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Abstract. We consider gradient Ricci solitons conformal to an n-dimensional pseudo-Euclidean

space and we describe entirely the most general substitution that reduces the resulting system of

partial differential equations, originated from the gradient Ricci soliton equations, to a system of

ordinary differential equations. As a consequence, the gradient Ricci solitons that arise from the

reduced system are invariant under the action of either an (n− 1)-dimensional translation group or

the pseudo-orthogonal group acting on the corresponding n-dimensional pseudo-Euclidean space.

The reduced system of ordinary differential equations is given. From such a system, particular

solutions are obtained.

1. Introduction and main results

A pseudo-Riemannian manifold (Mn, g) endowed with a smooth function f is a
gradient Ricci soliton if

(1.1) Ricg +
1

2
LXg = λg,

where Ricg is the Ricci tensor, LXg is the Lie derivative in the direction of X and λ is
a real constant. The vector field X is called potential vector field. The Ricci soliton
is called shrinking when λ > 0, steady when λ = 0, and expanding when λ < 0. If
X is the gradient of a smooth function f , the Ricci soliton becomes

(1.2) Ricg +Hessf = λg,

where Hessf is the Hessian of f . In this case, (Mn, g) is called gradient Ricci soliton
and the function f is called potential function. Ricci solitons arise as self-similar
solutions and they play an important role as singularity models for the Hamilton’s
Ricci flow.

Ricci solitons in pseudo-Riemannian manifolds have been recently investigated,
as we can see in [2, 3, 4, 12], specially in the Lorentzian case. Explicit pseudo-
Riemannian conformally flat gradient steady Ricci solitons was obtained by Barbosa,
Pina and Tenenblat in [1]. The authors firstly reduced a sytem of PDEs, that comes
from the corresponding Ricci soliton equation, to a system of ODEs by considering a
substitution by a function invariant under translations in a pseudo-Euclidean space.
In the steady case, they provided all solutions of the reduced system.
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A substitution like the one considered by Barbosa et al. is known as an ansatz,
i.e., a substitution that transforms a PDE into an ODE or a PDE with less indepen-
dent variables. Using a rotational ansatz, Byrant showed the existence a complete,
rotationally symmetric steady gradient Ricci soliton on R

n, n ≥ 3, which is unique
up to homothety (see Chapter 1, Section 4 in [5]).

In this paper, we consider gradient Ricci solitons conformal to an n-dimensional
pseudo-Euclidean space (Rn, g). We generalize the results obtained by Barbosa et

al. by obtaining the most general ansatz that reduces the correspondent system
of PDEs to a system of ODEs (see Theorem 1). It turns out that the function
which plays the role of ansatz must be an invariant function under the action of the
pseudo-orthogonal group or an invariant function under the group of translations.
The reduced system of ODEs is given in Theorem 2. In Theorem 3, it is given a
system of integro-differential equations equivalent to the reduced one. From such a
system, particular solutions can easily be found it. These particular solutions are
given in Corollaries 1 and 2.

The technique employed in the proof of Theorem 1 is a method used for finding
ansätze for PDEs, known as the direct method of reduction, which was introduced
in a systematic way by Clarkson and Kruskal [6], where the Boussinesq equation was
considered. Although the direct method has been introduced for two-dimensional
equations, it was also successful when multiple variables were considered, as we can
see, for example, for the nonlinear multi-dimensional wave equations [9] and for
the n-dimensional static vacuum Einstein equation [14]. The method consists in
considering new variables given by unknown ansätze for a given PDE and then it is
required that the equivalent system of equations be a system of ODEs or a system
of PDEs with less independent variables. With this requirement, one obtains a set
of partial differential equations for the ansätze. Once the ansätze are obtained, one
has the reduced system.

