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Abstract. The paper is devoted to the study of sharp versions of mixed A,-A, weighted
estimates for the dyadic maximal function My on R". For given parameters 1 < p < oo and
1 < g < o0, if a weight w satisfies Muckenhoupt’s condition A;, then we have the sharp A,-A,
bound

1+1/p (¢=1)/p
p g 1/ 1/(1—p)1l/
HMdHLP(’w)—}LP(w) < D 1 <q_—1) [w]App[w /( P)]qu

(for ¢ € {1,00}, the constant is understood as an appropriate limit). Actually, a wider class of
related sharp two-weight estimates for My is established. The results hold true in a more general
context of maximal operators on probability spaces associated with a tree-like structure.

1. Introduction

The principal goal of this paper is to study LP-boundedness of the dyadic maximal
operator and to measure the size of the norm in terms of various mixed characteristics
of the underlying weight. We start with recalling the necessary background and
notation. The dyadic maximal operator M on R" is an operator acting on locally
integrable functions ¢: R™ — R by the formula

Mp(z) = sup {ﬁ /Q lo(y)|dy: z € @, Q C R" is a dyadic cube} :

Here the dyadic cubes are those formed by the grids 2=VZ", N = 0,1,2,..., and
|@Q| denotes the Lebesgue measure of ). This maximal operator is of fundamental
importance to analysis and PDEs, and in many applications it is of interest to control
it efficiently, i.e., to have optimal or at least good bounds for its norms. For instance,
M satisfies the weak-type (1, 1) inequality

(11)  Af{zeR" Mso(x)zms/w | lowlde g€ R,

which, after integration, yields the corresponding L” estimate
P
(1.2) Ml p@n) < EH‘PHLP(R"% 1 <p<oo.

Both estimates are sharp: the constant 1 in (1.1) and the constant p/(p — 1) in
(1.2) cannot be decreased. These two results have been successfully extended in
numerous directions and applied in various contexts of harmonic analysis. See e.g.
[5, 6, 7, 8,9, 14, 15| and the monograph [3|, consult also references therein.

As we have already mentioned above, we will be interested in certain mixed
weighted versions of (1.2). In what follows, the word ‘weight’ will refer to a nonneg-
ative, integrable function on the underlying measure space. The following statement
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is a consequence of the classical work of Muckenhoupt [10]. Suppose that 1 < p < oo
is given and fixed, and let w be a weight on R". Then M is bounded as an operator
on the weighted space

1/p
Lp(w):{f:R"—>R: Hf||Lp(w):</Rn|f\pwdx) <oo}

if and only if w belongs to the dyadic A, class, i.e.,

p—1
[w] 4, = sup (‘Q|/wdx) (ﬁ/cgw_l/(p_l)dx) < 00,

where the supremum is taken over all dyadic cubes ) in R™. The classes A, can be
extended to the cases p = 1 and p = oo by a straightforward limiting procedure. A
weight w satisfies Muckenhoupt’s condition Ay, if

[w] 4, := sup essup w(z) < 00
weq  W(7)

Furthermore, w is an A, weight if

o o ) <

Both suprema above are taken over all dyadic cubes ) in R".

The above result of Muckenhoupt is a starting point for many interesting further
questions. For example, one can ask about the dependence of || M || (w)—r(w) On the
size of the characteristic [w]a,. More precisely, for a given 1 < p < oo, the problem
is to find the least number o« = «(p) such that

M) oy < Cpluw] 3

for some C,, depending only on p. This problem was solved in the nineties by Buckley
[1], who showed that the optimal exponent a(p) is equal to 1/(p—1). This result has
been recently strengthened significantly by Osekowski in [13]. That paper contains,
for a given 1 < p < 0o and ¢ € [1, 00), the identification of the smallest constant C,, .
such that the following holds: if w is an A, weight satisfying [w]4, = ¢, then

HM HLP(w)—>LP(w) < Cpﬁ.

