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Dispersive estimates for the wave equation
inside cylindrical convex domains

Len Meas

Abstract. The dispersive and Strichartz estimates are essential for establishing well posedness

results for nonlinear equations as well as long time behaviour of solutions to the equation. While

in the boundary-less case these estimates are well understood, the case of boundary the situation

can become much more difficult. In this work, we establish local in time dispersive estimates for

solutions of the model case Dirichlet wave equation inside cylindrical convex domains Ω ⊂ R3 with

smooth boundary ∂Ω 6= ∅. In this paper, we provide detailed proofs of the results established in

[16, 17]. Let us recall that dispersive estimates are key ingredients to prove Strichartz estimates.

Strichartz estimates for waves inside an arbitrary domain Ω have been proved by Blair, Smith,

Sogge [4, 5]. Optimal estimates in strictly convex domains have been obtained in [12]. Our case of

cylindrical domains is an extension of the result of [12] in the case when the nonnegative curvature

radius depends on the incident angle and vanishes in some directions.

Konveksin lieriön aaltoyhtälön hajonta-arvioita

Tiivistelmä. Hajonta-arviot ja Strichartzin arviot ovat oleellisia välineitä osoitettaessa, että

epälineaarinen yhtälö on hyvinasetettu, tai määritettäessä sen ratkaisujen pitkän aikavälin käyttäy-

tymistä. Nämä arviot ymmärretään hyvin reunattomassa tilanteessa, mutta reunallinen tapaus voi

olla paljon vaikeampi. Tässä työssä johdamme ajallisesti rajattuja hajonta-arvioita mallitapaukses-

sa, joka koskee Dirichlet’s aaltoyhtälön ratkaisuita sileäreunaisissa (∂Ω 6= ∅) konvekseissa lieriöis-

sä Ω ⊂ R3. Esitämme yksityiskohtaiset todistukset aiemmissa töissä [16, 17] saaduille tuloksille.

Hajonta-arviot ovat avaintyökalu Strichartzin arvioiden todistamisessa. Blair, Smith ja Sogge [4, 5]

ovat todistaneet Strichartzin arvioita mielivaltaisessa alueessa Ω kulkeville aalloille. Optimaaliset

arviot aidosti konvekseissa alueissa on saatu lähteessä [12]. Tarkastelemamme lieriöalueen tapaus

yleistää lähteen [12] tulosta tapauksessa, jossa ei-negatiivinen kaarevuussäde riippuu tulokulmasta

ja häviää joissakin suunnissa.

1. Introduction

1.1. The cylindrical model problem. Let Ω = {x ≥ 0, (y, z) ∈ R2} ⊂ R3

with smooth boundary ∂Ω = {x = 0}, and let P be the wave operator

P = ∂2t − (∂2x + (1 + x)∂2y + ∂2z ).

We consider solutions of the linear Dirichlet-wave equation inside Ω

(1.1) Pu = 0, u|t=0
= δa, ∂tu|t=0

= 0, u|x=0
= 0,

with u = u(t, x, y, z), and for a > 0, δa = δx=a,y=0,z=0. We use the notation
τ = h

i
∂t, η = h

i
∂y, ξ = h

i
∂x, ζ = h

i
∂z for the Fourier variables and h ∈ (0, 1]. The
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Riemannian manifold (Ω,∆) with ∆ = ∂2x + (1 + x)∂2y + ∂2z can be locally seen as
a cylindrical domain in R3 by taking cylindrical coordinates (r, θ, z), where we set
r = 1−x/2, θ = y, and z = z. The problem is local near the boundary ∂Ω = {x = 0}.
Let (a, 0, 0) ∈ Ω, a > 0. In local coordinates, a is the distance from the source point
to the boundary. We assume a is small enough as we are interested only in highly
reflected waves, which we do not observe if the waves do not have time to hit the
boundary. This gives us interesting phenomena such as caustics near the boundary.

We remark that when there is no z variable (or when y ∈ Rn and ∂2y is replaced
by ∆y), it is the Friedlander model. In this case, the optimal dispersive estimates
were recently obtained by Ivanovici, Lebeau, and Planchon in [12].

Recall that at time t > 0, the waves propagating from the source of light highly
concentrate around a sphere of radius t. For a variable coefficients metric, if two
different light rays emanating from the source do not cross (that is, if t is smaller
than the injectivity radius), one may then construct parametrices using oscillatory
integrals where the phase encodes the geometry of wave front. In our scenario,
the geometry of the wave front becomes singular in arbitrarily small times which
depend on the frequency of the source and its distance to the boundary. In fact, a
caustic appears between the first and the second reflection of the wave front. Let
us give a brief overview of what caustics are (see [12, Section 1.1]). Geometrically,
caustics are defined as envelopes of light rays coming from the source of light. At
the caustic point we expect the light to be singularly intense. Analytically, caustics
can be characterized as points where usual bounds on oscillatory integrals are no
longer valid. The classification of asymptotic behavior of the oscillatory integrals
with caustics depends on the number and the order of their critical points that are
real. Let us consider an oscillatory integral

uh(z) =
1

(2πh)1/2

ˆ

e
i
h
Φ(z,ζ)g(z, ζ, h) dζ, z ∈ R

d, ζ ∈ R, h ∈ (0, 1].

We assume that Φ is smooth and that g is compactly support in z and ζ . If ∂ζΦ 6= 0
in an open neighborhood of the support of g, the repeated integration by parts
yields |uh(z)| = O(hN) for any N > 0. If ∂ζΦ = 0 and ∂2ζΦ 6= 0 (nondegenerate
critical points), then the stationary phase method yields ‖uh‖L∞ = O(1). If there
are degenerate critical points, we define them to be caustics, as ‖uh‖L∞ is no longer
uniform bounded. The order of a caustic κ is defined as the infimum of κ′ such that
‖uh‖L∞ = O(h−κ

′
). Let us give some useful examples of degenerate phase functions.

The phase function of the form ΦF (z, ζ) =
ζ3

3
+ z1ζ + z2 corresponds to a fold with

order κ = 1
6
. A typical example is the Airy function. The next canonical form is given

by the phase function of the form ΦC(z, ζ) =
ζ4

4
+ z1

ζ2

2
+ z2ζ + z3, which corresponds

to a cusp singularity with order κ = 1
4
. A swallowtail canonical form is given by the

phase ΦS(z, ζ) =
ζ5

5
+ z1

ζ3

3
+ z2

ζ2

2
+ z3ζ + z4 with order κ = 3

10
.

