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Abstract. In 1985, Pego characterized compact families in L2(R) in terms of the Fourier

transform. It took nearly 30 years to realize that Pego’s result can be proved in a more general

setting of locally compact abelian groups (works of Górka and Kostrzewa). In the current paper, we

argue that the Fourier transform is not the only integral transform that is efficient in characterizing

compact families and suggest the Laplace transform as a possible alternative.

1. Introduction

The main objective of the article is to use Laplace transform to characterize
compact families in L2(R+). This task is achieved in Theorem 9, after we introduce
and study the concepts of Laplace equicontinuity and equivanishing. In the author’s
opinion, the culminating result of the paper elegantly rhymes with the ideas of Pego
and later Górka and Kostrzewa. However, before we dive into technical details, let
us first lay the historical background.

Characterizing compact families has been a vital topic in function spaces’ theory
at least since the end of the 19th century. Around 1883, two Italian mathematicians
Cesare Arzelà (1847–1912) and Giulio Ascoli (1843–1896) provided the necessary
and sufficient conditions under which every sequence of a given family of real-valued
continuous functions (defined on a closed and bounded interval), has a uniformly
convergent subsequence (this is called sequential compactness). A couple of decades
later (in 1931), Andrey Kolmogorov (1903–1987) succeeded in characterizing the
compact families in Lp(RN), when 1 < p < ∞ and all the functions are supported in a
common bounded set (comp. [17]). A year later, Jacob David Tamarkin (1888–1945)
got rid of the second restriction (comp. [25]) and in 1933, Marcel Riesz (1886–1969), a
younger brother of Frigyes Riesz, proved the general case for Lp(RN), where 1 6 p <

∞. In 1940, a French mathematician and one of the leaders of the Bourbaki group,
André Weil (1906–1998) wrote a book ’L’intégration dans les groupes topologique’
(comp. [26]), in which he proved the Kolmogorov–Riesz theorem for a locally compact
Hausdorff group G instead of RN .

The next major contribution came over 40 years later (1985), when Robert L. Pego
characterized compact families in L2(R) via the Fourier transform. This innovative
idea was the cornerstone for the works of two Polish mathematicians Przemysław
Górka and Tomasz Kostrzewa. In [7] and [8], they proved that a counterpart of
Pego theorem holds for locally compact abelian groups (this is reminiscent of Weil’s
contribution). Obviously, there are other works related to the topic, which are worth-
mentioning: [1, 2, 3, 9, 10, 11, 12, 13, 14, 15, 20, 21] just to name a few.
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In the current paper, we argue that the Fourier transform is not the only one
that can be used to characterize compact families. In Section 2 we introduce the
basic definitions and discuss the necessary notation. We also prove the fundamental
theorems, which are very well-known in the context of the Fourier transform, and
probably less known in the context of the Laplace transform. In Section 3 we prove
the main results. Theorem 9, which is a counterpart of the Pego’s result, is the climax
of the paper.

2. Preliminary results

For a measurable, complex-valued function f : R+ → C and a real number x > 0,
we denote

fx(t) = f(t)e−xt.

We say that f : R+ → C is a Laplace–Pego function of order x > 0 if

fx ∈ L1(R+) ∩ L2(R+).

The norms in L1(R+) and L2(R+) are denoted by ‖ · ‖1 and ‖ · ‖2, respectively.
Moreover, if A is a subfamily of Laplace–Pego functions with a common order x > 0,
then we denote

Ax = {fx : f ∈ A}.
Let f be a Laplace–Pego function of order x > 0. The Laplace transform L{f}

of the function f is defined by

L{f}(z) =
ˆ ∞

0

f(t)e−zt dt.

A natural question arises: when does the above integral exist? To answer this ques-
tion, observe that if Re(z) > x, then

|L{f}(z)| =
∣∣∣∣
ˆ ∞

0

f(t)e−Re(z)te−i Im(z)t dt

∣∣∣∣ 6
ˆ ∞

0

|f(t)|e−Re(z)t dt

=

ˆ ∞

0

|f(t)|e−xte(x−Re(z))t dt 6 ‖fx‖1 < ∞.