Another extension of Buckley’s result, which also serves as our motivation here,
is the following two-weight estimate obtained by Hyténen and Pérez in [4]. For any
1 < p < oo and any pair (w,v) of weights on R",

)1/p

oo

ot o o) (4 )

the supremum being taken over all dyadic cubes @) in R™. To see that this state-
ment does generalize Buckley’s result, apply it to w = v being an A, weight: then

[w’vl/u—p)]A [ ]A and [ 1/(1— p)]A < [ 1/(1—p)]AP/(p71) _ [ ]114/1)(1) 1)

We will be interested in the sharp version of (1.3) in a much wider context. Let us
start with an appropriate definition of tree structures on probability spaces, following

[5]-

4e B -
(1.3) ||M||Lp YL (w) < ’ —pl ([w’vl/(l p)]Ap[Ul/(l p)]A

where
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Definition 1.1. Suppose that (X, u) is a nonatomic probability space. A set
T of measurable subsets of X will be called a tree if the following conditions are
satisfied:

(i) X € T and for every ) € T we have p(Q) > 0.
(ii) For every @ € T there is a finite subset C'(Q)) C T containing at least two
elements such that
(a) the elements of C(Q) are pairwise disjoint subsets of @,
(b) @ =UC(Q).
(it)) T = Upso 7™ where T° = {X} and T = Jyerm C(Q)-
(iv) We have lim,,, o SUpgegm 1(Q) = 0.

An important example, which links this definition with the preceding consider-
ations, is the cube X = [0,1)" endowed with Lebesgue measure and the tree of its
dyadic subcubes. Any probability space equipped with a tree gives rise to the cor-
responding maximal operator M, acting on integrable functions f: X — R by the
formula

1
MTf(x)—sup{m/Q\fldu- reQ, @eT}.

In analogy to the dyadic setting described above, we say that a weight w on X
satisfies Muckenhoupt’s condition A, (where 1 < p < oo is a fixed parameter), if

o 55 o) (g )

The characteristics [w]a,, [w]a, and [w,o]a, are defined analogously. Furthermore,
the weighted space LP(w) is given by

1/p
Lp(w):{f:X—>R: ||f||Lp(w):</X|f|pwd,u) <oo}.

Our main result is the following sharp version of (1.3).

Theorem 1.2. Let X be a probability space equipped with a tree T. Suppose
that 1 < p < oo, 1 < ¢ < oo. If (w,v) is a pair of weights on X satisfying
[w, /077, < oo and /1P|, < oo (with respect to T ), then we have

1+1/p (a=1)/p

P q _ -

(1.4) ||MTHLP(U)—>LP(w) < 9 [w,vl/(l p)]Z/:[Ul/(l p)]i‘/:
p—1 \g—1

(for g € {1, 00}, the constant is understood as the appropriate limit). For each p and

q the constant cannot be decreased, even if w = v.

In particular, the estimate (1.4) is valid and sharp also in the classical setting
of [0,1)" equipped with Lebesgue’s measure and the tree of dyadic subcubes; by
straightforward dilation and scaling, this result extends to the whole R".

A few words about the proof are in order. Our approach to (1.4) will exploit the
theory of two-weight estimates. A classical result of Sawyer [17] asserts that if w,
v are two weights on R", then the (dyadic) maximal operator M is bounded as an
operator from LP(v) to LP(w) if and only if the weights satisfy the so-called testing
condition

/ (./\/l(v_l/(p_l)x@))pwdx < C/ vV 4y
Q Q
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for all dyadic cubes @), where C' depends only on p, w and v. We will study a sharp
version of this testing condition for the weights satisfying the assumptions of Theorem
1.2 in the above context of probability spaces. Then we will combine this estimate
with the weighted version of Carleson embedding theorem (cf. [12], [22], [13]) and
obtain the desired bound (1.4). Fortunately, the combination of these sharp estimates
yield the inequality in which the constant is still optimal. We will handle the testing
conditions with the use of the so-called Bellman function method. The technique
reduces the problem of proving a given inequality to the search for a certain special
function, enjoying appropriate size conditions and concavity. The literature on this
subject is extremely large, for more information and the exemplary applications, we
refer the interested reader to the works [11, 12, 16, 18, 19, 20, 21] and the references
therein.

The next section contains the proof of (1.4). Section 3 is devoted to the con-
struction of an example showing that the estimate is sharp.

2. Proof of (1.4)

Our main result will be deduced from a slightly more general estimate formulated
in Theorem 2.1 below. For the precise statement, we need to introduce a technical
parameter d, a key object in our further considerations. The geometric interpretation
of this parameter is explained on Figure 1 below.