In order to state our results, let us establish the notations and terminologies
used in this paper, which are based on [13]. Let (Rn, g) be the standard pseudo-
Euclidean space with coordinates (x1, . . . , xn) and metric gij = δijεi, 1 ≤ i, j ≤ n,
where εi = ±1. We want to find smooth functions ϕ and f defined on an open subset
Ω ⊂ R

n such that, for ḡ given by

ḡ =
g

ϕ2

(Ω, ḡ) is a gradient Ricci soliton with potential function f , i.e.,

(1.3) Ricḡ +Hessḡ(f) = λḡ,

where Ricḡ and Hessḡ(f) stand for the Ricci tensor and the Hessian of the metric ḡ,
respectively. In what follows, we will denote the first and second partial derivatives
of a function F : Ω ⊂ R

n → R by

F,i :=
∂F

∂xi

and F,ij :=
∂2F

∂xixj

respectively. In this setting, Theorem 1.3 in [1] provides the correspondent system of
PDEs for equation (1.3), i.e., (Ω, ḡ) is a gradient Ricci soliton with potential function
f if and only if

(1.4) (n− 2)ϕ,ij + ϕf,ij + ϕ,if,j + ϕ,jf,i = 0, i 6= j,
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and for each i

(1.5) ϕ[(n− 2)ϕ,ii + ϕf,ii + 2ϕ,if,i] + εi
∑

k

εk
[

ϕϕ,kk − (n− 1)ϕ2
,k − ϕϕ,kf,k

]

= εiλ.

It is important to note that, although Theorem 1.3 in [1] requires n ≥ 3, it is not
necessary to assume any restriction on the dimension.

Our main goal is to find a smooth function ξ : Ω ⊂ R
n → R that will be an ansatz

such that equations (1.4) and (1.5) are reduced to ordinary differential equations.
Specifically, we want to find ξ : Ω ⊂ R

n → R such that f ◦ ξ and ϕ ◦ ξ are solutions
for such equations. The next theorem shows the most general form for the function
ξ.

Theorem 1. Let (Rn, g) be the standard pseudo-Euclidean space with coordi-

nates (x1, . . . , xn) and metric gij = δijεi, 1 ≤ i, j ≤ n, where εi = ±1. Then, there

exists a smooth real-valued function ξ on an open subset Ω ⊂ R
n such the system of

PDEs given by equations (1.4) and (1.5) are reduced to an system of ODEs with an

independent variable ξ if and only if

(1.6) ξ(x1, . . . , xn) = (Ψ ◦ P )(x1, . . . , xn),

where P (x1, . . . , xn) =
∑n

k=1(τεkx
2
k + αkxk + βk), τ, αk, βk ∈ R and Ψ is a smooth

real-valued function.

We observe that Theorem 1 is sharp in the following sense: there is no other
function ξ, that depends on all variables (x1, . . . , xn), such that equations (1.4) and
(1.5) reduce to a system of ODEs. Let us also observe that the level functions of such
a ξ provides a foliation of the correspondent gradient Ricci soliton by hypersurfaces
invariant under the action of the pseudo-orthogonal group, up to change of coordi-
nates, when τ 6= 0, or of the group of translations, when τ = 0, this latter is precisely
the case considered in [1]. Fernández-López and García-Río [8], using the local de-
composition of a Ricci soliton metric into a warped product metric proved that a
locally conformally flat gradient Ricci soliton is rotationally symmetric. However,
for an expanding soliton, they require that the curvature operator must be nonneg-
ative, cf. [8, Remark 1]. From Theorem 1, we prove without any assumption on the
curvature that a pseudo-Riemannian conformally flat gradient expanding (shrinking
or steady) Ricci soliton, foliated by n−1 dimensional subsets invariant under isome-
tries, is pseudo-rotationally symmetric (up to change of variables). Moreover, our
proof is quite different in the sense that we do not use the warped product structure.

Once we have the most general ansatz, one has the reduced system of ODEs.
From (1.6) we can consider ϕ and f smooth real-valued functions depending on the
variable ξ =

∑

k(τεkx
2
k + αkxk + βk). In this case, let us write

ϕ′ :=
dϕ

dξ
and f ′ :=

df

dξ
,

and then the reduced system is given by the following theorem

Theorem 2. Let (Rn, g) be a pseudo-Euclidean space with coordinates (x1, . . . , xn)
and metric gij = δijεi, 1 ≤ i, j ≤ n, where εi = ±1. Let Ω ⊂ R

n be an open subset

and consider smooth functions ϕ(ξ) and f(ξ) such that ξ : Ω ⊂ R
n → R is given by