The crucial result of this work is the extension of the result of [12] to the case
of our model cylindrical convex domains which have the following property: the
nonnegative curvature radius depends on the incident angle and vanishes in some
directions.

The main goal of this work is to construct a local parametrix and establish a
local in time dispersive estimates for solution u to (1.1).

1.2. Some known results. The dispersive estimates for the wave equation
in Rd follows from the representation of the solution as a sum of Fourier integral
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operators [see [1, 6, 7]]. They read as follows:

‖χ(hDt)e
±it

√
−∆

Rd‖L1(Rd)→L∞(Rd) ≤ Ch−dmin

{

1,

(

h

|t|

)
d−1
2

}

,(1.2)

where ∆Rd is the Laplace operator in R
d. Here and in the sequel, the function χ

belongs to C∞
0 (]0,∞[) and is equal to 1 on [1, 2] and Dt =

1
i
∂t.

Inside strictly convex domains ΩD of dimensions d ≥ 2, the optimal (local in
time) dispersive estimates for the wave equations have been established by Ivanovici,
Lebeau, and Planchon in [12]. More precisely, they have proved that

‖χ(hDt)e
±it√−∆D‖L1(ΩD)→L∞(ΩD) ≤ Ch−dmin

{

1,

(

h

|t|

)
d−1
2

− 1
4

}

,(1.3)

where ∆D is the Laplace operator on ΩD. Due to the caustics formation in arbitrarily
small times, (1.3) induces a loss of 1/4 powers of (h/|t|) factor compared to (1.2).

Let us also recall a few results about Strichartz estimates [see [12], section 1]: let
(Ω, g) be a Riemannian manifold without boundary of dimensions d ≥ 2. Local in
time Strichartz estimates state that

‖u‖Lq((−T,T );Lr(Ω)) ≤ CT

(

‖u0‖Ḣβ(Ω) + ‖u1‖Ḣβ−1(Ω)

)

,(1.4)

where Ḣβ denotes the homogeneous Sobolev space over Ω of order β and 2 ≤ q, r ≤ ∞
satisfy

1

q
+
d

r
=
d

2
− β,

1

q
≤ d− 1

2

(

1

2
− 1

r

)

.

Here u = u(t, x) is a solution to the wave equation

(∂2t −∆g)u = 0 in (−T, T )× Ω, u(0, x) = u0(x), ∂tu(0, x) = u1(x),

where ∆g denotes the Laplace–Beltrami operator on (Ω, g). The estimates (1.4) hold
on Ω = Rd and gij = δij .

In [5], Blair, Smith, Sogge proved the Strichartz estimates for the wave equation
on (compact or noncompact) Riemannian manifold with boundary. They proved that
the Strichartz estimates (1.4) hold if Ω is a compact manifold with boundary and
(q, r, β) is a triple satisfying

1

q
+
d

r
=
d

2
− β, for

{

3
q
+ d−1

r
≤ d−1

2
, d ≤ 4,

1
q
+ 1

r
≤ 1

2
, d ≥ 4.

Recently in [12], Ivanovici, Lebeau, and Planchon have deduced a local in time
Strichartz estimates (1.4) from the optimal dispersive estimates inside strictly convex
domains of dimensions d ≥ 2 for a triple (d, q, β) satisfying

1

q
≤
(

d− 1

2
− 1

4

)(

1

2
− 1

r

)

and β = d

(

1

2
− 1

r

)

− 1

q
.

For d ≥ 3 this improves the range of indices for which sharp Strichartz do hold
compared to the result by Blair, Smith, Sogge in [5]. However, the results in [5]
apply to any domains or manifolds with boundary.

The latest results in [14] on Strichartz estimates inside the Friedlander model
domain have been obtained for pairs (q, r) such that

1

q
≤
(

1

2
− 1

9

)(

1

2
− 1

r

)

.
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This result improves on the known results for strictly convex domains for d = 2,
while in [12] only gives a loss of 1

4
.

In this paper, A . B means that there exists a constant C such that A ≤ CB
and this constant may change from line to line but is independent of all parameters.
Similarly, A ∼ B means there exist constants C1, C2 such that C1B ≤ A ≤ C2B. We
denote f(ϑ, h) ∈ OC∞(h∞) for ϑ ∈ Γ if, uniformly in a ∈ [h

2
3
−ε, 1],

∀α,N, ∃Cα,N such that sup
ϑ∈Γ

|∂αϑf(ϑ, h)| ≤ Cα,Nh
N ,

and O((x, y)j) means any function of the form

xlymf
( x

N
,
y

N
, a,N

)

with f smooth uniformly in a,N and l +m = j.
By definition, a function f(w) admits an asymptotic expansion for w → 0 when

there exists a (unique) sequence (cn)n such that, for any n,

lim
w→0

w−(n+1)

(

f(w)−
n
∑

0

cnw
n

)

= cn+1.

We will denote f(w) ∼w

∑

n cnw
n.

1.3. Main results. Our main results concerning the local in time dispersive
estimates and Strichartz estimates inside the cylindrical convex domain Ω are stated
below. Let Ga be the Green function for (1.1).

Theorem 1.1. There exists C such that for every h ∈ ]0, 1], every t ∈ [−1, 1]
and every a ∈ ]0, 1] the following holds:

‖χ(hDt)Ga(t, x, y, z)‖L∞ ≤ Ch−3 min

{

1,

(

h

|t|

)3/4
}

.(1.5)

As in [12], Theorem 1.1 states that a loss of 1/4 powers of (h/|t|) appears com-
pared to (1.2) . We will obtain in Theorems 1.3, 1.4, 1.5 better results, in particular
near directions which are close to the axis of the cylinder.

As a consequence of Theorem 1.1, conservation of energy, interpolation and TT ∗

arguments, we obtain the following set of (local in time) Strichartz estimates.

Theorem 1.2. Let (Ω,∆) be defined as before. Let u be a solution of the wave

equation on Ω:

(∂2t −∆)u = 0 in Ω,

u|t=0 = u0, ∂tu|t=0 = u1, u|x=0 = 0.

Then for all T there exists CT such that

‖u‖Lq((0,T );Lr(Ω)) ≤ CT

(

‖u0‖Ḣβ(Ω) + ‖u1‖Ḣβ−1(Ω)

)

,

with
1

q
≤ 3

4

(

1

2
− 1

r

)

, and the scaling β = 3

(

1

2
− 1

r

)

− 1

q
.