(d, d/ (=2

Figure 1. The geometric interpretation of the parameter d = d(q, ¢).

Let ¢ > 1 and 1 < ¢ < oo be fixed. Then the line, tangent to the curve vu?! = ¢
at the point (1,c!/(4=Y) intersects the curve vu¢~' = 1 at one point (if ¢ = 1) or
two points (if ¢ > 1). Take the intersection point with smaller v-coordinate, and
denote this coordinate by d(q, ¢). Formally, d = d(q, ¢) is the unique number in (0, 1]
satisfying the equation

(21) cd (i) .

q—1
We extend this definition to the boundary cases ¢ € {1,00} by limiting procedure.

Namely, we set d(1,c¢) = 1/c and define d(oo, ¢) to be the unique number d € (0, 1]
satisfying cde!=? = 1.
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Theorem 2.1. Let X be a probability space equipped with a tree T. If (w,v)
is a pair of weights on X satisfying [w,vl/(l_f”)]Ap < 0o and [vl/(l_p)]Aq < oo (with
respect to T ), then we have

—p)1/p
plw, v1/A-P] o
T (1= p+pd(q, [v/"]a,)7")

The proof of the above statement rests on two lemmas.

v
(2.2) M7l Lo )=o) < P

Lemma 2.2. Suppose that a pair (w, o) of weights satisfies [w,c]s, < ¢ (with
respect to T ). Then for any R € T,

(2.3) /R (M7(oxr)) wdu < pC/RMT(UXR) dp+ (1 — p)c/Ra du.

Both constants pc and (1 — p)c are the best possible.
Proof. We split the reasoning into four parts.
Step 1. An associated Bellman function. For any ¢ > 1, introduce the domain
Dye={(w,v,z) € (0,00)°: wv’ ' < ¢}
and let B: D, . — R be given by the formula

B(w,v,z) = zPw — pcz.

Step 2. Auxiliary notation. The set R belongs to some generation of the tree
T: say, R € T™. For any n and any x € X, let @"(z) be the element of 7"
which contains x; such a set is uniquely defined for almost all x. Next, introduce the
notation

1 / 1 /
Wy, = ————— wdp, v, =———— odu, 2z, = max vg.

In the probabilistic language, the functional sequences (w,,)n>m and (v, )n>n, are mar-
tingales (on the probability space (R, u(-)/u(R))) corresponding to the terminal vari-
ables w and o, while (z,,),>m is the maximal function of (v,),>n,. Note that for any
n > m and any Q € 7", the functions w,, v, and z, are constant on () and we have

(2.4) /Q et di = Q)

Furthermore, the sequence (z,),>, is nondecreasing and satisfies

JNim 2 (x) = sup m /Q"( ) o
1
~ e Q@) /Q"(:c) 7 = Mol

n>0 U

(2.5)

almost everywhere.

Step 3. Monotonicity property. The main part of the proof is to show that the
sequence ( / r B, Vi, Zn) d,u)n>m is nonincreasing. Observe that
(26) B(WTL—|—17 Vn41, Zn+1) = ZZ+1Wn+1 — PCZn1 < ZITJLWn—l—l — PCZp.

Indeed, if z,, ;1 = z,, there is nothing to prove; therefore, assume that z,; > z,. By
the mean-value property,

ZI;H_an—l—l — PCZpi1 — (Z;flwn—l—l - pCZn) = p(zn+1 - Zn) (ap_lwn—l—l - C)v
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for some a € (z,,z,11). However, since z,.; = max{v,1,2,}, we see that v, =
Zn+1 and hence a < v, 1. Therefore, the condition [w, 0]4, < ¢implies aP Y, —c <

W, 1v7.} — ¢ < 0 and hence the bound (2.6) follows. Consequently, by (2.4), we get
that for any Q € T™,

/B(Wn-i-l’Vn—l—lvzn—l—l)d,uS/B(Wn7vn7zn)d/’l’7
Q Q

and summing over all @) contained in R yields the desired monotonicity.

Step 4. Completion of the proof. By the previous step and the inequality
W, vPl < ¢ we get

/ (zﬁw - pczn) dp = / (zﬁwn - pczn) dp < / (zpmwm - pczm) du
R R R
= / (vpmwm — pcvm) dp
R

< (I =p)evppu(R) = (1 —p)e /R o dpu.

