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Abstract. We provide a characterization of locally intrinsic Lipschitz functions in Carnot

groups of step 2 in terms of their intrinsic distributional gradients. We also prove an area formula

with respect to the spherical Hausdorff measure for the graph of an intrinsic Lipschitz function.

1. Introduction

The notion of rectifiable set is a key one in calculus of variations and in geometric
measure theory. To develop a satisfactory theory of rectifiable sets inside Carnot
groups has been the object of much research in the last years. For a general theory
of rectifiable sets in euclidean spaces one can see [13, 14, 32] while a general theory
in metric spaces can be found in [2].

Rectifiable sets are classically defined as contained in the countable union of C1

submanifolds. An equivalent characterization can be derived from a Rademacher type
theorem, which is valid in a special subclass of Carnot groups including groups of
step 2 (see Theorem 4.3.5 in [16]). As in Euclidean spaces, 1-codimensional rectifiable
sets in these groups can be equivalently defined using intrinsic C

1 submanifolds or
intrinsic Lipschitz graphs (see Proposition 4.4.4 in [16]). Hence, understanding these
objects, which naturally take the role of C1 submanifolds or Lipschitz graphs, is a
preliminary task in developing a satisfactory theory of rectifiable sets inside Carnot
groups.

In this paper we focus our attention on the notion of intrinsic Lipschitz graphs
inside the Carnot groups. A Carnot group G is a connected, simply connected and
stratified Lie group and has a sufficiently rich compatible underlying structure, due
to the existence of intrinsic families of left translations and dilations and depending
on the horizontal vector fields which generate the horizontal layer. We call intrinsic
any notion depending directly by the structure and geometry of G. For a complete
description of Carnot groups [7, 29, 37] are recommended.

Euclidean spaces are commutative Carnot groups and are the only commutative
ones. The simplest but, at the same time, non-trivial instances of non-Abelian Carnot
groups are provided by the Heisenberg groups Hn (see for instance [7, 37]).

We begin by recalling that an intrinsic regular hypersurface (i.e. a topological
codimension 1 surface) S ⊂ G is locally defined as a non critical level set of a C

1

intrinsic function. More precisely, there exists a continuous function f : G → R

such that locally S = {p ∈ G : f(p) = 0} and the intrinsic gradient ∇Gf =
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(X1f, . . . , Xmf) exists in the sense of distributions and it is continuous and non van-
ishing on S. In a similar way, a k-codimensional regular surface S ⊂ G is locally de-
fined as a non critical level set of a C

1 intrinsic vector function f = (f1, . . . , fk) : G →
R
k.

On the other hand, the intrinsic graphs came out naturally in [18], while studying
level sets of Pansu differentiable functions from H

n to R. The simple idea of intrinsic
graph is the following one: let M and W be complementary subgroups of G, i.e.
homogeneous subgroups such that W ∩M = {0} and G = W ·M (here · indicates
the group operation in G and 0 is the unit element), then the intrinsic left graph of
φ : W → M is the set

graph (φ) := {a · φ(a) | a ∈ W}.
Hence the existence of intrinsic graphs depends on the possibility of splitting G as
a product of complementary subgroups hence it depends on the structure of the Lie
algebra associated to G.

Specifically the notion of intrinsic Lipschitz graphs has been introduced with
different degrees of generality in [4, 16, 21, 18, 28]. In [17] the authors provide a
comprehensive presentation of this theory. A function φ : O ⊂ W → M is said to
be intrinsic Lipschitz if it is possible to put, at each point p ∈ graph (φ), an intrinsic
cone (see Definition 2.10) with vertex p, axis M and fixed opening, intersecting
graph (φ) only at p. We call a set S ⊂ G an intrinsic Lipschitz graph if there exists
an intrinsic Lipschitz function φ : O ⊂ W → M such that S = graph (φ) for suitable
complementary subgroups W and M of G.

Through the implicit function theorem (see [19, 30]), it is known that every
k-codimensional regular surface can be locally represented as intrinsic graph of a
function φ : O ⊂ W → M. Conversely, we established in [11] that the intrinsic graph
of an uniformly intrinsically differentiable map is a regular surface. A function is
intrinsic differentiable if it is well approximated by appropriate linear type functions,
denoted intrinsic linear functions (see Section 2). In particular, when W and M are
both normal subgroup, this notion corresponds to that of Pansu differentiability.

When M is one dimensional we can identify φ : O ⊂ W → M with a real valued
continuous function defined on a one codimensional homogeneous subgroup of G

(see Remark 3.3). In this case in Heisenberg groups the parameterization φ is weak
solution of a system of non-linear first order PDEs Dφφ = w, where w is a continuous
map and Dφ are suitable ‘derivatives’ Dφ

j φ of φ (see [3, 6, 40]). The non linear first

order differential operators Dφ
j were introduced by Serra Cassano et al. in the context

of Heisenberg groups H
n (see [37] and the references therein).

Following the notations in [37] the operators Dφ
j are called intrinsic derivatives

of φ; and Dφφ, the vector of the intrinsic derivatives of φ, is the intrinsic gradient of
φ. In the first Heisenberg group H

1 the operator Dφ reduces to the classical Burgers’
operator. In a general Carnot group of step κ, Dφ

j φ is the projection on W of a
horizontal vector field of G on the points of the intrinsic graph of φ (see [28]).

More generally, Kozhenikov talks about projected vector fields and he consider the
projection on W of elements belong to Lie algebra of W (see Definition 4.2.12, [28]).
He characterizes intrinsic Lipschitz graphs and regular surfaces in terms of metric
properties of integral curves of these projected vector fields (see Theorem 4.2.16 and
Theorem 4.3.1 in [28]).

In [11, 12] we give an explicit form of intrinsic derivatives of φ : O ⊂ W → M,
where G = W · M is a Carnot group of step 2 (see Section 5.1, [7]) and then we
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extend Theorem 1.3 and Theorem 5.7 in [3] proved in H
n. Precisely, we prove that

the intrinsic graph of continuous map φ is a regular hypersurface if and only if φ
and its intrinsic gradient can be uniformly approximated by C

1 functions and φ
is distributional solution of PDEs’ system Dφφ = w, with w is a continuous map.
Moreover, we also show that these assumptions are equivalent to the fact that φ is
broad* solution of Dφφ = w (see Definition 8.1) and it is little 1/2-Hölder continuous
(see Proposition 8.1 (1)). In H

1 the notion of broad* solution extends the classical
notion of broad solution for Burgers’ equation through characteristic curves provided
φ and w are locally Lipschitz continuous. In our case φ and w are supposed to be
only continuous then the classical theory breaks down. On the other hand broad*
solutions of the system Dφφ = w can be constructed with a continuous datum w.

The main contribution of this paper is to provide counterparts for results that
were previously known in Heisenberg groups in the setting of arbitrary Carnot groups
of step 2:

• Theorem 4.1, 4.2 generalize a result by Monti and Vittone in [34]
• Theorem 5.5, 6.1 generalize results by Citti, Manfredini, Pinamonti, Serra

Cassano in [9]
• Theorem 7.1, 7.2 generalize a result by Bigolin, Caravenna, Serra Cassano

in [5]
• Theorem 8.2 generalizes a result by Ambrosio, Serra Cassano, Vittone in [3]

They are often proven by similar arguments. The main difference between 2 step
Carnot groups and Heisenberg groups is that in H

n there is only one vertical (i.e.
non-horizontal) coordinate, whereas for 2 step Carnot groups there can be many.

Precisely we show that a locally intrinsic Lipschitz map φ is a continuous dis-
tributional solution of the non-linear first order PDEs’ system Dφφ = w, where w
is only a measurable function (see Theorem 7.1). This is a direct consequence of
the fact that φ can be approximated by a sequence of smooth maps, with pointwise
convergent intrinsic gradient (see Theorem 6.1).

Moreover the opposite implication is true when φ is also locally 1/2-Hölder con-
tinuous map along the vertical components (see Theorem 7.2). In order to establish
this statement we need a preliminary result: Lemma 7.3. Here we prove that a locally
1/2-Hölder continuous map along the vertical components, which is also a continuous
distributional solution of the system Dφφ = w, is a Lipschitz map in classical sense
along any characteristic curve of the vector fields Dφ.

Finally in the last section, we consider the system Dφφ = w, where w is supposed
to be a continuous map and not just measurable function as opposed to the previous
sections. We give a characterization of G-regular hypersurfaces in terms of distribu-
tional solution of this system. Our strategy will be to prove that each continuous
distributional solution of the system Dφφ = w is a broad* solution and vice versa
(see Proposition 8.1).

The plan of the work is the following:
In Section 2 we provide the definitions and some properties about the differential

calculus within Carnot groups. In particular we give the general definitions and some
basic tools of intrinsic differentiable and intrinsic Lipschitz maps.

Section 3 is specialized to Carnot groups of step 2 (see Chapter 3, [7]).
Section 4 is dedicated to Caccioppoli sets in Carnot groups of step 2. We show

that the boundary of sets with finite G-perimeter and having a bound on the orien-
tation of the measure theoretic normal is the intrinsic graph of an intrinsic Lipschitz
function (see Theorem 4.2).
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Sections 5 and 6 contain an area formula with respect to the spherical Hausdorff
measure for the graph of an intrinsic Lipschitz function (see Theorem 5.7) and we
characterize intrinsic Lipschitz functions as maps which can be approximated by a
sequence of smooth maps, with pointwise convergent and uniformly bounded intrinsic
gradient (see Theorem 6.1).

Section 7 contains the main results of this paper, i.e. Theorem 7.1 and Theo-
rem 7.2.

Section 8 is dedicated to G-regular hypersurafces. We show that if we consider
a locally little 1/2-Hölder continuous map along the vertical components, then it
is a distributional solution of the system Dφφ = w, where w is a given continuous
function if and only if its graph is a G-regular hypersurface (see Theorem 8.2).

Acknowledgements. We wish to express our gratitude to R. Serapioni and F. Serra
Cassano, for having signaled us this problem and for many invaluable discussions
during our PhD at University of Trento. We thank B. Franchi, A. Pinamonti and D.
Vittone for useful discussions and important suggestions on the subject.

2. Notations and preliminary results

Carnot groups. We begin by recalling briefly the definition of Carnot groups.
For a general account see e.g. [7, 17, 29, 37].

A Carnot group G = (G, ·, δλ) of step κ is a connected and simply connected Lie
group whose Lie algebra g admits a stratification, i.e. a direct sum decomposition
g = V1 ⊕ V2 ⊕ · · · ⊕ Vκ, with the following property: the entire Lie algebra g is
generated by its first layer V1, the so called horizontal layer, that is

{

[V1, Vl−1] = Vl if 2 ≤ l ≤ κ,

[V1, Vκ] = {0}.
We denote by N the dimension of g and by ns the dimension of Vs.

The exponential map exp : g → G is a global diffeomorphism from g to G. Hence,
if we choose a basis {X1, . . . , XN} of g, any p ∈ G can be written in a unique way as
p = exp(p1X1+· · ·+pNXN) and we can identify p with theN -tuple (p1, . . . , pN) ∈ R

N

and G with (RN , ·, δλ). The identity of G is the origin of RN .
For any λ > 0, the (non isotropic) dilations δλ : G → G are automorphisms of G

and are defined as

δλ(p1, . . . , pN) = (λα1p1, . . . , λ
αNpN)

where αl ∈ N is called homogeneity of the variable pl in G and is given by αl = j
whenever mj−1 < l ≤ mj with ms − ms−1 = ns. Hence 1 = α1 = · · · = αm1 <
αm1+1 = 2 ≤ · · · ≤ αN = κ.

For any p ∈ G the intrinsic left translation τp : G → G are defined as

q 7→ τpq := p · q = pq.

The explicit expression of the group operation · is determined by the Campbell–
Hausdorff formula. It has the form

p · q = p+ q +Q(p, q) for all p, q ∈ G ≡ R
N ,

where Q = (Q1, . . . ,QN ) : R
N × R

N → R
N . Here Ql(p, q) = 0 for each l =

1, . . . , m1 and each 1 < j ≤ κ and mj−1 + 1 ≤ l ≤ mj we have Ql(p, q) =
Ql((p1, . . . , pmj−1

), (q1, . . . , qmj−1
)). Moreover every Ql is a homogeneous polyno-

mial of degree αl with respect to the intrinsic dilations of G. It is useful to think
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G = G
1 ⊕ G

2 ⊕ · · · ⊕ G
κ where G

l = exp(Vl) = R
ni is the lth layer of G and to

write p ∈ G as (p1, . . . , pκ) with pl ∈ G
l. According to this

(1) p·q = (p1+q1, p2+q2+Q2(p1, q1), . . . , pκ+qκ+Qκ((p1, . . . , pκ−1), (q1, . . . , qκ−1))

for every p = (p1, . . . , pκ), q = (q1, . . . , qκ) ∈ G. By Theorem 3.2.2 in [7], we know
that

(2) p−1 = (−p1, . . . ,−pκ)
The norm of Rns is denoted with the symbol | · |Rns .
An absolutely continuous curve γ : [0, T ] → G is a sub-unit curve with respect to

X1, . . . , Xm1 if it is an horizontal curve, that is if there are real measurable functions
h1(t), . . . , hm1(t), t ∈ [0, T ] such that

γ̇(s) =

m1
∑

l=1

hl(t)Xl(γ(t)), for a.e. t ∈ [0, T ],

and if
∑m1

l=1 h
2
l ≤ 1.

Definition 2.1. (Carnot–Carathéodory distance) If p, q ∈ G, their cc-distance
dcc(p, q) is

dcc(p, q) = inf{T > 0: there is a subunit curve γ with γ(0) = p, γ(T ) = q}
The set of subunit curves joining p and q is not empty, by Chow’s theorem, since

the rank of the Lie algebra generated by X1, . . . , Xm1 is N ; hence dcc is a distance
on G inducing the same topology as the standard Euclidean distance.

A homogeneous norm on G is a nonnegative function p 7→ ‖p‖ such that for all
p, q ∈ G and for all λ ≥ 0

‖p‖ = 0 if and only if p = 0,

‖δλp‖ = λ‖p‖, ‖p · q‖ ≤ ‖p‖+ ‖q‖.
There is a particular homogeneous norm defined in Theorem 5.1 in [20], as fol-

lowing

(3) ‖(p1, . . . , pκ)‖ := max
s=1,...,κ

{

ǫs|ps|1/sRns

}

for all (p1, . . . , pκ) ∈ G

with ǫ1 = 1, and ǫs ∈ (0, 1] depending on the structure of the group for s = 2, . . . , κ.
This homogeneous norm is symmetric, i.e. ‖p‖ = ‖p−1‖ for all p ∈ G and such that

‖(p1, 0 . . . , 0)‖ = |p1|Rn1 ,

for all p1 ∈ R
n1 . Given any homogeneous norm ‖ · ‖, it is possible to introduce a

distance in G given by

d(p, q) = d(p−1q, 0) = ‖p−1q‖ for all p, q ∈ G.

We observe that any distance d obtained in this way is always equivalent with the
Carnot–Carathéodory’s distance dcc of the group. Both d and dcc are well behaved
with respect to left translations and dilations, i.e. for all p, q, q′ ∈ G and λ > 0,

d(p · q, p · q′) = d(q, q′), d(δλq, δλq
′) = λd(q, q′).

Moreover, for any bounded subset Ω ⊂ G there exist positive constants c1 =
c1(Ω), c2 = c2(Ω) such that for all p, q ∈ Ω

c1|p− q|RN ≤ d(p, q) ≤ c2|p− q|1/κ
RN
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and, in particular, the topology induced on G by d is the Euclidean topology. For
p ∈ G and r > 0, U(p, r) will be the open ball associated with the distance d.
Intrinsic t-dimensional spherical Hausdorff measure St on G, t ≥ 0, is obtained from
d, following Carathéodory construction (see for instance [32]).

W.l.o.g. we consider the homogeneous norm defined in (3). Indeed from the fact
that all the homogeneous norms are equivalent, all the estimates we will use hold with
an arbitrary homogeneous norm. On the other hand, Theorem 2.4, Theorem 2.5 and
Theorem 5.7 are only proven for specific choices of left invariant distance d∞, which
is the distance induced by the maximum norm (3). We will emphasize this last fact
at the beginning of each statement.

The Hausdorff dimension of (G, d) as a metric space is denoted homogeneous

dimension of G and it can be proved to be the integer q :=
∑N

j=1 αj =
∑κ

l=1 i

dimVl ≥ N (see [33]). The subbundle of the tangent bundle TG, spanned by the
vector fields X1, . . . , Xm1 plays a particularly important role in the theory, and is
called the horizontal bundle HG; the fibers of HG are

HGp = span{X1(p), . . . , Xm1(p)}, p ∈ G.

A sub Riemannian structure is defined on G, endowing each fiber of HG with a scalar
product 〈·, ·〉p and a norm | · |p making the basis X1(p), . . . , Xm1(p) an orthonormal
basis. Hence, if v =

∑m1

l=1 vlXl(p) = v1 and w =
∑m1

l=1wlXl(p) = w1 are in HG, then
〈v, w〉p :=

∑m1

l=1 vlwl and |v|2p := 〈v, v〉p. We will write, with abuse of notation, 〈·, ·〉
meaning 〈·, ·〉p and | · | meaning | · |p.

The sections of HG are called horizontal sections, a vector of HGp is a horizontal
vector while any vector in TGp that is not horizontal is a vertical vector.

The Haar measure of the group G = R
N is the Lebesgue measure dLN . It is left

(and right) invariant. Various Lebesgue spaces on G are meant always with respect
to the measure dLN and are denoted as Lp(G).

2.2. C
1

G
functions, G-regular surfaces, Caccioppoli sets. (See [37]) In

[35] Pansu introduced an appropriate notion of differentiability for functions acting
between Carnot groups. We recall this definition in the particular instance that is
relevant here.

Let U be an open subset of a Carnot group G. A function f : U → R
k is Pansu

differentiable or more simply P-differentiable in a ∈ U if there is a homogeneous
homomorphism

dPf(a) : G → R
k,

the Pansu differential of f in a, such that, for b ∈ U ,

lim
r→0+

sup
0<‖a−1b‖<r

|f(b)− f(a)− dPf(a)(a
−1b)|Rk

‖a−1b‖ = 0.

Saying that dPf(a) is a homogeneous homomorphism we mean that dPf(a) : G → R
k

is a group homomorphism and also that dPf(a)(δλb) = λdPf(a)(b) for all b ∈ G and
λ ≥ 0.

Observe that, later on in Definition 2.8, we give a different notion of differentia-
bility for functions acting between subgroups of a Carnot group and we reserve the
notation df or df(a) for that differential.

We denote C
1
G
(U ,Rk) the set of functions f : U → R

k that are P-differentiable
in each a ∈ U and such that dPf(a) depends continuously on a. It can be proved that
f = (f1, . . . , fk) ∈ C

1
G
(U ,Rk) if and only if the distributional horizontal derivatives
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Xlfj, for l = 1 . . . , m1, j = 1, . . . , k, are continuous in U . Remember that C1(U ,R) ⊂
C

1
G
(U ,R) with strict inclusion whenever G is not abelian (see Remark 6 in [18]).
The horizontal Jacobian (or the horizontal gradient if k = 1) of f : U → R

k in
a ∈ U is the matrix

∇Gf(a) := [Xlfj(a)]l=1...m1,j=1...k

when the partial derivatives Xifj exist. Hence f = (f1, . . . , fk) ∈ C
1
G
(U ,Rk) if

and only if its horizontal Jacobian exists and is continuous in U . The horizontal
divergence of φ := (φ1, . . . , φm1) : U → R

m1 is defined as

divGφ :=

m1
∑

j=1

Xjφj

if Xjφj exist for j = 1, . . . , m1.
Now we use the notion of P-differentiability do introduce the G-regular surfaces.