Theorem 1.2 improves the range of indices for which sharp Strichartz estimates
do hold compared to [5]. Notice however that the results in [5] apply to arbitrary
domains or manifolds with non-empty boundary. The proof of Theorem 1.2 follows
the classical arguments, we first prove the frequency-localized Strichartz estimates
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by utilizing the frequency-localized dispersive estimates, interpolation and TT ∗ argu-
ments. We then apply the Littlewood-Paley squarefunction estimates [see [2, 3, 15]]
to get the Strichartz estimates [Theorem 1.2] in the context of cylindrical domains
[see [18]].

1.4. Green function and precise dispersive estimates. The proofs of
frequency-localized dispersive estimates are based on the construction of parametrices
for the fundamental solution of the wave equation (1.1) and (possibly degenerate)
stationary phase method.

We begin with the construction of the local parametrix for (1.1) by utilizing the
spectral analysis of −∆ with Dirichlet condition on the boundary to obtain first the
Green function associated to (1.1). The Laplace operator we work with on the half
space Ω is equal to

∆ = ∂2x + (1 + x)∂2y + ∂2z ,

with the Dirichlet condition on the boundary ∂Ω. We notice that a useful feature of
this particular Laplace operator is that the coefficients of the metric do not depend
on the vairables y, z and therefore this allows us to take the Fourier transform in y
and z. Now taking the Fourier transform in y, z-variables yields

−∆η,ζ = −∂2x + (1 + x)η2 + ζ2.

For η 6= 0,−∆η,ζ is a self-adjoint, positive operator on L2(R+) with a compact
resolvent. Let (ek)k≥1 be an orthonormal basis in L2(R+) of Dirichlet eigenfunctions
of −∆η,ζ and let (λk)k be the associated eigenvalues. These eigenfunctions are explicit
in term of Airy functions

ek =ek(x, η) = fk
|η|1/3
k1/6

Ai(|η|2/3x− ωk)

with associated eigenvalues

λk =λk(η, ζ) = η2 + ζ2 + ωk|η|4/3,
where (−ωk)k denote the zeros of Airy function in decreasing order and for all k ≥ 1,
fk are constants so that ‖ek(., η)‖L2(R+) = 1. Observe that (fk)k is uniformly bounded
in a fixed compact subset of ]0,∞[ as a consequence of

ˆ −2

−ωk

Ai2(ω)dω ∼ 1

4π

ˆ −2

−ωk

|ω|−1/2(1 +O(ω−1))dω ∼ |ωk|1/2

and

ωk ∼
(

3

2
πk

)2/3

(1 +O(k−1)).

For a ∈ Ω, let ga(t, x, η, ζ) be the solution of

(∂2t − (∂2x − (1 + x)η2 − ζ2))ga = 0,

ga|x=0 = 0, ga|t=0 = δx=a, ∂tga|t=0 = 0.

We have

ga(t, x, η, ζ) =
∑

k≥1

cos(tλ
1/2
k )ek(x, η)ek(a, η).(1.6)

Here δx=a denotes the Dirac distribution on R+, a > 0 and it may be decomposed as
follows:

δx=a =
∑

k≥1

ek(x, η)ek(a, η).
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Now taking the inverse Fourier transform, the Green function for (1.1) is given by

Ga(t, x, y, z) =
1

4π2

ˆ

ei(yη+zζ)ga(t, x, η, ζ) dη dζ,

=
1

4π2h2

∑

k≥1

ˆ

ei(yη+zζ)/h cos(tλ
1/2
k )ek(x, η/h)ek(a, η/h) dη dζ.(1.7)

We thus get the following formula for 2χ(hDt)Ga

2χ(hDt)Ga(t, x, y, z) =
1

4π2h2

∑

k≥1

ˆ

e
i
h
(yη+zζ)ei

t
h
(η2+ζ2+ωkh

2/3|η|4/3)1/2ek(x, η/h)

× ek(a, η/h)χ((η
2 + ζ2 + ωkh

2/3|η|4/3)1/2)dηdζ.(1.8)

On the wave front set of the above expression, one has τ = (η2+ζ2+ωkh
2/3|η|4/3)1/2.

In order to prove Theorem 1.1, we only need to work near tangential directions;
therefore we will introduce an extra cutoff to insure |τ − (η2 + ζ2)1/2| small, which
is equivalent to ωkh

2/3|η|4/3 small. Then, we are reduced to prove the dispersive
estimate for Ga,loc:

Ga,loc(t, x, y, z) =
1

4π2h2

∑

k≥1

ˆ

e
i
h
(yη+zζ)ei

t
h
(η2+ζ2+ωkh

2/3|η|4/3)1/2ek(x, η/h)ek(a, η/h)

× χ0(η
2 + ζ2)χ1(ωkh

2/3|η|4/3)dηdζ,(1.9)

where the cut-off functions χ0 and χ1 are defined in Section 2.

η

ζ

Figure 1. Phase space.

The phase space in Figure 1 illustrates the different regimes of η; that is η is
bounded below by a constant c0 and η is close to zero, where we will establish the
dispersive estimates.

To obtain the local in time dispersive estimates, we will cut the η integration in
(1.9) in different pieces (Figure 1). More precisely, we write

(1.10) Ga,loc = Ga,c0 +
∑

ǫ0
√
a≤2m

√
a≤c0

Ga,m + Ga,ǫ0,

where Ga,c0 is associated with the integration for |η| ≥ c0, Ga,m is associated with the
integration for |η| ∼ 2m

√
a, and Ga,ǫ0 is associated with the integration for 0 < |η| ≤

ǫ0
√
a.
We will prove the following results. Let ǫ ∈ ]0, 1/7[.
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Theorem 1.3. There exists C such that for every h ∈ ]0, 1], every t ∈ [h, 1], the

following holds:

‖Ga,c0(t, x, y, z)‖L∞(x≤a) ≤ Ch−3

(

h

t

)1/2

γ(t, h, a),(1.11)

with

γ(t, h, a) =











(

h
t

)1/3

if a ≤ h
2
3
(1−ǫ),

(

h
t

)1/2

+ a1/8h1/4 if a ≥ h
2
3
(1−ǫ′), ǫ′ ∈ ]0, ǫ[.

Observe that in Theorem 1.3 we get the same estimate as in Ivanovici–Lebeau–
Planchon [12].