To deduce (2.3), it suffices to let n — oo and combine (2.5) with Lebesgue’s monotone
convergence theorem. It remains to handle the sharpness of this estimate. If any of
the constants pc or (1 — p)c could be decreased, this would lead to the improvement
of the constant in (2.2) (which is impossible, as we shall see in the next section). O

The second lemma concerns the following sharp maximal inequality for A, weights.
Recall the definition of the parameter d(q, c) given in (2.1) above.

Lemma 2.3. For any A, weight 0 on X and any R € T we have the inequality

(27) | Mr(ox) dn < dla.lola) " [ odn

Proof of Lemma 2.3 for ¢ = 1. For this particular value of ¢ the argument is
very simple. Fix an A; weight 0. By the very definition of the A; condition, we have

‘LMﬂwmwélkﬁmMSMméawzﬂuﬂm*ﬁaw,

as desired. O

Proof of Lemma 2.3 for g € (1,00). Pick an arbitrary A, weight o. For brevity,
we will denote [0]4, by ¢ and write d instead of d(q,c). If ¢ = 1, then d = 1, the
weight is constant and the claim is evident; therefore, from now on, we assume that
¢ > 1 (and hence d < 1). Let R be an arbitrary element of the tree T; it belongs to
some generation 7™. As in the proof of Theorem 2.2, the reasoning is split into four
parts.

Step 1. An associated Bellman function and its properties. Consider the domain
D, ={(u,v,z) € (0,0)*: 1 <u’ v < ¢, z>v}
and introduce the Bellman function B: D, — R by
B(u,v,z) = « [(q — 1) YaDz9/a Ny — gz + v] +vd 1,

where
1/ (a—1)

= @D — g >V

«
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The latter inequality is equivalent to ¢ < d~9, which follows immediately from the

definition of d: indeed, otherwise we would have (qqd;_cil)q_1 < 1, a contradiction.

Let us prove the majorizations

(2.8) B(u,v,v) < vd™*
and
(2.9) B(u,v,z) > z.

The first estimate follows at once from the condition ¢~'/(@Dy?/ @~y < v. To prove
the second bound, note that B increases as v increases and hence it is enough to
establish (2.9) for v = u!79. A straightforward calculation shows that for a fixed z,
the function

F(u) = |:(q J— 1)0_1/(q_1)zq/(q_1)u _ qz _I_ ul—q:| + ul—qd—l —
is convex on (0, 00) and satisfies F((zd)""/""Y) = F'((zd)~"/"Y) = 0. This yields
(2.9).

Step 2. Monotonicity property. Define the functional sequences (vy,)n>m, (Zn)n>m
as in the proof of Theorem 2.2. Furthermore, for n > m let

w (z :# o~ Va=1) g
)= o) /Q , b

By Jensen’s inequality and the definition of [0]a,, we have 1 < u?'v,, < c. Let us

show that the sequence ( Il r B(un, v, 2n) d,u)n>m is nonincreasing. Indeed, by the
mean value property, N

B(wni1, Vot1s Zng1) — B(Wny1, Vi1, 2n) = @q(zng1 — Zn)((a/C)l/(q_l)unH - 1)

for some a € [z, 2,.1]. This expression is nonpositive: if z,,; = z,, then this is
obvious, while for z, < z,.; we apply the bound

(a/c)l/ - 1)U-n+1 < (Zn—l—l/c)l/(q_l)un—l—l = (Vn+1/c)1/(q_1)un+1 <L

Consequently,

[ Btz < [ Bloasrivasz) di = [ Bz, d

R R R

where the latter equality follows from the fact that the dependence of B on the
variables u and v is linear.

Step 3. By the previous step and the estimates (2.8), (2.9), we obtain

/znd,ug/B(un,vn,zn)d,u:/B(um,vm,vm)dugd_l/adu.
R R R R

Since (zy, )n>m increases almost everywhere to My (oxr) (see (2.5)), Lebesgue’s mono-
tone convergence theorem implies

1
_ < q1
7 [ Mrtoudus a,

and the claim follows, since R was taken arbitrarily. U

Proof of Lemma 2.3 for ¢ = co. 'The reasoning is essentially the same as previ-
ously; we will present the necessary modifications and leave the rigorous verification
to the reader. We need to use a different Bellman function. Introduce the domain

Dy = {(u,v,2) € (0,00)*: 1 < exp(—u)v < ¢, z > v}
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and define B: D, — R by
B(u,v,z) = (—zu—z+zlnz—zlnc+v)(1 —d)~" +vd .