Definition 2.2. S ⊂ G is a k-codimensional G-regular surface if for every p ∈ S
there are a neighbourhood U of p and a function f = (f1, . . . , fk) ∈ C

1
G
(U ,Rk) such

that

S ∩ U = {q ∈ U : f(q) = 0}
and dPf(q) is surjective, or equivalently if the (k ×m1) matrix ∇Gf(q) has rank k,
for all q ∈ U .

The class of G-regular surfaces is different from the class of Euclidean regular
surfaces. In [26], the authors give an example of H1-regular surfaces, in H

1 identified
with R

3, that are (Euclidean) fractal sets. Conversely, there are continuously differ-
entiable 2-submanifolds in R

3 that are not H1-regular surfaces (see [18, Remark 6.2]
and [3, Corollary 5.11]).

In the setting of Carnot groups, there is a natural definition of bounded variation
functions and of finite perimeter sets (see [24] or [37] and the bibliography therein).
We say that f : U → R is of bounded G-variation in an open set U ⊂ G and we
write f ∈ BVG(U), if f ∈ L1(U) and

‖∇Gf‖(U) :=sup
{

ˆ

U

f divGφ dLN : φ ∈ C
1
c(U , HG), |φ(p)| ≤ 1 for all p ∈ U

}

<+∞.

The space BVG,loc(U) is defined in the usual way.
In the setting of Carnot groups, the structure theorem for BVG functions reads

as follows.

Theorem 2.1. [8] If f ∈ BVG,loc(U) then ‖∇Gf‖ is a Radon measure on U .
Moreover, there is a ‖∇Gf‖ measurable horizontal section σf : U → HG such that
|σf(p)| = 1 for ‖∇Gf‖-a.e. p ∈ U and

ˆ

U

fdivGξ dLN =

ˆ

U

〈ξ, σf〉 d‖∇Gf‖,

for every ξ ∈ C
1
c(U , HG). Finally the notion of gradient ∇G can be extended from

regular functions to functions f ∈ BVG defining ∇Gf as the vector valued measure

∇Gf := −σf ‖∇Gf‖ = (−(σf )1 ‖∇Gf‖, . . . ,−(σf )m1 ‖∇Gf‖),
where (σf )i are the components of σf with respect to the base Xi.

A set E ⊂ G has locally finite G-perimeter, or is a G-Caccioppoli set, if χE ∈
BVG,loc(G), where χE is the characteristic function of the set E . In this case the
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measure ‖∇GχE‖ is called the G-perimeter measure of E and is denoted by |∂E|G.
Moreover we call generalized inward normal of ∂E in Ω the vector

νE(p) := −σχE
(p).

Fundamental estimates in geometric measure theory are the so-called relative and
global isoperimetric inequalities for Caccioppoli sets. The proof is established in [24],
Theorem 1.18.

Theorem 2.2. There exists a constant C > 0 such that for any G-Caccippoli
set E ⊂ G, for every p ∈ G and r > 0

min{LN (E ∩ U(p, r)) ,LN (U(p, r)−E)}(q−1)/q ≤ C|∂E|G(U(p, r))
and

min{LN (E) ,LN (G− E)}(q−1)/q ≤ C|∂E|G(G),

where q is homogeneous dimension of G defined in Section 2.1.

The perimeter measure is concentrated in a subset of topological boundary of E,
the so-called reduced boundary ∂∗

G
E.

Definition 2.3. (Reduced boundary) Let E ⊂ G be a G-Caccioppoli set. We
say that p ∈ ∂∗

G
E if

(1) |∂E|G(U(p, r)) > 0, for all r > 0,
(2) there exists limr→0

´

U(p,r)
νE d|∂E|G,

(3)
∣

∣

∣
limr→0

´

U(p,r)
νE d|∂E|G

∣

∣

∣
= 1.

The reduced boundary of a set E ⊂ G is invariant under group translations, i.e.

q ∈ ∂∗
G
E if and only if τpq ∈ ∂∗

G
(τpE)

and also νE(q) = ντpE(τpq).

Lemma 2.3. [1, Differentiation Lemma] If E ⊂ G is a G-Caccioppoli set, then

lim
r→0

ˆ

U(p,r)

νE d|∂E|G = νE(p), for |∂E|G-a.e. p,

hence |∂E|G is concentrated on the reduced boundary ∂∗
G
E.

The following results are only proven for specific choice of metric: the metric d∞.
Theorem 2.4 states that the perimeter measure equals a constant times the spherical
(q− 1)-dimensional Hausdorff measure restricted to the reduced boundary.

Theorem 2.4. [23, Theorem 4.18] Let G be a Carnot group of step 2, endowed
with a distance d∞. If E ⊂ G is a G-Caccioppoli set, then

|∂E|G = cSq−1 ∂∗
G
E,

where q is homogeneous dimension of G defined in Section 2.1.

At each point of the reduced boundary of a G-Caccioppoli set there is a (gener-
alized) tangent group:

Theorem 2.5. [20, Blow-up Theorem] Let G be a Carnot group of step 2,
endowed with a distance d∞, and let E ⊂ G be a set with locally finite G-perimeter.
If p ∈ ∂∗

G
E, then

lim
r→0

χEr,p
= χS+

G
(νE(p)) in L1

loc(G),
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where Er,p := δ1/r(τp−1E) = {q : τp(δr(q)) ∈ E} and

S+
G
(νE(p)) := {q = (q1, q2) ∈ G | 〈νE(p), q1〉 ≥ 0}.

Moreover, for all δ > 0

lim
r→0

|∂Er,p|G(U(0, δ)) = |∂S+
G
(νE(p))|G(U(0, δ))

and

|∂S+
G
(νE(p))|G(U(0, δ)) = HN−1(T g

G
(νE(0)) ∩ U(0, δ))

where HN−1 denotes the Euclidean Hausdorff measure and T g
G
(νE(0)) := {q =

(q1, q2) ∈ G | 〈νE(0), Q1〉 = 0} is the topological boundary of S+
G
(νE(0)).

Finally, as it is usual in the literature, we can also define the measure theoretic
boundary ∂∗,GE:

Definition 2.4. Let E ⊂ G be a measurable set. We say that p belongs to
measure theoretic boundary ∂∗,GE of E if

lim sup
r→0+

LN(E ∩ U(p, r))
LN(U(p, r)) > 0 and lim sup

r→0+

LN(Ec ∩ U(p, r))
LN(U(p, r)) > 0.

If E ⊂ G is G-Caccioppoli set, then

∂∗
G
E ⊂ ∂∗,GE ⊂ ∂E.

Moreover, Sq−1(∂∗,GE − ∂∗
G
E) = 0.

2.3. Complementary subgroups and graphs.

Definition 2.5. We say that W and M are complementary subgroups in G if
W and M are homogeneous subgroups 1 of G such that W ∩M = {0} and

G = W ·M.

By this we mean that for every p ∈ G there are pW ∈ W and pM ∈ M such that
p = pWpM.

The elements pW ∈ W and pM ∈ M such that p = pW · pM are unique because
of W ∩M = {0} and are denoted components of p along W and M or projections
of p on W and M. The projection maps PW : G → W and PM : G → M defined

PW(p) = pW, PM(p) = pM, for all p ∈ G

are polynomial functions (see Proposition 2.2.14 in [17]) if we identify G with R
N ,

hence are C
∞. Nevertheless in general they are not Lipschitz maps, when W and M

are endowed with the restriction of the left invariant distance d of G (see Example
2.2.15 in [17]).

Remark 2.6. The stratification of G induces a stratifications on the comple-
mentary subgroups W and M. If G = G

1⊕· · ·⊕G
κ then also W = W

1⊕· · ·⊕W
κ,

M = M
1 ⊕ · · ·⊕M

κ and G
i = W

i⊕M
i. A subgroup is horizontal if it is contained

in the first layer G
1. If M is horizontal then the complementary subgroup W is

normal.

1An homogeneous subgroup W of G is a Lie subgroup such that δλa ∈ W for every a ∈ W and
λ > 0.
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Proposition 2.7. [4, Proposition 3.2] If W and M are complementary sub-
groups in G there is c0 = c0(W,M) ∈ (0, 1) such that for each pW ∈ W and
pM ∈ M

(4) c0(‖pW‖+ ‖pM‖) ≤ ‖pWpM‖ ≤ ‖pW‖+ ‖pM‖
Definition 2.6. We say that S ⊂ G is a left intrinsic graph or more simply an

intrinsic graph if there are complementary subgroups W and M in G and φ : O ⊂
W → M such that

S = graph (φ) := {aφ(a) : a ∈ O}.
Observe that, by uniqueness of the components along W and M, if S = graph (φ)

then φ is uniquely determined among all functions from W to M.
We call graph map of φ, the function Φ: O → G defined as

(5) Φ(a) := a · φ(a) for all a ∈ O.
Hence S = Φ(O) is equivalent to S = graph (φ).

The concept of intrinsic graph is preserved by translation and dilation, i.e.

Proposition 2.8. [17, Proposition 2.2.18] If S is an intrinsic graph then, for
all λ > 0 and for all q ∈ G, q · S and δλS are intrinsic graphs. In particular, if
S = graph (φ) with φ : O ⊂ W → M, then

(1) For all λ > 0,
δλ (graph (φ)) = graph (φλ)

where φλ : δλO ⊂ W → M and φλ(a) := δλφ(δ1/λa), for a ∈ δλO.
(2) For any q ∈ G,

q · graph (φ) = graph (φq)

where φq : Oq ⊂ W → M is defined as φq(a) := (PM(q−1a))−1φ(PW(q−1a)),
for all a ∈ Oq := {a : PW(q−1a) ∈ O}.

2.4. Intrinsic differentiability.

Definition 2.7. Let W and M be complementary subgroups in G. Then
ℓ : W → M is intrinsic linear if ℓ is defined on all of W and if graph (ℓ) is a
homogeneous subgroup of G.

We use intrinsic linear functions to define intrinsic differentiability as in the usual
definition of differentiability.

Definition 2.8. Let W and M be complementary subgroups in G and let
φ : O ⊂ W → M with O open in W. For a ∈ O, let p := a · φ(a) and φp−1 : Op−1 ⊂
W → M be the shifted function defined in Proposition 2.8.

(1) We say that φ is intrinsic differentiable in a if the shifted function φp−1 is
intrinsic differentiable in 0, i.e. if there is an intrinsic linear dφa : W → M

such that

lim
r→0+

sup
0<‖b‖<r

‖dφa(b)−1φp−1(b)‖
‖b‖ = 0.

The function dφa is the intrinsic differential of φ at a.
(2) We say that φ is uniformly intrinsic differentiable in a0 ∈ O or φ is u.i.d. in

a0 if there exist an intrinsic linear function dφa0 : W → M such that

lim
r→0+

sup
‖a−1

0 a‖<r

sup
0<‖b‖<r

‖dφa0(b)−1φp−1(b)‖
‖b‖ = 0.

Analogously, φ is u.i.d. in O if it is u.i.d. in every point of O.



Intrinsic Lipschitz graphs in Carnot groups of step 2 1023

Remark 2.9. Definition 2.8 is a natural one because of the following observa-
tions.

(i) If φ is intrinsic differentiable in a ∈ O, there is a unique intrinsic linear
function dφa satisfying (1). Moreover φ is continuous at a. (See Theorem 3.2.8 and
Proposition 3.2.3 in [16]).

(ii) The notion of intrinsic differentiability is invariant under group translations.
Precisely, let p := aφ(a), q := bφ(b), then φ is intrinsic differentiable in a if and only
if φqp−1 := (φp−1)q is intrinsic differentiable in b.

(iii) We recall that in Definition 3.16 in [4] the authors give another notion of uni-
formly intrinsic differentiable map but these notions are equivalent. Indeed, Propo-
sition 3.7 (3) in [11] implies that u.i.d. mappings in the sense of Definition 2.8 satisfy
the second point of Definition 3.16 in [4]. Moreover, it is clear, that if φ is u.i.d. then
it is intrinsic differentiable (i.e. the first point of Definition 3.16 in [4]). Finally the
first and third point of Definition 3.16 in [4] tells us that i.d. mappings in the sense
of Definition 3.16 in [4] satisfy Definition 2.8 (2).

The analytic definition of intrinsic differentiability of Definition 2.8 has an equiv-
alent geometric formulation. Indeed intrinsic differentiability in one point is equiva-
lent to the existence of a tangent subgroup to the graph. We recall the definition of
tangent subgroup:

Definition 2.9. [16, Definition 3.2.6] Let W,M be complementary subgroups
in G, φ : O → M with O relatively open in W and T be a homogeneous subgroup
of G. Let a ∈ O and p = a ·φ(a). We say that p ·T is the tangent coset to graph (φ)
in p if for all ǫ > 0 there is λ(ǫ) > 0 such that

graph (φ) ∩ {q ∈ G : ‖PW(p−1q)‖ < λ(ǫ)} ⊂ p · {q ∈ G : dist(q,T) ≤ ǫ‖q‖},
Theorem 2.10. [16, Theorem 3.2.8] Let W,M be complementary subgroups in

G and let φ : O → M with O relatively open in W. If φ is intrinsic differentiable in
a ∈ O, set T := graph (dφa). Then

(1) T is a homogeneous subgroup of G;
(2) T and M are complementary subgroups in G;
(3) p ·T is the tangent coset to graph (φ) in p := aφ(a).

Conversely, if p := aφ(a) ∈ graph (φ) and if there is T such that (1), (2), (3) hold,
then φ is intrinsic differentiable in a and the differential dφa : W → M is the unique
intrinsic linear function such that T := graph (dφa).

From now on we study the notions of intrinsic differentiability and of uniform
intrinsic differentiability for functions φ : W → H when H is a horizontal subgroup.
When H is horizontal, W is always a normal subgroup since, as observed in Re-
mark 2.6, it contains the whole strata G

2, . . . ,Gκ. In this case, the more explicit
form of the shifted function φp−1 allows a more explicit form of the equations in
Definition 2.8.

Proposition 2.11. [11, Theorem 3.5] Let H and W be complementary sub-
groups of G, O open in W and H horizontal. Then φ : O ⊂ W → H is intrinsic
differentiable in a0 ∈ O if and only if there is an intrinsic linear dφa0 : W → H such
that

lim
r→0+

sup
0<‖a−1

0 b‖<r

‖φ(b)− φ(a0)− dφa0(a
−1
0 b)‖

‖φ(a0)−1a−1
0 bφ(a0)‖

= 0.
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Analogously, φ is uniformly intrinsic differentiable in a0 ∈ O, or φ is u.i.d. in a0 ∈ O,
if there is an intrinsic linear dφa0 : W → H such that

lim
r→0+

sup
a,b

‖φ(b)− φ(a)− dφa0(a
−1b)‖

‖φ(a)−1a−1bφ(a)‖ = 0

where r is small enough so that U(a0, 2r) ⊂ O and the supremum is for ‖a−1
0 a‖ <

r, 0 < ‖a−1b‖ < r. Finally, if k < m1 is the dimension of H, and if, without loss of
generality, we assume that

H = {p : pk+1 = · · · = pN = 0} W = {p : p1 = · · · = pk = 0}
then there is a k × (m1 − k) matrix, here denoted as ∇φφ(a0), such that

(6) dφa0(b) =
(

∇φφ(a0)(bk+1, . . . , bm1)
T , 0, . . . , 0

)

,

for all b = (b1, . . . , bN) ∈ W. The matrix ∇φφ(a0) is called the intrinsic horizontal
Jacobian of φ in a0 or the intrinsic horizontal gradient or even the intrinsic gradient
if k = 1.

Observe that u.i.d. functions do exist. In particular, when H is a horizontal
subgroup, H valued euclidean C

1 functions are u.i.d.

Theorem 2.12. [11, Theorem 4.7] If W and H are complementary subgroups
of a step κ Carnot group G with H horizontal and k dimensional. If O is open in
W and φ : O ⊂ W → H is such that φ ∈ C

1(O,H) then φ is u.i.d. in O.

There is a comparison between G-regular surfaces (see Definition 2.2) and the
uniformly intrinsic differentiable maps, proved in [3, Theorem 1.2] for the Heisenberg
groups and in [11, Theorem 4.1] for Carnot groups of step κ.

Theorem 2.13. Let W and H be complementary subgroups of a step κ Carnot
group G with H horizontal and k dimensional. Let O be open in W, φ : O ⊂ W → H

and S := graph (φ). Then for every a0 ∈ O the following are equivalent:

(1) there are a neighbourhood U of a0 · φ(a0) and f ∈ C
1
G
(U ;Rk) such that

S ∩ U = {p ∈ U : f(p) = 0},
dPf(Q)|H : H → R

k is bijective for all Q ∈ U ,

and Q 7→
(

dPf(q)|H
)−1

is continuous.
(2) φ is u.i.d. in a neighbourhood O′ ⊂ O of a0.

Moreover, if (1) or equivalently (2), hold then, for all a ∈ O the intrinsic differential
dφa is

dφa = −
(

dPf(aφ(a))|H
)−1 ◦ dPf(aφ(a))|W.

Remark 2.14. If, without loss of generality, we choose a base X1, . . . , XN of g
such that X1, . . . , Xk are horizontal vector fields, H = exp(span{X1, . . . , Xk}) and
W = exp(span{Xk+1, . . . , XN}), then

H = {p : pk+1 = · · · = pN = 0}, W = {p : p1 = · · · = pk = 0},
and, if f = (f1, . . . , fk), then ∇Gf = (M1 | M2), where

M1 :=





X1f1 . . .Xkf1
...

. . .
...

X1fk . . .Xkfk



 , M2 :=





Xk+1f1 . . .Xm1f1
...

. . .
...

Xk+1fk . . .Xm1fk



 .
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Moreover, for all a ∈ O, for all q in a neighborhood U of aφ(a) and for all p ∈ G

(dPf(q)) (p) = (∇Gf( q))p
1

and the intrinsic differential is

dφa(b) =
((

∇φφ(a)
)

(bk+1, . . . , bm1)
T , 0, . . . , 0

)

=
((

−M1(aφ(a))
−1M2(aφ(a))

)

(bk+1, . . . , bm1)
T , 0, . . . , 0

)

,
(7)

for all b = (b1, . . . , bN ) ∈ W.

2.5. Intrinsic Lipschitz function. The following notion of intrinsic Lipschitz
function appeared for the first time in [21] and was studied in [5, 6, 16, 17, 22, 36].
Intrinsic Lipschitz functions play the same role as Lipschitz functions in Euclidean
context.

Definition 2.10. Let W,H be complementary subgroups in G, q ∈ G and
β ≥ 0. We can define the cones CW,H(q, β) with base W and axis H, vertex q,
opening β as

CW,H(q, β) = q · CW,H(0, β),

where CW,H(0, β) = {p : ‖pW‖ ≤ β‖pH‖}.
For all λ > 0 we have that δλ(CW,H(0, β1)) = CW,H(0, β1) and if 0 < β1 < β2,

then

CW,H(q, β1) ⊂ CW,H(q, β2).

Now we introduce the basic definitions of this paragraph.

Definition 2.11. Let W,H are complementary subgroups in G. We say that
φ : O ⊂ W → H is intrinsic CL-Lipschitz in O for some CL ≥ 0 if for all C1 > CL

(8) CW,H(p, 1/C1) ∩ graph (φ) = {p} for all p ∈ graph (φ).

The Lipschitz constant of φ in O is the infimum of the C1 > 0 such that (8) holds. An
intrinsic Lipschitz (continuous) function, with Lipschitz constant CL > 0, is called a
CL-Lipschitz function. We will call a set S ⊂ G an intrinsic Lipschitz graph if there
exists an intrinsic Lipschitz function φ : O ⊂ W → H such that S = graph (φ) for
suitable complementary subgroups W and H.