In other words, the Laplace transform L{f} exists in the half-plane Re(z) > x.
An important special case of the Laplace transform is the Fourier transform,

which we define by

f̂(y) = L{f}(2πiy).
Let us formulate a crucial theorem regarding the Laplace transform, which we

will use multiple times throughout the paper:

Theorem 1. (Plancherel theorem for the Laplace transform) If f is a Laplace-

Pego function of order x > 0, then

1

2π

ˆ ∞

−∞

|L{f}(x+ iy)|2 dy =

ˆ ∞

0

e−2xt|f(t)|2 dt.(1)

Proof. At first, observe that

∀y∈R L{f}(x+ iy) =

ˆ ∞

0

f(t)e−xte−iyt dt

=

ˆ ∞

0

f(t)e−xte−2πi y

2π
t dt = f̂x

( y

2π

)
.

(2)
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By the classical Plancherel theorem [4, Theorem 3.5.2, p. 53] or [24, Theorem 1.1,
p. 208] we have

ˆ ∞

−∞

∣∣∣f̂x
( y

2π

)∣∣∣
2

d
y

2π
=

ˆ ∞

−∞

|fx(t)|2 dt =
ˆ ∞

0

e−2xt|f(t)|2 dt.

Upon observing that
ˆ ∞

−∞

∣∣∣f̂x
( y

2π

)∣∣∣
2

d
y

2π

(2)
=

1

2π

ˆ ∞

−∞

|L{f}(x+ iy)|2 dy

we conclude the proof. �

The theorem, which we present below, is a counterpart of a well-know result in
the theory of Fourier transform:

Theorem 2. (Riemann–Lebesgue lemma for the Laplace transform) If f is a

Laplace–Pego function of order x > 0, then

(3) lim
y→±∞

L{f}(x+ iy) = 0.

Proof. At first, let f = 1(a,b) where (a, b) ⊂ R+. Then, for every y ∈ R we have

∀y∈RL{f}(x+ iy) =

ˆ ∞

0

1(a,b)(t)e
−(x+iy)t dt

=

ˆ b

a

e−(x+iy)t dt =
e−(x+iy)a − e−(x+iy)b

x+ iy
,

so (3) holds. By linearity of the Laplace transform, the result is also true for all
simple functions.

Finally, let f be an arbitrary Laplace–Pego function and let ε > 0. Since simple
functions are dense in L1(R+), there exists a simple function g such that

(4)

ˆ ∞

0

|f(t)e−xt − g(t)| dt < ε.

Hence

lim
y→±∞

|L{f}(x+ iy)| = lim
y→±∞

∣∣∣∣
ˆ ∞

0

f(t)e−xte−iyt dt

∣∣∣∣

6

ˆ ∞

0

∣∣f(t)e−xt − g(t)
∣∣ dt+ lim

y→±∞

∣∣∣∣
ˆ ∞

0

g(t)e−iyt dt

∣∣∣∣
(4)
< ε+ lim

y→±∞
|L{g}(iy)| = ε+ lim

y→±∞

∣∣∣ĝ
( y

2π

)∣∣∣ = ε,

where the last equality follows from the classical Riemann-Lebesgue lemma for the
Fourier transform (comp. [16, Theorem 1.7, p. 136]. Since ε > 0 was chosen arbitrar-
ily, we conclude the proof. �

We will now recall the prominent fact that the Laplace trasnform ’changes the
convolution of two functions to multiplication’. A convolution of two Laplace–Pego
functions f, g with a common order x > 0 is defined by

∀t>0f ⋆ g(t) =

ˆ t

0

f(s)g(t− s) ds.