It is easy to check that we have the estimates

(2.10) B(u,v,v) <vd™', B(u,v,z) >z
Consider the sequences (v;)n>m, (Zn)n>m as previously, and set
1
u,(x) = 7/ log o dp.
w(Q™(x)) Jon ()

Arguing as above, one shows that the sequence (fR B(u,, v, zp) du)n>m is nonin-

creasing and deduces the claim by Lebesgue’s monotone convergence theorem and
the majorizations (2.10). O

Remark 2.4. There is a natural question how the above Bellman functions were
discovered; we will give some informal argumentation about the search for B from the
previous lemma. The desired function should satisfy (2.8) and (2.9), so it cannot be
too big nor too small. The key indication is contained in Step 2 of the above proof.
Since (up)n>ms (Vn)n>m behave in a martingale manner and (z,),>0 is nondecreasing,
the monotonicity of ([, B(un, vy, z,)dp) oo follows if one proves that B.(w,z,z) <0
and B(-, -, z) is concave. (Just inspect carefully the above proof). In our search for B,
we assumed that B is actually linear with respect to u and v; in addition, we forced
B,(u, z,z) to vanish for the extremal choice of u, for which ¢=/(@=Dye/(¢=Dy = y. By
these two observations, it is not difficult to obtain the Bellman function, after some
experimentation.

The final ingredient of the proof of (2.2) is the following sharp weighted version
of Carleson embedding theorem (see [4, 13, 22]).

Theorem 2.5. Suppose that w is an A, weight on X. Let K be a positive
constant and assume that nonnegative numbers o, () € T, satisfy

(2.11) > ag (ﬁ/@adu)pglf/}zadu

QCR
for all R € T. Then for any integrable and nonnegative function f on X we have

(2.12) > ag (ﬁ/@fd,u)p <K (%)p/xfpgl—p dp.

QeT
Equipped with the above facts, we are ready for the proof of our main result.

Proof of (2.2) and (1.4). Put ¢ = v'/(P). The combination of Lemmas 2.2
and 2.3 shows that

(2.13) /R (My(oxn))"wdp < [w,o—]Ap(pd@, [o—]Aq>—1+<1—p>) /R o dp.

It is well-known (see e.g. [13]) that this inequality implies (2.11) with the constant
K = [w,0]4,(pd(g,[0]a,)"" +1—p). Consequently the inequality (2.12) is also true,
and this is precisely the desired weighted bound (2.2). To deduce (1.4), we will
assume that ¢ € (1,00); the proof for ¢ € {1, 00} is similar and left to the reader. It
suffices to show that

1—p+pd(p,[o]a,) " < (q;zl)q_lp[a]fxq,
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or equivalently, setting ¢ = [0]4, and using (2.1),

(0-miaa e (252) < (G)

qg—1
However, the left-hand side is obviously a decreasing function of d(g,c) and both
sides become equal if we let d(q,c) | 0. This gives the claim. O

3. Sharpness

Now we will show that the constant in (1.4) is optimal for each choice of p and
. By continuity and the estimate [w! "], > [w!™?]4_, we may restrict ourselves to
the case of finite ¢. It is convenient to split the reasoning into a few parts.

Step 1. Auxiliary geometrical facts and parameters. Suppose that 1 < ¢ < oo
and ¢ > 1 are fixed numbers. Pick ¢ € (1,¢). There are two lines passing through
the point K = (1,¢"(@1)) which are tangent to the curve vu?~! = ¢; pick the line £
which has bigger slope (equivalently: the v-coordinate of the tangency point is bigger
than 1). This line intersects the curve vu?~! = 1 at two points: pick the point L with
smaller v-coordinate and denote this coordinate by s(q,¢). Furthermore, the line ¢
intersects the curve vu?~! = ¢ at two points: one of them is K, while the second,
denoted by M, is of the form (14 4, (¢/(1+ §))"/@=V). See Figure 2 below.