We observe that the geometric definition of intrinsic Lipschitz graphs has equiv-
alent analytic forms (see Proposition 3.1.3. in [17]):

Proposition 2.15. Let W,H be complementary subgroups in G, φ : O ⊂ W →
H and CL > 0. Then the following statements are equivalent:

(1) φ is intrinsic CL-Lipschitz in O.
(2) ‖PH(q

−1q′)‖ ≤ CL‖PW(q−1q′)‖ for all q, q′ ∈ graph (φ).
(3) ‖φq−1(a)‖ ≤ CL‖a‖ for all q ∈ graph (φ) and a ∈ Oq−1 .

If φ : O ⊂ W → H is intrinsic CL-Lipschitz in O then it is continuous. Indeed if
φ(0) = 0 then by the condition 3. of Proposition 2.15 φ is continuous in 0. To prove
the continuity in a ∈ O, observe that φq−1 is continuous in 0, where q = aφ(a).

Remark 2.16. In this paper we are interested mainly in the special case when
H is a horizontal subgroup and consequently W is a normal subgroup. Under these
assumptions, for all p = aφ(a), q = bφ(b) ∈ graph (φ) we have

PH(p
−1q) = φ(a)−1φ(b), PW(p−1q) = φ(a)−1a−1bφ(a).
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Hence, if H is a horizontal subgroup, φ : O ⊂ W → H is intrinsic Lipschitz if there
is CL > 0 such that

(9) ‖φ(a)−1φ(b)‖ ≤ CL‖φ(a)−1a−1bφ(a)‖ for all a, b ∈ O.

Moreover, if φ is intrinsic Lipschitz then ‖φ(a)−1a−1bφ(a)‖ is comparable with ‖p−1q‖.
Indeed from (4)

c0‖φ(a)−1a−1bφ(a)‖ ≤ ‖p−1q‖
≤ ‖φ(a)−1a−1bφ(a)‖+ ‖φ(a)−1φ(b)‖
≤ (1 + CL)‖φ(a)−1a−1bφ(a)‖.

The quantity ‖φ(a)−1a−1bφ(a)‖, or better a symmetrized version of it, can play the
role of a φ dependent, quasi distance on O. See e.g. [3].

Remark 2.17. A map φ is intrinsic CL-Lipschitz if and only if the distance of
two points q, q′ ∈ graph(φ) is bounded by the norm of the projection of q−1q′ on the
domain O. Precisely φ : O ⊂ W → H is intrinsic CL-Lipschitz in O if and only if
there exists a constant C1 > 0 satisfying

‖q−1q′‖ ≤ C1‖PW(q−1q′)‖,
for all q, q′ ∈ graph (φ). Moreover the relations between C1 and the Lipschitz constant
CL of φ follow from (4). In fact if φ is intrinsic CL-Lipschitz in O then

‖q−1q′‖ ≤ ‖PW(q−1q′)‖+ ‖PH(q
−1q′)‖ ≤ (1 + CL)‖PW(q−1q′)‖

for all q, q′ ∈ graph (φ). Conversely if ‖q−1q′‖ ≤ c0(1 + CL)‖PW(q−1q′)‖ then

‖PH(q
−1q′)‖ ≤ CL‖PW(q−1q′)‖

for all q, q′ ∈ graph (φ), i.e. the condition 2. of Proposition 2.15 holds.

We observe that in Euclidean spaces intrinsic Lipschitz maps are the same as
Lipschitz maps. The converse is not true (see Example 2.3.9 in [16]) and if φ : W → H

is intrinsic Lipschitz then this does not yield the existence of a constant C such that

‖φ(a)−1φ(b)‖ ≤ C‖a−1b‖ for a, b ∈ W

not even locally. In Proposition 3.1.8 in [17] the authors proved that the intrinsic
Lipschitz functions, even if non metric Lipschitz, nevertheless are Hölder continuous.

Proposition 2.18. Let W,H be complementary subgroups in G and φ : O ⊂
W → H be an intrinsic CL-Lipschitz function. Then, for all r > 0,

(1) there is C1 = C1(φ, r) > 0 such that

‖φ(a)‖ ≤ C1 for all a ∈ O with ‖a‖ ≤ r

(2) there is C2 = C2(CL, r) > 0 such that φ is locally 1/κ-Hölder continuous i.e.

‖φ(a)−1φ(b)‖ ≤ C2‖a−1b‖1/κ for all a, b with ‖a‖, ‖b‖ ≤ r

where κ is the step of G.

Now we present a result which we will use later:

Proposition 2.19. [11, Proposition 3.6] Let H, W be complementary subgroups
of G with H horizontal. Let O be open in W and φ : O → H be u.i.d. in O. Then

(1) φ is intrinsic Lipschitz continuous in every relatively compact subset of O.
(2) the function a 7→ dφa is continuous in O.
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Finally, we recall the following Rademacher type theorem, proved in [16, Theo-
rem 4.3.5].

Theorem 2.20. Let G = W ·H be a topologically N-dimensional Carnot group
of step 2 with H horizontal and one dimensional and let φ : O → H be an intrinsic
Lipschitz function, where O is a relatively open subset of W. Then φ is intrinsic
differentiable (LN−1

W)-a.e. in O. Notice that LN−1
W is the Haar measure

of W.

3. Carnot groups of step 2

In this section we present Carnot groups of step 2 as in Chapter 3 of [7]. According
to (1), the group operation of a Carnot group G := (Rm+n, ·) of step 2 is

p · q = (p1 + q1, p2 + q2 +Q2(p1, q1))

for every p = (p1, p2), q = (q1, q2) ∈ G, where Q2 = (Q1, . . . ,Qn) : R
m ×R

m → R
n

and by Proposition 2.2.22 (4) in [7] we have

Qs(p
1, q1) =

m
∑

j,l=1

bsjl(pjql − plqj) =
1

2
〈B(s)p1, q1〉, for s = 1, . . . , n,

where B(s) is skew-symmetric m × m real matrix and B(s) = (b
(s)
jl )

m
j,l=1. For any n

linearly independent, skew-symmetric m × m real matrices B(1), . . . ,B(n) such that
for all p = (p1, p2) and q = (q1, q2) ∈ R

m ×R
n and for all λ > 0

(10) p · q = (p1 + q1, p2 + q2 +
1

2
〈Bp1, q1〉),

where 〈Bp1, q1〉 := (〈B(1)p1, q1〉, . . . , 〈B(n)p1, q1〉) and 〈·, ·〉 is the inner product in R
m

and

δλp := (λp1, λ2p2),

the group G := (Rm+n, ·, δλ) is a Carnot group of step 2 with R
m the horizontal

layer and R
n the vertical layer (see Proposition 3.2.1 and Theorem 3.2.2 in [7]).

We make the following choice of the homogeneous norm in G:

‖(p1, p2)‖ := max
{

|p1|Rm, ǫ|p2|1/2
Rn

}

for a suitable ǫ ∈ (0, 1] (for the existence of such an ǫ > 0 see Theorem 5.1 in [20]).
We recall also that p−1 = (−p1,−p2) (see (2)) and there is c1 > 1 such that for all
p = (p1, p2) ∈ G

(11) c−1
1

(

|p1|Rm + |p2|1/2
Rn

)

≤ ‖p‖ ≤ c1

(

|p1|Rm + |p2|1/2
Rn

)

.

From now on we will depart slightly from the notations of the previous sections.
Precisely, instead of writing p = (p1, . . . , pm+n) we will write

p = (x1, . . . , xm, y1, . . . , yn).

With this notation, when B(s) := (b
(s)
jl )

m
j,l=1, a basis of the Lie algebra g of G, is given

by the m+ n left invariant vector fields

(12) Xj(p) = ∂xj +
1

2

n
∑

s=1

m
∑

l=1

b
(s)
jl xl∂ys , Ys(p) = ∂ys ,

where j = 1, . . . , m, and s = 1, . . . , n.
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Remark 3.1. The space of skew-symmetric m × m matrices has dimension
m(m−1)

2
. Hence in any Carnot group G of step 2 the dimensions m of the horizontal

layer and n of the vertical layer are related by the inequality

n ≤ m(m− 1)

2
.

Remark 3.2. Heisenberg groups Hk = R
2k×R are Carnot groups of step 2 and

the group law is of the form (10) with

B(1) =

(

0 Ik
−Ik 0

)

,

where Ik is the k × k identity matrix.
More generally, H-type groups are examples of Carnot groups of step 2 (see

Definition 3.6.1 and Remark 3.6.7 in [7]). The composition law is of the form (10)
where the matrices B(1), . . . ,B(n) have the following additional properties:

(1) B(s) is an m×m orthogonal matrix for all s = 1, . . . n,
(2) B(s)B(l) = −B(l)B(s) for every s, l = 1, . . . , n with s 6= l.

Any H-type group is a H-group in the sense of Métivier, or a HM-group in short
(see Section 3.7 in [7]), which is also example of Carnot groups of step 2. Here the
composition law is of the form (10) with the following additional condition: every
non-vanishing linear combination of the matrices B(s)’s is non-singular.

Another example of Carnot groups of step 2 is provided by the class Fm,2 of

free groups of step-2 (see Section 3.3 in [7]). Here Fm,2 = R
m × R

m(m−1)
2 and the

composition law (10) is defined by the matrices B(s) ≡ B(l,j) where 1 ≤ j < l ≤ m
and B(l,j) has entries −1 in position (l, j), 1 in position (j, l) and 0 everywhere else.

Notice that Heisenberg groups are H-type groups while H
1 is also a free step-2

group.

3.1. The intrinsic gradient. Let G = (Rm+n, ·, δλ) be a Carnot group of step
2 as above and W, V be complementary subgroups in G with V horizontal and one
dimensional.

Remark 3.3. To keep notations simpler, through all this section we assume,
without loss of generality, that the complementary subgroups W, V are

(13) V := {(x1, 0 . . . , 0)}, W := {(0, x2, . . . , xm+n)}.
This amounts simply to a linear change of variables in the first layer of the algebra
g. If we denote M a non singular m × m matrix, the linear change of coordinates
associated to M is

p = (p1, p2) 7→ (Mp1, p2).

The new composition law ⋆ in R
m+n, obtained by writing · in the new coordinates,

is

(Mp1, p2) ⋆ (Mq1, q2) := (Mp1 +Mq1, p2 + q2 +
1

2
〈B̃Mp1,Mq1〉),

where B̃ := (B̃(1), . . . , B̃(n)) and B̃(s) = (M−1)TB(s)M−1 for s = 1, . . . , n. It is easy

to check that the matrices B̃(1), . . . , B̃(n) are skew-symmetric and that (Rm+n, ⋆, δλ)
is a Carnot groups of step 2 isomorphic to G = (Rm+n, ·, δλ).

Remark 3.4. Notice that the constants which appear in Lemma 5.4, Propo-
sition 5.5 and Theorem 5.7 depend on the choice (V,W). Moreover, the constant
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of Lemma 5.4 is the same if we consider (V′,W′) with V
′ one dimensional and

orthogonal to W.

When V and W are defined as in (13) there is a natural inclusion i : Rm+n−1 →
W such that, for all (x2, . . . xm, y1, . . . , yn) ∈ R

m+n−1,

i((x2, . . . xm, y1, . . . , yn)) := (0, x2, . . . xm, y1, . . . , yn) ∈ W.

If O and φ are respectively an open set in R
m+n−1 and a function φ : O → R we

denote Ô := i(O) ⊂ W and φ̂ : Ô → V the function defined as

(14) φ̂(i(a)) := (φ(a), 0, . . . , 0)

for all a ∈ O.
From Theorem 2.13, if φ̂ : Ô ⊂ W → V is such that graph (φ̂) is locally a non

critical level set of f ∈ C
1
G
(G,R) with X1f 6= 0, then φ̂ is u.i.d. in Ô and the

following representation of the intrinsic gradient ∇φ̂φ̂ holds

(15) ∇φ̂φ̂(p) = −
(

X2f

X1f
, . . . ,

Xmf

X1f

)

(p · φ̂(p))

for all p ∈ Ô.

In Proposition 3.5 we prove a different explicit expression of ∇φ̂φ̂, not involving
f , but only derivatives of the real valued function φ.

Proposition 3.5. [11, Proposition 5.4] Let G := (Rm+n, ·, δλ) be a Carnot group
of step 2 and V, W the complementary subgroups defined in (13). Let U be open
in G, f ∈ C

1
G
(U ,R) with X1f > 0 and assume that S := {p ∈ U : f(p) = 0} is non

empty. Then

(i) for every p ∈ U there exist U ′ open neighbourhood of p in G, Ô open in W

and ψ̂ : Ô → V such that S ∩ U ′ = graph (ψ̂) ∩ U ′. Moreover ψ̂ is u.i.d.

in Ô and the distributional intrinsic gradient in the sense of Definition 3.2

(Dψ
2 ψ, . . . , D

ψ
mψ) of the associated function ψ : O → R is defined as

(16) Dψ
j ψ = Xjψ + ψ

n
∑

s=1

bsj1Ysψ, for j = 2, . . . , m.

Moreover, the distributional intrinsic gradient of ψ has a continuous repre-

sentative, which is ∇ψ̂ψ̂ (continuous because of (15)), i.e.

∇ψ̂ψ̂(i(·)) =
(

Dψ
2 ψ(·), . . . , Dψ

mψ(·)
)

holds in the sense of distribution.
(ii) The subgraph E := {p ∈ U : f(p) < 0} has locally finite G-perimeter in U

and its G-perimeter measure |∂E|G has the integral representation

|∂E|G(F) =

ˆ

Φ−1(F)

√

1 + |∇ψ̂ψ̂|2
Rm−1 dLm+n−1

for every Borel set F ⊂ U where Φ: O → G is defined as Φ(a) := i(a)·ψ̂(i(a))
for all a ∈ O.

From Proposition 3.5, if graph (φ) is a G-regular hypersurface, the intrinsic gra-
dient of φ takes the explicit form given in (16). This motivates the definitions of the
operators intrinsic horizontal gradient and intrinsic derivatives.
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Definition 3.1. Let O be open in R
m+n−1, φ : O → R be continuous in O.

The intrinsic derivatives Dφ
j , for j = 2, . . . , m, are the differential operators with

continuous coefficients

Dφ
j := ∂xj +

n
∑

s=1

(

φb
(s)
j1 +

1

2

m
∑

i=2

xib
(s)
ji

)

∂ys = Xj |W + φ

n
∑

s=1

b
(s)
j1 Ys|W,

where, in the second line with abuse of notation, we denote with the same symbols Xj

and Ys the vector fields acting on functions defined in O. If φ̂ := (φ, 0, . . . , 0) : Ô →
V, we denote intrinsic horizontal gradient ∇φ̂ the differential operator

∇φ̂ := (Dφ
2 , . . . , D

φ
m).

Remark 3.6. We emphasize that the intrinsic horizontal gradient ∇ψ̂ψ̂ defined
after Definition 3.1 and the continuous representative of the distributional intrinsic
gradient as in (7) are different; but according to the approximation argument of
Proposition 3.5, they are equal in distributional sense.

Definition 3.2. (Distributional solution) Let O ⊂ R
m+n−1 be open and w =

(w2, . . . , wm) ∈ L∞
loc(O,Rm−1) . We say that φ ∈ C(O,R) is a distributional solution

in O of the non-linear first order PDE’s system

(17)
(

Dφ
2φ, . . . , D

φ
mφ
)

= w

if for every ζ ∈ C
1
c(O,R)

ˆ

O

φ

(

Xjζ + φ
n
∑

s=1

b
(s)
j1 Ysζ

)

dLm+n−1 = −
ˆ

O

wjζ dLm+n−1

for j = 2, . . . , m.

Remark 3.7. Let m > 2 and O be a connected set. If the vector fields
Dφ

2 , . . . , D
φ
m are smooth we know that it is possible to connect each couple of points

a and b in O with a piecewise continuous integral curve of horizontal vector fields.
This means that there is an absolutely continuous curve γh : [t1, t2] → O from a to b
such that −∞ < t1 < t2 < +∞ and

(18) γ̇h(t) =

m
∑

j=2

hj(t)D
φ
j (γh(t)) a.e. t ∈ (t1, t2)

with h = (h2, . . . , hm) : [t1, t2] → R
m−1 a piecewise continuous function. In our case

the vector fields Dφ
j are only continuous, and consequently the global existence of γh

is not sure.

Proposition 3.8. Let G := (Rm+n, ·, δλ) be a Carnot group of step 2 and V,

W the complementary subgroups defined in (13). Let φ̂ : Ô → V be an intrinsic CL-

Lipschitz function, where O is open in W and φ : O → R is the map associated to φ̂
as in (14). If γ : [t1, t2] → O satisfies the condition (18), then [t1, t2] ∋ t 7→ φ(γ(t)) is
Lipschitz continuous.

Proof. The proof of this statement is similar to the one of Proposition 3.8 in [9]

in the context of Heisenberg groups. For simplicity we define γ̂(t) := i(γ(t)) ∈ Ô.
We would like to show that there exists C1 > 0 such that

(19) ‖φ̂(γ̂(t))−1γ̂(t)−1γ̂(t1)φ̂(γ̂(t))‖ ≤ C1(t− t1)



Intrinsic Lipschitz graphs in Carnot groups of step 2 1031

for all t ∈ [t1, t2]. In fact since φ̂ is an intrinsic CL-Lipschitz function and recall
Remark 2.16 we have

|φ(γ(t))− φ(γ(t1))| ≤ CL‖φ̂(γ̂(t))−1γ̂(t)−1γ̂(t1)φ̂(γ̂(t))‖ ≤ CLC1(t− t1).

By hypothesis γ = γh : [t1, t2] → O is an absolutely continuous curve satisfying
(18) with a piecewise continuous function h = (h2, . . . , hm) ∈ L∞((t1, t2),R

m−1)
and γh(t1) = a = (x, y), γh(t2) = b = (x′, y′). More precisely, we have γh(t) =
(x2(t), . . . , xm(t), y1(t), . . . , yn(t)) = (xγ(t), y1(t), . . . , yn(t)) such that

xl(t)− xl =

ˆ t

t1

hl(r) dr for all t ∈ [t1, t2], l ∈ 2, . . . , m,(20)

ys(t)− ys =
m
∑

j=2

(

b
(s)
j1

ˆ t

t1

hj(r)φ(γh(r)) dr(21)

+
1

2

m
∑

l=2

b
(s)
jl

(

xl +

ˆ r

t1

hl(r
′) dr′

)
ˆ t

t1

hj(r) dr

)

for all t ∈ (t1, t2), s = 1, . . . , n.
Now we consider

σφ(b, a) :=

n
∑

s=1

∣

∣

∣
ys − y′s + φ(b)

(

m
∑

l=2

(xl − x′l)b
(s)
1l

)

− 1

2
〈B(s)x′, x〉

∣

∣

∣

1/2

.

If we put ‖B‖∞ = max{b(s)ij | i, j = 1, . . . , m, s = 1, . . . , n}, then it easy to see that

(22) σφ(b, a) ≤ σφ(a, b) + n
√

‖B‖∞|φ(a)− φ(b)|1/2|x− x′|1/2
Rm−1

and, recalling (11), if b = γh(t), then

‖φ̂(γ̂(t))−1γ̂(t)−1γ̂(t1)φ̂(γ̂(t))‖ ≤ c1

(

|x− xγ(t)|Rm−1 + σφ(a, γh(t))

+ n
√

‖B‖∞|x− xγ(t)|1/2Rm−1 |φ(γh(t))− φ(a)|1/2
)

.

