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Abstract. Given an open convex set Ω ⊂ R
n and a convex function u ∈ W

2,n

loc
(Ω), a short

proof of the fact that |∇u(E)| = 0 for every subset E ⊂ Ω with |E| = 0 is presented.

1. Introduction and main result

Let |A| denote the Lebesgue measure of A ⊂ Rn. Given an open set Ω ⊂ Rn we
will write C(Ω) for C(Ω;Rn), W k,p(Ω) for W k,p(Ω;Rn), etc. to indicate regularity of
mappings defined in Ω.

A mapping F : Ω → Rn with F ∈ W 1,1
loc (Ω) is said to satisfy Lusin’s condition

(N), which will be denoted as F ∈ N(Ω), if |F (E)| = 0 for every set E ⊂ Ω with
|E| = 0. The literature on Lusin’s condition (N) is vast and we will only mention
a few essential results to establish some context. For instance, in [10, Corollary B],
Malý and Martio proved that C(Ω)∩W 1,n

loc (Ω)∩{F : Ω → Rn : F open} ⊂ N(Ω) and,
in [10, Theorem C], that Cα

loc(Ω) ∩ W 1,n
loc (Ω) ⊂ N(Ω) for every α ∈ (0, 1) (see also

Malý’s Theorem 1.3 in [9]). However, C(Ω) ∩W 1,n
loc (Ω) 6⊂ N(Ω) (see [10, Section 1]

and references therein). In [11], Martio and Ziemer introduced and studied analytic
and topological conditions on mappings F ∈ W 1,n

loc (Ω) with a.e. nonnegative Jacobian
determinant (that is, detDF ≥ 0 a.e. Ω) that guarantee F ∈ N(Ω), for example in
[11, Corollary 3.13] they proved that W 1,n

loc (Ω)∩{F : Ω → Rn : detDF > 0 a.e. Ω} ⊂
N(Ω).

When Ω ⊂ Rn is open and convex, the class of mappings F ∈ W 1,n
loc (Ω) with

a.e. nonnegative Jacobian determinant includes those with convex potentials, that
is, F = ∇u for a convex function u ∈ W 2,n

loc (Ω). In the case of mappings with convex
potentials, the inclusion {∇u : u ∈ W 2,n

loc (Ω), u convex} ⊂ N(Ω) can be deduced
from Theorem 5.11 and Remark 5.15 in the work of Alberti and Ambrosio [1], in the
context of maximal monotone operators in W 1,n

loc (Ω). The exponent n in the inclusion
{∇u : u ∈ W 2,n

loc (Ω), u convex} ⊂ N(Ω) is sharp in the sense that a construction
from [1, Section 8] yields a differentiable convex function u : Rn → R such that u ∈
W 2,p

loc (R
n) for every p ∈ (1, n), ∇u ∈ Cα

loc(R
n) for every α ∈ (0, 1), and ∇u /∈ N(Rn).

Moreover, in [8] Liu and Malý constructed a strictly convex function u : (0, 1)n → R
such that u ∈ W 2,p

loc ((0, 1)
n) for every p ∈ (1, n), ∇u ∈ Cα

loc((0, 1)
n) for every α ∈ (0, 1),

and ∇u /∈ N((0, 1)n). Both constructions satisfy detD2u = 0 a.e. in Ω.
The proof of the aforementioned Theorem 5.11 in [1] relies on methods from

geometric measure theory involving n-currents associated to graphs, the area formula
on Lipschitz manifolds, and degree theory. The purpose of this note is to provide a
short, simple proof of the inclusion {∇u : u ∈ W 2,n

loc (Ω), u convex} ⊂ N(Ω) based on
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the notion of Monge–Ampère measure. Also, we will point out how one of the main
theorems from the work of Braga, Figalli, and Moreira in [2] implies that convex
functions in W 2,n

loc (Ω) are continuously differentiable in Ω. Thus, our main result is

Theorem 1. Let Ω ⊂ Rn be an open convex set and let u ∈ W 2,n
loc (Ω) be a

convex function. Then ∇u ∈ C(Ω) ∩N(Ω).

