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Abstract. Given an open convex set 2 C R" and a convex function u € Wli’C"(Q), a short

proof of the fact that |Vu(E)| = 0 for every subset E C Q with |E| = 0 is presented.

1. Introduction and main result

Let |A| denote the Lebesgue measure of A C R™. Given an open set 2 C R" we
will write C'(2) for C(Q; R™), WFP(Q) for WFP(£; R"), etc. to indicate regularity of
mappings defined in 2.

A mapping F: Q — R" with F' € VV;CI(Q) is said to satisfy Lusin’s condition
(N), which will be denoted as F' € N(Q), if |F(E)| = 0 for every set £ C 2 with
|E| = 0. The literature on Lusin’s condition (V) is vast and we will only mention
a few essential results to establish some context. For instance, in [10, Corollary B],
Maly and Martio proved that C(Q)NW,"(Q)N{F: Q — R™: F open} C N(Q) and,
in [10, Theorem CJ, that CZ.(Q) N W,2"(Q) € N(Q) for every a € (0,1) (see also

loc

Maly’s Theorem 1.3 in [9]). However, C(Q) N W,2"(Q) ¢ N(2) (sce [10, Section 1]
and references therein). In [11], Martio and Ziemer introduced and studied analytic
and topological conditions on mappings F' € W'licn(Q) with a.e. nonnegative Jacobian
determinant (that is, det DF' > 0 a.e. 2) that guarantee F' € N(), for example in
|11, Corollary 3.13] they proved that W™ (Q)N{F: Q — R": det DF > 0 a.e. Q} C
N(9).

When ©Q C R" is open and convex, the class of mappings F' € VVl(l)C"(Q) with
a.e. nonnegative Jacobian determinant includes those with convex potentials, that
is, F' = Vu for a convex function u € VVE)C"(Q) In the case of mappings with convex

potentials, the inclusion {Vu: u € W2"(Q),u convex} C N(Q) can be deduced

loc

from Theorem 5.11 and Remark 5.15 in the work of Alberti and Ambrosio [1], in the
context of maximal monotone operators in VV;:(Q) The exponent n in the inclusion

{Vu:u € W2(RQ), uconvex} C N(Q) is sharp in the sense that a construction
from [1, Section 8| yields a differentiable convex function u: R™ — R such that u €
W2P(R™) for every p € (1,n), Vu € C2 (R") for every a € (0,1), and Vu ¢ N(R").
Moreover, in [8] Liu and Maly constructed a strictly convex function u: (0,1)" - R
such that u € W2P((0,1)") for every p € (1,n), Vu € C2((0,1)") for every a € (0, 1),
and Vu ¢ N((0,1)"). Both constructions satisfy det D?*u = 0 a.e. in 2.

The proof of the aforementioned Theorem 5.11 in [1] relies on methods from
geometric measure theory involving n-currents associated to graphs, the area formula
on Lipschitz manifolds, and degree theory. The purpose of this note is to provide a

short, simple proof of the inclusion {Vu: u € W2 (Q), u convex} C N(£2) based on
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the notion of Monge-Ampére measure. Also, we will point out how one of the main
theorems from the work of Braga, Figalli, and Moreira in [2] implies that convex

functions in VVIiC"(Q) are continuously differentiable in 2. Thus, our main result is

Theorem 1. Let Q C R be an open convex set and let u € W2'(Q) be a
convex function. Then Vu € C(2) N N().

Some consequences of Theorem 1, related to the change-of-variable formulas and
to the notions of weak and strong solutions of the Monge-Ampére equation, will be
included in Section 3.

2. Proof of Theorem 1

Given an open convex set {2 C R" and a convex function u: {2 — R, the normal
mapping or subdifferential of u is the set-valued function defined for zy € €2 as
(2.1) Ou(xg) :={v e R": u(z) > u(zg) + v - (x — xp) for all z € Q},

and, given £ C €, Ou(E) = J,cp0u(z). If u is differentiable at x, we identify
Ou(zg) with Vu(zg). The Monge-Ampére measure associated to u, denoted by fi,,
is the nonnegative locally finite measure

(2.2) u(E) = |9u(E)

defined on the Borel o-algebra {E' C Q: 0u(FE) is Lebesgue measurable}, see |6, Sec-
tion 2.1] or [7, Section 1.1| for further details.