(d, dl/(lfq))

u

Figure 2. The crucial parameters and their geometric interpretation: d = d(g,¢), K =
(1,eY07D), L = (s(q,), (s(q,0) "/ =9) and M = (1 +4,(¢/(1 +6))/ @ V).

Let us record here two important facts. First, the points K, L, M are colinear:
some simple algebra allows to transform this observation into the equality

1—(146)Y0=9  (&s(q, )09 —1
) N 1—3s(q,¢)
which will be useful later. Second, it follows immediately from the geometric inter-
pretation of d(q, c) and s(q, ¢) that
(3.2) d(q,c) < s(g,¢) <1,

and s(q, ¢) can be made arbitrarily close to d(q, ¢) by picking ¢ sufficiently close to c.
Finally, we introduce a parameter r, which is assumed to be a positive number
less than 1+ d(q,c)/(p(1 — d(q,c))). By the above discussion concerning d(q, ¢) and

(3.1)



1180 Adam Osekowski

s(q, ¢), we see that if ¢ is sufficiently close to ¢, then we also have
C 1
s(g,¢) < _
p(1—s(g;¢)) = 1—s(q,0)
where the latter inequality is equivalent to p > 1.

(3.3) r<l+

Step 2. Construction. Now, recall the following technical fact, which can be
found in [5].

Lemma 3.1. For every Q € T and every 8 € (0,1) there is a subfamily F'(Q)) C
T consisting of pairwise disjoint subsets of () such that

pl U R =D ulR)=p8uQ).

ReF(Q) ReF(Q)

We use this fact inductively, to construct an appropriate family Ag D A; D A; D
... of sets. Namely, we start with Ay = X. Suppose we have successfully constructed
A, which is a union of pairwise almost disjoint elements of 7T, called the atoms of
A, (this condition is satisfied for n = 0: we have Ay = X € T). Then, for each
atom @ of A,, we apply the above lemma with 5 = (1 — s(q,¢))/(1 — s(q,¢) + 0)
and get a subfamily F(Q). Put A1 = U, UQ,eF(Q) (', the first union taken over
all atoms ) of A,. Directly from the definition, this set is a union of the family
{F(Q) : Q an atom of A,}, which consists of pairwise disjoint elements of 7. We
call these elements the atoms of A,,.; and conclude the description of the induction
step. As an immediate consequence of the above construction, we see that if ) is an
atom of A,,, then for any n > m we have

uQna) =u@ ({51595 )

and hence
B pQN (AN A) =@ ({80

Now, introduce the weights 0 and w on X by the formulas

0 =5(0,0) Y Xan\an, (1+0)"

n=0

and w = o'7P. In addition, let f: X — R be given by f = 0", where r is the number
fixed at the previous step.

Step 3. Proof of the inequality [w'/U=P)], = [o]4, < c. First observe that each
Q@ € T enjoys exactly one of the following three properties:

(i) the weight o is constant on @);
(ii) @ is an atom or the union of some atoms of some A,,;
(iii) there is a nonnegative integer m such that Q N A,, # 0, Q \ A,, # 0.

Indeed: if @) satisfies (ii), then it is divided in the inductive procedure described
above and, as a result, some nontrivial part of it goes to A,,11, so ¢ is not constant
on (). This proves that the conditions (i) and (ii) are disjoint. Now, suppose that
@ does not satisfy any of these two conditions and let m be the largest integer such
that @ C A,,_1. Then @\ A,, # 0, by the very definition of m, and Q N A,, # 0,
since otherwise (i) would hold true (see the formula for o).
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Let us now study the product (ﬁ andu)(ﬁ Jo o/ =? dp)?! under each
assumption (i), (ii) and (iii) separately. If o is constant on @, then the above product
is obviously equal to 1. If @) is an atom of A,,, then, by (3.4),

[e.e]

1 o 1—s(g,d) \"™" 5 | §
(3.5) m/QUdM_S(%C)Z(1—8((],5)—1—5) s 10 (LH9)

= (14+09)™

and similarly,

1 / 1/(1-q)
— | du
M(Q) Q

= s(q’ 6)1/(1_(1)(1 + 5)m/(1—q) <(1 - S(Q> 6)) ’

_ e (1 4 gym/0-a),

(3.6)

_ 1/(1—q) -1
1-(1 +65) N 1)

where in the last passage we have exploited (3.1). Consequently, we have the equality