Theorem 1.4. There exists C such that for every h ∈ ]0, 1], every t ∈ [h, 1], the

following holds :

‖Ga,m(t, x, y, z)‖L∞(x≤a) ≤ Ch−3

(

h

t

)1/2

γm
(

t, h, a),

with

γm(t, h, a) =



































(

h
t

)1/3

(2m
√
a)1/3 if a ≤

(

h
2m

√
a

)
2
3
(1−ǫ)

,

min

{

(

h
t

)1/2

, 2m
√
a| log(2m√a)|

}

+ a1/8h1/4(2m
√
a)3/4

if a ≥
(

h
2m

√
a

)
2
3
(1−ǫ′)

, ǫ′ ∈ ]0, ǫ[.

For 2m
√
a ∼ 1, Theorem 1.4 yields the same result as in Theorem 1.3. We notice

that the estimates get better when |η|( ∼ 2m
√
a) decreases. This is compatible with

the intuition that less curvature implies better dispersion.

Theorem 1.5. There exists C such that for every h ∈ ]0, 1], every t ∈ [h, 1], the

following holds:

‖Ga,ǫ0(t, x, y, z)‖L∞(x≤a) ≤ Ch−3

(

h

t

)1/2

min

{(

h

t

)1/2

,
√
a| log(a)|

}

.(1.12)

Let us verify that Theorem 1.1 is a consequence of Theorems 1.3, 1.4 and 1.5.
We may assume |t| ≥ h, since for |t| ≤ h, the best bound for the dispersive es-
timate is equal to Ch−3 by Sobolev inequality. Then, by symmetry of the Green
function, we may assume t ∈ [h, 1] and x ≤ a. Then Theorem 1.1 is a consequence
of
∑

m≤M(2m
√
a)ν ∼ (2M

√
a)ν for ν > 0.

In Section 2, we prove Theorem 1.3. To do so, we use the representation of Ga,c0 as

a sum of the eigenmodes (over k) which is used to prove the estimates for a ≤ h
2
3
(1−ǫ),

ǫ ∈ ]0, 1/7[. Using the Airy–Poisson summation formula (see Lemma 2.4), Ga,c0
can be also represented as a sum over N ∈ Z (its summands will be seen to be
waves corresponding to the number of reflections on the boundary, indexed by N)

for a ≥ h
2
3
(1−ǫ′), for ǫ′ ∈ ]0, ǫ[. These local parametrices can be written in terms of a

sum of oscillatory integrals with phase functions containing an Airy type terms with
degenerate critical points. We give a precise analysis of the Lagrangian in the phase
space associated to these oscillatory integrals. This geometric analysis allows us to
track the degeneracy of the phases when we apply the stationary phase method.
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In Section 3, we prove Theorem 1.4. To get the estimates for Ga,m, we distinguish

between two different cases. The first case is a ≤ ( h
2m

√
a
)
2
3
(1−ǫ), ǫ ∈ ]0, 1/7[: here,

we follow ideas in section 2 and construct a local parametrix as a sum over eigen-
modes. The second case is a ≥ ( h

2m
√
a
)
2
3
(1−ǫ′), for ǫ′ ∈ ]0, ǫ[: there, the Airy–Poisson

summation formula yields the representation of Ga,m as a sum over N ∈ Z.
In Section 4, we prove Theorem 1.5. Notice that as ǫ0 is small, the estimates

for Ga,ǫ0 are in fact those in free case. To get that, we first compute the trajectories
of the Hamiltonian flow for the operator P . At this frequency localization there is
at most one reflection on the boundary of the cylinder. Moreover, we follow the
techniques from section 2 and obtain an expression for Ga,ǫ0 to which we apply the
stationary phase method. It is particularly interesting that this localization gives us
an oscillatory integral (the local parametrix) with nondegenerate phase function; this
is due to the geometric study of the associated Lagrangian which rules out the cusps
and swallowtails regimes for a given fixed time t, |t| ≤ 1 if ǫ0 is small.

In all these sections, we will assume that the integration with respect to η is
restricted to η > 0, since the case η < 0 is exactly the same.

2. Dispersive estimates for |η| ≥ c0

In this section, we prove Theorem 1.3. The key ingredient is to construct local
parametrices for the regimes a ≤ h

2
3
(1−ǫ) for ǫ ∈ ]0, 1/7[, and for a ≥ h

2
3
(1−ǫ′), for ǫ′ ∈

]0, ǫ[ respectively. These are oscillatory integrals to which we apply the (degenerate)
stationary phase type arguments to get the desired estimates. The Airy–Poisson
summation formula [see Lemma 2.4] gives us the parametrix as a sum over multiple
reflections on the boundary as illustrated in the following diagram.

∑

k

(FIOs)

(eigenmodes)

Spectral analysis of −∆

Parametrix

∑

N

(FIOs)

(reflections)

2π
∑

k

δω=ωk

L′(ωk)
=
∑

N

e−iNL(ω)

a ≤ h
2
3
(1−ǫ) a ≥ h

2
3
(1−ǫ′)

= =

2.1. Dispersive estimates for 0 < a ≤ h
2

3
(1−ǫ), with ǫ ∈ ]0, 1/7[. In

this subsection, we prove local in time dispersive estimates for the function Ga,c0. In

the regime 0 < a ≤ h
2
3
(1−ǫ), with ǫ ∈ ]0, 1/7[, the parametrix reads as a sum over

eigenmodes k. Taking into account the asymptotic behaviour of the Airy functions,
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we deal with different values of k as follows: for small values of k, we use Lemma
3.5[12] to get the estimates; for large values of k, we use the asymptotic expansion
of the Airy functions. The last case, the parametrix is a sum of oscillatory integrals
to which we apply [12, Lemma 2.20]. Recall that the parametrix in this frequency
localization and near tangential directions is equal to

Ga,c0(t, x, y, z) =
1

4π2h2

∑

k≥1

ˆ

e
i
h
(yη+zζ)ei

t
h
(η2+ζ2+ωkh

2/3|η|4/3)1/2ek(x, η/h)ek(a, η/h)

× χ0(ζ
2 + η2)ψ0(η)χ1(ωkh

2/3|η|4/3)(1− χ1)(εωk) dη dζ.(2.1)

Here

• χ0 ∈ C∞
0 , 0 ≤ χ0 ≤ 1, χ0 is supported in the neighborhood of 1.

• ψ0 ∈ C∞
0 (c0/2,∞), 0 ≤ ψ0 ≤ 1, ψ0(η) = 1 for η ≥ c0.