Since φ̂ is intrinsic CL-Lipschitz, it follows

n
√

‖B‖∞|x− xγ(t)|1/2Rm−1 |φ(γh(t))− φ(a)|1/2

≤ n
√

CL‖B‖∞|x− xγ(t)|1/2Rm−1‖φ̂(γ̂(t))−1γ̂(t)−1γ̂(t1)φ̂(γ̂(t))‖1/2

≤ n2CL‖B‖∞
2

|x− xγ(t)|Rm−1 +
1

2
‖φ̂(γ̂(t))−1γ̂(t)−1γ̂(t1)φ̂(γ̂(t))‖

for all t ∈ [t1, t2]. From (20)

(23) |x− xγ(t)|Rm−1 ≤ (m− 1)(t− t1)‖h‖L∞((t1,t2),Rm−1)

and, consequently, if we put M1 := c1(m− 1)(2 + CL‖B‖∞n2), then

(24) ‖φ̂(γ̂(t))−1γ̂(t)−1γ̂(t1)φ̂(γ̂(t))‖ ≤ 2c1σφ(a, γh(t))+M1(t− t1)‖h‖L∞((t1,t2),Rm−1).
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Hence it remains to estimate σφ(a, γh(t)). By (20) and (21) we observe that

σφ(a, γh(t)) =

n
∑

s=1

∣

∣

∣

∣

m
∑

j=2

(

b
(s)
j1

ˆ t

t1

hj(r)φ(γh(r)) dr

+
1

2

m
∑

l=2

b
(s)
jl

(

xl +

ˆ r

t1

hl(r
′) dr′

)
ˆ t

t1

hj(r) dr

)

+ φ(a)
m
∑

l=2

b
(s)
1l

ˆ t

t1

hl(r) dr−
1

2
〈B(s)x, xγ(t)〉

∣

∣

∣

∣

1/2

with
m
∑

l,j=2

xlb
(s)
jl

ˆ t

t1

hj(r) dr− 〈B(s)x, xγ(t)〉 =
m
∑

l,j=2

xlb
(s)
jl (xj(t)− xj)− 〈B(s)x, xγ(t)− x〉 = 0

and
∣

∣

∣

∣

1

2

m
∑

l,j=2

b
(s)
jl

ˆ r

t1

hl(r
′) dr′

ˆ t

t1

hj(r) dr

∣

∣

∣

∣

≤ 1

2
‖B‖∞(m− 1)2(t− t1)

2‖h‖2L∞((t1,t2),Rm−1)

Hence, remembering that φ is intrinsic CL-Lipschitz function, it follows

σφ(a, γh(t)) ≤
n
∑

s=1

∣

∣

∣

∣

m
∑

j=2

b
(s)
j1

ˆ t

t1

hj(r) (φ(a)− φ(γh(r))) dr

∣

∣

∣

∣

1/2

+

√

2‖B‖∞
2

n(m− 1)(t− t1)‖h‖L∞((t1,t2),Rm−1)

≤ n
√

‖B‖∞CL(m− 1)(t− t1)‖h‖1/2L∞((t1,t2),Rm−1)

· max
r∈[a,b]

‖φ̂(γ̂(t))−1γ̂(t)−1γ̂(t1)φ̂(γ̂(t))‖1/2

+

√

2‖B‖∞
2

n(m− 1)(t− t1)‖h‖L∞((t1,t2),Rm−1)

Since (24) holds, we conclude that

(25)

max
t∈[t1,t2]

‖φ̂(γ̂(t))−1γ̂(t)−1γ̂(t1)φ̂(γ̂(t))‖ ≤M1(t− t1)‖h‖L∞((t1,t2),Rm−1)

+ 2c1n
√

‖B‖∞CL(m− 1)(t− t1)‖h‖1/2L∞((t1,t2),Rm−1)

· max
t∈[t1,t2]

‖φ̂(γ̂(t))−1γ̂(t)−1γ̂(t1)φ̂(γ̂(t))‖1/2

+
√

2‖B‖∞c1n(m− 1)(t− t1)‖h‖L∞((t1,t2),Rm−1)

≤
(

M1 + 8c21n
2(m− 1)‖B‖∞CL +

√

2‖B‖∞c1n(m− 1)

)

· (t− a)‖h‖L∞((t1,t2),Rm−1) +
1

2
max
t∈[t1,t2]

‖φ̂(γ̂(t))−1γ̂(t)−1γ̂(t1)φ̂(γ̂(t))‖

=:
M2

2
(t− t1)‖h‖L∞((t1,t2),Rm−1) +

1

2
max
t∈[t1,t2]

‖φ̂(γ̂(t))−1γ̂(t)−1γ̂(a)φ̂(γ̂(t))‖.

Consequently for all t ∈ [t1, t2]

(26) ‖φ̂(γ̂(t))−1γ̂(t)−1γ̂(t1)φ̂(γ̂(t))‖ ≤M2(t− t1)‖h‖L∞((t1,t2),Rm−1) =: C1(t− t1),
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i.e. (19) holds. �

Remark 3.9. Notice that in Theorem 4.2.16 in [28], it is proved, in general
setting of Carnot groups, the statement of Proposition 3.8 but just for horizontal
curves γ : [t1, t2] → O with constant controls hj(t) ≡ hj in (18).

4. Caccioppoli sets

Let G be a Carnot group of step 2. Let S
m−1 be the unit sphere of R

m and
ν ∈ S

m−1, i.e. ν ∈ R
m and |ν|Rm = 1. By abuse of notation we identify ν =

(ν1, . . . , νm) ∈ R
m and ν = (ν, 0, . . . , 0) ∈ G.

Fix p = (p1, p2) ∈ G with p1 ∈ R
m, p2 ∈ R

n. Let ν(p) = 〈p, ν〉ν ∈ G and we
define ν⊥(p) ∈ G as the unique point such that

p = ν⊥(p) · ν(p).
More precisely,

ν⊥(p) =

(

p1 − 〈p1, ν〉ν, p2 − 1

2
〈p1, ν〉〈Bp1, ν〉

)

.

We denote by ν⊥ = {p = (p1, p2) ∈ G : 〈p1, ν〉 = 0} the orthogonal complement of ν
in G. It is clear that ν⊥(p) ∈ ν⊥ for every p ∈ G. We observe that if ν = (1, 0, . . . , 0),
then

ν⊥(p) = pW, ν(p) = pV,

where W, V are the complementary subgroups defined as (13). Precisely, for ν ∈
S
m−1 we have Vν = {(tν, 0 . . . , 0) : t ∈ R} and Wν = ν⊥ ×R

n. Moreover according
to Definition 2.10, the set

{q ∈ G : ‖ν⊥(p−1q)‖ ≤ β‖ν(p−1q)‖}
is an intrinsic cone with vertex p, opening β > 0 and axis specified by ν.

The main results of this section are Theorem 4.1 and Theorem 4.2. We show that
the boundary of set with finite G-perimeter and having a bound on the orientation of
the measure theoretic normal is an intrinsic graph of an intrinsic Lipschitz function.

The proof of Theorem 4.1 is based on the following observation: if we start from
a point of E∩∂U(0, r) with positive lower density and we move for a short time along
a horizontal direction near ν, then we remain in the set of positive lower density of
E. We can then show that for each point of E ∩ ∂U(0, r) there is a truncated lateral
cone with fixed opening that is contained in E. We use a similar technique exploited
in Theorem 1.1 in [34] in the context of Heisenberg groups.

Theorem 4.1 will later be applied in Section 6 to prove the smooth approximation
theorem for intrinsic Lipschitz maps (see Theorem 6.1).

Theorem 4.1. Let G be a Carnot group of step 2 and let E ⊂ G be a set
with finite G-perimeter in U(0, r), νE be the measure theoretic inward normal of E
and ν ∈ S

m−1. Assume that there exists k ∈ (0, 1) such that 〈νE(p), ν〉 ≤ −k for
|∂E|G-a.e. p ∈ U(0, r). Then there exists β > 0 such that possibly modifying E in a
negligible set, we get for every p ∈ ∂E ∩ U(0, r)

{q ∈ U(0, r) : ‖ν⊥(p−1q)‖ < −β〈p−1q, ν〉} ⊂ E,(27)

{q ∈ U(0, r) : ‖ν⊥(p−1q)‖ < β〈p−1q, ν〉} ⊂ G− E.(28)
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Theorem 4.2. Under the same assumptions of Theorem 4.1, possibly modifying
E on a negligible set, the set ∂E∩U(0, r) is the intrinsic graph of an intrinsic Lipschitz
function.

Firstly we prove some preliminary results.

Lemma 4.3. Let G be a Carnot group of step 2 and let E ⊂ G be a locally
finite G-perimeter set. Then for all U(p, r) with p ∈ G and r > 0, if we consider a
horizontal left invariant vector field Z satisfying

(29)

ˆ

E

Zξ dLm+n ≤ 0 ∀ξ ∈ C
1
c(U(p, r),R), ξ ≥ 0,

for each Lm+n-measurable set F ⊂ U(p, r), we obtain

Lm+n(E ∩ F ) ≤ Lm+n(E ∩ exp tZ(F ))

for all t ≥ 0 such that exp tZ(F ) ⊂ U(p, r).
Proof. We use the similar technique exploited in Lemma 2.1 in [34] in the context

of Heisenberg groups. Let U(0, r) with r > 0. Notice that because the homogeneous
norm is invariant we can assume p = 0. Moreover thanks to Remark 3.3, without
loss of generality, we also assume Z = X1.

We consider the map Θ: G → G given by

Θ(p) = exp p1X1(0, p2, . . . , pm+n).

It is a global diffeomorphism and it satisfies

(30) det dΘ(p) = 1 and Θ∗ (∂p1) = X1.

where dΘ denotes the differential of Θ. If we put E1 := Θ−1(E) and F1 := Θ−1(F ),
then

(31) Θ(te1 + F1) = exp(tX1(F )), t ∈ R,

with e1 = (1, 0, . . . , 0) ∈ R
m+n. Moreover for all θ ∈ C

1
c(Θ

−1(U(0, r)),R) with θ ≥ 0
we define ξ(q) := θ(Θ−1(q)) and consequently by (29) and (30)

ˆ

E1

∂p1θ(p) dLm+n(p) =

ˆ

E

X1ξ(q) dLm+n(q) ≤ 0.

Hence by Fubini–Tonelli Theorem and by a standard approximation argument we
know that the function t 7→ χE1(p+ te1) is increasing for Lm+n-a.e. p ∈ Θ−1(U(0, r))
as long as p+te1 ∈ Θ−1(U(0, r)). Then for a certain t ≥ 0, using again Fubini-Tonelli
Theorem we obtain

Lm+n(E1 ∩ F1) =

ˆ

Rm+n−1

ˆ

R

χE1(p)χF1(p) dLdLm+n−1

≤
ˆ

Rm+n−1

ˆ

R

χE1(te1 + p)χF1(p) dLdLm+n−1

=

ˆ

Rm+n−1

ˆ

R

χE1(p)χte1+F1(p) dLdLm+n−1

= Lm+n(E1 ∩ (te1 + F1)).

Finally by the last inequality, (30) and (31) we obtain

Lm+n(E ∩ F ) ≤ Lm+n(E ∩ exp(tX1(F ))).

Consequently the proof is complete. �
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Lemma 4.4. Let G be a Carnot group of step 2. If k ∈ (0, 1], then there exists
β = β(k) > 0 such that for all ν ∈ S

m−1 and p = (p1, p2) ∈ G satisfying

(32) ‖ν⊥(p)‖ = max

{

|p1 − 〈p1, ν〉ν|Rm , ǫ|p2 − 1

2
〈p1, ν〉〈Bp1, ν〉|1/2

Rn

}

≤ −β〈p1, ν〉,

there exist η1, . . . , ηn ∈ R
m such that for all s = 1, . . . , n,

(33)
〈ηs, ν〉 ≤ −

√
1− k2 |ηs|Rm

1 + ‖B‖∞
〈p1 − ηs, ν〉 ≤ −

√
1− k2 |p1 − ηs|Rm

1 + ‖B‖∞
,

p2 = (〈B(1)η1, p
1〉, . . . , 〈B(n)ηn, p

1〉),

where ‖B‖∞ = max{b(s)jl : s = 1, . . . n and j, l = 1, . . . , m}.
Proof. We split the proof of this lemma in several steps.
Step 1. If m = 2 and n = 1, then the thesis follows from Step 1 of the proof of

Proposition 2.2 in [34] with the constant b12 6= 0 instead of 1. Indeed, running the
computation, in our case, we have

B(1) =

(

0 b12
−b12 0

)

with b12 6= 0 and β > 0 is a number satisfying

β

(

β

ǫ2
− b12

2

)

≤ 3b12h

8
with h =

√

k2

2− k2
,(34)

β2 ≤ k2

2− 2k2
.(35)

Step 2. We generalize the statement from m = 2 to arbitrary m. Here n = 1.
Let (p1, p2) ∈ R

m × R be a point satisfying (32) relatively to ν. We denote A =
span{p1,B(1)p1} and we consider the orthogonal projection of ν onto A by

πAν =
(〈p1, ν〉+ 〈B(1)p1, ν〉)(p1 + B(1)p1)

|p1 + B(1)p1|2
Rm

.

If we put

ν̂ =
πAν

|πAν|
and ξ = |πAν|,

then by (32) we conclude that

(36)
1

(1 + ‖B‖∞)
√

1 + β2
≤ ξ ≤ 1,

where ‖B‖∞ = max{bjl : j, l = 1, . . . , m}. Now we observe that if (p1, p2) satisfies
(32) relatively to ν, then (p1, p̂2) with p̂2 = p2/ξ2 satisfies (32) relatively to ν̂ with
the same β, indeed

ǫ|p2 − 1

2
〈p1, ν〉〈B(1)p1, ν〉|1/2 ≤ −β〈p1, ν〉

⇐⇒ ǫ|p̂2 − 1

2
〈p1, ν̂〉〈B(1)p1, ν̂〉|1/2 ≤ −β〈p1, ν̂〉.

(37)

Moreover, if |p1|Rm ≤ −
√

1 + β2〈p1, ν〉, then

(38) |p1|Rm ≤ −ξ
√

1 + β2〈p1, ν̂〉 ≤ −
√

1 + β2〈p1, ν̂〉
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and consequently |p1−〈p1, ν̂〉ν̂|Rm ≤ −β〈p1, ν̂〉. By Step 1 we know that there exists
η̂ ∈ A such that p̂2 = 〈B(1)η̂, p1〉, where η = ξ2η̂ solves p2 = 〈B(1)η, p1〉. Moreover,

(39) 〈η̂, ν̂〉 ≤ −
√

1− k2

2
|η̂|Rm and 〈p1 − η̂, ν̂〉 ≤ −

√

1− k2

2
|p1 − η̂|Rm.

Taking into account (35), (36) and (39) we get the first inequality in (33), indeed

〈η, ν〉 = ξ〈η, ν̂〉 ≤ ξ3〈η̂, ν̂〉 ≤ −ξ|η|Rm

√

1− k2

2

≤ −|η|Rm

√

1− k2

2

(1 + ‖B‖∞)
√

1 + β2
≤ −|η|Rm

√
1− k2

1 + ‖B‖∞
.

Finally, using (39)

〈p1 − η, ν〉 = 〈p1 − ξ2η̂, ν〉 = ξ2〈p1 − η̂, ν〉+ (1− ξ2)〈p1, ν〉
= ξ3〈p1 − η̂, ν̂〉+ ξ(1− ξ2)〈p1, ν̂〉

≤ ξ3
(

−
√

1− k2

2
|p1 − η̂|Rm

)

+ ξ(1− ξ2)〈p1, ν̂〉

and by (36) and (38)

〈p1 − η, ν〉 ≤ ξ

(

−
√

1− k2

2
|ξ2p1 − η|Rm

)

+(1− ξ2)
−|p1|Rm

(1 + ‖B‖∞)
√

1 + β2

≤ −

√

1− k2

2

(1 + ‖B‖∞)
√

1 + β2
|ξ2p1 − η|Rm − |(1− ξ2)p1|Rm

(1 + ‖B‖∞)
√

1 + β2

≤ −
√
1− k2 |ξ2p1 − η|Rm − |(1− ξ2)p1|Rm

√
1− k2

1 + Bm

≤ −
√
1− k2 |p1 − η̂|Rm

1 + ‖B‖∞
,

i.e. the second inequality in (33) follows.
Step 3. We generalize the statement from n = 1 to arbitrary n. Here m is a

natural number larger than 2. This is the main difference in the case of Heisenberg
groups; indeed in Heisenberg groups there is only one vertical coordinate (i.e. n = 1).

Let (p1, p2) be a point satisfying (32) relatively to ν with p2 = (pm+1, . . . , pm+n).
By (32), we have that

ǫ|p̂2 − 1

2
〈p1, ν̂〉〈Bp1, ν̂〉|1/2

Rn ≤ −β〈p1, ν̂〉
and this implies

ǫ|p̂m+s −
1

2
〈p1, ν̂〉〈B(s)p1, ν̂〉|1/2 ≤ −β〈p1, ν̂〉

for all s = 1, . . . n. Consequently, the point (p1, p̂m+s) ∈ R
m×R with p̂m+s = pm+s/ξ

2

satisfies (32) relatively to ν̂ with the same β. By Step 2 there exists ηs ∈ R
m such

that

〈ηs, ν〉 ≤ − 1

1 + ‖B‖∞
√
1− k2 |ηs|Rm, 〈p1−ηs, ν〉 ≤ − 1

1 + ‖B‖∞
√
1− k2 |p1−ηs|Rm.

Repeating this argument for each s, we obtain that there are η1, . . . , ηn ∈ R
m such

that (33) holds.
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Hence the proof of lemma is complete. �

Now we are able to show the proof of Theorem 4.1.

Proof of Theorem 4.1. Possibly modifying E in a Lm+n-negligible set, we can
assume that E coincides with the set of points where E has positive lower density.
Precisely

E =

{

p ∈ G : lim inf
δ→0

Lm+n(E ∩ Ue(p, δ))
Lm+n(Ue(p, δ))

> 0

}

,

where Ue(p, δ) is the Euclidean ball centered at p having radius δ > 0.
Let β = β(k) > 0 as in Lemma 4.4. We would like to show that for every p ∈ E

(40) {q ∈ U(0, r) : ‖ν⊥(p−1q)‖ < −β〈p−1q, ν〉} ⊂ E.

First we define

A1(p) := {exp tZµ(p) ∈ U(0, r) : t ≥ 0, µ ∈ S
m−1
k }

where S
m−1
k := {µ ∈ S

m−1 : 〈µ, ν〉 ≤ − 1
1+‖B‖∞

√
1− k2 }, ‖B‖∞ = max{b(s)jl : s =

1, . . . n and j, l = 1, . . . , m} and Zµ is the left invariant vector field

Zµ = µ1X1 + · · ·+ µmXm, for µ = (µ1, . . . , µm) ∈ S
m−1
k .

For any ξ ∈ C
1
c(U(0, r),R) such that ξ ≥ 0 and for all µ ∈ S

m−1
k it follows

ˆ

E

Zµξ dLm+n = −
ˆ

U(0,r)

ξ〈µ, νE〉 d|∂E|G ≤ 0.

Indeed we know that 〈µ, νE(p)〉 ≥ 0 for |∂E|G-a.e. p ∈ U(0, r) because 〈µ, ν〉 ≤
− 1

1+‖B‖∞

√
1− k2 and 〈νE , ν〉 ≤ −k. Then using Lemma 4.3 we conclude that if

p ∈ E ∩ U(0, r), t > 0 is such that exp tZµ(p) ∈ U(0, r) and δ > 0 is small enough,
then

Lm+n(E ∩ exp tZµ(Ue(p, δ))) ≥ Lm+n(E ∩ Ue(p, δ)).
Moreover, by Lm+n(exp tZµ(Ue(p, δ))) = Lm+n(Ue(p, δ)) we deduce

lim inf
δ→0

Lm+n(E ∩ exp tZµ(Ue(p, δ)))
Lm+n(exp tZµ(Ue(p, δ)))

≥ lim inf
δ→0

Lm+n(E ∩ Ue(p, δ))
Lm+n(Ue(p, δ))

> 0

and consequently the point q = exp tZµ(p) satisfies

lim inf
δ→0

Lm+n(E ∩ Ue(q, δ))
Lm+n(Ue(q, δ))

> 0.

