D,

where a = a(ζ) and b = b(ζ) are real-valued functions given on ∂D.
It is well known, that the Neumann problem, in general, has no classical solution.

The necessary condition for the solvability is that the integral of the function ϕ
over ∂D is equal zero, see e.g. [40]. Recently, it was established the existence of
nonclassical solutions of the Neumann problem for the Laplace equation in rectifiable
Jordan domains for arbitrary measurable data with respect to the natural parameter,
see [49]. Then the results have been extended to linear divergence equations in
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Lipschitz domains with arbitrary measurable data with respect to the logarithmic
capacity, see [57]. Here we extend the corresponding results to wider classes of
domains and boundary functions.

Theorem 7.2. Let D be a Jordan domain with the quasihyperbolic boundary
condition and let ∂D have a tangent q.e. Suppose that ν : ∂D → C, |ν(ζ)| ≡ 1,
is in the class CBV and ϕ : ∂D → R is measurable with respect to the logarithmic
capacity. Then there exists a harmonic function u : D → R that has the angular
limit

(7.7) lim
z→ζ

∂u

∂ν
= ϕ(ζ) q.e. on ∂D.

Proof. Indeed, by Theorem 6.1 there exists an analytic function f : D → C that
has the angular limit

(7.8) lim
z→ζ

Re [ν(ζ) f(z)] = ϕ(ζ)

q.e. on ∂D. Note that an indefinite integral F of f in D is also an analytic function
and, correspondingly, the harmonic functions u = ReF and v = ImF satisfy the
Cauchy–Riemann system vx = −uy è vy = ux. Hence

f = F ′ = Fx = ux + ivx = ux − iuy = ∇u

where ∇u = ux + iuy is the gradient of the function u in the complex form. Thus,
(7.7) follows from (7.8), i.e. u is the desired harmonic function, because its directional
derivative

∂u

∂ν
= Re ν∇u = Re ν∇u = 〈ν,∇u〉

is the scalar product of ν and the gradient ∇u. �

Remark 7.3. We are able to say more in the case Re[nν] > 0 where n = n(ζ) is
the unit interior normal at the point ζ ∈ ∂D. In view of (7.7), since the limit ϕ(ζ) is
finite, there is a finite limit u(ζ) of u(z) as z → ζ in D along the straight line passing
through the point ζ and being parallel to the vector ν(ζ). Indeed, along this line, for
z and z0 that are close enough to ζ ,

u(z) = u(z0)−

ˆ 1

0

∂u

∂ν
(z0 + τ(z − z0)) dτ.

Thus, at each point with the condition (7.7), there is the directional derivative

∂u

∂ν
(ζ) := lim

t→0

u(ζ + t ν)− u(ζ)

t
= ϕ(ζ).

In particular, Re[nν] = 1 in the case of the Neumann problem and, thus, we
arrive, by Theorem 7.2 and Remark 7.3, at the following result.

Corollary 7.4. Let D be a Jordan domain in C with the quasihyperbolic bound-
ary condition and let the unit interior normal n(ζ) to the boundary ∂D be in the
class CBV . Suppose that ϕ : ∂D → R is measurable with respect to the logarithmic
capacity. Then one can find a harmonic function u : D → C such that q.e. on ∂D
there exist:

1) the finite limit along the normal n(ζ)

u(ζ) := lim
z→ζ

u(z),
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2) the normal derivative

∂u

∂n
(ζ) := lim

t→0

u(ζ + t n)− u(ζ)

t
= ϕ(ζ),

3) the angular limit

lim
z→ζ

∂u

∂n
(z) =

∂u

∂n
(ζ).

Recall that, see e.g. [6, Theorem 16.1.6], if f = u+ iv is a regular solution of the
Beltrami equation (1.2), then the function u is a continuous generalized solution of
the divergence type equation

(7.9) divA(z)∇u = 0,

called A-harmonic function, see [29], i.e. u ∈ C ∩W 1,1
loc (D) and

ˆ

D

〈A(z)∇u,∇ϕ〉 = 0 ∀ ϕ ∈ C∞
0 (D),

where A(z) is the matrix function:

(7.10) A =

(

|1−µ|2

1−|µ|2
−2Imµ

1−|µ|2

−2Imµ

1−|µ|2
|1+µ|2

1−|µ|2

)

.