Theorem 3. If f, g are Laplace–Pego functions with a common order x > 0,
then (f ⋆ g)x ∈ L1(R+). In particular, it exists almost everywhere.
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Proof. At first, let us observe that

∀t>0e
−xtf ⋆ g(t) =

ˆ t

0

e−xtf(s)g(t− s) ds

=

ˆ t

0

e−xsf(s)e−x(t−s)g(t− s) ds.

(5)

Furthermore, by [24, Proposition 3.9, p. 86], we note that the function F : R+ ×
R+ −→ C defined by

F (t, s) = e−xsf(s)e−x(t−s)g(t− s)

is measurable, so we are in position to apply Tonelli’s theorem. Consequently, we
obtain ∣∣∣∣

ˆ ∞

0

e−xtf ⋆ g(t) dt

∣∣∣∣
(5)

6

ˆ ∞

0

ˆ t

0

e−xs|f |(s)e−x(t−s)|g|(t− s) ds dt

Tonelli’s thm
=

ˆ ∞

0

ˆ ∞

s

e−xs|f |(s)e−x(t−s)|g|(t− s) dt ds

= ‖fx‖1‖gx‖1 < ∞,

which ends the proof. �

The convolution theorem for the Laplace transform, which we present below,
should be juxtaposed with [22, Theorem 2.39, p. 92].

Theorem 4. (Convolution theorem for the Laplace transform) If f and g are

Laplace–Pego functions with a common order x > 0, then

L{f ⋆ g}(z) = L{f}(z) · L{g}(z)
for Re(z) > x.

Proof. Note that the function F : R+ ×R+ −→ C defined by

F (t, s) = f(s)g(t− s)e−zt

is measurable, so by Tonelli’s theorem we have

L{f ⋆ g}(z) =
ˆ ∞

0

f ⋆ g(t)e−zt dt =

ˆ ∞

0

ˆ t

0

f(s)g(t− s)e−zt ds dt

Tonelli’s thm
=

ˆ ∞

0

ˆ ∞

s

f(s)g(t− s)e−zt dt ds = L{f}(z) · L{g}(z),

which ends the proof. �

3. Main results

A subfamily A of Laplace–Pego functions with a common order x > 0 is said to
be exponentially L2-equivanishing at x, if

(6) ∀ε>0 ∃T>0 ∀f∈A

ˆ ∞

T

e−2xt|f(t)|2 dt < ε.

Furthermore, we say that a family A is Laplace equicontinuous at x, if

(7) ∀ε>0 ∃δ>0 ∀f∈A
1

2π

ˆ ∞

−∞

|L{f}(x+ iy + δ)−L{f}(x+ iy)|2 dy < ε.

We will now relate the concepts of Laplace equicontinuity and exponential L2-
equivanishing.
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Theorem 5. Let A be a subfamily of Laplace–Pego functions with a common

order x > 0. If A is Laplace equicontinuous at x, then it is exponentially L2-

equivanishing at x. Furthermore, if Ax is L2-bounded, then the implication can be

reversed.

Proof. We divide the proof into two steps:

Step 1. At first, we assume that A is Laplace equicontinuous at x, so for a fixed
ε > 0 we may choose δ > 0 according to (7). Let T > 0 be such that

(8)
∣∣e−δT − 1

∣∣2 > 1

2
.

Consequently, for every f ∈ A we obtain

ε >
1

2π

ˆ ∞

−∞

|L{f}(x+ iy + δ)−L{f}(x+ iy)|2 dy

=
1

2π

ˆ ∞

−∞

∣∣∣∣
ˆ ∞

0

f(t)
(
e−δt − 1

)
e−(x+iy)t dt

∣∣∣∣
2

dy

Theorem 1
=

ˆ T

0

e−2xt|f(t)|2
∣∣e−δt − 1

∣∣2 dt+
ˆ ∞

T

e−2xt|f(t)|2
∣∣e−δt − 1

∣∣2 dt

(8)

>
1

2

ˆ ∞

T

e−2xt|f(t)|2 dt,

which ends the first part of the proof.