This implies that exp tZµ(p) ∈ E and A1(p) ⊂ E. Now if p = 0 ∈ E, then

A1(0) = {exp tZµ(0) ∈ U(0, r) : t ≥ 0, µ ∈ S
m−1
k }

= {(η, 0) ∈ G : η ∈ R
m, 〈η, ν〉 ≤ − 1

1 + ‖B‖∞
|η|

√
1− k2, |η| < r}.

Moreover, if we consider the conditions (33) of Lemma 4.4 and we define

A2 := {exp tZµ(η, 0) ∈ U(0, r) : t ≥ 0, µ ∈ S
m−1
k , (η, 0) ∈ A1(0)},

then

A2 = {(p1, p2) ∈ G : there are η1, . . . , ηn ∈ R
m, |ηs|Rm < r such that (33) holds}

and A2 ⊂ E. Hence by Proposition 4.4 we obtain

{q ∈ U(0, r) : ‖ν⊥(q)‖ < −β〈q, ν〉} ⊂ A2 ⊂ E,
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i.e. (27) is true in the case p = 0. The inclusion (27) follows for each p ∈ E from the
case p = 0 by a left translation.

Now we consider G − E where νG−E = −νE in U(0, r). We can repeat the
previous argument and we obtain for each P where G−E has positive lower density,

(41) {q ∈ U(0, r) : ‖ν⊥(p−1q)‖ < β〈p−1q, ν〉} ⊂ G− E.

Precisely (41) holds for all p ∈ U(0, r)−E because G− E has density 1 at such p.
Approximating a point p ∈ ∂E ∩U(0, r) with a sequence of points in E ∩U(0, r),

from (40) we obtain (27). Moreover, approximating a point p with a sequence of
points in U(0, r) − E, using (41), (28) holds. Possibly we have to take a smaller
β. �

Finally we are able to show the proof of Theorem 4.2.

Proof of Theorem 4.2. Let Pν⊥ : G → ν⊥ be the projection map. By (40) we
have that Pν⊥(E∩U(0, r)) is open set in Pν⊥(U(0, r)) and relatively open in ν⊥. Let

Ô := {p ∈ Pν⊥(E ∩ U(0, r)) : there is t ∈ R such that exp tZν(p) ∈ U(0, r)−E}.
By (40) and (41) we deduce that Ô is relatively open in Pν⊥(U(0, r)) and so in ν⊥.

Then from Theorem 4.1, the function φ̂ = φν : Ô → G (see (14)) defined as

φ(p) := sup{t ∈ R : exp tZν(p) ∈ U(0, r) and χE(exp tZν(p)) = 1},
is intrinsic Lipschitz map because graph (φ̂)∩{Q ∈ U(0, r) : ‖ν⊥(p−1q)‖ < β〈p−1q, ν〉} =
∅ (see Definition 2.11) and

∂E ∩ U(0, r) = {p · φ̂(p) : p ∈ O},
i.e. the thesis is true. �

5. Area formula in Carnot groups of step 2

Area formula with respect to the spherical Hausdorff measure for the graph of an
intrinsic Lipschitz function has been obtained in the context of Heisenberg groups in
[9]. Here we give the area formula with respect to the spherical Hausdorff measure
for the intrinsic Lipschitz graph in Carnot groups of step 2 (see Theorem 5.7); the
proof is based on Theorem 1.6 in [9]. Moreover, Proposition 5.6 proves that the
pointwise gradient coincides with the weak one; this statement is the counterpart
of Proposition 4.7 in [9] inside Heisenberg groups. We observe that this fact is not

elementary at all in our situation, since the ∇φ̂φ̂ is not well defined when φ̂ is an
intrinsic Lipschitz function; however, we emphasize the fact that it exists almost
everywhere: indeed if φ̂ is an intrinsic Lipschitz function, then by Theorem 2.20
we know that φ̂ is intrinsic differentiable a.e. in Ô and, for all point of intrinsic
differentiability of φ̂, there exists a unique intrinsic differential of φ̂ at this point
defined as (6).

In this section we examine a Carnot group G of step 2 and V, W are the
complementary subgroups defined in (13).

Let φ̂ : Ô → V be intrinsic Lipschitz function, where Ô is an open in W and
φ : O → R is the map associated to φ̂ as in (14). We recall that Φ: O → G is the

graph map of φ̂ defined as

Φ(a) := i(a) · φ̂(i(a)).
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In [16], the authors show the following proposition about the intrinsic subgraph
of an intrinsic Lipschitz map:

(42) E = Eφ̂ := {i(a) · (t, 0, . . . , 0) ∈ Ô ·V : t < φ(a)}.
Proposition 5.1. [16, Theorem 4.2.9] If φ̂ : Ô → V is intrinsic Lipschitz, then

the subgraph E of φ̂ is a set with locally finite G-perimeter.

We begin with a result about the intrinsic generalized inward normal νE (see
Section 2.2) to the intrinsic subgraph:

Lemma 5.2. Let G := (Rm+n, ·, δλ) be a Carnot group of step 2 and V, W the

complementary subgroups defined in (13). Let φ̂ : Ô → V be an intrinsic Lipschitz

function, where Ô is an open subset of W and φ : O → R is the map associated to φ̂
as in (14). Then the intrinsic generalized inward normal νE to the intrinsic subgraph
E in G has the following representation

(43) νE (Φ(a)) =



− 1
√

1 + |∇φ̂φ̂(i(a))|2
Rm−1

,
∇φ̂φ̂(i(a))

√

1 + |∇φ̂φ̂(i(a))|2
Rm−1





for a.e. a ∈ O.

Proof. By Theorem 2.20, Theorem 2.5 and Theorem 2.10 we have that φ̂ is
intrinsic differentiable a.e. in Ô and for all i(a) ∈ Ô point of intrinsic differentiability

of φ̂, there exists a unique dφ̂i(a) : W → V intrinsic differential of φ̂ at i(a) such that

graph (dφ̂i(a)) =

{

(p1, . . . , pm+n) ∈ G :
m
∑

j=1

ν
(j)
E (Φ(a))pj = 0

}

,

where ν
(1)
E , . . . , ν

(m)
E are the components of νE . Then we obtain

{

b · dφ̂i(a)(b) ∈ G : b ∈ W

}

=

{

(p1, . . . , pm+n) ∈ G :
m
∑

j=1

ν
(j)
E (Φ(a))pj = 0

}

.

By (6) there is (Dφ
2φ(a), . . . , D

φ
mφ(a)) ∈ R

m−1 associated to dφ̂i(a) such that

dφ̂i(a)(b) =

(

m
∑

j=2

Dφ
j φ(a)xj , 0, . . . , 0

)

,

for all b = (0, x2, . . . , xm, y1, . . . , yn) ∈ W, and consequently recalling that (b ·
dφ̂i(a)(b))

1 = (
∑m

j=2D
φ
j φ(a)xj , x2, . . . , xm) we deduce

ν
(1)
E (Φ(a))

m
∑

j=2

Dφ
j φ(a)xj +

m
∑

j=2

ν
(j)
E (Φ(a))xj = 0

for all b = (0, x2, . . . , xm, y1, . . . , yn) ∈ W. The thesis follows choosing b = (0, . . . , 0,
1, 0, . . . , 0) where j-th element is 1 for j = 2, . . . , m and recalling that |νE(Φ(a))|Rm =
1 a.e. in O. �

Using the fact that every intrinsic Lipschitz function is differentiable almost ev-
erywhere, we have the following proposition.

Proposition 5.3. Let G := (Rm+n, ·, δλ) be a Carnot group of step 2 and V,

W the complementary subgroups defined in (13). Let φ̂ : Ô → V be an intrinsic
CL-Lipschitz function, where O is open and bounded in W and φ : O → R is the
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map associated to φ̂ as in (14). Then the intrinsic gradient ∇φ̂φ̂, which is defined
Lm+n−1-a.e. in O, satisfies

(44) ‖∇φ̂φ̂‖L∞(O,Rm−1) ≤ C Lm+n−1-a.e. a ∈ O,

where C = C(n,m,CL,B(s)) > 0. As a consequence ∇φ̂φ̂ ∈ L∞(O,Rm−1).

Proof. Firstly we define, for all j = 2 . . . , m and a ∈ O, the exponential map of
the vector field Dφ

j [−δ, δ] ∋ t 7→ γja(t) := exp(tDφ
j )(a) ∈ O as

{

γ̇ja = Dφ
j ◦ γja,

γja(0) = a.

This map is well-defined for δ > 0 small enough. Let us now fix t ∈ [−δ, δ] and

j = 2, . . . , m and consider h(s) := tej and γh(s) := exp(tsDφ
j )(a) if s ∈ [0, 1]. Then

by (25) and (26)

(45) ‖φ̂(i(γja(t)))−1i(γja(t))
−1aφ̂(i(γja(t)))‖ ≤ C|t|, ∀ t ∈ [−δ, δ],

for every j = 2, . . . , m.
Finally using the same argument contained in the proof of Proposition 5.6 in [11]

(see Proposition 3.7 in [3] in the context of Heisenberg groups), it can be proved that,
at each point a ∈ O where φ is intrinsic differentiable

∇φ̂
j φ̂(a) = lim

t→0

φ
(

exp(tDφ
j )(a)

)

− φ(a)

t
∀ j = 2, . . . , m.

In the end by this equality and (45), (44) holds. �

Lemma 5.4. [16, Lemma 4.2.10] Let φ̂ : Ô → V be an intrinsic Lipschitz func-
tion. Then there exists C(W,V) > 0 such that

(Φ)∗(Lm+n−1
W) = −C(W,V)ν

(1)
E |∂E|G,

where (Φ)∗(Lm+n−1
W) denotes the image of Lm+n−1

W under the map Φ and

ν
(1)
E is the first component of the intrinsic generalized inward normal to the intrinsic

subgraph E .

Proposition 5.5. Let G := (Rm+n, ·, δλ) be a Carnot group of step 2 and V,

W the complementary subgroups defined in (13). Let φ̂ : Ô → V be an intrinsic

Lipschitz function, where Ô is an open subset of W and φ : O → R is the map

associated to φ̂ as in (14). Then for every ξ = (ξ1, . . . , ξm) ∈ C
1
c(Ô ·V,Rm) we have

ˆ

E

divGξ dLm+n =
1

C(W,V)

ˆ

O

ξ1 ◦ Φ−
m
∑

j=2

Dφ
j φ(ξ ◦ Φ)j dLm+n−1,

where C(W,V) > 0 is given by Lemma 5.4 and Φ: O → G is the graph map of φ̂.

Proof. Thanks to Proposition 5.1 we know that E is a set of locally finite perime-
ter in G and consequently by Structure Theorem of BVG functions (see Theorem 2.1)

there exists a unique |∂E|G-measurable function νE : Ô·V → R
m such that |νE |Rm = 1

|∂E|G-a.e. in Ô ·V and

(46)

ˆ

E

divGξ dLm+n = −
ˆ

Ô·V

〈ξ, νE〉 d|∂E|G
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for all ξ ∈ C
1
c(Ô ·V,Rm) with |ξ|Rm ≤ 1. Now using the Lemma 5.2 we have that

the first component ν
(1)
E of νE is such that ν

(1)
E 6= 0 |∂E|G-a.e. in Ô · V. Moreover,

from Lemma 5.4 there exists C(W,V) > 0 such that

−
ˆ

Ô·V

〈ξ, νE〉 d|∂E|G = −
ˆ

Ô·V

〈ξ, νE〉
ν
(1)
E

ν
(1)
E d|∂E|G

=
1

C(W,V)

ˆ

Ô·V

〈ξ, νE〉
ν
(1)
E

dΦ∗(Lm+n−1
W).

Finally by a change of variables we conclude that

1

C(W,V)

ˆ

Ô·V

〈ξ, νE〉
ν
(1)
E

dΦ∗(Lm+n−1
W) =

1

C(W,V)

ˆ

O

〈νE ◦ Φ, ξ ◦ Φ〉
ν
(1)
E ◦ Φ

dLm+n−1

and consequently, by (43) for all ξ = (ξ1, . . . , ξm) ∈ C
1
c(Ô ·V,Rm) with |ξ|Rm ≤ 1

(47)

ˆ

E

divGξ dLm+n = −
ˆ

Ô·V

〈ξ, νE〉 d|∂E|G

=
1

C(W,V)

ˆ

O

〈νE ◦ Φ, ξ ◦ Φ〉
ν
(1)
E ◦ Φ

dLm+n−1

=
1

C(W,V)

ˆ

O

(

ξ1 ◦ Φ +
m
∑

j=2

(νE ◦ Φ)j
ν
(1)
E ◦ Φ

(ξ ◦ Φ)j
)

dLm+n−1

=
1

C(W,V)

ˆ

O

(

ξ1 ◦ Φ−
m
∑

j=2

Dφ
j φ(ξ ◦ Φ)j

)

dLm+n−1.

Hence putting together the last equality and (46) we obtain the thesis. �

Now we are going to prove that the intrinsic gradient of an intrinsic Lipschitz
function also agrees with the distributional gradient.

Proposition 5.6. Let G := (Rm+n, ·, δλ) be a Carnot group of step 2 and V, W

the complementary subgroups defined in (13). Let φ̂ : Ô → V be an intrinsic Lips-

chitz function, where Ô is an open subset of W and φ : O → R is the map associated

to φ̂ as in (14). Then the intrinsic gradient (Dφ
2φ, . . . , D

φ
mφ) is also distributional,

i.e.
ˆ

O

φ

(

Xjζ + φ
n
∑

s=1

b
(s)
j1 Ysζ

)

dLm+n−1 = −
ˆ

O

Dφ
j φ ζ dLm+n−1

for every ζ ∈ C
1
c(O,R) and j = 2, . . . , m.

Proof. Let M := ‖φ‖L∞(O,R) < +∞. By standard considerations there is a
sequence (φh)h∈N ⊂ C

∞
c (O,R) converging uniformly to φ on each O′ ⋐ O. We would

like to prove that the sequence (Dφh
2 φh, . . . , D

φh
m φh)h∈N converges to (Dφ

2φ, . . . , D
φ
mφ)

in the sense of distributions on each O′ ⋐ O. Indeed, we start to show that

(48)

ˆ

O

m
∑

j=2

Dφ
j φ ηj dLm+n−1 = lim

h→∞

ˆ

O

m
∑

j=2

Dφh
j φh ηj dLm+n−1 ∀ η ∈ C

1
c(O,Rm−1).

We denote by Φh : O → G the graph map of φ̂h = (φh, 0, . . . , 0) defined as Φh(a) :=

i(a)φ̂h(i(a)) and Eh the intrinsic subgraph of φ̂h. Therefore, by Proposition 5.5 we
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know that for each ξ = (ξ1, . . . , ξm) ∈ C
1
c(Ô ·V,Rm)

ˆ

E

divGξ dLm+n =
1

C(W,V)

ˆ

O

ξ1 ◦ Φ−
m
∑

j=2

Dφ
j φ(ξ ◦ Φ)j dLm+n−1,

where C(W,V) > 0 is given by Lemma 5.4. Moreover, by the uniform convergence
of φh to φ we conclude that

ˆ

E

divGξ dLm+n = lim
h→∞

ˆ

Eh

divGξ dLm+n.

Now we recall that C1 functions are uniformly intrinsic differentiable maps (see The-
orem 2.12) and consequently they are also locally intrinsic Lipschitz maps (see Propo-
sition 2.19). Hence we can apply Proposition 5.5 for every φh and we obtain that

ˆ

Eh

divGξ dLm+n =
1

C(W,V)

ˆ

O

ξ1 ◦ Φh −
m
∑

j=2

Dφh
j φh(ξ ◦ Φh)j dLm+n−1

for every ξ ∈ C
1
c(Ô · V,Rm). Finally, putting together the last three equalities we

have that

1

C(W,V)

ˆ

O

ξ1 ◦ Φ−
m
∑

j=2

Dφ
j φ(ξ ◦ Φ)j dLm+n−1

= lim
h→∞

1

C(W,V)

ˆ

O

ξ1 ◦ Φh −
m
∑

j=2

Dφh
j φh(ξ ◦ Φh)j dLm+n−1

for all ξ ∈ C
1
c(Ô ·V,Rm).

Clearly, if we choose ξ1 = 0, then

(49)

ˆ

O

m
∑

j=2

Dφ
j φ(ξ ◦ Φ)j dLm+n−1 = lim

h→∞

ˆ

O

m
∑

j=2

Dφh
j φh(ξ ◦ Φh)j dLm+n−1.

If we consider

ξj(i(a) · (t, 0, . . . , 0)) := ηj(a)ρ(t)

with η = (η2, . . . , ηm) ∈ C
1
c(O,Rm−1) and ρ ∈ C

1
c(R) such that ρ(t) = 1 for all

t ∈ [−M−1,M+1], then ξ = (0, ξ2, . . . , ξm) ∈ C
1
c(Ô ·V,Rm) and by (49) we deduce

that
ˆ

O

m
∑

j=2

Dφ
j φ(a)ηj(a)ρ(φ(a)) dLm+n−1(a)

= lim
h→∞

ˆ

O

m
∑

j=2

Dφh
j φh(a)ηj(a)ρ(φh(a)) dLm+n−1(a).

Hence since φh converges uniformly to φ, there is h̄ ∈ N such that for all h ≥ h̄ and
for all a ∈ spt(η) we have

(1) φh(a) ∈ [−M − 1,M + 1];
(2) ρ(φh(a)) = 1;

and consequently (48) follows.
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Now using again the uniformly convergence of φh to φ and (48) we conclude that
for all η = (η2, . . . , ηm) ∈ C

1
c(O,Rm−1) and for all j = 2, . . . , m

ˆ

O

Dφ
j φ ηj dLm+n−1 = lim

h→∞

ˆ

O

Dφh
j φh ηj dLm+n−1

= − lim
h→∞

ˆ

O

φh

(

Xjηj + φh

n
∑

s=1

b
(s)
j1 Ysηj

)

dLm+n−1

= −
ˆ

O

φ

(

Xjηj + φ
n
∑

s=1

b
(s)
j1 Ysηj

)

dLm+n−1

Then the thesis follows with ζ = ηj ∈ C
1
c(O,R) for each j = 2, . . . , m. �

The following result is only shown for specific choice of metric: the metric d∞.

Theorem 5.7. Let G := (Rm+n, ·, δλ) be a Carnot group of step 2 and V, W the

complementary subgroups defined in (13). Let φ̂ : Ô → V be an intrinsic Lipschitz

function, where Ô ⊂ W is an open set and φ : O → R is the map associated to φ̂ as
in (14). Then there exists C(W,V) > 0 such that the following area formula holds

|∂E|G(Ô ·V) =
1

C(W,V)

ˆ

O

√

1 + |∇φ̂φ̂|2
Rm−1 dLm+n−1.

Moreover, if G is endowed with a distance d∞, there exists c = c(G) > 0 such that

|∂E|G(Ô ·V) = cSq−1(Φ(O)),

where Sq−1 is the spherical Hausdorff measure on G and q = m+ 2n.

Proof. Thanks to Proposition 5.1 and Theorem 2.1 we know that |∂E|G is a Radon
measure. Then a classical approximation result ensures the existence of sequence
(ξh)h∈N = (ξh,1, . . . , ξh,m)h∈N ⊂ C

1
c(Ô ·V,Rm) with |ξh|Rm ≤ 1 such that

(50) ξh → νE |∂E|G-a.e. in Ô ·V
and by Lemma 5.2 and Lemma 5.4 we have that ξh ◦ Φ → νE ◦ Φ a.e. in O.