As we see, the matrix function A(z) in (7.10) is symmetric and its entries aij = aij(z)
are dominated by the quantity

Kµ(z) =
1 + |µ(z)|

1− |µ(z)|
,

and, thus, they are bounded if Beltrami’s equation (1.2) is not degenerate.
Vice verse, uniformly elliptic equations (7.9) with symmetric A(z) and detA(z) ≡

1 just correspond to nondegenerate Beltrami equations (1.2) with coefficient

(7.11) µ =
1

det(I + A)
(a22 − a11 − 2ia21) =

a22 − a11 − 2ia21
1 + TrA + detA

.

Following [28], we denote by B the collection of all such matrix functions A(z). Recall
that the equation (7.9) is said to be uniformly elliptic, if aij ∈ L∞ and 〈A(z)η, η〉 ≥
ε|η|2 for some ε > 0 and for all η ∈ R

2.

Corollary 7.5. Let D be a domain with the quasihyperbolic boundary condition
and let ∂D have a tangent q.e. Suppose that A ∈ B and ϕ : ∂D → R is measurable
with respect to logarithmic capacity. Then there exists A-harmonic function u : D →
R satisfying the Dirichlet boundary condition (7.1).

Theorem 7.6. Let D be a domain in C with the quasihyperbolic boundary
condition and let ∂D have a tangent q.e. Suppose that A(z), z ∈ D, is a matrix
function in the class B ∩ Cα, α ∈ (0, 1), ν : ∂D → C, |ν(ζ)| ≡ 1, is in the class CBV
and ϕ : ∂D → R is measurable with respect to logarithmic capacity. Then there
exists A-harmonic function u : D → R in the class C1+α that has the angular limit

(7.12) lim
z→ζ

∂u

∂ν
(z) = ϕ(ζ) q.e. on ∂D.

Proof. By the above remarks, a desired function u is a real part of a solution f in
class W 1,1

loc for the Beltrami equation (1.2) with µ ∈ Cα given by the formula (7.11).
By Lemma 1 in [28] µ is extended to a Hölder continuous function µ∗ : C → C of the
class Cα. Set k = max |µ(z)| < 1 in D. Then, for every k∗ ∈ (k, 1), there is an open
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neighborhood U of D where |µ∗(z)| ≤ k∗. Let D∗ be a connected component of U
containing D.

By the Measurable Riemann Mapping Theorem, see e.g. [3], [14] and [38], there
is a quasiconformal mapping h : D∗ → C a.e. satisfying the Beltrami equation (1.2)
with the complex coefficient µ∗ := µ∗|D∗

in D∗. Note that the mapping h has the
Hölder continuous first partial derivatives in D∗ with the same order of the Hölder
continuity as µ, see e.g. [32] and also [33]. Moreover, its Jacobian

(7.13) Jh(z) 6= 0 ∀ z ∈ D∗,

see e.g. Theorem V.7.1 in [38]. Thus, the directional derivative

hω(z) =
∂h

∂ω
(z) := lim

t→0

h(z + tω)− h(z)

t
6= 0 ∀ z ∈ D∗ ∀ ω ∈ ∂D

and it is continuous by the collection of the variables ω ∈ ∂D and z ∈ D∗. Thus, the
functions

ν∗(ζ) :=
|hν(ζ)(ζ)|

hν(ζ)(ζ)
and ϕ∗(ζ) :=

ϕ(ζ)

|hν(ζ)(ζ)|

are measurable with respect to the logarithmic capacity, see e.g. convergence argu-
ments in [35], Section 17.1.

The logarithmic capacity of a set coincides with its transfinite diameter, see
e.g. [20] and the point 110 in [42]. Moreover, quasiconformal mappings are Hölder
continuous on compacta, see e.g. [38, Theorem II.4.3]. Hence the mappings h and h−1

transform sets of logarithmic capacity zero on ∂D into sets of logarithmic capacity
zero on ∂D∗, where D∗ := h(D), and vice versa.