ξ =
∑

k(τεkx
2
k + αkxk + βk). Then (Ω, ḡ) is a gradient Ricci soliton with potential

function f(ξ) and ḡ = g/(ϕ(ξ))2 if and only if the functions ϕ and f satisfy

(1.7) (n− 2)ϕ′′ + f ′′ϕ+ 2ϕ′f ′ = 0
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and

(1.8) 2τϕ[2(n− 1)ϕ′ + ϕf ′] +
[

ϕϕ′′ − (n− 1)(ϕ′)2 − ϕϕ′f ′
]

(4τξ + Λ) = λ,

where τ, αk, βk ∈ R and Λ =
∑

k

(εkα
2
k − 4τβk).

An example of complete solution for Theorem 2 is the Gaussian soliton. In fact,
it is enough to consider ϕ = k, where k is constant, and τ 6= 0. Therefore, from
(1.7) we have that f(ξ) = a1ξ + a2, where a1, a2 ∈ R. From (1.8) we can see that
a1 = λ

2τk2
. Considering αi = βi = 0 for all i ∈ {1, . . . , n} in the expression of ξ, we

have the Gaussian soliton. On the other hand, when f is constant, it follows from
(1.7) that ϕ(ξ) = b1ξ + b2, which implies g has constant curvature. Consequently,
the space forms are complete solutions of Theorem 2.

When τ = 0 and n ≥ 3, we recover the ODEs given in [1]. In this case, if we
consider λ = 0 we have the explicit solutions given in [1].

Note that equation (1.7) determines f ′ by means of ϕ. Consequently, we can
write (1.8) completely in terms of ϕ. If we write φ = logϕ2, we have the following
equivalent system of integro-differential equations:

Theorem 3. Let (Rn, g) be a pseudo-Euclidean space with coordinates (x1, . . . ,
xn) and metric gij = δijεi, 1 ≤ i, j ≤ n, where εi = ±1. Let Ω ⊂ R

n be an open

subset and consider smooth functions φ(ξ) and f(ξ) such that ξ : Ω ⊂ R
n → R is

given by ξ =
∑

k(τεkx
2
k + αkxk + βk). Then (Ω, ḡ) is a gradient Ricci soliton with

potential function f(ξ) and ḡ = e−φg if and only if the functions φ and f satisfy

f ′ −J (φ)e−φ +
n− 2

2
φ′ = 0,(1.9)

Tφ′′ + 2nτφ′ + J (φ)(Te−φ)′ − 2λe−φ = 0.(1.10)

for

J (φ) = c1 +
n− 2

4

ˆ

eφ(φ′)2 dξ,(1.11)

T = 4τξ + Λ,(1.12)

where c1, τ, αk, βk ∈ R and Λ =
∑

k(εkα
2
k − 4τβk).

Particular solutions given by Theorem 3 are described in the following two ex-
amples:

Example 1. The equations in Theorem 3 have a simple form when n = 2. Recall
that any Riemannian or Lorentzian 2-dimensional manifold is locally conformally flat.
Consequently, when we consider n = 2 in Theorem 3, we have the differential equa-
tions that describe all gradient Ricci solitons in 2-dimensional pseudo-Riemannian or
Riemannian manifolds. In this case, the functions φ and f satisfy

(1.13) f ′ = c1e
−φ

and

(1.14)
[(

φ′ + c1e
−φ
)

(4τξ + Λ)
]

′

= 2λe−φ
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where τ, αk, βk ∈ R and Λ =
∑

k(εkα
2
k − 4τβk). In particular, for the steady case,

the solutions of (1.14) are given by

(1.15)
eφ = −

c1
4τ − c2

(4τξ + Λ) + c3(4τξ + Λ)c2/4τ , if c2 6= 4τ,

eφ = −
c1
4τ

(4τξ + Λ) log(4τξ + Λ) + c3(4τξ + Λ), if c2 = 4τ,

for real constants c2 and c3. In fact, equation (1.14) becomes the following linear
ODE for the function Y = eφ

(1.16) Y ′ −
c2Y

4τξ + Λ
= −c1.