Moreover, using (47) in Proposition 5.5 we get that for all h ∈ N

−
ˆ

Ô·V

〈ξh, νE〉 d|∂E|G =
1

C(W,V)

ˆ

O

ξh,1 ◦ Φ−
m
∑

j=2

Dφ
j φ(ξh ◦ Φ)j dLm+n−1.

Hence taking the limit as h→ ∞ in the last equality and by (50) and Lemma 5.2 we
conclude

|∂E|G(Ô ·V) =
1

C(W,V)

ˆ

O

√

1 + |∇φ̂φ̂|2
Rm−1 dLm+n−1.

Finally, |∂E|G(Ô·V) = cSq−1(Φ(O)) is a direct consequence of results of Theorem 2.4
and Theorem 2.5 (see also Theorem 1.3 in [31]). �

6. Smooth approximation for intrinsic lipschitz maps

In this section we characterize intrinsic Lipschitz functions as maps which can
be approximated by a sequence of smooth maps, with pointwise convergent intrinsic
gradient. The classical approximation by convolution does not apply because of

the nonlinearity of ∇φ̂φ̂. Here we use a similar technique in [9] in the context of
Heisenberg groups. The strategy is somehow indirect, indeed we approximate in
Carnot groups of step 2 the intrinsic subgraph of intrinsic Lipschitz function φ̂, rather
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than the function itself. The key point is that the intrinsic subgraph of φ̂ is a set
of locally finite G-perimeter (see Proposition 5.1). Indeed, in a similar way as in
Theorem 6.1 in [9], firstly we use Friedrichs’ mollifier to regularize the characteristic

function of the intrinsic subgraph of φ̂ with a family of functions (fα)α>0 which
satisfies Theorem 2.13. Then we consider the level set of (fα)α>0 which defines a
family of functions (φα)α>0. Finally we prove that (φα)α>0 is the family of functions,
up to subsequence, that we were looking for.

Precisely, we prove the following theorem

Theorem 6.1. Let G := (Rm+n, ·, δλ) be a Carnot group of step 2 and V,

W the complementary subgroups defined in (13). Let φ̂ : Ô → V be an intrinsic

Lipschitz function, where Ô is a bounded open subset of W and φ : O → R is the

map associated to φ̂ as in (14). Then there exists a sequence (φ̂h)h ⊂ C
∞(Ô,V) such

that

(1) φ̂h uniformly converges to φ̂ in Ô,

(2) |∇φ̂hφ̂h(a)| ≤ ‖∇φ̂φ̂‖L∞(Ô,Rm−1) ∀a ∈ Ô, h ∈ N,

(3) ∇φ̂h φ̂h(a) → ∇φ̂φ̂(a) a.e. a ∈ Ô.

Before stating the approximation theorem we need to recall the following results.

Theorem 6.2. [17, Theorem 4.0.5] Let W,V be complementary subgroups of

G with V horizontal and one dimensional. Let Ô be a Borel subset of W and
φ : Ô → V be an intrinsic CL-Lipschitz function. Then there are ψ : W → V and
C = C(CL,G,W,V) ≥ CL such that

(1) ψ is intrinsic C-Lipschitz in W,

(2) ψ(a) = φ(a) for all a ∈ Ô.

Proposition 6.3. [17, Proposition 4.0.8] Let φβ : W → V be a family of intrinsic
CL-Lipschitz functions. There is C = C(CL,G,W,V) ≥ CL > 0 such that if we put

φ := inf
β∈I

φβ,

then either φ = −∞ or φ is defined on all of W and it is intrinsic C-Lipschitz.
Analogously we can obtain the similar results for supβ∈I φβ.

Theorem 6.4. [39] Let f : Rm+n → R be a strictly convex function and let (gh)h
and g be in L1(Ω,Rm+n), where Ω ⊂ R

m+n. If

(1) gh → g weakly in L1(Ω,Rm+n),
(2)
´

Ω
f ◦ gh dLm+n →

´

Ω
f ◦ g dLm+n,

then gh → g strongly in L1(Ω,Rm+n).

Proof of Theorem 6.1. Without loss of generality, we can assume that φ̂ : W →
V. Indeed, by Proposition 2.18 (2), φ̂ is locally uniformly continuous on Ô and so

we can extended it to a continuous function φ̂ : clos(Ô) → V. By Theorem 6.2 there

exists a Lipschitz extension ψ : W → V of φ̂. Moreover, if we put M := ‖φ‖L∞(O,R) <
+∞, then thanks to Proposition 6.3 the map ψ∗ : W → V defined as

ψ∗(a) := max{min{ψ(a), (M, 0, . . . , 0)}, (−M, 0, . . . , 0)} for all a ∈ W

is a bounded Lipschitz function, which still extends φ̂. Applying the following steps
of the proof to ψ∗ we get the thesis.

We split the proof in several steps.
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Step 1. Let E := Eφ̂ be the intrinsic subgraph of φ̂ : W → V defined as (42). For
every α > 0 we consider fα : G → R given by

(51)

fα(p) := (ρα ∗ χE)(p) =

ˆ

G

ρα(pq
−1)χE(q) dLm+n(q)

=

ˆ

G

ρα(q)χE(q
−1p) dLm+n(q),

where ρα(p) := αm+2nρ(δ1/α(p)) and ρ ∈ C
∞
c (U(0, 1),R) is a smooth mollifier with

ρ(p−1) = ρ(−p) = ρ(p) for every p ∈ G.
By properties of convolution in G introduced in [15], we know that fα ∈ C

∞
c (G,R)

and spt(fα) ⊂ U(0, α)· spt(χE) for every α > 0. Precisely, for all α > 0

fα(p) ∈ [0, 1] for all p ∈ G

and for all sufficiently small α > 0

(52) fα(p) = 1 for all p = (p1, . . . , pm+n) ∈ G such that p1 ≤ −2M

Moreover, by definition of E we know that E is an open set in G and

spt(χE) = clos(E) ⊂ {a · (t, 0, . . . , 0) ∈ clos(Ô) ·V : t ≤M}.
As a consequence

spt(fα) ⊂ U(0, α) · spt(χE) ⊂ {a · (t, 0, . . . , 0) ∈ Ô ·V : t < 2M} for α < M

and

(53) fα(p) = 0 for all p = (p1, . . . , pm+n) ∈ G such that p1 ≥ 2M,

i.e. fα is constant far from the graph of φ̂, so (51) must be considered only in a
neighborhood of the graphs itself.

Step 2. For every α > 0 and c ∈ (0, 1), let

Sα :=
{

p = (p1, . . . , pm+n) ∈ Ô ·V : p1 ∈ (−2M, 2M), fα(p) = c
}

.

We note that if

rank∇Gfα(p) = 1, for all p ∈ Sα,

then Sα is the level set of a map fα ∈ C
∞(G,R) and so fα ∈ C

1
G
(G,R) such that

rank∇Gfα is maximum, i.e. Sα is G-regular hypersurface. More precisely, we show
that

(54) X1fα(p) < 0 for all p ∈ Sα,

where X1fα(p) is the first component of horizontal gradient ∇Gfα of fα in p. Indeed

let A′ := {p = (p1, . . . , pm+n) ∈ Ô ·V : p1 ∈ (−3M, 3M)} and ϕ ∈ C
∞
c (A′,R), then

〈X1fα, ϕ〉 = −
ˆ

A′

fα(q)X1ϕ(q) dLm+n(q)

= −
ˆ

U(0,α)

ρα(p) dLm+n(p)

ˆ

A′

χE(p
−1q)X1ϕ(q) dLm+n(q)

= −
ˆ

U(0,α)

ρα(p) dLm+n(p)

ˆ

τ
p−1 (A′)

χE(q)X1ϕ(pq) dLm+n(q).
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With the notation ϕp(q) := ϕ(pq) we have X1(ϕ(pq)) = X1ϕp(q) because X1 is
left-invariant; moreover ϕp ∈ C

∞
c (τp−1A′,R) and by integration by parts, we obtain

ˆ

τ
p−1 (A′)

χE(q)X1ϕp(q) dLm+n(q) = −
ˆ

τ
p−1 (A′)

ν
(1)
E (q)ϕp(q) d|∂E|G(q).

Since spt(ϕp) ⋐ τp−1(A′) and p ∈ U(0, α) if α is small enough, we can replace τp−1(A′)
by A′. Thus by Fubini–Tonelli Theorem and a change of variable, we get

〈X1fα, ϕ〉 =
ˆ

A′

ν
(1)
E (q) d|∂E|G(q)

(
ˆ

G

ρα(p)ϕ(pq) dLm+n(p)

)

.

Then for all p ∈ A′ and for all α > 0 small enough

(55)

X1fα(p) =

ˆ

A′

ρα(pq
−1)ν

(1)
E (q) d|∂E|G(q)

=

ˆ

U(0,α)·p

ρα(pq
−1)ν

(1)
E (q) d|∂E|G(q).

In particular, we immediately deduce from (55) the following assertion: For each

couple (Ô, Ô0) of open and bounded subsets of W with Ô ⋐ Ô0 there is ᾱ =

α(Ô0) > 0 such that for every 0 < α < ᾱ
ˆ

A

|∇Gfα| dLm+n ≤ |∂E|G(A0).

where A := {p = (p1, . . . , pm+n) ∈ Ô · V : p1 ∈ (−2M, 2M)} and A0 := {p =

(p1, . . . , pm+n) ∈ Ô0 · V : p1 ∈ (−2M, 2M)}. Moreover, since Lemma 5.2 holds, we
get

ν
(1)
E ◦ Φ = − 1

√

1 + |∇φ̂φ̂|2
Rm−1

in O,

and if we put

Iα(p) :=

ˆ

U(0,α)·p

ρα(pq
−1) d|∂E|G(q),

then using (55) we have

(56) X1fα(p) ≤ − 1
√

1 + ‖∇φ̂φ̂‖2
L∞(Ô,Rm−1)

Iα(p) for all p ∈ A′.

Moreover, for every fixed c ∈ (0, 1) and for all p ∈ A such that fα(p) = c, then

(57) Lm+n((U(0, α) · p) ∩ E) > 0 and Lm+n((U(0, α) · p) ∩ E c) > 0.

Indeed, by contradiction, if we assume Lm+n((U(0, α) · p) ∩ E) = 0. Then because E
is open, we can assume (U(0, α) · p) ∩ E = ∅. Hence by the definition of convolution,
we have that fα(p) = 0 6= c and then a contradiction. In a similar way it follows that
fα(p) = 1 if we suppose by contradiction Lm+n((U(0, α) · p) ∩ E c) = 0.

Now by (57) and by Theorem 2.2, we have that |∂E|G((U(0, α) · p) > 0 and
Iα(p) > 0 for p ∈ A with fα(p) = c. As a consequence using (56), (54) holds and Sα
is a G-regular hypersurface.

Step 3. Now we show that (Sα)α implicitly defines a sequence (φ̂α)α with φ̂α =
(φα, 0, . . . , 0) and, up to subsequence, it is the family of functions which we were
looking for.
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Fix α and c ∈ (0, 1). Because fα is a continuous map such that

fα(i(a) · (−2M, 0, . . . , 0)) = 1 > c,

fα(i(a) · (2M, 0, . . . , 0)) = 0 < c

for all a ∈ O, there is ta ∈ (−2M, 2M) such that fα(i(a) · (ta, 0, . . . , 0)) = c. In
particular, since

X1fα(i(a) · (t, 0, . . . , 0)) ≤ 0 ∀ t < ta and X1fα(i(a) · (ta, 0, . . . , 0)) < 0

we have that ta is unique and {t ∈ (−2M, 2M) : fα(i(a) · (t, 0, . . . , 0)) > c} =
(−2M, ta).

In a similar way as in Lemma 4.8 in [38], we define φ̂α(i(a)) := (φα(a), 0, . . . , 0)
with φα(a) := ta and

(58) Eα = Eα,c := {(i(a) · (t, 0, . . . , 0)) ∈ Ô ·V : fα(i(a) · (t, 0, . . . , 0)) > c}.
Then φα : O → [−2M, 2M ] and

(59) Eα ∩ A′′ = Eφ̂α ∩ A′′,

where A′′ := {p ∈ Ô ·V : p1 ∈ [−2M, 2M ]}. Moreover recalling that c ∈ (0, 1), from
(52) and (53) we get

Sα = graph (φ̂α) = ∂Eα ∩ (Ô ·V)

and by Theorem 2.13 φ̂α is uniformly intrinsic differentiable in Ô.
Let f̃α : R

m+n → R be defined by

f̃α(t, a) := fα(i(a) · (t, 0, . . . , 0)).

By fα ∈ C
∞(G,R) and (54), f̃α is C

∞ map such that ∂f̃α
∂p1

(p) = X1fα(p) 6= 0 for

all p ∈ Sα. Hence we apply the classical Implicit Function Theorem to f̃α and we
conclude that also φ̂α is C

∞.
Step 4. Firstly we prove that (φ̂α)α, up to subsequence, converges uniformly

on Ô, i.e. the condition (1) of the thesis follows. In particular, we would like to

show that there is a constant L > 0 dependent on ‖∇φ̂φ̂‖L∞(Ô,Rm−1) (which is finite

by Proposition 5.3), B(1), . . . ,B(n) such that for all α > 0 sufficiently small and all
a ∈ O, it holds

(60) |φα(a)− φ(a)| ≤ Lα.

Therefore (φα)α, up to subsequence, converges uniformly on O. This is a direct
consequence of Theorem 4.1. Here ν⊥(p) = PW(p), ν(p) = PV(p) and E := Eφ̂α is

the intrinsic subgraph of φ̂α. Because φ̂α is locally intrinsic Lipschitz, Eφ̂α is also a

finite G-perimeter set (see Theorem 5.1).
For β fixed as in Theorem 4.1 applied to E = Eφ̂α there is L = L(β, ‖B‖∞) > 0,

where ‖B‖∞ = max{b(s)ij | i, j = 1, . . . , m, s = 1, . . . , n} such that

U((−L, 0, . . . , 0), 1) ⊂ {q : ‖PWq‖ < −βPVq}
and

U((L, 0, . . . , 0), 1) ⊂ {q : ‖PWq‖ < βPVq}.
Let pa := i(a) · φ̂(i(a)), p′a := i(a) · (φ(a) − αL, 0, . . . , 0) and p′′a := i(a) · (φ(a) +
αL, 0, . . . , 0) with a ∈ O and α ∈ (0, 1]. Notice that if we put r0 := M + L +
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max(x,y)∈O |x|Rm−1 +max(x,y)∈O |y|1/2
Rn + 1

2
‖B‖1/2∞ max(x,y)∈O |x|1/2

Rm−1(M + L)1/2 < +∞
then

‖p′a‖ ≤ r0, ‖p′′a‖ ≤ r0,

for all a ∈ O. Moreover, by standard considerations (see [25]) we know that for every
q ∈ U(0, r0) there exists c(r0) = c(r0, ‖B‖∞) > 0 such that

U(0, r) · q ⊂ U(q, c(r0)
√
r), ∀ r ∈ (0, 1).

So if a ∈ O and α ∈ (0, 1) is small enough, depending on r0, then

U(0, α) · p′a ⊂ U(p′a, c(r0)
√
α) ⊂ {q : ‖PW(p−1

a q)‖ < −β‖PV(p
−1
a q)‖} ⊂ Eφ̂α,

U(0, α) · p′′a ⊂ U(p′′a, c(r0)
√
α) ⊂ {q : ‖PW(p−1

a q)‖ < β‖PV(p
−1
a q)‖} ⊂ G− Eφ̂α.

More precisely, by definition of fα we have

fα(p
′
a) = 1, fα

(

i(a) · φ̂α(i(a))
)

= c, fα(p
′′
a) = 0,

and so by (58), (59) and (54) we deduce

φ(a)− αL ≤ φα(a) ≤ φ(a) + αL

for all α ∈ (0, 1] small enough and for every a ∈ O. Hence (60) holds and consequently
the condition (1) of the thesis is true.

Step 5. We prove that (φ̂α)α has a subsequence (φ̂k)k such that |∇φ̂k φ̂k|Rm−1 ≤
‖∇φ̂φ̂‖L∞(Ô,Rm−1) for each k ∈ N on O, i.e. the condition (2) of the thesis holds.

Let ∇̂Gfα := (X2fα, . . . , Xmfα) and ν̂E = (ν
(2)
E , . . . , ν

(m)
E ). Arguing as in Step 2

and by (15), it follows

|∇φ̂αφ̂α(p)|Rm−1 =
|∇̂Gfα(p)|Rm−1

|X1fα(p)|
≤ 1

|X1fα(p)|

ˆ

U(0,α)·p

|ν̂E(q)||ρα(p · q−1)| d|∂E|(q)

≤ Iα(p)
‖∇φ̂φ̂‖L∞(Ô,Rm−1)

|X1fα(p)|
√

1 + ‖∇φ̂φ̂‖2
L∞(Ô,Rm−1)

and consequently by (56)

(61) |∇φ̂αφ̂α(p)|Rm−1 ≤ ‖∇φ̂φ̂‖L∞(Ô,Rm−1),

for all p ∈ Ô, as desired.
Step 6. Now we show that (φ̂α)α, up to a subsequence, satisfying the condition (3)

of the thesis, i.e. there exists a sequence (αh)h ⊂ (0,+∞) such that letting φ̂h ≡ φ̂αh

we have

(62) ∇φ̂hφ̂h → ∇φ̂φ̂ a.e. in Ô.
It is sufficient to show that there is a positive sequence (αh)h converging to 0 such
that there exists

(63) lim
h→∞

ˆ

O

√

1 + |∇φ̂hφ̂h|2Rm−1 dLm+n−1 =

ˆ

O

√

1 + |∇φ̂φ̂|2
Rm−1 dLm+n−1.

In fact, up a subsequence, using (61) and Proposition 5.6 we can assume that the
sequence in (63) also satisfies

∇φ̂h φ̂h → ∇φ̂φ̂ weakly in L1(Ô,Rm−1).
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Consequently, by Theorem 6.4

∇φ̂hφ̂h → ∇φ̂φ̂ strongly in L1(Ô,Rm−1)

and so, up a subsequence, (62) holds.
In order to show (63) we need to prove that there exist ĉ ∈ (0, 1) and a positive

sequence (αh)h converging to 0 satisfying

(64) ∃ lim
h→∞

|∂Eαh,ĉ|G(A) = |∂E|G(A),

where A is defined as in Step 2. By the semicontinuity of G-perimeter measure and
Step 3 we obtain

(65) |∂E|G(A) ≤ lim inf
α→0+

|∂Eα,c|G(A)

for every c ∈ (0, 1). More precisely, by the last inequality and the coarea formula we
get

|∂E|G(A) ≤
ˆ 1

0

lim inf
α→0+

|∂Eα,c|G(A) dc ≤ lim inf
α→0+

ˆ 1

0

|∂Eα,c|G(A) dc

= lim inf
α→0+

ˆ

A

|∇Gfα| dLm+n =: I(Ô, c).

Now using Step 2 we know that for every Ô0 such that Ô ⋐ Ô0 open and bounded
there exists (αh)h ⊂ (0,+∞) which converges to 0 and h̄(Ô0) > 0 such that for all

h ≤ h̄(Ô0) we have
ˆ

A

|∇Gfαh
| dLm+n ≤ |∂E|G(A0),

where A,A0 are defined as in Step 2. Consequently,

(66) I(Ô, c) ≤ |∂E|G(A0)

for all c ∈ (0, 1) and Ô0 such that Ô ⋐ Ô0 open and bounded. Moreover since |∂E|G
is a Radon measure then by a standard approximation argument we can rewrite (66)

with Ô instead of Ô0. In particular using (65) we have that a.e. c ∈ (0, 1)

lim inf
α→0+

|∂Eα,c|G(A) = |∂E|G(A).