Further, the functions N := ν∗ ◦ h−1|∂D∗ and Φ := (ϕ∗/hν) ◦ h−1|∂D∗ are mea-
surable with respect to the logarithmic capacity. Indeed, a measurable set with
respect to the logarithmic capacity is transformed under the mappings h and h−1

into measurable sets with respect to the logarithmic capacity. Really, such a set can
be represented as the union of a sigma-compactum and a set of logarithmic capacity
zero. On the other hand, the compacta are transformed under continuous mappings
into compacta and the compacta are measurable with respect to the logarithmic
capacity.

Recall that the distortion of angles under quasiconformal mappings h è h−1 is
bounded, see e.g. [1, 2, 44]. Thus, nontangential paths to ∂D are transformed into
nontangential paths to ∂D∗ for a.e. ζ ∈ ∂D with respect to the logarithmic capacity
and inversely.

By Theorem 7.2, one can find a harmonic function U : D∗ → R that has the
angular limit

(7.14) lim
w→ξ

∂U

∂N
(w) = Φ(ξ) q.e. on ∂D∗.

Moreover, one can find a harmonic function V in the simply connected domain
D∗ such that F = U + iV is an analytic function and, thus, u := Re f = U ◦h, where
f := F ◦ h, is a desired A-harmonic function in Theorem 7.6 because f is a regular
solution of the corresponding Beltrami equation (1.2) and also

uν = 〈∇U ◦ h, hν〉 = 〈ν∗∇U ◦ h, ν∗hν〉

=

〈

∂U

∂N
◦ h, ν∗hν

〉

=
∂U

∂N
◦ hRe(ν∗hν). �
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The following statement concerning to the Neumann problem for A-harmonic
functions is a partial case of Theorem 7.6.

Corollary 7.7. Let D be a domain in C with the quasihyperbolic boundary
condition and let ∂D have a tangent q.e. Suppose that A(z), z ∈ D, is a matrix
function in the class B ∩ Cα, α ∈ (0, 1), the interior unit normal n = n(ζ) to ∂D
is in the class CBV and ϕ : ∂D → R is measurable with respect to the logarithmic
capacity. Then there is an A-harmonic function u : D → R of the class C1+α such
that q.e. on ∂D there exist:

1) the finite limit along the normal n(ζ),

u(ζ) := lim
z→ζ

u(z)

2) the normal derivative

∂u

∂n
(ζ) := lim

t→0

u(ζ + t n)− u(ζ)

t
= ϕ(ζ),

3) the angular limit

lim
z→ζ

∂u

∂n
(z) =

∂u

∂n
(ζ).

8. On the dimension of the spaces of solutions

It was established in [18], Theorem 8.1, that the space of all harmonic functions
u : D → R that has the angular limit lim

z→ζ
u(z) = 0 q.e. on ∂D has the infinite

dimension. This statement can be extended to the Hilbert boundary value problem
because we reduced this problem in Theorem 5.1 to the corresponding two Dirichlet
problems.

Theorem 8.1. Let λ : ∂D → ∂D be in class CBV(∂D) and ϕ : ∂D → R be
measurable with respect to logarithmic capacity. Then the space of all analytic
functions f : D → C with the angular limit

(8.1) lim
z→ζ

Re{λ(ζ)f(z)} = ϕ(ζ) q.e. on ∂D

has the infinite dimension.

Proof. Let u : D → R be a harmonic function that has the angular limit 0 q.e. on
∂D from [18, Theorem 8.1]. Then there is the unique harmonic function v : D → R

with v(0) = 0, such that C = u+ iv is an analytic function. Thus, setting in the proof
of Theorem 5.1 g = A(B + C) instead of f = AB, we obtain by [18, Theorem 8.1]
that the space of solutions of the Hilbert boundary value problem (8.1) for analytic
functions in Theorem 5.1 has the infinite dimension. �

Finally, since the proof of the rest of theorems and corollaries was sequentially
reduced to Theorem 5.1, we come by Theorem 8.1 to the following conclusion.

Corollary 8.2. All the spaces of solutions of the boundary value problems in
Theorems 6.1, 7.2, 7.6, Corollaries 7.1–7.7 also have the infinite dimension.

Recently it was established by us a number of effective criteria for the existence
of solutions for the degenerate Beltrami equations, see e.g. [27]. That makes possible
to consider the boundary value problems for such equations, too. However, the latter
will demand a more deep study of properties of the mappings with finite distortion,
see e.g. the monographs [30] and [39].
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