(3.7) (ﬁ /Q Udu) (ﬁ /Q ot/(1=9) du)q_l =

Finally, assume that () satisfies (iii). Pick the largest integer m such that @ C A,,_;.
We have

1 1 1
L dy = — du &+ —— d
u(@>/Q“ "= Q) /Q\Am“ HEQ) /Q" /
1

1
= — s(q, ¢ 1+5m_1du+—/ odu.
T i, @O0+ W@ S,
By (3.5), applied to each atom R of A, contained in @), we get

/ odp = pu(@Q@NA,) 1 +46)m
QNAm

and hence, setting n := p(Q N A,,)/u(Q), we rewrite the preceding equality in the
form

(3.9) !

—— [ odu=(1—-n)s(q,&)(1+0)" " +n(1+46)"
#Q) /Q
A similar calculation, exploiting (3.6) instead of (3.5), shows that

% /al/(l—q> dp = (1 — n)s(q, YO0 (1 4+ §)m=D/1=0) 4y /=D (1 4 gym/(1-a),
&) Jao

and therefore

G 7o) Gy o)

q—1
= (= st 40014 0)) (1wt /070 4 g0 (14 g0 )
This number does not exceed c. To see this, rewrite the right-hand side in the form

(nM, + (1 = n)Ly)(nM, + (1 =)L),

where M,, M, and L,, L, are the coordinates of the points M and L (see Figure 2).
As n ranges from 0 to 1, the point M + (1 —n)L runs over the line segment M L which
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is entirely contained in {(v,u): vu?~! < c¢}. Thus we have established the desired
condition [o]4, < ¢, and combining this with (3.7) yields the two-sided bound

¢ <|ola, <ec
Before we proceed, let us record here the information about the A; characteristic
of 0. Pick any element w € X and let n be the unique integer such that w € A, \ A,41;
then o(w) = s(¢,¢)(1 + 6)". Let @ be an arbitrary element of the tree 7 which
contains w; this set satisfies one of the conditions (i), (ii), (iii) listed above. If o is
constant on (), then

1 / .
—— | odp=o0(w) =s(q,¢)(14+9)".
W@ o (w) = s(q,¢)(1+9)
If @ satisfies (ii), then m < n and, as proved in (3.5),
o),

—— [ odpu=(14+9)" < (14"

Q) Jo (1+6)" < (1+9)
Finally, if @) satisfies (iii), then by (3.8),

ﬁ / o du = (1= 1)s(q, (1 +6)" + (1 +5)™ < (148",
Q
Summarizing, we have Mro(w)/o(w) < (14 6)/s(q, ¢) and hence
olay < 210
F T s(g,0)

Furthermore, if ¢ is sufficiently close to 1 and ¢ is made close enough to ¢, then the
right hand side can be made as close to d(1,¢)™! = ¢ as we wish.

Step 4. On the characteristic [w]a, = [w,0]4,. Using arguments similar to those
above, we will show that if ¢ is sufficiently small, then [w]4, can be made arbitrarily

close to a = d(q,¢)" (1 —d(g,c))- (p—1)+1)"". We start from the observation
that any set @ € T satisfies (i), (ii) or (iii) listed in the previous step. If (i) holds,

then obviously
1 1 Pl
G o) Gag o) =1

If @ is an atom of A,,, then arguing as in (3.6), we get

o ) (1 s ayy. Lo O T
1(Q) /Q du = s(q,¢) (1 +9) ((1 (¢:9)) 5 + 1) :
so by (3.5),

(Note that if § — 0 - or rather ¢ — ¢ - then the expression on the right converges to
«). Finally, if @ satisfies (iii), then it “mediates” between the two possibilities above:
more precisely, if Q C A,,_; and Q € A,,, then the point

(@ Jy v L)

is contained in the line segment with endpoints

(s(g, &) P(1+6)m D7) 5(q, &)(1+6)™ ")
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and
( (q,&)P(1 4 6)md-» ((1—s(q,5)) . L;r&_%rl)_ ,(1+6)m).