Step 2. At this point, we assume that Ax is L2-bounded, so there exists M > 0
such that

∀f∈A

ˆ ∞

0

e−2xt|f(t)|2 dt 6 M.

We will show that if A is exponentially L2-equivanishing at x, then it is Laplace
equicontinuous at x.

Fix ε > 0 and choose T > 0 as in the definition of the exponential L2-equivanishing
(6). Let δ > 0 be such that

(9)
∣∣e−δT − 1

∣∣2M < ε.

We have

1

2π

ˆ ∞

−∞

|L{f}(x+ iy + δ)− L{f}(x+ iy)|2 dy

Theorem 1
=

ˆ T

0

e−2xt|f(t)|2
∣∣e−δt − 1

∣∣2 dt+
ˆ ∞

T

e−2xt|f(t)|2
∣∣e−δt − 1

∣∣2 dt

(9)

6
∣∣e−δT − 1

∣∣2M +

ˆ ∞

T

e−2xt|f(t)|2 dt
(6)
< 2ε,

which ends the proof. �

A subfamily A of Laplace–Pego functions with a common order x > 0 is said to
be exponentially L2-equicontinuous at x, if

(10) ∀ε>0 ∃δ>0 ∀s∈(0,δ)
f∈A

(
ˆ ∞

0

e−2xt|f(t)− f(t− s)|2 dt
) 1

2

< ε.

Let us make one technical remark at this point. Although we defined the domain of
the Laplace–Pego functions as R+, we may actually treat these functions as functions
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on R with the property f(t) = 0 if t < 0. Consequently, in (10) we have f(t− s) = 0
whenever s > t.

Furthermore, we say that a family A is Laplace equivanishing at x, if

(11) ∀ε>0 ∃T>0 ∀f∈A

ˆ

R\[−T,T ]

|L{f}(x+ iy)|2 dy < ε.

We study the relationship between the novel notion of the exponential L2-equi-
continuity of A and the classical equicontinuity of Ax in the lemma below:

Lemma 6. Let A be a subfamily of Laplace–Pego functions with a common

order x > 0. If Ax is L2-bounded then A is exponentially L2-equicontinuous at x if

and only if Ax is L2-equicontinuous, i.e.

(12) ∀ε>0 ∃δ>0 ∀s∈(0,δ),
f∈A

ˆ ∞

0

∣∣e−x(t+s)f(t+ s)− e−xtf(t)
∣∣2 dt < ε.

Proof. Since Ax is L2-bounded, there exists M > 0 such that

∀f∈A

(
ˆ ∞

0

e−2xt|f(t)|2 dt
) 1

2

6 M.

We divide the proof of the lemma into two steps:

Step 1. In the first part of the proof, we assume that the family A is exponentially
L2-equicontinuous at x. We fix ε > 0 and choose δ > 0 such that

• (12) is satisfied, and
• for every s ∈ (0, δ) we have

(13)

ˆ s

0

e−2xt|f(t)|2 dt < ε,

which is possible due to Theorem 8 in [18], p. 148, and
• for every s ∈ (0, δ) we have

(14)
∣∣e−xs − 1

∣∣M < ε.

Consequently, for every s ∈ (0, δ) and f ∈ A we have
(
ˆ ∞

0

e−2xt|f(t)− f(t− s)|2 dt
) 1

2

=

(
ˆ ∞

−s

e−2x(t+s)|f(t+ s)− f(t)|2 dt
) 1

2

6

(
ˆ ∞

−s

e−2x(t+s)|f(t+ s)− exsf(t)|2 dt
) 1

2

+

(
ˆ ∞

−s

e−2x(t+s)|exsf(t)− f(t)|2 dt
) 1

2

=

(
ˆ 0

−s

e−2x(t+s)|f(t+ s)|2 dt+
ˆ ∞

0

e−2x(t+s)|f(t+ s)− exsf(t)|2 dt
) 1

2

+

(
ˆ ∞

0

e−2x(t+s)|f(t)|2|exs − 1|2 dt
) 1

2

6

(
ˆ s

0

e−2xt|f(t)|2 dt+
ˆ ∞

0

|e−x(t+s)f(t+ s)− e−xtf(t)|2 dt
) 1

2

+ |e−xs − 1|M
(12),(13),(14)

6 (2ε)
1

2 + ε.