Some consequences of Theorem 1, related to the change-of-variable formulas and
to the notions of weak and strong solutions of the Monge–Ampère equation, will be
included in Section 3.

2. Proof of Theorem 1

Given an open convex set Ω ⊂ Rn and a convex function u : Ω → R, the normal
mapping or subdifferential of u is the set-valued function defined for x0 ∈ Ω as

(2.1) ∂u(x0) := {v ∈ Rn : u(x) ≥ u(x0) + v · (x− x0) for all x ∈ Ω},

and, given E ⊂ Ω, ∂u(E) :=
⋃

x∈E ∂u(x). If u is differentiable at x0 we identify
∂u(x0) with ∇u(x0). The Monge–Ampère measure associated to u, denoted by µu,
is the nonnegative locally finite measure

(2.2) µu(E) := |∂u(E)|

defined on the Borel σ-algebra {E ⊂ Ω: ∂u(E) is Lebesgue measurable}, see [6, Sec-
tion 2.1] or [7, Section 1.1] for further details.

Our proof of Theorem 1 will be based on the following compactness result for
Monge–Ampère measures (see Proposition 2.6 from Figalli’s book [6, p. 12] or Lem-
mas 1.2.2 and 1.2.3 from Gutiérrez’s book [7]): let {uε}ε>0 and u be convex functions
defined in Ω, let U ⊂ Ω be an open set and suppose that uε converges uniformly to
u on compact subsets of U , then µuε

converges weakly* to µu, that is,

(2.3)
ˆ

U

g dµuε
→

ˆ

U

g dµu ∀g ∈ Cc(U).

Let us start with a lemma comparing the weight detD2u and the measure µu for
convex functions u ∈ W 2,1

loc (Ω). Notice that, due to the convexity of u, detD2u(x)
exists and is nonnegative for a.e. x ∈ Ω.

Lemma 2. Let Ω ⊂ Rn be an open convex set and let u ∈ W 2,1
loc (Ω) be a convex

function. Then, the inequality

(2.4)
ˆ

U

detD2u(x) dx ≤ |∂u(U)|

holds true for every open set U ⊂⊂ Ω. In particular, detD2u ∈ L1
loc(Ω).

Proof. Given U ⊂⊂ Ω, let ε0 := dist(U, ∂Ω) and for ε ∈ (0, ε0) and x ∈ U define

(2.5) uε(x) := u ∗ ηε(x) =

ˆ

Rn

u(x− y)ηε(y) dy,

where η ∈ C∞
c (Rn) is supported in the unit Euclidean ball B(0, 1) with

´

Rn η(y) dy =
1 and ηε(y) := ε−nη(ε−1y). Then, uε converges uniformly to u on compact subsets of
U and (2.3) holds. Now, given δ > 0, set

(2.6) Uδ := {x ∈ U : dist(x, ∂U) > δ}

and
Vδ := {x ∈ Rn : dist(x,Rn \ U) < δ/2}.
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It then follows that Uδ ∩ Vδ = ∅, since otherwise there would be an x ∈ U such that

δ

2
≥ dist(x,Rn \ U) = dist(x, ∂(Rn \ U)) = dist(x, ∂U) ≥ δ,

a contradiction. Hence, there exists a continuous function g : Rn → [0, 1] such that
g ≡ 1 on Uδ and g ≡ 0 on Vδ; in particular, supp(g) ⊂ U \ Vδ = Uδ/2 ⊂ U . By using
that uε is a smooth function in U , we get (see for instance [6, Example 2.2] or [7,
Example 1.1.4])

(2.7)
ˆ

Uδ

detD2uε(x) dx = |∇uε(Uδ)| =

ˆ

Uδ

dµuε
≤

ˆ

U

g dµuε
.