Our proof of Theorem 1 will be based on the following compactness result for
Monge-Ampére measures (see Proposition 2.6 from Figalli’s book [6, p.12] or Lem-
mas 1.2.2 and 1.2.3 from Gutiérrez’s book [7]): let {u.}.~0 and u be convex functions
defined in €2, let U C €2 be an open set and suppose that u. converges uniformly to
u on compact subsets of U, then p,_ converges weakly™ to p,, that is,

(2.3) /gduusé/gduu Vg € C.(U).
U U

Let us start with a lemma comparing the weight det D?u and the measure p,, for

convex functions u € W2!(Q). Notice that, due to the convexity of u, det D?u(x)

exists and is nonnegative for a.e. z € €.
Lemma 2. Let Q C R" be an open convex set and let u € W21 (Q) be a convex
function. Then, the inequality
(2.4) / det D*u(x) dz < |0u(U))|
U

holds true for every open set U CC 2. In particular, det D*u € L] (Q).
Proof. Given U CC Q, let g := dist(U, 092) and for € € (0,gy) and x € U define

(2.5) wla) = un () = [ ale— o) dy,

where n € C2°(R") is supported in the unit Euclidean ball B(0, 1) with [5, n(y) dy =
1 and 7.(y) := e "n(e'y). Then, u. converges uniformly to u on compact subsets of
U and (2.3) holds. Now, given § > 0, set

(2.6) Us :=={z € U: dist(z,0U) > 0}

and
Vs :={z e R": dist(z, R" \ U) < §/2}.
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It then follows that Us NV = (), since otherwise there would be an 2 € U such that
)
3 > dist(x, R" \ U) = dist(z, 0(R" \ U)) = dist(x,0U) >,

a contradiction. Hence, there exists a continuous function g: R™ — [0, 1] such that
g=1onU; and g = 0 on Vj; in particular, supp(g) C U \ Vs = Us /s C U. By using
that u. is a smooth function in U, we get (see for instance [6, Example 2.2] or |7,
Example 1.1.4])

(2.7) / det D*u.(z) dv = |Vu.(Us)| :/ dfty, S/gduug.
Us Us U

On the other hand, since D*u € L _(Q2), we have that D?u.(z) (or a subse-
quence) converges to D?u(z) as € — 07 for (Lebesgue) a.e. x € U and consequently
det D*u.(z) converges to det D*u(z) for a.e. x € U. Thus, by combining (2.7) and

(2.3) with Fatou’s lemma, we get

/ det D*u(z) dz < lim inf/ det D?*u.(z) dz < lim inf/ g dpb,,
Us Us U

e—07t e—07t
— [ gdui < [ di, = ou)
U U
and (2.4) follows from the monotone convergence theorem by letting ¢ N\, 0. U

The next result is based on Theorem 2.9 from Braga-Figalli-Moreira [2] and will

allow us to write Vu, instead of du, for convex functions u € W27 (Q).

Proposition 3. Let u € W2"(Q) be a convex function. Then u € C*(f).

loc

Proof. Given a convex function u € W2"(Q) set f := Au € L (). Fix an
arbitrary xo € €2, let R > 0 such that Bgr(zg) CC Q. Then, Au(x) = f(z) for a.c.
x € Bg(zy). In the terminology of Caffarelli-Crandall-Kocan-Swiech [4, p. 366],
this means that u is an L"-strong solution of Au = f, which, due to the fact that
u € W2™(Bg(xg)), is equivalent to u being an L"-viscosity solution of Au = f in
Br(zo) (see [4, Lemma 2.5 and Corollary 3.7]). Now, by [2, Theorem 2.9] on the C1*-
regularity of convex L"-viscosity supersolutions of fully nonlinear equations used with
A=A =1and~y =0 (so that, in the notation from [2, Section 2.2|, we get Py, , = A
applied to ¢ = u with w = 0) and ¢ = n, it follows that u € C"'(Bg/ss(xo)) and then,
since 79 € Q and R > 0 were arbitrary with Bg(zy) CC Q, we obtain v € C1(Q). O