The solutions of φ are given by (1.15).
In the Riemannian case, we can choose c1 = −1, c2 = 0, c3 = 1, αi = βi = 0 and

τ = 1 to obtain the cigar soliton (R2, ḡ, f), where

ḡ =
dx2

1 + dx2
2

1 + x2
1 + x2

2

and f(x1, x2) = − log(1 + x2
1 + x2

2).

It is important to observe that the case n = 2 was not considered in [1]. Therefore,
when τ = 0, Example 1 complements the results contained therein.

Example 2. A second class of solutions provided by Theorem 3 is when eφ =
T 2m, for T (ξ) = 4τξ + Λ, τ 6= 0, and a real constant m. Since m = 0 and m = 1
provide trivial Ricci solitons, in what follows we will consider m 6= 0 and m 6= 1. In
this case, we have:

J (φ) =







c1 + 4(n− 2)m2τc2 +
4τm2(n− 2)

2m− 1
T 2m−1, m 6= 1

2
,

c1 + (n− 2)τc2 + (n− 2)τ log(T ), m = 1
2
.

If m 6= 1
2
, equation (1.10) becomes the following polynomial equation on T :

(1.17) 2τ(1− 2m)(c1 + 4(n− 2)m2τc2)− λ+ 8τ 2m(1−m)(n− 2)T 2m−1 = 0.

Therefore, the only possibility one has is n = 2 and 2τ(1− 2m)c1 = λ. In this case,
the corresponding non-trivial gradient Ricci soliton is shrinking or expanding, with
potential function given by

f(ξ) =
c1

4τ(1 − 2m)
(4τξ + Λ)1−2m + c2.

When m = 1
2
, a straightforward computation shows that (1.10) reduces to

4(n − 2)τ 2 = λ. In this case, the corresponding non-trivial gradient Ricci soliton
is shrinking or steady, with potential function given by

f(ξ) =
2c1 + (c2 − 2)τ(n− 2)

8τ
log(4τξ + Λ) +

n− 2

8
[log(4τξ + Λ)]2 + c3.

Remark 1. In the pseudo-Riemannian setting, the causal character of ∇f is
given by the sign of 4τξ + Λ, since |∇f |2 = (ϕf ′)2(4τξ + Λ). In our examples, the
isotropic case is only allowed in Example 1, where we can obtain infinitely many
steady gradient Ricci solitons since equation (1.14) is trivially satisfied. Example
2 provides only solutions where ∇f is non-isotropic, since τ 6= 0 in this case. The
causal character of ∇f may change accordingly to the constants involved.
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Remark 2. Examples 1 and 2 are given explicitly with well-determined con-
stants λ and they are unique up to initial conditions. In Example 1, we consider the
steady case, while Example 2 provides shrinking, steady or expanding gradient Ricci
solitons, depending on a relation of constants (given by the initial conditions, the
dimension and the type of the solutions) that determines λ. Since two Ricci soliton
potential vector fields differ in a homothetic vector field (see [2]), Examples 1 and 2
may be considered to explicitly obtain new examples, by adding homothetic vector
fields to the potential vector fields obtained there.

2. Proofs of the main results

This section is reserved for the proofs of the main results of this paper. Let us
start with the following lemma:

Lemma 1. Let (Rn, g) be a pseudo-Euclidean space with cartesian coordinates

(x1, . . . , xn) and metric gij = δijεi, 1 ≤ i, j ≤ n, where εi = ±1 which at least one

equal to 1. Let Ω ⊂ R
n be an open subset and f, ϕ : Ω → R be smooth functions.

If (Ω, ḡ) is a gradient Ricci soliton with potential function f and ḡ = g/ϕ2, then the

functions ϕ and f satisfy

(2.1) nεi[(n− 2)ϕ,ii + ϕf,ii + 2ϕ,if,i] =
∑

k

εk [(n− 2)ϕ,kk + ϕf,kk + 2ϕ,kf,k] .

Proof. Taking the trace of equation (1.3) we obtain

Rḡ +∆ḡf = nλ.(2.2)

It is well known that if ḡ = g/ϕ2 (cf. Lemma 1 in [10]), then

Ricḡ =
1

ϕ2
{(n− 2)ϕHessg(ϕ) + [ϕ∆gϕ− (n− 1)|∇gϕ|

2]g}.