On the other hand, since D2u ∈ L1
loc(Ω), we have that D2uε(x) (or a subse-

quence) converges to D2u(x) as ε → 0+ for (Lebesgue) a.e. x ∈ U and consequently
detD2uε(x) converges to detD2u(x) for a.e. x ∈ U . Thus, by combining (2.7) and
(2.3) with Fatou’s lemma, we get

ˆ

Uδ

detD2u(x) dx ≤ lim inf
ε→0+

ˆ

Uδ

detD2uε(x) dx ≤ lim inf
ε→0+

ˆ

U

g dµuε

=

ˆ

U

g dµu ≤

ˆ

U

dµu = |∂u(U)|

and (2.4) follows from the monotone convergence theorem by letting δ ց 0+. �

The next result is based on Theorem 2.9 from Braga–Figalli–Moreira [2] and will
allow us to write ∇u, instead of ∂u, for convex functions u ∈ W 2,n

loc (Ω).

Proposition 3. Let u ∈ W 2,n
loc (Ω) be a convex function. Then u ∈ C1(Ω).

Proof. Given a convex function u ∈ W 2,n
loc (Ω) set f := ∆u ∈ Ln

loc(Ω). Fix an
arbitrary x0 ∈ Ω, let R > 0 such that BR(x0) ⊂⊂ Ω. Then, ∆u(x) = f(x) for a.e.
x ∈ BR(x0). In the terminology of Caffarelli–Crandall–Kocan–Świech [4, p. 366],
this means that u is an Ln-strong solution of ∆u = f , which, due to the fact that
u ∈ W 2,n(BR(x0)), is equivalent to u being an Ln-viscosity solution of ∆u = f in
BR(x0) (see [4, Lemma 2.5 and Corollary 3.7]). Now, by [2, Theorem 2.9] on the C1,α-
regularity of convex Ln-viscosity supersolutions of fully nonlinear equations used with
λ = Λ = 1 and γ ≡ 0 (so that, in the notation from [2, Section 2.2], we get P−

λ,Λ,γ = ∆

applied to ϕ = u with ω ≡ 0) and q = n, it follows that u ∈ C1(BR/64(x0)) and then,
since x0 ∈ Ω and R > 0 were arbitrary with BR(x0) ⊂⊂ Ω, we obtain u ∈ C1(Ω). �

Remark 4. As mentioned, the only role of Proposition 3 is to allow us to write
∇u, instead of ∂u, for convex functions u ∈ W 2,n

loc (Ω). All of the results in this note
are true, with ∂u instead of ∇u, without assuming u ∈ C1(Ω).

The next lemma provides the reverse inequality to the one from Lemma 2 for
convex functions u ∈ W 2,n

loc (Ω).

Lemma 5. Let Ω ⊂ Rn be a convex set and let u ∈ W 2,n
loc (Ω) be a convex

function. Then, the inequality

(2.8) |∇u(U)| ≤

ˆ

U

detD2u(x) dx

holds true for every open set U ⊂⊂ Ω.
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Proof. Let Uδ ⊂ U , g, and uε be as in the proof of Lemma 2. Then, we have

|∇u(Uδ)| =

ˆ

Uδ

dµu ≤

ˆ

U

g dµu = lim
ε→0+

ˆ

U

g dµuε
≤ lim

ε→0+

ˆ

U

dµuε

= lim
ε→0+

|∇uε(U)| = lim
ε→0+

ˆ

U

detD2uε(x) dx.(2.9)