Remark 4. As mentioned, the only role of Proposition 3 is to allow us to write
Vu, instead of Ou, for convex functions u € VVE)C"(Q) All of the results in this note
are true, with du instead of Vu, without assuming u € C'(Q).

The next lemma provides the reverse inequality to the one from Lemma 2 for

convex functions u € W2"(Q).

Lemma 5. Let @ C R" be a convex set and let u € W2"(Q) be a convex
function. Then, the inequality

(2.8) V()] < /U det Du(z) dz

holds true for every open set U CC ().



1106 Diego Maldonado

Proof. Let Us C U, g, and u. be as in the proof of Lemma 2. Then, we have

[Vu(Us)| =/ duuﬁ/gduu= lim [ gdp,. < lim [ dp,,
Us U U U

e—07t e—07t
(2.9) = lim |Vu.(U)| = lim [ det D*u.(z)dx.
e—0t e—=0t Ju

Next, let Qy C Q denote a set such that U CC Qpy CC Q and define H := (Au) xq,
so that for 0 < ¢ < dist(U, 0§2) and for = € U we have Auxn.(x) = (H *n.)(x) and
then, always for x € U,

det D*u.(z) < Auc(2)" = (Auxn)(2)" = (H *n.)(x)" < M(H)(z)",
where M denotes the Hardy-Littlewood maximal function. If n > 1, the (n,n)-
strong type of M and the hypothesis u € Wﬁf(@) give

[ MU @) e < MU ey < Coll ey = G [ Auta)de < .

U

and then the Lebesgue dominated convergence theorem implies that

lim [ det D*u.(z)dx = / det D*u(z) dx

e—07+ U U
which combined with (2.9), and after letting 6 \, 07, proves (2.8). If n = 1 then we
just use that det D?u. = u” = u” * 1. converges in L] (U) to v = det D?u. O

Theorem 6. Let S C R™ be an open convex set and let u € W*"(S) be a convex
function. Then,

(2.10) / det D*u(x) dz = |Vu(E)|

for every Borel set E C S.

Proof. From lemmas 2 and 5 we have
(2.11) / det D*u(z) dz = |Vu(U)|
U

for every open set U CC S and by considering increasing sequences of sets, the
equality (2.11) can be extended to every open set U C S. In addition, the hypothesis
u € W™(S) implies

wu(S) = |Vu(S)| = /Sdet D?*u(z) dx < /SAu(x)" dr < 00.

Thus, p, and det D?u are two finite Borel measures on S that coincide on the open
subsets of S. Therefore, the equality (2.11) can be extended to every Borel set £ C S
by means of the m-A-theorem (see for instance |5, Theorem 1.5]). O

Proof of Theorem 1. First, let us just observe that Theorem 6 can be extended
to u € W2"(9). Indeed, for § > 0 define

loc
(2.12) Qs :={z e U: dist(z,00) > 6}

so that u € W2n(§;) for every § > 0. Given a Borel set E C Q consider Ejs := ENQs
so that Theorem 6 with S := (s gives

(2.13) /E det D*u(x) dz = |Vu(E;)|
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and (2.10) follows by taking limits as 6 \, 0. Finally, given £ C Q with |E| = 0,
(2.10) yields |Vu(E)| = 0, which means Vu € N(). O

3. Some consequences of Theorems 1 and 6

Let us begin with a change-of-variable formula for W’li’:—mappings with strictly
convex potentials.