Hence, the scalar curvature of ḡ is given by

Rḡ =

n
∑

k=1

εkϕ
2 (Ricḡ)kk = (n− 1)(2ϕ∆gϕ− n|∇gϕ|

2)

= (n− 1)

[

2ϕ
∑

k

εkϕ,kk − n
∑

k

εk(ϕ,k)
2

]

=
∑

k

εk
[

2(n− 1)ϕϕ,kk − n(n− 1)(ϕ,k)
2
]

.(2.3)

On the other hand,

(2.4) ∆ḡf =
∑

k

εk
[

ϕ2f,kk − (n− 2)ϕϕ,kf,k
]

.

Then, from (2.2), (2.3) and (2.4) we have

(2.5)
∑

k

εk
[

2(n− 1)ϕϕ,kk − n(n− 1)ϕ2
,k + ϕ2f,kk − (n− 2)ϕϕ,kf,k

]

= nλ.

Multiplying (1.5) by nεi and comparing with (2.5) we obtain the (2.1). �

Proof of Theorem 1. By hypothesis f(ξ) and ϕ(ξ) are functions of ξ. Then, from
(1.4) we have the following equation

(n− 2)[ϕ′′ξ,iξ,j + ϕ′ξ,ij] + ϕ[f ′′ξ,iξ,j + f ′ξ,ij] + 2ϕ′f ′ξ,iξ,j = 0,
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which is rewritten as

(2.6) [(n− 2)ϕ′′ + ϕf ′′ + 2ϕ′f ′]ξ,iξ,j + [(n− 2)ϕ′ + ϕf ′]ξ,ij = 0.

Dividing (2.6) by ξ,iξ,j we conclude that

(2.7) F (ξ) =
ξ,ij
ξ,iξ,j

,

for some smooth function F (ξ). On the other hand, equation (2.1) in Lemma 1
implies that

[(n−2)ϕ′′+ϕf ′′+2ϕ′f ′]

[

nεiξ
2
,i −

∑

k

εkξ
2
,k

]

+[(n−2)ϕ′+ϕf ′]

[

nεiξ,ii −
∑

k

εkξ,kk

]

= 0.

From (2.6), (2.7) and the above equation we have

(2.8) [(n− 2)ϕ′ + ϕf ′]

{[

nεiξ,ii −
∑

k

εkξ,kk

]

− F (ξ)

[

nεiξ
2
,i −

∑

k

εkξ
2
,k

]}

= 0.

Observe that the soliton is trivial if (n− 2)ϕ′ +ϕf ′ = 0. In fact, supposing that,
the first derivative of this equation leads us to

(n− 2)ϕ′′ + ϕf ′′ + ϕ′f ′ = 0.

Therefore, from (2.6) we have ϕ′f ′ξ,iξ,j = 0. This equation implies that either ϕ
or f are constant functions. In any case, we have that ϕ and f must be trivial.
Consequently, from (2.8) we conclude that

[

nεiξ,ii −
∑

k

εkξ,kk

]

= F (ξ)

[

nεiξ
2
,i −

∑

k

εkξ
2
,k

]

,

and, consequently,

(2.9) nεi

[

(ξ,i)e
−

´

Fdξ
]

,i
=
∑

k

εk

[

(ξ,k)e
−

´

Fdξ
]

,k
.

At this point, let us observe that equation (2.7) can be integrated as the following

log(ξ,i) =

ˆ

Fdξ + Fi(x̂j),

where the symbol x̂j denotes that Fi does not depend on the variable xj . By consid-
ering this process for all j 6= i, we have

(2.10) ξ,i = e
´

Fdξ+Fi(xi) = GiG,

where Gi(xi) = eFi(xi) and G(ξ) = e
´

Fdξ. Therefore, equations (2.9) and (2.10) imply
that

nεiGi,i =
∑

k

εkGk,k.