• χ1 ∈ C∞
0 , 0 ≤ χ1 ≤ 1, χ1 is supported in (−∞, 2ε], χ1 = 1 on (−∞, ε], for

ε > 0 small. χ1 is used to localize in tangential directions. Notice that on
the support of χ1, we have ωkh

2/3|η|4/3 ≤ 2ε and since ωk ∼ k2/3; we obtain
k ≤ ε

h|η|2 . Thus since η is bounded from below, we may assume that k ≤ ε/h.

Moreover, we have (1− χ1)(εωk) = 1 for every k ≥ 1 since ω1 ≈ 2.33.

The main result of this section is the following proposition.

Proposition 2.1. Let ǫ ∈ ]0, 1/7[. There exists C such that for every h ∈ ]0, 1],

every t ∈ [h, 1] and every 0 < a ≤ h
2
3
(1−ǫ), y ∈ R, z ∈ R, the following holds:

(2.2) ‖Ga,c0(t, x, y, z)‖L∞(x≤a) ≤ Ch−3

(

h

t

)5/6

.

Proof. First, we study the integration in ζ . Let

J =

ˆ

ei
t
h
φkχ0(ζ

2 + η2) dζ.

Recall that χ0 ∈ C∞
0 is supported near 1. The phase function φk is given by

φk(ζ) =
z

t
ζ +

(

η2 + ζ2 + γη2
)1/2

,

with γ = h2/3ωk|η|−2/3 > 0. We introduce a change of variables ζ = |η|ζ̃, z = tz̃.
Then we obtain

φk(ζ) = |η|
(

z̃ζ̃ + (1 + ζ̃2 + γ)1/2
)

.

Differentiating with respect to ζ̃, we get

∂ζ̃φk = |η|
(

z̃ +
ζ̃

(1 + ζ̃2 + γ)1/2

)

.

Because η is bounded from below, ζ̃ = ζ/|η| is also bounded, therefore we have
∣

∣

∣

ζ̃

(1+ζ̃2+γ)1/2

∣

∣

∣
≤ 1 − 2δ1, for some δ1 > 0 small. Then if |z̃| ≥ 1− δ1, the contribution

of ζ̃-integration is OC∞((h/t)∞) by integration by parts. Thus we may assume that
|z̃| ≤ 1− δ1. In this case, the phase φk has a unique critical point on the support of

χ0. It is given by ζ̃c = − z̃(1+γ)1/2√
1−z̃2 and this critical point is nondegenerate since

∂2
ζ̃
φk = |η|

(

1 + γ

(1 + ζ̃2 + γ)3/2

)

> 0.
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Then we obtain by the stationary phase method (as |z̃| < 1− δ1)

J =

(

h

t

)1/2

ei
t
h
|η|

√
1−z̃2(1+γ)1/2 χ̃0,

where χ̃0 is a classical symbol of order 0 with small parameter h/t. Hence we get

Ga,c0(t, x, y, z) =
1

4π2h2

(

h

t

)1/2
∑

k≥1

ˆ

e
i
h

(

yη+|η|t
√
1−z̃2(1+γ)1/2

)

ek(x, η/h)ek(a, η/h)

× χ̃0ψ0(η)χ1(γ|η|2)(1− χ1)(εγh
−2/3|η|2/3) dη.(2.3)

Next, we observe that Ga,c0 contains Airy functions which behave differently de-
pending on the various values of k. To deal with it, we split the sum over k into
Ga,c0 = Ga,<L + Ga,>L, where in Ga,<L only the sum over 1 ≤ k ≤ L is considered.

Estimates for Ga,<L. To get the estimates for Ga,<L, we need the following
lemma, which follows from the bound |Ai(s)| ≤ C(1 + |s|)−1/4.

Lemma 2.2. [12, Lemma 3.5] There exists C0 such that for L ≥ 1, the following

holds:

sup
b∈R

(

∑

1≤k≤L
k−1/3Ai2(b− ωk)

)

≤ C0L
1/3.

We use the Cauchy–Schwarz inequality for (2.3) and Lemma 2.2 to get

‖Ga,<L‖L∞ . h−2

(

h

t

)1/2
∑

1≤k≤L
h−2/3k−1/3Ai(|η/h|2/3x− ωk)Ai(|η/h|2/3a− ωk),

. h−3

(

h

t

)1/2

h1/3

(

∑

1≤k≤L
k−1/3Ai2(h−2/3|η|2/3x− ωk)

)1/2

×
(

∑

1≤k≤L
k−1/3Ai2(h−2/3|η|2/3a− ωk)

)1/2

,

. h−3

(

h

t

)1/2

h1/3L1/3.

We only have to prove (2.2) for t > h. Let ǫ ∈ ]0, 1/3[ and L = h−ǫ. If t ≤ hǫ, then
L ≤ 1

t
, hence

‖Ga,<L(t, x, y, z)‖L∞ ≤ Ch−3

(

h

t

)5/6

.

We are reduced to the case t > hǫ ≥ h1/3. Then we apply the stationary phase for
η-integration of the form

ˆ

e
i
h
ΦkAi(h−2/3|η|2/3x− ωk)Ai(h

−2/3|η|2/3a− ωk) dη,

with the phase function

Φk(η) = η
(

y + t
√
1− z̃2(1 + γ)1/2

)

.

To deal with this integral, we rewrite Φk = hλΨk where λ = tωkh
−1/3 is a large

parameter. We have |∂2ηΨk| ≥ c > 0. To apply the stationary phase, we need to
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check that one has for some ν > 0 one has

|∂jηAi(h−2/3|η|2/3x− ωk)| ≤ Cjλ
j(1/2−ν).

Since one has supb≥0 |blAi(l)(b − ωk)| ≤ Clω
3l/2
k , it is sufficient to check that there

exists ǫ > 0 such that for t > hǫ and k ≤ h−ǫ,

ω
3/2
k ≤ (tωkh

−1/3)(1/2−ν)

This holds if ǫ < 1/7. Therefore the estimate for ǫ < 1/7 and t > hǫ is

‖1x≤aGa,<L(t, x, y, z)‖L∞ ≤ Ch−3

(

h

t

)1/2[

h1/3
∑

1≤k≤h−ǫ

k−1/3λ−1/2

]

,

≤ Ch−3

(

h

t

)1/2[

h1/3
∑

1≤k≤h−ǫ

k−1/3(tωkh
−1/3)−1/2

]

,

≤ Ch−3

(

h

t

)1/2[(
h

t

)1/2

h−ǫ/3
]

,

≤ Ch−3

(

h

t

)1/2(
h

t

)1/3

.