Since ε > 0 was chosen arbitrarily, the above estimates end the first part of the proof.



Characterizing compact families via the Laplace transform 997

Step 2. In this part of the proof, we assume that Ax is L2-equicontinuous. Again,
we fix ε > 0 and let δ > 0 be such that

• (10) is satisfied, and
• for every s ∈ (0, δ) we have

(15) |1− exs|M < ε and exs 6 2.

For every s ∈ (0, δ) and f ∈ A we have

(
ˆ ∞

0

∣∣e−x(t+s)f(t+ s)− e−xtf(t)
∣∣2 dt

) 1

2

=

(
ˆ ∞

s

∣∣e−xtf(t)− e−x(t−s)f(t− s)
∣∣2 dt

) 1

2

6

(
ˆ ∞

s

∣∣e−xtf(t)− e−x(t−s)f(t)
∣∣2 dt

) 1

2

+

(
ˆ ∞

s

∣∣e−x(t−s)f(t)− e−x(t−s)f(t− s)
∣∣2 dt

) 1

2

6 |1− exs|
(
ˆ ∞

0

e−2xt|f(t)|2dt
) 1

2

+ exsε
(15)

6 |1− exs|M + 2ε < 3ε,

which ends the proof. �

We will now study the relationship between the exponential L2-equicontinuity
and the Laplace equivanishing.

Theorem 7. Let A be a subfamily of Laplace–Pego functions with a common

order x > 0. Exponential L2-equicontinuity at x implies Laplace equivanishing at x.

Furthermore, if Ax is L2-bounded, then the implication can be reversed.

Proof. We divide the proof into two steps:

Step 1. We assume that the family A is exponentially L2-equicontinuous at
x, so for a fixed ε > 0 we can choose δ > 0 according to the exponential L2-
equicontinuity (10). Let g be a nonnegative and continuous function on R+ such
that supp(g) ⊂ (0, δ) and

´∞

0
g(s) ds = 1. Naturally, g is a Laplace–Pego function

of order x.
By Theorem 2, let T > 0 be such that

(16) ∀y∈R\[−T,T ]|L{g}(x+ iy)| 6 1

2
.

Consequently, we have

∀f∈A

(
ˆ

R\[−T,T ]

|L{f}(x+ iy)|2 dy
)1

2

6

(
ˆ

R\[−T,T ]

∣∣∣∣L{f}(x+ iy)
(
1− L{g}(x+ iy)

)∣∣∣∣
2

dy

) 1

2

+

(
ˆ

R\[−T,T ]

|L{f}(x+ iy)L{g}(x+ iy)|2 dy
)1

2

(16)

6

(
ˆ

R\[−T,T ]

∣∣∣∣L{f}(x+ iy)
(
1− L{g}(x+ iy)

)∣∣∣∣
2

dy

) 1

2

+
1

2

(
ˆ

R\[−T,T ]

|L{f}(x+ iy)|2 dy
)1

2

,
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which implies

∀f∈A

(
ˆ

R\[−T,T ]

|L{f}(x+ iy)|2 dy
)1

2

6 2

(
ˆ

R\[−T,T ]

∣∣∣∣L{f}(x+ iy)
(
1− L{g}(x+ iy)