Observe that the left side of the above equation depends only on the variable xi,
thus this implies that Gi(xi) = 2τεixi + αi, where αi and τ are real constants. Since
ξ,i
Gi

= G we have for all i 6= j that

(2.11)
ξ,i

2τεixi + αi
=

ξ,j
2τεjxj + αj

.
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The characteristic for equation (2.11) implies that

(2.12) ξ = Ψ

(

∑

i

τεix
2
i + αixi + βi

)

,

where Ψ is a smooth function. Conversely, let us suppose that ξ = Ψ(
∑

i τεix
2
i+

αixi+βi), for a real smooth function Ψ and constants τ, αi, βi. Since we are consider-
ing smooth functions by f(ξ) and ϕ(ξ) as solutions of (1.4) and (1.5), we can suppose,
without loss of generality, that ξ =

∑

k Uk(xk), where Uk(xk) = τεkx
2
k + αkxk + βk,

then we have

ϕ,i = ϕ′U ′

i , ϕ,ij = ϕ′′U ′

iU
′

j , ϕ,ii = ϕ′′(U ′

i)
2 + ϕ′U ′′

i ,

f,i = f ′U ′

i , f,ij = f ′′U ′

iU
′

j and f,ii = f ′′(U ′

i)
2 + f ′U ′′

i .

Hence, from equations (1.4) and (1.5) we get

(2.13) [(n− 2)ϕ′′ + f ′′ϕ+ 2ϕ′f ′]U ′

iU
′

j = 0

and for i = j

ϕ[(n− 2)ϕ′′ + f ′′ϕ + 2ϕ′f ′](U ′

i)
2 + ϕ[(n− 2)ϕ′ + ϕf ′]U ′′

i

+ εi

{

[

ϕϕ′′ − (n− 1)(ϕ′)2 − ϕϕ′f ′
]

∑

k

εk(U
′

k)
2 + ϕϕ′

∑

k

εkU
′′

k

}

= εiλ(2.14)

From (2.13) we get

(n− 2)ϕ′′ + f ′′ϕ+ 2ϕ′f ′ = 0.(2.15)

For the second equation we first have
∑

k εk(U
′

k)
2 = 4τξ + Λ and

∑

k εkU
′′

k = 2nτ ,
with Λ =

∑

k(εkαk − 4τβk). Using (2.15) we can write (2.14) as

(2.16) 2τϕ[2(n−1)ϕ′+ϕf ′]+
[

ϕϕ′′ − (n− 1)(ϕ′)2 − ϕϕ′f ′
]

(4τξ+Λ) = λ. �

Proof of Theorem 2. Theorem 2 is a consequence of Theorem 1. The system of
ODEs is given by equations (2.15) and (2.16). �

Proof of Theorem 3. Since φ = logϕ2 and

(2.17)
ϕ′′

ϕ
=

(

ϕ′

ϕ

)2

+

(

ϕ′

ϕ

)

′

the equation (1.7) is equivalent to

f ′′ + φ′f ′ +
n− 2

2

(

(φ′)2

2
+ φ′′

)

= 0.

The equation above is a first order linear ODE for the f ′ whose solution is given by
(1.9). On the other hand, multiplying (1.8) by 2ϕ−2 we have

(2.18) T ′

(

2(n− 1)
ϕ′

ϕ
+ f ′

)

+ 2

(

ϕ′′

ϕ
− (n− 1)

(

ϕ′

ϕ

)2

−
ϕ′

ϕ
f ′

)

T = 2λϕ−2,

where T4τξ + Λ. Therefore, equations (2.17) and (2.18) imply

(2.19)

(

2
ϕ′

ϕ

)

′

T + f ′

(

T ′ − 2
ϕ′

ϕ
T

)

+ 2
ϕ′

ϕ

(

(n− 1)T ′ + (2− n)
ϕ′

ϕ
T

)

= 2λϕ−2.
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By (1.9) and φ = logϕ2 we rewrite (2.19) as

φ′′T +

(

J (φ)e−φ −
(n− 2)

2
φ′

)

(T ′ − φ′T )

+ φ′

(

(n− 1)T ′ +
(2− n)

2
φ′T

)

= 2λe−φ.

(2.20)

Since (Te−φ)′ = e−φ(T ′ − φ′T ), we have (1.10) from (2.20). �
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