Estimates for Ga,>L. We now deal with large values of k, L ≤ k ≤ ε/h with
L ≥ Dmax{h−ǫ, 1/t}, D > 0 large constant. We are left to prove (2.2) holds true for

Ga,>L, defined by the sum over L ≤ k ≤ ε
h
. For k > Dh−ǫ and 0 ≤ x ≤ a ≤ h

2
3
(1−ǫ),

we have

ωk − |η|2/3h−2/3x > ωk/2.

Therefore we can use the asymptotic expansion of the Airy function (see Appendix)

Ai(ϑ) =
∑

±
ω±e∓

2
3
i(−ϑ)3/2(−ϑ)−1/4Ψ±(−ϑ) for − ϑ > 1, where ω± = e±iπ/4

and where Ψ± are given in the Appendix. By the definition of ek, we have

ek(x, η/h) = fk
|η|1/3h−1/3

k1/6
Ai(h−2/3|η|2/3x− ωk),

= fk
|η|1/3h−1/3

k1/6

∑

±
ω±e∓

2
3
i(ωk−|η|2/3h−2/3x)3/2Ψ±(ωk − |η|2/3h−2/3x)

(ωk − |η|2/3h−2/3x)1/4
.

We can rewrite Ga,>L as follows:

Ga,>L(t, x, y, z) =
∑

L≤k≤ ε
h

1

4π2h2

(

h

t

)1/2
∑

±,±

ˆ

e
i
h
Φ±,±

k σ±,±
k dη,(2.4)

with the phase functions are defined by

Φ±,±
k (t, x, y, z, a; η) = yη + |η|t

√
1− z̃2(1 + γ)1/2 ± 2

3
|η|(γ − x)3/2 ± 2

3
|η|(γ − a)3/2,

and the symbols are given by

σ±,±
k (x, a, h;η) = h−1/3|η|1/3χ̃0χ1(γη

2)(1− χ1)(εγh
−2/3|η|2/3) f

2
k

k1/3
ω±ω±

× (γ − x)−1/4(γ − a)−1/4Ψ±(|η|2/3h−2/3(γ − x))Ψ±(|η|2/3h−2/3(γ − a)).
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We have 3η∂η = −2γ∂γ and for 0 ≤ x ≤ a ≤ 2γ,

|(γ∂γ)j((γ − x)−1/4)| ≤ Cjγ
−1/4 ≤ C ′

j(hk)
−1/6;

moreover, Ψ± are classical symbols of order 0 at infinity which is true in this case
since we have

|η2/3h−2/3(γ − x)| ≥ ωk/2 ≥ Ch−2ǫ/3,

since k ≥ L ≥ h−ǫ. Hence we obtain that for all j, there exists Cj such that

|∂jησ±,±
k (x, a, h; η)| ≤ Cj(hk)

−2/3,

since in the symbols σ±,±
k there is a factor (hk)−1/3 and we apply η derivatives to the

product (γ − x)−1/4(γ − a)−1/4 to get another factor (hk)−1/3.
Therefore, to establish the dispersive estimates for Ga,>L, it suffices to estimate

the oscillatory integral of the form
ˆ

e
i
h
Φ±,±

k σ±,±
k dη.

To get the estimates for this integral, we set Φ±,±
k = hλψ±,±

k , where λ = tωkh
−1/3. It

defines a new large parameter since λ ≥ c > 0 as ωk ∼ k2/3, k ≥ 1/t, and t ≥ h. The
following result gives an estimate of these oscillatory integrals.

Proposition 2.3. Let ǫ ∈ ]0, 1/7[. For small ε, there exists a constant C inde-

pendent of a ∈ (0, h
2
3
(1−ǫ)], t ∈ [h, 1], x ∈ [0, a], y ∈ R, z ∈ R and k ∈ [L, ε

h
] such

that the following holds:
∣

∣

∣

∣

ˆ

eiλψ
±,±
k σ±,±

k dη

∣

∣

∣

∣

≤ C(hk)−2/3λ−1/3.

Proof of Proposition 2.3. Since (hk)2/3σ±,±
k are classical symbols of degree 0

compactly supported in η, we apply the stationary phase method to an integral of
the form

J1 =

ˆ

eiλψ
±,±
k (hk)2/3σ±,±

k dη.

We have to prove that the following inequality holds uniformly with respect to the
parameters:

|J1| ≤ Cλ−1/3.

Let us recall that

hλψ±,±
k (t, x, y, z; η) = yη + |η|t

√
1− z̃2(1 + γ)1/2 ± 2

3
|η|(γ − x)3/2 ± 2

3
|η|(γ − a)3/2.

We compute

hλ∂ηψ
±,±
k = y + t

√
1− z̃2

1 + 2
3
γ√

1 + γ
± 2

3
x(γ − x)1/2 ± 2

3
a(γ − a)1/2,

and we need to consider four cases. Let δ = x
a
∈ [0, 1], α = a

ωkh2/3
∈ [0, α0]. Indeed,

since ωk ∼ k2/3, k ≥ Dh−ǫ and a ≤ h
2
3
(1−ǫ), it follows that α = ak−2/3h−2/3 ≤

D−2/3ah−
2
3
(1−ǫ) ≤ D−2/3 := α0. Let ρ = |η|−2/3, V = y+t

√
1−z̃2

tωkh2/3
and define the

function F (γ) by

1 + 2
3
γ√

1 + γ
= 1 + γF (γ), F (γ) =

1

6
+

γ

24
+O(γ2).
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With these notations we get:

∂ηψ
±,±
k = V +

√
1− z̃2ρF (h2/3ωkρ) +

2

3
µ
(

±δ(ρ− δα)1/2 ± (ρ− α)1/2
)

,

where µ = ah−1/3

tω
1/2
k

; it satisfies 0 ≤ µ ≤ h
1
3 (1−ǫ)

t
min{1, h−ǫ/3t1/3} and thus µ may be

small or arbitrary large. In fact, if t ≥ hǫ, µ ≤ h
1
3
(1−ǫ)t−1 ≤ h1/3−4ǫ/3, which is small

if ǫ ≤ 1/4. If t ≤ hǫ, we have µ ≤ h1/3−2ǫ/3t−2/3 which could be large when t ≤ h1/2−ǫ.
First, we consider the case where µ is bounded. We now study the critical points.
We take ρ = |η|−2/3 as variable, we get

∂ρ∂ηψ
±,±
k =

√
1− z̃2(F (γ) + γF ′(γ)) +

µ

3

(

± δ(ρ− δα)−1/2 ± (ρ− α)−1/2
)

,

∂2ρ∂ηψ
±,±
k =

√
1− z̃2h2/3ωk(2F

′(γ) + γF ′′(γ))− µ

6

(

± δ(ρ− δα)−3/2 ± (ρ− α)−3/2
)

.