Hence there exists ĉ ∈ (0, 1) and a positive sequence (αh)h converging to 0 such that
(64) follows.

Finally, because ‖φ‖L∞(O,R) =M we get

∂E ∩ A1 = ∂E ∩ A2 = ∅,
where A1 := {p ∈ Ô ·V : p1 ≤ −2M} and A2 := {p ∈ Ô ·V : p1 ≥ 2M}.

Hence by Proposition 5.7 and well-know G-perimeter properties it follows that

1

C(W,V)

ˆ

O

√

1 + |∇φ̂φ̂|2
Rm−1 dLm+n−1

= |∂E|G(Ô ·V) = |∂E|G(A1) + |∂E|G(A) + |∂E|(A2)

= |∂E|G(∂E ∩ A1) + |∂E|G(A) + |∂E|G(∂E ∩ A2) = |∂E|G(A).

In the same way, using also (52), (53) and (58)

|∂Eαh,c|G(A) = |∂Eφ̂h|G(A)

and

|∂Eφ̂h |G(Ô ·V) =
1

C(W,V)

ˆ

O

√

1 + |∇φ̂hφ̂h|2Rm−1 dLm+n−1
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with φ̂h = φ̂αh
. Now by the last three equalities and (64), (63) holds. Consequently,

(62) is true and the proof of theorem is complete. �

7. Intrinsic Lipschitz function and distributional solution

The main results in this section are Theorem 7.1 and Theorem 7.2. We show that
a map φ̂ = (φ, 0 . . . , 0) : Ô → V is a locally intrinsic Lipschitz function if and only if
φ is locally 1/2-Hölder continuous and it is also distributional solution of system

(

Dφ
2φ, . . . , D

φ
mφ
)

= w in O,

for w ∈ L∞
loc(O,Rm−1). This result is well known in Heisenberg groups (see The-

orem 1.1 in [5]). More precisely in [5], the authors omit the little Hölder conti-
nuity of φ because the other assumption (i.e. φ is distributional solution of sys-

tem
(

Dφ
2φ, . . . , D

φ
mφ
)

= w in O) implies it. We use this hypothesis in the proof of

Lemma 7.3, but it is not clear if we can omit it.

Theorem 7.1. Let G := (Rm+n, ·, δλ) be a Carnot group of step 2 and V, W

the complementary subgroups defined in (13). Let φ̂ : Ô → V be a locally intrinsic

Lipschitz function, where Ô is an open subset of W and φ : O → R is the map

associated to φ̂ as in (14). Then φ is a distributional solution of (Dφ
2φ, . . . , D

φ
mφ) = w

for a suitable w ∈ L∞
loc(O,Rm−1) such that w(a) = (Dφ

2φ(a), . . . , D
φ
mφ(a)) Lm+n−1-

a.e. in O.

Proof. By Theorem 6.1 it is immediate the fact that there exists (φh)h∈N ⊂
C

∞(O,R) such that for all O′
⋐ O we have

(1) φ̂h uniformly converges to φ̂ in Ô′,

(2) |∇φ̂hφ̂h(a)| ≤ ‖∇φ̂φ̂‖L∞(Ô′,Rm−1) ∀a ∈ Ô′, h ∈ N,

(3) ∇φ̂h φ̂h(a) → ∇φ̂φ̂(a) a.e. a ∈ Ô′.

Let wh = (w2,h, . . . , wm,h) := ∇φ̂h φ̂h. Observe that for each h ∈ N and ζ ∈
C

∞
c (O,R)

ˆ

O

φh

(

Xjζ + φh

n
∑

s=1

b
(s)
j1 Ysζ

)

dLm+n−1 = −
ˆ

O

wj,hζ dLm+n−1

for all j = 2, . . . , m. Getting to the limit for h→ ∞ we have
ˆ

O

φ

(

Xjζ + φ

n
∑

s=1

b
(s)
j1 Ysζ

)

dLm+n−1 = −
ˆ

O

wjζ dLm+n−1.

Hence φ is a distributional solution of (Dφ
2φ, . . . , D

φ
mφ) = w in O. �

Theorem 7.2. Let G := (Rm+n, ·, δλ) be a Carnot group of step 2 and V, W

the complementary subgroups defined in (13). Let φ̂ : Ô → V be a continuous map

where Ô is open in W and φ : O → R is the map associated to φ̂ as in (14). We also
assume that

(1) φ is a continuous distributional solution of (Dφ
2φ, . . . , D

φ
mφ) = w in O with

w ∈ L∞
loc(O,Rm−1),

(2) φ is locally 1/2-Hölder continuous along the vertical components with Hölder’s
constant Ch > 0.

Then φ̂ is locally intrinsic Lipschitz function.
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The proof of Theorem 7.2 relies on a preliminary result about the distributional
solutions of the problem (Dφ

2φ, . . . , D
φ
mφ) = w in O.

It is convenient to introduce the following notation: for j = 2, . . . , m and x =
(x2, . . . , xm) ∈ R

m−1 fixed, we denote by (t, x̂j) := (x2, . . . , xj−1, t, xj+1, . . . , xm).

Lemma 7.3. Under the same assumptions of Theorem 7.2, for all j = 2, . . . , m

there is C = C(‖wj‖L∞(O,R), Ch, b
(1)
j1 , . . . , b

(n)
j1 ) > 0 such that t 7→ φ(t, x̂j, γj(t)) is

a C-Lipschitz map along any characteristic line γj = (γj1, . . . , γjn) : [−T, T ] → R
n

satisfying

γ̇js(t) =

{

b
(s)
j1 φ(t, x̂j , γj(t)) +

1
2

∑m
l=2
l 6=j

b
(s)
jl xl if m > 2, for all s = 1, . . . , n,

b
(s)
j1 φ(t, γj(t)) if m = 2, for all s = 1, . . . , n,

with t ∈ [−T, T ] and x̂j ∈ R
m−2 fixed.

We compute the characteristic lines inside the free step 2 group Fm,2 (see Re-
mark 3.1).

Example 7.1. We consider the free step 2 group Fm,2. As we said in Remark 3.1,
the composition law (10) is given by B(s) ≡ B(l,h) where 1 ≤ h < l ≤ m and B(l,h)

has entries −1 in position (l, h), 1 in position (h, l) and 0 everywhere else.
For each j = 2, . . . , m and x̂j ∈ R

m−2 fixed, the characteristic line γj = (γj1, . . . ,
γjn) : [−T, T ] → R

n has the following form:

γ̇js1(t) = b
(s1)
j1 φ(t, x̂j, γj(t)) = −φ(t, x̂j , γj(t)),

γ̇js2(t) =
1

2
b
(s2)
jh2

xh2 ,

γ̇js3(t) = 0.

where B(si) ≡ B(li,hi) is such that

• s1 is the unique index (l1, h1) = (j, 1),
• s2 is such that h2 = j and j < l2 ≤ m or such that l2 = j and 1 < h2 < j,
• s3 represents the other cases.

Now we show the proof of Lemma 7.3.

Proof. Fix j = 3, . . . , m and x̂j ∈ R
m−2. For simplicity we just consider the

case j > 2, but the proof in the case j = 2 is exactly the same because the term
1
2

∑m
l=2
l 6=j

b
(s)
jl xl does not affect the accounts.

Let t1, t2 ∈ (−T, T ) with t1 < t2, ǫ > 0 and rs is a non negative constant such
that rs ≥ max{|minx γjs(x)|, |maxx γjs(x)|} for s = 1, . . . , n. We would like to prove
that there is C > 0 such that

(67) |φ(t2, x̂j, γj(t2))− φ(t1, x̂j, γj(t1))| ≤ C(t2 − t1),

for t1, t2 ∈ (−T, T ) with t1 < t2.

If φ is distributional solution of (Dφ
2φ, . . . , D

φ
mφ) = w in O, then for all test

functions ϕ with supp(ϕ) ⋐ (−T, T )× (−r1, r1)× · · · × (−rn, rn) we have

ˆ T

−T

ˆ r1

−r1

. . .

ˆ rn

−rn

(φ(x, x̂j, y)ϕx(x, y) + f1(φ(x, x̂j, y))ϕy1(x, y) + . . .

+ fn(φ(x, y))ϕyn(x, y) + wj(x, x̂j , y)ϕ(x, y)) dy dx = 0,
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where

(68) fs(φ(xj , x̂j, y)) =
1

2

(

b
(s)
j1 φ

2(xj, x̂j , y) + φ(xj , x̂j, y)
m
∑

l=2
l 6=j

b
(s)
jl xl

)

for all (x, x̂j , y) ∈ O and s = 1, . . . , n.
In a similar way as in [10] and in Lemma 5.1 [5], we choose a test function ϕ

which depends on δ and ǫ; that is ϕ(x, y1, . . . , yn) = ξ1(x, y1) . . . ξn(x, yn)h(x) where
the functions ξ1(x, y1), . . . , ξn(x, yn) and h(x) are defined for small δ > 0 by

ξs(x, ys) =



























0, −T < x < T, −rs < ys ≤ γjs(x)− ǫ− δ,
1
δ
(ys − γjs(x) + ǫ+ δ), −T < x < T, γjs(x)− ǫ− δ < ys ≤ γjs(x)− ǫ,

1, −T < x < T, γjs(x)− ǫ < ys ≤ γjs(x),
1
δ
(−ys + γjs(x) + δ), −T < x < T, γjs(x) < ys ≤ γjs(x) + δ,

0, −T < x < T, γjs(x) + δ < ys < rs,

for s = 1, . . . , n, and

h(x) =



























0, −T < x ≤ t1 − δ,
1
δ
(x− t1 + δ), t1 − δ < x ≤ t1,

1, t1 < x ≤ t2,
1
δ
(−x+ t2 + δ), t2 < x ≤ t2 + δ,

0, t2 + δ < x < T.

We compute the limit δ → 0+:

0 = lim
δ→0+

ˆ T

−T

ˆ r1

−r1

. . .

ˆ rn

−rn

[

φ(x, x̂j , y)(ξ1)x(x, y1)ξ2(x, y2) . . . ξn(x, yn)h(x) + . . .

+ φ(x, x̂j , y)ξ1(x, y1) . . . ξn−1(x, yn−1)(ξn)x(x, yn)h(x)

+ φ(x, x̂j , y)ξ1(x, y1) . . . ξn−1(x, yn−1)ξn(x, yn)hx(x)

+ f1(φ(x, x̂j , y))(ξ1)y1(x, y1)ξ2(x, y2) . . . ξn(x, yn)h(x) + . . .

+ fn(φ(x, x̂j , y))ξ1(x, y1) . . . (ξn)yn(x, yn)h(x)

+ wj(x, x̂j , y)ξ1(x, y1) . . . ξn(x, yn)h(x)
]

dy dx

=: Iϕx1 + · · ·+ Iϕxn + Iϕxh + Iϕy1 + · · ·+ Iϕyn + Iw.

Then

lim
δ→0+

Iϕx1 = lim
δ→0+

ˆ T

−T

ˆ r1

−r1

. . .

ˆ rn

−rn

φ(ξ1)xξ2 . . . ξnh dy dx

=

ˆ t2

t1

ˆ γj2(x)

γj2(x)−ǫ

. . .

ˆ γjn(x)

γjn(x)−ǫ

γ̇j1(x)
(

φ(x, x̂j , γj1(x), y2, . . . , yn)

− φ(x, x̂j, γj1(x)− ǫ, y2, . . . , yn)
)

dyn . . . dy2 dx,

...
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lim
δ→0+

Iϕxn = lim
δ→0+

ˆ T

−T

ˆ r1

−r1

. . .

ˆ rn

−rn

φξ1ξ2 . . . (ξn)xh dy dx

=

ˆ t2

t1

ˆ γj1(x)

γj1(x)−ǫ

. . .

ˆ γj(n−1)(x)

γj(n−1)(x)−ǫ

γ̇jn(x)
(

φ(x, x̂j, y1, . . . , yn−1, γjn(x))

− φ(x, x̂j , y1, . . . , yn−1, γjn(x)− ǫ)
)

dyn−1 . . . dy1 dx,

lim
δ→0+

Iϕxh = lim
δ→0+

ˆ T

−T

ˆ r1

−r1

. . .

ˆ rn

−rn

φξ1 . . . ξnhx dy dx

=

ˆ γj1(t1)

γ1(t1)−ǫ

. . .

ˆ γjn(t1)

γjn(t1)−ǫ

φ(t1, x̂j, y) dy −
ˆ γj1(t2)

γj1(t2)−ǫ

. . .

ˆ γjn(t2)

γjn(t2)−ǫ

φ(t2, x̂j , y) dy,

lim
δ→0+

Iϕy1 = lim
δ→0+

ˆ T

−T

ˆ r1

−r1

. . .

ˆ rn

−rn

f1(φ)(ξ1)y1ξ2 . . . ξnh dy dx

=

ˆ t2

t1

ˆ γj2(x)

γj2(x)−ǫ

. . .

ˆ γjn(x)

γjn(x)−ǫ

(

f1(φ(x, x̂j , γj1(x)− ǫ, y2, . . . , yn))

− f1(φ(x, x̂j, γj1(x), y2, . . . , yn))
)

dyn . . . dy2 dx,

...

lim
δ→0+

Iϕyn = lim
δ→0+

ˆ T

−T

ˆ r1

−r1

. . .

ˆ rn

−rn

fn(φ)ξ1 . . . ξn−1(ξn)ynh dy dx

=

ˆ t2

t1

ˆ γj1(x)

γj1(x)−ǫ

. . .

ˆ γj(n−1)(x)

γj(n−1)(x)−ǫ

(

fn(φ(x, y1, . . . , yn−1, γjn(x)− ǫ))

− fn(φ(x, y1, . . . , yn−1, γjn(x)))
)

dyn−1 . . . dy1 dx,

lim
δ→0+

Iw = lim
δ→0+

ˆ T

−T

ˆ r1

−r1

. . .

ˆ rn

−rn

wjξ1 . . . ξnh dy dx

=

ˆ t2

t1

ˆ γj1(x)

γj1(x)−ǫ

. . .

ˆ γjn(x)

γjn(x)−ǫ

wj(x, x̂j , y) dy dx.

Hence we obtain

ˆ γj1(t2)

γj1(t2)−ǫ

. . .

ˆ γjn(t2)

γjn(t2)−ǫ

φ(t2, x̂j , y) dy −
ˆ γj1(t1)

γj1(t1)−ǫ

. . .

ˆ γjn(t1)

γjn(t1)−ǫ

φ(t1, x̂j , y) dy

−
ˆ t2

t1

ˆ γj1(x)

γj1(x)−ǫ

. . .

ˆ γjn(x)

γjn(x)−ǫ

wj(x, x̂j , y) dy dx

=

ˆ t2

t1

ˆ γj2(x)

γj2(x)−ǫ

. . .

ˆ γjn(x)

γjn(x)−ǫ

(

f1(φ(x, x̂j , γj1(x)− ǫ, y2, . . . , yn))

− f1(φ(x, x̂j , γj1(x), y2, . . . , yn))
)

+γ̇j1(x)
(

φ(x, x̂j , γj1(x), y2, . . . , yn)

− φ(x, x̂j, γj1(x)− ǫ, y2, . . . , yn)
)

dyn . . . dy2 dx+ · · ·
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+

ˆ t2

t1

ˆ γj1(x)

γj1(x)−ǫ

. . .

ˆ γj(n−1)(x)

γj(n−1)(x)−ǫ

(

fn(φ(x, x̂j , y1, . . . , yn−1, γjn(x)− ǫ))

− fn(φ(x, x̂j , y1, . . . , yn−1, γjn(x)))
)

+γ̇jn(x)
(

φ(x, x̂j , y1, . . . , yn−1, γjn(x))

− φ(x, x̂j , y1, . . . , yn−1, γjn(x)− ǫ)
)

dyn−1 . . . dy1dx

and, consequently, by (68) we deduce that

(69)

ˆ γj1(t2)

γj1(t2)−ǫ

. . .

ˆ γjn(t2)

γjn(t2)−ǫ

φ(t2, x̂j , y) dy −
ˆ γj1(t1)

γj1(t1)−ǫ

. . .

ˆ γjn(t1)

γjn(t1)−ǫ

φ(t1, x̂j , y) dy

−
ˆ t2

t1

ˆ γj1(x)

γj1(x)−ǫ

. . .

ˆ γjn(x)

γjn(x)−ǫ

wj(x, x̂j , y) dy dx

=

ˆ t2

t1

ˆ γj2(x)

γj2(x)−ǫ

. . .

ˆ γjn(x)

γjn(x)−ǫ

1

2
b
(1)
j1

(

φ(x, x̂j, γj1(x)− ǫ, y2, . . . , yn)

− φ(x, x̂j, γj1(x), y2, . . . , yn)

)(

φ(x, x̂j , γj1(x)− ǫ, y2, . . . , yn)

+ φ(x, x̂j , γj1(x), y2, . . . , yn)− 2φ(x, x̂j, γj(x))

)

dyn . . . dy2 dx+ . . .

+

ˆ t2

t1

ˆ γj1(x)

γj1(x)−ǫ

. . .

ˆ γj(n−1)(x)

γj(n−1)(x)−ǫ

1

2
b
(1)
j1

(

φ(x, x̂j, y1, . . . , yn−1, γjn(x)− ǫ)

− φ(x, x̂j, y1, . . . , yn−1, γjn(x))

)(

φ(x, x̂j , y1, . . . , yn−1, γjn(x)− ǫ)

+ φ(x, x̂j , y1, . . . , yn−1, γjn(x)))− 2φ(x, x̂j , γj(x))

)

dyn−1 . . . dy1 dx.

Because φ is locally 1/2-Hölder continuous along the vertical components with
Hölder’s constant Ch > 0, we have

(70)

|φ(x, x̂j , γj1(x)− ǫ, y2, . . . , yn)− φ(x, x̂j , γj1(x), y2, . . . , yn)|√
ǫ

≤ Ch,

|φ(x, x̂j , γj1(x)− ǫ, y2, . . . , yn)− φ(x, x̂j , γj(x))|
√

(n− 1)ǫ
≤ Ch,

|φ(x, x̂j, γj1(x), y2, . . . , yn)− φ(x, x̂j , γj(x))|
√

(n− 1)ǫ
≤ Ch

for x ∈ [t1, t2] and y1 ∈ (γj1(x)− ǫ, γj1(x)). Hence

(71)

ˆ t2

t1

ˆ γj2(x)

γj2(x)−ǫ

. . .

ˆ γjn(x)

γjn(x)−ǫ

1

2
b
(1)
j1

(

φ(x, x̂j , γj1(x)− ǫ, y2, . . . , yn)

− φ(x, x̂j , γj1(x), y2, . . . , yn)

)(

φ(x, x̂j , γj1(x)− ǫ, y2, . . . , yn)

+ φ(x, x̂j , γj1(x), y2, . . . , yn)− 2φ(x, x̂j, γj(x))

)

dyn . . . dy2 dx

≤ |b(1)j1 |
√
n− 1C2

h(t2 − t1)ǫ
n.
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In a similar way, we can be found an estimate for each term on the right in (69).
Then putting together (69) and (71), dividing by ǫn and getting to the limit to

ǫ→ 0, it follows that there is C = (Ch, b
(1)
j1 , . . . , b

(n)
j1 ) > 0 such that

(72) φ(t2, x̂j , γj(t2))− φ(t1, x̂j , γj(t1)) ≤
(

‖wj‖L∞(O,R) + C

)

(t2 − t1)

for t1, t2 ∈ (−T, T ) with t1 < t2.
In a similar way, starting from (69) and using again (70) we can conclude

(73) φ(t2, x̂j, γj(t2))− φ(t1, x̂j, γj(t1)) ≥ −
(

‖wj‖L∞(O,R) + C

)

(t2 − t1)

for t1, t2 ∈ (−T, T ) with t1 < t2.
Hence combining (72) and (73), we get (67), i.e. φ is a Lipschitz map along any

characteristic line γj as desired. �

Now we are able to show the proof of Theorem 7.2. In the case of Heisenberg
groups the analogous proposition and proof of it are shown in [5], Lemma 5.4.