)∣∣∣∣
2

dy

) 1

2

Theorem 4

6 2

(
ˆ

R

|L{f}(x+ iy)− L{f ⋆ g}(x+ iy)|2 dy
)1

2

Theorem 1
= 2

√
2π

(
ˆ ∞

0

e−2xt|f(t)− f ⋆ g(t)|2 dt
) 1

2

= 2
√
2π

(
ˆ ∞

0

e−2xt

∣∣∣∣f(t)−
ˆ ∞

0

f(t− s)g(s) ds

∣∣∣∣
2

dt

) 1

2

= 2
√
2π

(
ˆ ∞

0

∣∣∣∣
ˆ ∞

0

e−xt(f(t)− f(t− s))g(s) ds

∣∣∣∣
2

dt

) 1

2

Minkowski integral
inequality

6 2
√
2π

ˆ ∞

0

(
ˆ ∞

0

e−2xt|f(t)− f(t− s)|2|g(s)|2 dt
) 1

2

ds

= 2
√
2π

ˆ ∞

0

g(s)

(
ˆ ∞

0

e−2xt|f(t)− f(t− s)|2 dt
) 1

2

ds

= 2
√
2π

ˆ δ

0

g(s)

(
ˆ ∞

0

e−2xt|f(t)− f(t− s)|2 dt
) 1

2

ds

6 2
√
2πε

ˆ δ

0

g(s) ds = 2
√
2πε.

Let us remark that the use of Minkowski inequality in the above estimates is justified,
because the function F (t, s) = e−2xt|f(t)− f(t− s)|2|g(s)|2 is measurable due to [24,
Proposition 3.9, p. 86]. Since ε > 0 was chosen arbitrarily, the above estimates end
the first part of the proof.

Step 2. For this part of the proof, we assume that Ax is L2-bounded, so there
exists M1 > 0 such that

(17) ∀f∈A

ˆ ∞

0

e−2xt|f(t)|2 dt 6 M1.

We will show that if A is Laplace equivanishing at x then it is exponentially L2-
equicontinuous at x. For convenience, we denote T−sf(t) = f(t− s). We observe the
following equalities

∀ s>0
f∈A

ˆ ∞

0

e−2xt|f(t)− f(t− s)|2 dt =
ˆ ∞

0

e−2xt|f(t)− T−sf(t)|2 dt

Theorem 1
=

1

2π

ˆ ∞

−∞

|L{f − T−sf}(x+ iy)|2 dy

=
1

2π

ˆ ∞

−∞

|L{f}(x+ iy)− e−s(x+iy)L{f}(x+ iy)|2 dy

(18)
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=
1

2π

ˆ ∞

−∞

∣∣1− e−s(x+iy)
∣∣2 |L{f}(x+ iy)|2 dy.

Fix ε > 0 and choose T > 0 according to Laplace equivanishing (11). Let δ > 0
be such that

(19) ∀ s∈(0,δ)
y∈[−T,T ]

∣∣1− e−s(x+iy)
∣∣2 < ε,

and put

(20) M2 = max
s∈[0,δ],
y∈R

∣∣1− e−s(x+iy)
∣∣2 ,

which is finite due to

M2 6 max
s∈[0,δ]

(
1 + e−sx

)2
.

Finally, for every s ∈ (0, δ) and f ∈ A, we have
ˆ ∞

0

e−2xt|f(t)− f(t− s)|2 dt (18)
=

1

2π

ˆ T

−T

∣∣1− e−s(x+iy)
∣∣2 |L{f}(x+ iy)|2 dy

+
1

2π

ˆ

R\[−T,T ]

∣∣1− e−s(x+iy)
∣∣2 |L{f}(x+ iy)|2 dy

(19), (20)

6
ε

2π

ˆ T

−T

|L{f}(x+ iy)|2 dy + M2

2π

ˆ

R\[−T,T ]

|L{f}(x+ iy)|2 dy

Theorem 1, (11)

6 ε

ˆ ∞

0

e−2xt|f(t)|2 dt+ M2

2π
ε 6

(
M1 +

M2

2π

)
ε.

Since ε > 0 was chosen arbitrarily, we conclude the proof. �

Before we present the final theorem of the paper, let us recall the celebrated
Riesz–Kolmogorov theorem:

Theorem 8. (Riesz–Kolmogorov theorem, comp. [14]) A family A ⊂ L2(R+) is

relatively compact if and only if

• A is L2-bounded;

• A is L2-equicontinuous;

• A is L2-equivanishing.