Next, let ΩU ⊂ Ω denote a set such that U ⊂⊂ ΩU ⊂⊂ Ω and define H := (∆u)χΩU

so that for 0 < ε < dist(U, ∂ΩU ) and for x ∈ U we have ∆u ∗ ηε(x) = (H ∗ ηε)(x) and
then, always for x ∈ U ,

detD2uε(x) ≤ ∆uε(x)
n = (∆u ∗ ηε)(x)

n = (H ∗ ηε)(x)
n ≤ M(H)(x)n,

where M denotes the Hardy–Littlewood maximal function. If n > 1, the (n, n)-
strong type of M and the hypothesis u ∈ W 2,n

loc (Ω) give
ˆ

U

M(H)(x)n dx ≤ ‖M(H)‖nLn(Rn) ≤ Cn‖H‖nLn(Rn) = Cn

ˆ

ΩU

∆u(x)n dx < ∞,

and then the Lebesgue dominated convergence theorem implies that

lim
ε→0+

ˆ

U

detD2uε(x) dx =

ˆ

U

detD2u(x) dx

which combined with (2.9), and after letting δ ց 0+, proves (2.8). If n = 1 then we
just use that detD2uε = u′′

ε = u′′ ∗ ηε converges in L1
loc(U) to u′′ = detD2u. �

Theorem 6. Let S ⊂ Rn be an open convex set and let u ∈ W 2,n(S) be a convex
function. Then,

(2.10)
ˆ

E

detD2u(x) dx = |∇u(E)|

for every Borel set E ⊂ S.

Proof. From lemmas 2 and 5 we have

(2.11)
ˆ

U

detD2u(x) dx = |∇u(U)|

for every open set U ⊂⊂ S and by considering increasing sequences of sets, the
equality (2.11) can be extended to every open set U ⊂ S. In addition, the hypothesis
u ∈ W 2,n(S) implies

µu(S) = |∇u(S)| =

ˆ

S

detD2u(x) dx ≤

ˆ

S

∆u(x)n dx < ∞.

Thus, µu and detD2u are two finite Borel measures on S that coincide on the open
subsets of S. Therefore, the equality (2.11) can be extended to every Borel set E ⊂ S
by means of the π-λ-theorem (see for instance [5, Theorem 1.5]). �

Proof of Theorem 1. First, let us just observe that Theorem 6 can be extended
to u ∈ W 2,n

loc (Ω). Indeed, for δ > 0 define

(2.12) Ωδ := {x ∈ U : dist(x, ∂Ω) > δ}

so that u ∈ W 2,n(Ωδ) for every δ > 0. Given a Borel set E ⊂ Ω consider Eδ := E∩Ωδ

so that Theorem 6 with S := Ωδ gives

(2.13)
ˆ

Eδ

detD2u(x) dx = |∇u(Eδ)|
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and (2.10) follows by taking limits as δ ց 0+. Finally, given E ⊂ Ω with |E| = 0,
(2.10) yields |∇u(E)| = 0, which means ∇u ∈ N(Ω). �

3. Some consequences of Theorems 1 and 6

Let us begin with a change-of-variable formula for W 2,n
loc -mappings with strictly

convex potentials.

Corollary 7. Let Ω ⊂ Rn be an open convex set and let u ∈ W 2,n
loc (Ω) be a

strictly convex function. Then, for every measurable set S ⊂ Ω and every nonnegative
Borel measurable function W defined on Rn the change-of-variable formula holds true

(3.14)
ˆ

S

W (∇u(x)) detD2u(x) dx =

ˆ

∇u(S)

W (y) dy.

Proof. Given F ∈ W 1,1
loc (Ω) and a measurable set S ⊂ Ω, the following are

equivalent (see, for instance, [9, Proposition 1.1]):
(a) |F (E)| = 0 for every set E ⊂ S with |E| = 0 (i.e., Lusin’s condition (N) on

S).
(b) For every measurable S ′ ⊂ S the area formula

(3.15)
ˆ

S′

| det∇F (x)| dx =

ˆ

Rn

N (y, F, S ′) dy

holds true, where N (y, F, S ′) := #{x ∈ S ′ : F (x) = y}.
(c) The change-of-variable formula holds for F on S, that is,