For ε small enough, there exists c > 0 independent of k ≤ ε
h

such that

|∂ρ∂ηψ±,±
k |+ |∂2ρ∂ηψ±,±

k | ≥ c.(2.5)

Indeed, we observe that (ρ−α)−1/2 ≥ δ(ρ−δα)−1/2 and F (γ)+γF ′(γ) ∼ 1
6
. Thus we

get |∂ρ∂ηψ±,+
k | ≥ c1 > 0. Other cases, ∂ρ∂ηψ

±,−
k could vanish and when this happens

we have

|∂ρ∂ηψ±,−
k | ≤ 1/100 =⇒ µ

3
(ρ− α)−1/2 ≥ 0.05.

Then we have |∂2ρ∂ηψ−,−
k | ≥ c2 > 0. Moreover, for any function f , we have

f(ρ− α)− δf(ρ− δα) = (1− δ)f(ρ− δα)−
ˆ α(1−δ)

0

f ′(ρ− δα− t) dt.(2.6)

Taking f(t) = t−1/2, we get that

|∂ρ∂ηψ+,−
k | ≤ 1/100 =⇒ µ(1− δ) ≥ c > 0.

Applying (2.6) with f(t) = t−3/2, we obtain |∂2ρ∂ηψ+,−
k | ≥ c/2 > 0. As a consequence

of (2.5) together with [12, Lemma 2.20] (see Appendix), we get that the proposition
holds true for µ bounded.

It remains to study the case where µ is large. For (+,+) or (−,+) case, we
study again the critical points and we take Λ = λµ as a large parameter. Since δ(ρ−
δα)−1/2 + (ρ− α)−1/2 ≥ c > 0, we have |∂ρ∂ηψ±,+

k | ≥ c > 0. Hence |J1| ≤ C(λµ)−1/2.
For (+,−) and (−,−) cases, we can use (2.6). We distinguish between two cases:
if µ(1 − δ) is bounded, the computation of the derivatives of the phase functions
ψ±,−
k yields the inequality (2.5) and the conclusion follows the [12, Lemma 2.20]. If
µ(1− δ) is large, we take Λ′ = λµ(1− δ) as a large parameter in J1 . Since by (2.6),
we have

|(ρ− α)−1/2 − δ(ρ− δα)−1/2| ≥ c(1− δ)

with c > 0. We get that |∂ρ∂ηψ±,−
k | ≥ c > 0 and hence |J1| ≤ C(λµ(1− δ))−1/2. �
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To summarize, the Proposition 2.3 yields the dispersive estimates for Ga,>L for
the large values of k, L ≤ k ≤ ε/h as follows:

‖1x≤aGa,>L(t, x, y, z)‖L∞ ≤ Ch−2

(

h

t

)1/2
∑

k≤ ε
h

(hk)−2/3λ−1/3,

≤ Ch−2

(

h

t

)1/2
∑

k≤ ε
h

(hk)−2/3(tωkh
−1/3)−1/3,

≤ Ch−2

(

h

t

)1/2
∑

k≤ ε
h

(hk)−2/3t−1/3k−2/9h1/9,

≤ Ch−3

(

h

t

)1/2(
h

t

)1/3

h1/9





∑

k≤ ε
h

k−8/9



 ,

≤ Ch−3

(

h

t

)5/6

,

where we used λ = tωkh
−1/3 in the second line, and ωk ∼ k2/3 in the third line. This

concludes the proof of Proposition 2.1. �

2.2. Airy–Poisson summation formula. Let A±(z) = e∓iπ/3Ai(e∓iπ/3z) , we
have Ai(−z) = A+(z) + A−(z). For ω ∈ R, set

L(ω) = π + i log

(

A−(ω)

A+(ω)

)

.

As in Lemma 2.7 in [10], the function L is analytic, strictly increasing and satisfies

L(0) = π/3, lim
ω→−∞

L(ω) = 0, L(ω) =
4

3
ω3/2 − B(ω3/2), for ω ≥ 1,

with

B(ω) ∼1/ω

∑

j≥1

bjω
−j, bj ∈ R, b1 > 0,(2.7)

and for all k ≥ 1, the following holds

L(ωk) = 2πk ⇐⇒ Ai(−ωk) = 0, L′(ωk) = 2π

ˆ ∞

0

Ai2(x− ωk) dx.

Recall that fk are constants such that ‖ek(., η)‖L2(R+) = 1. This gives us

ˆ ∞

0

Ai2(x− ωk) dx =
k1/3

f 2
k

=
L′(ωk)

2π
.

The next lemma, whose proof can be found in [13], is the key tool to transform the
sum over the eigenmodes k to the sum over N .

Lemma 2.4. (Airy–Poisson summation formula) The following equality holds

true in D′(Rω),
∑

N∈Z
e−iNL(ω) = 2π

∑

k∈N∗

1

L′(ωk)
δω=ωk

.
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That is, for φ(ω) ∈ C∞
0 ,

∑

N∈Z

ˆ

e−iNL(ω)φ(ω) dω = 2π
∑

k∈N∗

1

L′(ωk)
φ(ωk).

Now we rewrite (1.9) using the definition of the eigenfunctions ek and we replace

the factor
f2k
k1/3

by 2π
L′(ωk)

. We get

Ga,c0(t, x, y, z) =
1

(2π)2h8/3

ˆ

e
i
h
(yη+zζ)

∑

k≥1

|fk|2
k1/3

ei
t
h
(η2+ζ2+ωkh

2/3|η|4/3)1/2 |η|2/3

× χ0(η
2 + ζ2)ψ0(η)χ1(ωkh

2/3|η|4/3)(1− χ1)(εωk)

×Ai
(

h−2/3|η|2/3x− ωk

)

Ai
(

h−2/3|η|2/3a− ωk

)

dη dζ,

=
1

(2π)2h8/3

ˆ

e
i
h
(yη+zζ)

∑

k≥1

2π

L′(ωk)
ei

t
h
(η2+ζ2+ωkh

2/3|η|4/3)1/2 |η|2/3

× χ0(η
2 + ζ2)ψ0(η)χ1(ωkh

2/3|η|4/3)(1− χ1)(εωk)

×Ai
(

h−2/3|η|2/3x− ωk

)

Ai
(

h−2/3|η|2/3a− ωk

)

dη dζ,

=
1

(2π)2h8/3

ˆ

e
i
h
(yη+zζ)2π

∑

k≥1

δω=ωk

L′(ωk)
ei

t
h
(η2+ζ2+ωh2/3|η|4/3)1/2 |η|2/3

× χ0(η
2 + ζ2)ψ0(η)χ1(ωh

2/3|η|4/3)(1− χ1)(εω)

×Ai
(

h−2/3|η|2/3x− ω
)

Ai
(

h−2/3|η|2/3a− ω
)

dω dη dζ.