The final theorem, which is the climax of the paper, should be juxtaposed with
Pego theorem in [7], [8] and [19].

Theorem 9. Let A be a subfamily of Laplace–Pego functions with a common

order x and such that Ax is L2-bounded. The family Ax is relatively compact in

L2(R+) if and only if

• A is Laplace equicontinuous at x;

• A is Laplace equivanishing at x.

Proof. The proof is divided into two steps:

Step 1. We assume that A is Laplace equicontinuous and equivanishing at x. At
first, we note that Laplace equicontinuity of A at x implies that this family is expo-
nentially L2-equivanishing at x (Theorem 5). In other words, Ax is L2-equivanishing.
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Furthermore, Laplace equivanishing of A at x implies that this family is expo-
nentially L2-equicontinuous (Theorem 7). In other words, Ax is L2-equicontinuous
(Lemma 6). By Theorem 8, we conclude that Ax is relatively compact in L2(R+).

Step 2. For the second part of the proof, we assume that Ax is relatively compact
in L2(R+). By Theorem 8, the family Ax is L2-equicontinuous and L2-equivanishing.
L2-equicontinuity of Ax implies that A is Laplace equivanishing at x (Lemma 6 and
Theorem 7). Moreover, L2-equivanishing of Ax implies that A is Laplace equicon-
tinuous at x (Theorem 5), which ends the proof. �

Let us conclude the paper with a simple example exhibiting how Theorem 9
works: let β ∈ R and let A be the family of functions of the form eαt · 1[0,∞)(t),
where α 6 β. Every x > β is a common order for the family A. However, it is easy
to see that the family is not of order β.

Let us fix x > β. We remark that

∀ f∈A
Re(z)>x

L{f}(z) =
ˆ ∞

0

e(α−z)t dt =
−1

α− z
.

Furthermore, we observe that

(21) Ax =

{
e(α−x)t · 1[0,∞)(t) : α 6 β

}

is L2-bounded. In order to apply Theorem 9 we first check that A is Laplace equicon-
tinuous at x. For a fixed ε > 0 we choose δ > 0 such that

(22)
δ2

2(β − x− δ)2 · |β − x| < ε.

Consequently, for every f ∈ A (or every α 6 β equivalently) we have

1

2π

ˆ ∞

−∞

|L{f}(x+ iy + δ)− L{f}(x+ iy)|2 dy

=
1

2π

ˆ ∞

−∞

∣∣∣∣
−1

α− (x+ iy + δ)
+

1

α− (x+ iy)

∣∣∣∣
2

dy

=
δ2

2π

ˆ ∞

−∞

dy

|α− (x+ iy + δ)|2 · |α− (x+ iy)|2

=
δ2

2π

ˆ −∞

∞

dy

((α− x− δ)2 + y2) · ((α− x)2 + y2)

6
δ2

2π(α− x− δ)2

ˆ ∞

−∞

dy

(α− x)2 + y2

=
δ2

2(α− x− δ)2 · |α− x| 6
δ2

2(β − x− δ)2 · |β − x|
(22)
< ε,

where we used the formula

∀b>0

ˆ

dy

y2 + b
=

1√
b
arctan

(
y√
b

)
+ const.

Since ε > 0 was chosen arbitrarily, we conclude that A is Laplace equicontinuous at
x.
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To prove that A is Laplace equivanishing it suffices to pick T > 2
ε

and observe
that

ˆ

R\[−T,T ]

|L{f}(x+ iy)|2 dy =

ˆ

R\[−T,T ]

dy

|α− (x+ iy)|2

6

ˆ

R\[−T,T ]

dy

y2
= 2

ˆ ∞

T

dy

y2
=

2

T
< ε.

To sum up, we have verified that A is Laplace equicontinuous and Laplace equivan-
ishing. By Theorem 9 we conclude that (21) is relatively compact in L2.
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