(3.16)
ˆ

S

W (F (x))| det∇F (x)| dx =

ˆ

Rn

W (y)N (y, F, S) dy,

for every nonnegative Borel measurable function W defined on Rn.
The fact that u is strictly convex is equivalent to ∇u being 1-1, thus N (y,∇u, S) =
#{x ∈ S : ∇u(x) = y} = χ∇u(S)(y) and (3.14) follows from Theorem 1 and (3.16). �

Next, let us relate the notions of weak and strong solutions of the Monge–Ampère
equation detD2u = f in Ω. Let us fix an open convex set Ω ⊂ Rn and an a.e.
nonnegative f ∈ L1

loc(Ω). Recall that a convex function u ∈ C(Ω) is said to be a
weak (i.e. Aleksandrov) solution of the Monge–Ampère equation detD2u = f in Ω if

(3.17) µu(E) =

ˆ

E

f(x) dx

for every Borel set E ⊂ Ω. By definition, a strong solution satisfies detD2u = f in
a.e. in Ω.

Corollary 8. Fix an a.e. nonnegative f ∈ L1
loc(Ω). A convex function u ∈

W 2,n
loc (Ω) is a weak (Aleksandrov) solution of the Monge–Ampère equation detD2u =

f in Ω if and only if it is a strong solution.

Proof. Let us suppose first that u is a weak solution. From (3.17) and (2.10) it
follows that

ˆ

E

detD2u(x) dx =

ˆ

E

f(x) dx

for every Borel set E ⊂ Ω. Then, from Lebesgue’s differentiation theorem we ob-
tain detD2u(x) = f(x) for a.e. x ∈ Ω, which means that u is a strong solution of
detD2u = f in Ω. Conversely, if u is a strong solution then

´

E
detD2u(x) dx =

´

E
f(x) dx for every Borel set E ⊂ Ω which, along with (2.10), yields (3.17). �
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Remark 9. Let us recall a correspondence between weak and viscosity solutions.
If f ∈ C(Ω) and f ≥ 0 in Ω, by [3, Lemma 3(a)] (see also [7, Proposition 1.3.4]),
every weak solution of detD2u = f in Ω is also a viscosity solution. On the other
hand, if u is a viscosity solution of detD2u = f in Ω with f ∈ C(Ω) and f > 0 in Ω,
then u is a weak solution (see [7, Proposition 1.7.1]).

Corollary 10. Fix an open convex set Ω ⊂ Rn and f ∈ C(Ω) with f > 0 in Ω.
If u ∈ C(Ω) is a strictly convex weak (Aleksandrov) solution of the Monge–Ampère
equation detD2u = f in Ω, then it is also a strong solution.

Proof of Corollary 10. For x0 ∈ Ω, q ∈ ∂u(x0), and t > 0 set

S(x0, q, t) := {x ∈ Ω: u(x)− u(x0)− q · (x− x0) < t}.

Since u is strictly convex in Ω, there exists t0 such that S := S(x0, q, t0) ⊂⊂ Ω.
Introduce v(x) := u(x)− u(x0)− q · (x− x0)− t0 so that v is a weak solution of

(3.18)

{

detD2v = f in S,

v = 0 on ∂S.

Since f is continuous and positive in S by Remark 9 we have that v is also a viscosity
solution of (3.18). Thus, given 1 < p < ∞, Caffarelli’s W 2,p-estimate for viscosity
solutions (see [3, Theorem 1(b)] or [6, Corollary 4.38]) apply, so that we have v ∈
W 2,p(1

2
S) (where 1

2
S denotes the 1

2
-contraction of S with respect to its center of

mass), since D2u = D2v we get u ∈ W 2,p(1
2
S) and then, after a covering argument,

u ∈ W 2,p
loc (Ω). By taking p = n, it follows that u ∈ W 2,n

loc (Ω) and then Corollary 8
guarantees that u is also a strong solution. �
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