Proof. Fix b ∈ O. According to Remark 2.16 (9), we would like to prove that

there exists Ĉ > 0 such that

(74) |φ(a′)− φ(a)| ≤ Ĉ‖φ̂(i(a))−1i(a)−1i(a′)φ̂(i(a))‖ for all a, a′ ∈ U(b, δ)
with δ > 0. Let a = (x, y), a′ = (x′, y′) points of O be sufficiently close to b, and let

D̄j be the vector fields given by D̄j = (x′j − xj)D
φ
j for j ∈ {2, . . . , m}. We define

a1 := a,

a2 := exp(D̄2)(a1),

a3 := exp(D̄3)(a2),

...

am := exp(D̄m)(am−1).

More precisely for j ∈ {2, . . . , m}
aj = (x′2, . . . , x

′
j , xj+1, . . . , xm, y

aj)

with

yajs = ys +

j
∑

l=2

(

b
(s)
l1

ˆ x′
l
−xl

0

φ
(

exp(rDφ
l (al−1))

)

dr

+
1

2
(x′l − xl)

(

l
∑

h=2

x′hb
(s)
lh +

m
∑

h=l+1

xhb
(s)
lh

)

)

=



























y
aj−1
s + b

(s)
j1

´ x′j−xj
0 φ

(

exp(rDφ
j (aj−1))

)

dr

+1
2
(x′j − xj)

(

∑j
h=2 x

′
hb

(s)
jh +

∑m
h=j+1 xhb

(s)
jh

)

, if 2 ≤ j < m,

y
aj−1
s +b

(s)
j1

´ x′j−xj
0 φ

(

exp(rDφ
j (aj−1))

)

dr + 1
2
(x′j−xj)

∑j
h=2 x

′
hb

(s)
jh , !if j = m,

for s = 1, . . . , n. By Lemma 7.3, (−δ, δ) ∋ r 7→ φ(exp(rDφ
j (aj−1))) is Lipschitz for

all j = 2, . . . , m and so a2, . . . , am are well defined if a, a′ ∈ U(b, δ) for a sufficiently
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small δ > 0 (we recall that the global existence of integral curve of Dφ
j is not sure

because the vector fields Dφ
j are only continuous).

We observe that

(75) |φ(a′)− φ(a)| ≤ |φ(a′)− φ(am)|+
m
∑

l=2

|φ(al)− φ(al−1)|

and by Lemma 7.3 there is C > 0 such that

(76)
m
∑

l=2

|φ(al)− φ(al−1)| ≤
m
∑

l=2

C|x′l − xl|Rm−1 ≤ C‖φ̂(i(a))−1i(a)−1i(a′)φ̂(i(a))‖.

Hence in order to establish (74) we show that there exists C1 > 0 such that

(77) |φ(a′)− φ(am)| ≤ C1‖φ̂(i(a))−1i(a)−1i(a′)φ̂(i(a))‖.
Recalling that am = (x′, yam) and using φ is locally 1/2-Hölder continuous along the
vertical components with Hölder’s constant Ch > 0, it follows

|φ(a′)− φ(am)| ≤ Ch|y′ − yam|1/2
Rn

Moreover, arguing as in the proof of the implication 4. ⇒ 2. in Theorem 5.7 in [11],
we have

|y′ − yam |Rn ≤
n
∑

s=1

∣

∣

∣

∣

y′s − ys +
m
∑

l=2

(

b
(s)
1l

ˆ x′
l
−xl

0

φ
(

exp(rDφ
l (al−1))

)

dr+

− 1

2
(x′l − xl)

(

l
∑

i=2

x′ib
(s)
li +

m
∑

i=l+1

xib
(s)
li

)

)∣

∣

∣

∣

≤
n
∑

s=1

∣

∣

∣

∣

y′s − ys + φ(a)
m
∑

l=2

(x′l − xl)b
(s)
1l − 1

2
〈B(s)x, x′ − x〉

∣

∣

∣

∣

+

n
∑

s=1

∣

∣

∣

∣

−1

2

m
∑

l=2

(x′l − xl)
(

l
∑

i=2

x′ib
(s)
li +

m
∑

i=l+1

xib
(s)
li

)

+
1

2
〈B(s)x, x′ − x〉

∣

∣

∣

∣

+

n
∑

s=1

∣

∣

∣

∣

−φ(a)
m
∑

l=2

(x′l − xl)b
(s)
1l +

m
∑

l=2

b
(s)
1l

ˆ x′
l
−xl

0

φ
(

exp(rDφ
l (al−1))

)

dr

∣

∣

∣

∣

≤ c1‖φ̂(i(a))−1i(a)−1i(a′)φ̂(i(a))‖2 + 1

2
n‖B‖∞|x′ − x|2

Rm−1+

+

n
∑

s=1

∣

∣

∣

∣

−φ(a)
m
∑

l=2

(x′l − xl)b
(s)
1l +

m
∑

l=2

b
(s)
1l

ˆ x′
l
−xl

0

φ
(

exp(rDφ
l (al−1))

)

dr

∣

∣

∣

∣

where c1 is given by (11) and ‖B‖∞ = max{b(s)ij | i, j = 1, . . . , m , s = 1, . . . , n}. Note
that we have used

1

2
〈B(s)x, x′ − x〉 − 1

2

m
∑

l=2

(x′l − xl)
(

l
∑

i=2

x′ib
(s)
li +

m
∑

i=l+1

xib
(s)
li

)

= −1

2

m
∑

l=2

(x′l − xl)
(

l
∑

i=2

x′ib
(s)
li +

m
∑

i=l+1

xib
(s)
li −

m
∑

i=2

xib
(s)
li

)

≤ 1

2
‖B‖∞|x′ − x|2

Rm−1 .
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Finally, the last term

n
∑

s=1

∣

∣

∣

∣

−φ(a)
m
∑

l=2

(x′l − xl)b
(s)
1l +

m
∑

l=2

b
(s)
1l

ˆ x′
l
−xl

0

φ
(

exp(rDφ
l (Bl−1))

)

dr

∣

∣

∣

∣

≤ R1(a, a
′) +R2(a, a

′),

where

R1(a, a
′) :=

n
∑

s=1

m
∑

l=2

∣

∣

∣

∣

b
(s)
1l

ˆ x′
l
−xl

0

φ
(

exp(rDφ
l (al−1))

)

dr − b
(s)
1l φ(al−1)(x

′
l − xl)

∣

∣

∣

∣

,

R2(a, a
′) :=

n
∑

s=1

∣

∣

∣

∣

m
∑

l=2

b
(s)
1l (x

′
l − xl)

(

φ(al−1)− φ(a)
)

∣

∣

∣

∣

We would like to show that there exist C1, C2 > 0 such that

R1(a, a
′) ≤ C1|x′ − x|2

Rm−1 ,(78)

R2(a, a
′) ≤ C2|x′ − x|2

Rm−1(79)

for all a, a′ ∈ U(b, δ) and consequently

|y′− yam |Rn ≤ c1‖φ̂(i(a))−1i(a)−1i(a′)φ̂(i(a))‖2 +
(

1

2
n‖B‖∞ + C1 + C2

)

|x′ − x|2
Rm−1

Hence there is C3 > 0 such that

(80) |y′ − yam|1/2
Rn ≤ C3‖φ̂(i(a))−1i(a)−1i(a′)φ̂(i(a))‖,

i.e. (77) is true. We start to consider R1(a, a
′). Fix l = 2, . . . , m. For t ∈ [−δ, δ] we

define

gl(t) :=

n
∑

s=1

b
(s)
1l

(
ˆ t

0

φ(exp(rDφ
l )(al−1)) dr − tφ(al−1)

)

.

Observe that

b
(s)
1l

ˆ t

0

(

φ(exp(rDφ
l )(al−1))− φ(al−1)

)

dr = O(t2),

and so there is Cl > 0 such that

|gl(t)| ≤ Clt
2, ∀t ∈ [−δ, δ].

Hence setting t = x′l − xl we get

|gl(x′l − xl)| ≤ Cl(x
′
l − xl)

2,

and consequently (78) follows from

m
∑

l=2

|gl(x′l − xl)| ≤
m
∑

l=2

Cl(x
′
l − xl)

2 ≤ C1|x′ − x|2
Rm−1 .
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Now we consider R2(a, a
′). Observe that

n
∑

s=1

∣

∣

∣

∣

m
∑

l=2

b
(s)
1l (x

′
l − xl)

(

φ(al−1)− φ(a)
)

∣

∣

∣

∣

≤ n‖B‖∞
m
∑

l=2

|x′l − xl| |φ(al−1)− φ(a)|

≤ n‖B‖∞
m
∑

l=2

|x′l − xl|
(

l−1
∑

h=1

|φ(ah)− φ(ah−1)|
)

(where a0 := a)

≤ n‖B‖∞
m
∑

l=2

|x′l − xl|
(

l−1
∑

h=1

∣

∣

∣

ˆ 1

0

(D̄hφ)(exp(rD̄h(ah−1))) dr
∣

∣

∣

)

≤ n‖B‖∞
m
∑

l=2

|x′l − xl|
(

l−1
∑

h=1

∣

∣

∣
(x′h − xh)

(

Dφ
hφ(ah−1) + o(1)

) ∣

∣

∣

)

≤ n‖B‖∞C|x′ − x|2
Rm−1 .

Then (79) follows with C2 := n‖B‖∞C and (80) is true. Finally, putting together
(75), (76) and (77), (74) holds and the proof is complete. �

8. A characterization of G-regular hypersurfaces

In this section we will prove a new characterization of G-regular hypersurfaces
(see Definition 2.2). Here we consider the non linear first order system

(81)
(

Dφ
2φ, . . . , D

φ
mφ
)

= w,

where w : O → R
m−1 is a given continuous function and not just measurable as

opposed to the previous sections.
In [11], we give some equivalent conditions for G-regular hypersurface inside the

Carnot groups of step 2 (see Theorem 5.7 in [11]). In this section we give another one.
More precisely, we show that if a continuous map φ : O ⊂ R

m+n−1 → R is locally
little 1/2-Hölder continuous along the vertical components, then φ is a distributional
solution in an open set O of the non linear first order system (81) if and only if

φ̂ : Ô → V is uniformly intrinsic differentiable in Ô and consequently its graph is a
G-regular hypersurface. The main equivalence result is contained in Theorem 8.2.

Its proof is similar to the one of [6]: firstly we have to be precise about the mean-
ing of being a solution of (81). To this aim we recall a notion of generalized solutions
of systems of this kind. These generalized solutions, denoted broad* solutions were
introduced and studied for the system (81) inside Heisenberg groups in [3, 6]. For a
more complete bibliography we refer to the bibliography in [3]. Then our strategy
will be to prove that each continuous distributional solution of the system (81) is a
broad* solution and vice versa (see Proposition 8.1).

The regularity results contained in [6] yield Hölder regularity properties for con-
tinuous distributional solutions of (81) and for broad* solutions of (81) in the context
of Heisenberg groups. Hence in Heisenberg groups we can omit the little Hölder con-
tinuity of φ because each assumption implies it. We use this hypothesis in the proof
of Proposition 8.1, but it is not clear if we can omit it.

Definition 8.1. Let O ⊂ R
m+n−1 be open and w := (w2, . . . , wm) : O → R

m−1

a continuous function. With the notations of Definition 3.1 we say that φ ∈ C(O,R)
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is a broad* solution in O of the system
(

Dφ
2φ, . . . , D

φ
mφ
)

= w

if for every a0 ∈ O there are 0 < δ2 < δ1 and m− 1 maps expa0(·D
φ
j )(·)

expa0(·D
φ
j )(·) : [−δ2, δ2]× I(a0, δ2) → I(a0, δ1)(t, a) 7→ expa0(tD

φ
j )(a)

for j = 2, . . . , m, where I(a0, δ) := U(a0, δ) ∩W and I(a0, δ1) ⊂ O. Moreover, these

maps, called exponential maps of the vector fields Dφ
2 , . . . , D

φ
m, are required to have

the following properties

t 7→ γja(t) := expa0(tD
φ
j )(a) ∈ C

1([−δ2, δ2],Rm+n−1)

for all a ∈ I(a0, δ2) and
{

γ̇ja = Dφ
j ◦ γja,

γja(0) = a,

φ(γja(t))− φ(γja(0)) =

ˆ t

0

wj(γ
j
a(r)) dr, for t ∈ [−δ2, δ2]

once more for all a ∈ I(a0, δ2).
Proposition 8.1. Let G := (Rm+n, ·, δλ) be a Carnot group of step 2 and V,

W the complementary subgroups defined in (13). Let φ̂ : Ô → V be a continuous

map, where Ô is an open subset of W and φ : O → R is the map associated to φ̂ as
in (14). Then the following conditions are equivalent:

(1) φ is locally little 1/2-Hölder continuous along the vertical components, i.e.
that is φ ∈ C(O,R) and for all O′ ⋐ O

lim
r→0+

sup

{

|φ(x, y′)− φ(x, y)|
|y′ − y|1/2

Rn

: (x, y), (x, y′) ∈ O′, 0 < |y′ − y|Rn < r

}

= 0,

and there exists w ∈ C(O,Rm−1) such that φ is a broad* solution of
(

Dφ
2φ, . . . , D

φ
mφ
)

= w, in O,

(2) φ is locally little 1/2-Hölder continuous along the vertical components and
there exists w ∈ C(O,Rm−1) such that φ is distributional solution of

(

Dφ
2φ, . . . , D

φ
mφ
)

= w, in O.
Proof. (1) =⇒ (2). By Theorem 5.7 in [11], we know that there is a family of

functions φǫ ∈ C
1(O,R) such that for all O′ ⋐ O,

(82) φǫ → φ and Dφǫ
j φǫ → Dφ

j φ

for j = 2, . . . , m uniformly on O′ as ǫ → 0+. Then for each j = 2, . . . , m, ǫ > 0 and
ζ ∈ C

1
c(O,R)

ˆ

O

φǫ

(

Xjζ + φǫ

n
∑

s=1

b
(s)
j1 Ysζ

)

dLm+n−1 = −
ˆ

O

Dφǫ
j φǫ ζ dLm+n−1.
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Using (82) and getting to the limit for ǫ→ 0+ we have that
ˆ

O

φ

(

Xjζ + φ
n
∑

s=1

b
(s)
j1 Ysζ

)

dLm+n−1 = −
ˆ

O

Dφ
j φ ζ dLm+n−1.

Hence φ is distributional solution of
(

Dφ
2φ, . . . , D

φ
mφ
)

= w in O.

(2) =⇒ (1). Let a0 ∈ O, δ1 > 0 and I := U(a0, δ1) ∩ W and I(a0, δ1) ⊂ O.
Denote

K := sup
(x,y)∈I

m
∑

l=2

|xl|, M := ‖φ‖L∞(I,R), δ2 <
δ1

2 + 1
2
K‖B‖∞ +M‖B‖∞

,

where ‖B‖∞ = max{b(s)jl | l, j = 1, . . . , m , s = 1, . . . , n}. Peano’s Theorem yields that

for all a = (xj , x̂j, y) ∈ I(a0, δ2) there exists a C
1 function (γj1, . . . , γjn) : [−δ2, δ2] →

R
n such that

γja(t) = (xj + t, x̂j , γj1(t), . . . , γjn(t)) ∈ I for t ∈ [−δ2, δ2],
and γjs(t) is a solution of the Cauchy problem

{

γ̇js(t) =
1
2

∑m
l=2
l 6=j

xlb
(s)
jl + b

(s)
j1 φ(γ

j
a(t)), for t ∈ [−δ2, δ2],

γjs(0) = ys,

for s = 1, . . . , n. It is clear that if b
(s)
j1 = 0, then γjs(t) = ys +

1
2
t
∑m

l=2
l 6=j

xlb
(s)
jl for

t ∈ [−δ2, δ2]. On the other hand, if b
(s)
j1 6= 0, then the map φ(γja(·)) satisfies the

following ODE
d

dt

(

b
(s)
j1 φ(γ

j
a(t))

)

= b
(s)
j1 wj(γ

j
a(t))

with t ∈ [−δ, δ] for some δ > 0. Indeed, we can repeat verbatim the proof of

Lemma 7.3 and so we obtain (69) with b
(s)
j1 6= 0. Moreover because φ is locally little

1/2-Hölder continuous along the vertical components, upon dividing (69) by ǫn and
getting to the limit to ǫ → 0, we have that

φ(γja(t2))− φ(γja(t1))−
ˆ t2

t1

wj(γ
j
a(t)) dt = 0

for t1, t2 ∈ [−δ, δ] with δ > 0 and t1 < t2.
In particular, φ(γja(·)) and γ̇js(·) are C

1([−δ3, δ3],R) for s = 1, . . . , n where δ3 :=
min{δ, δ2}. Therefore the curve γja : [−δ3, δ3] → I satisfies the conditions of the
Definition 8.1 for each a ∈ I(a0, δ3) := U(a0, δ3) ∩W and I(a0, δ3) ⊂ O.

Then, for each j = 2, . . . , m, expa0(·D
φ
j )(·) : [−δ3, δ3] × I(a0, δ3) → I defined as

expa0(tD
φ
j )(a) := γja(t) is a family of exponential maps at a0 which we were looking

for. This completes the proof of the implication (2) =⇒ (1). �

Thanks to Proposition 8.1 and Theorem 5.7 in [11], we obtain an important
result, i.e. Theorem 8.2, which is the counterpart of Theorem 1.2 and Theorem 1.3
in [3] in the context of Heisenberg groups.

Theorem 8.2. Let G := (Rm+n, ·, δλ) be a Carnot group of step 2 and V, W

the complementary subgroups defined in (13). Let φ̂ : Ô → V be a continuous map,

where Ô is an open subset of W and φ : O → R is the map associated to φ̂ as in
(14). Then the following conditions are equivalent:
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(1) graph (φ̂) is a G-regular hypersurface and for all a ∈ graph (φ̂) there is r =
r(a) > 0 and f ∈ C

1
G
(U(a, r)),R) with X1f > 0 such that

graph (φ̂) ∩ U(a, r) = {p : f(p) = 0},
(2) φ̂ is u.i.d. in Ô,

(3) Dφ
j φ interpreted in distributional sense is a continuous function in O and for

0 < ǫ < 1 there is a family of functions φǫ ∈ C
1(O,R) such that for all

O′ ⋐ O,

φǫ → φ and Dφǫ
j φǫ → Dφ

j φ

for j = 2, . . . , m, uniformly on O′ as ǫ→ 0+,
(4) φ is locally little 1/2-Hölder continuous along the vertical components and

there exists w ∈ C(O,Rm−1) such that φ is a broad* solution of
(

Dφ
2φ, . . . , D

φ
mφ
)

= w, in O,

(5) φ is locally little 1/2-Hölder continuous along the vertical components and
there exists w ∈ C(O,Rm−1) such that φ is distributional solution of

(

Dφ
2φ, . . . , D

φ
mφ
)

= w, in O.
Remark 8.3. We recall that in Theorem 5.7 in [11], we consider a locally little

1/2-Hölder continuous map but in the proof we just use that φ is locally little 1/2-
Hölder continuous along the vertical components.
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