Thus, it is enough to show that for any € > 0, this line segment is entirely contained
in the hyperbolic region {(w,v) € (0,00)?: wv’~! < a + €}, provided ¢ is sufficiently
small. We may assume that m = 0, since the linear mapping (w,v) — (w(1 +
§)™P=1 v /(1 + §)™) preserves this hyperbolic region. To show the claim, we pass
to the limit § — 0 (or rather ¢ — ¢). Then the endpoints of the segment become
(d(q,c)'7?,d(q,c)) and (, 1); as one easily verifies, this limiting line segment becomes
tangent to the curve wv’~! = a (and hence lies below it). Putting all the above
observations together, we get the aforementioned claim concerning [w]a,

Step 5. Optimality of the constant in (1.4). Suppose first that ¢ > 1. Repeating
the calculations from (3.6), we check that if @) is an atom of A,,, then

o0

B Sl (k. 15 I S
1M@Léfd“_ @’)§:<1—s@,>+a> —s@ars 1Y

n=m

=s(qg,e)"(1+0)™ ((1 — s(q,0)) - ﬂ + 1)_

(the ratio of the above geometric series, equal to
1 —5s(q,¢) 1
-\ - 5
1—5(q,8) + 6 1—s(q,5)+r>+0( )
is less than 1, at least for sufficiently small 0: this is due to (3.3)). Consequently, we
see that

-(1+5)":1+5<—

1—(1446) +1>_1

Mrf 2 sl (140 (1= st.0)- -

on A,, and hence, by the definition of f, we obtain

M = (1 stq.0) - =5 1)_1 £ (= stwanen+ 1)_lf

on A, \ A,i1- The latter bound does not depend on m, so we can rewrite it uniformly
as

(3.9) Myf > ((1—8(q,é))(—r)+1>_ f oonX

Note that f € LP(w). Indeed, we compute that
A Rt
X

ad 1—s(q,¢ " 5 . "
(g8 1)p+1z< (q ) ) — (14 8)C-Dp+)

and the ratio of this geometric series is equal to
1—s(¢q,0) - 1
Sl VL RS oS A R (N -1 1 ).
1—8(q,)+5( +4) " 1—8(q,5)+(r 1] teld)

Now recall that we take r close to (but smaller than) 1+d(q, ¢)/(p(1—d(q,c))); hence
(r—=1)p+1<1/(1—-d(q,c)). If we make ¢ sufficiently close to ¢, then the expression
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in the square brackets above becomes negative. This proves f € LP(w) and hence,
by (3.9), we conclude that

Hﬂ%ﬂmwwmwﬁigl—d%aﬂ—ﬂ+l> 

Now if we choose r sufficiently close to 1 + d(q,¢)/(p(1 — d(q,c))) and then ¢ suffi-
ciently close to ¢, then the number ((1 — s(q,¢))(—r)+ 1)~! can be made arbitrarily
close to p/((p — 1)d(g,¢)). On the other hand, by the arguments presented in the
previous two steps, if ¢ is sufficiently close to ¢, then ([w]a,[w!/0=P)]4 )P can be
made arbitrarily close to d(q, ¢)/?~*((1—d(q,c))-(p—1)+1)"/?.¢c!/? and hence the
ratio || M| 2o w)— £ow) (W], [w/ 3P4, ) 71/7 is as close to

(310) p ((1 —d(g.0)(p-1) + 1) ””
' p—1 cd(q, c)

as we wish. Now let ¢ — oo: it follows directly from (2.1) that then d(g,c) — 0 and
cd(q,c) — (ﬁ)l_q. Consequently, the expression (3.10) converges to the constant in
(1.4), and this establishes the desired sharpness. It remains to handle the A; case.
Let f, w be the function and the weight constructed above (they correspond to given
parameters ¢ > 1,¢>¢>land 0 <r < 14d(q,c)/(p(1—d(q,c)))). We know that if
r is sufficiently close to 1 +d(q,¢)/(p(1 —d(q,c))) and ¢ is sufficiently close to ¢, then
the ratio || M7 f| zr(w)/|| fllzrw) can be made arbitrarily close to p/((p — 1)d(g, c)).
The latter expression tends to pc/(p — 1) if we let ¢ — 1. On the other hand, by the
arguments in Steps 3 and 4, if we perform the above limiting procedure for r, ¢ and
q, we have

[w]a, [w"/ P4, = [w]a, [0]4, —

This implies

IMrllrrawysrrey o P , Pl Hp
([w]a, [w!/ =4 )p = p—1 ’
and letting ¢ — oo we get the desired lower bound.
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