Corollary 7. Let Q C R™ be an open convex set and let u € W2'(Q) be a
strictly convex function. Then, for every measurable set S C €2 and every nonnegative

Borel measurable function W defined on R" the change-of-variable formula holds true

(3.14) / W(Vu(x))det D*u(x) dx = W(y) dy.
s Vu(S)

Proof. Given F € W'(Q) and a measurable set S C Q, the following are

loc
equivalent (see, for instance, |9, Proposition 1.1]):

(a) |[F(E)| = 0 for every set E C S with |F| = 0 (i.e., Lusin’s condition (N) on
S).
(b) For every measurable S’ C S the area formula

(3.15) |det VF(z)| dz = Ny, F,S") dy
s/ R"
holds true, where N'(y, F, S") := #{x € S": F(z) = y}.
(c¢) The change-of-variable formula holds for F' on S, that is,

(3.16) /S W (F@)|det VA dz = [ WA (. F.5)dy,

for every nonnegative Borel measurable function W defined on R™.

The fact that u is strictly convex is equivalent to Vu being 1-1, thus N (y, Vu, S) =
#{x € S: Vu(r) = y} = xvus)(y) and (3.14) follows from Theorem 1 and (3.16). O

Next, let us relate the notions of weak and strong solutions of the Monge-Ampére
equation det D?u = f in Q. Let us fix an open convex set ) C R” and an a.e.
nonnegative f € Ll (). Recall that a convex function v € C(fQ) is said to be a

weak (i.e. Aleksandrov) solution of the Monge-Ampére equation det D*u = f in Q if

(3.17) 1l E) = /E /() de

for every Borel set £ C €. By definition, a strong solution satisfies det D?>u = f in
a.e. in ).

Corollary 8. Fix an a.e. nonnegative f € Li (). A convex function u €

W2™() is a weak (Aleksandrov) solution of the Monge-Ampére equation det D?u =
f in Q if and only if it is a strong solution.
Proof. Let us suppose first that u is a weak solution. From (3.17) and (2.10) it

follows that
/ det D2u(z) dz — / (@) da
E E

for every Borel set £ C ). Then, from Lebesgue’s differentiation theorem we ob-
tain det D?u(z) = f(x) for a.e. x € 2, which means that u is a strong solution of
det D*u = f in Q. Conversely, if u is a strong solution then fE det D?u(z) dx =
[ f[(z) dzx for every Borel set £ C Q which, along with (2.10), yields (3.17). O
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Remark 9. Let us recall a correspondence between weak and viscosity solutions.
If feC?) and f > 0in , by [3, Lemma 3(a)| (see also |7, Proposition 1.3.4]),
every weak solution of det D?u = f in  is also a viscosity solution. On the other
hand, if u is a viscosity solution of det D?*u = f in Q with f € C(Q) and f > 0 in ,
then u is a weak solution (see |7, Proposition 1.7.1]).

Corollary 10. Fix an open convex set 0 C R™ and f € C(2) with f > 0 in 2.
If u € C(Q) is a strictly convex weak (Aleksandrov) solution of the Monge-Ampeére
equation det D*u = f in Q, then it is also a strong solution.

Proof of Corollary 10. For xy € 2, q € du(xg), and t > 0 set
S(zo,q,t) :={r € Q: u(xr) —u(xg) —q- (r —x9) <t}

Since u is strictly convex in , there exists tg such that S := S(zg,q,t)) CC Q.
Introduce v(z) := u(z) — u(xg) — q - (x — x9) — to so that v is a weak solution of

det D>v = f in S,

Nl
(3.18) v=20 on 0S.

Since f is continuous and positive in S by Remark 9 we have that v is also a viscosity
solution of (3.18). Thus, given 1 < p < oo, Caffarelli’s W*P-estimate for viscosity
solutions (see |3, Theorem 1(b)] or [6, Corollary 4.38]) apply, so that we have v €
W2P(1S) (where 35 denotes the i-contraction of S with respect to its center of
mass), since D*u = D?*v we get u € Wz’p(%S) and then, after a covering argument,

u € W2P(Q). By taking p = n, it follows that v € W>"(€2) and then Corollary 8

ocC
guarantees that v is also a strong solution. 0
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