Using Lemma 2.4, Ga,c0 becomes

Ga,c0(t, x, y, z) =
1

(2π)2h8/3

ˆ

e
i
h
(yη+zζ)

∑

N∈Z
e−iNL(ω)ei

t
h
(η2+ζ2+ωh2/3|η|4/3)1/2 |η|2/3

× χ0(ζ
2 + η2)ψ0(η)χ1(ωh

2/3|η|4/3)(1− χ1)(εω)

×Ai
(

h−2/3|η|2/3x− ω
)

Ai
(

h−2/3|η|2/3a− ω
)

dω dη dζ.

From definition of the Airy function (see Appendix)

(

A−(ω)

A+(ω)

)N

= iNe−
4
3
iNω3/2

eiNB(ω3/2),



610 Len Meas

where for ω ∈ R+, we recall that B(ω) ∈ R is defined as in (2.7). It follows that

Ga,c0(t, x, y, z) =
∑

N∈Z

(−1)N

(2π)2h8/3

ˆ

e
i
h
(yη+zζ)ei

t
h
(η2+ζ2+ωh2/3|η|4/3)1/2 |η|2/3

× χ0(ζ
2 + η2)ψ0(η)χ1(ωh

2/3|η|4/3)(1− χ1)(εω)

(

A−(ω)

A+(ω)

)N

× Ai
(

h−2/3|η|2/3x− ω
)

Ai
(

h−2/3|η|2/3a− ω
)

dω dη dζ,

=
∑

N∈Z

(−i)N
(2π)4h10/3

(2.8)

×
ˆ

e
i
h

(

yη+zζ+t(η2+ζ2+ωh2/3|η|4/3)1/2+ s3

3
+s(|η|2/3x−ωh2/3)+σ3

3
+σ(|η|2/3a−ωh2/3)

)

× |η|2/3χ0(ζ
2 + η2)ψ0(η)χ1(ωh

2/3|η|4/3)(1− χ1)(εω)

× e−
4
3
iNω3/2+iNB(ω3/2) ds dσ dω dη dζ,

From the first to the second line, we made a change of variables s = Sh−1/3 and
σ = Σh−1/3 in the Airy functions; but for simplicity we keep the notations s, σ.

Therefore, (2.8) is a local parametrix that reads as a sum over N . Notice that our
parametrix coincides with the constructed sum over reflected waves in [12] since each
term has essentially the same phase. In the sequel, we refer the sum over N ∈ Z as
the summands of waves corresponding to the number of reflections on the boundary,
indexed by N .

2.3. Dispersive estimates for a ≥ h
2

3
(1−ǫ′), ǫ′ ∈ ]0, ǫ[. In this subsection,

we establish the local in time dispersive estimates for the parametrix in the form
(2.8) as a sum over N ∈ Z in the regime a ≥ h

2
3
(1−ǫ′), for ǫ′ ∈ ]0, ǫ[. Recall that

our local parametrix under the form (2.8) is constructed from (1.9) together with
the Lemma 2.4. It is a sum of oscillatory integrals with phase functions containing
an Airy type terms with degenerate critical points. We give a precise analysis of
the Lagrangian in the phase space associated to these oscillatory integrals. This
geometric analysis allows us to track the degeneracy of the phases when we apply
the stationary phase method.

y

x

a

N = 2 Swallowtails regime

Figure 2. Swallowtails.

To deal with (2.8), we introduce a change of variables

aω̃ = h2/3ω|η|−2/3, x = aX, ζ = |η|ζ̃, s = a1/2|η|1/3s̃, σ = a1/2|η|1/3σ̃.



Dispersive estimates for the wave equation inside cylindrical convex domains 611

Then we can rewrite Ga,c0 as follows:

Ga,c0(t, x, y, z) =
∑

N∈Z
Ga,N ,(2.9)

with for each N ∈ Z,

Ga,N(t, x, y,z) =
(−i)Na2
(2π)4h4

ˆ

e
i
h
ΦN,a,h|η|3χ0(η

2(1 + |ζ̃|2))ψ0(η)χ1(aω̃η
2)

× (1− χ1)(εah
−2/3|η|2/3ω̃) ds̃ dσ̃ dω̃ dζ̃ dη,(2.10)

with the phase function ΦN,a,h = ΦN,a,h(t, x, y, z; s̃, σ̃, ω̃, ζ̃, η),

ΦN,a,h = yη + |η|zζ̃ + |η|t(1 + ζ̃2 + aω̃)1/2 + a3/2|η|
(

s̃3

3
+ s̃(X − ω̃) +

σ̃3

3

+ σ̃(1− ω̃)− 4

3
Nω̃3/2 +

h

a3/2|η|NB
(

ω̃3/2a3/2|η|/h
)

)

.

The main result of this subsection is Theorem 2.5. It gives the estimate of the sum
over N of the oscillatory integrals of the form (2.10) by using the stationary phase
type estimates with degenerate critical points.

Theorem 2.5. Let α < 2/3. There exists C such that for all h ∈ ]0, h0], all

a ∈ [hα, a0], all X ∈ [0, 1], all T ∈ ]0, a−1/2], all Y ∈ R, all z ∈ R, the following holds:
∣

∣

∣

∣

∣

∣

∑

0≤N≤C0a−1/2

Ga,N(T,X, Y, z; h)

∣

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

(

h

t

)1/2

+ a1/8h1/4

)

.(2.11)

Notice that the first part on the right hand side of (2.11) corresponds to the
free space estimates in R3, while the contribution in the second part appears as a
consequence of the presence of caustics (cusps and swallowtails type).

First of all, we observe that when N = 0, Ga,0 satisfies PGa,0 = 0 and the asso-
ciated data at time t = 0 is a localized Dirac at x = a, y = 0, z = 0. Therefore, Ga,0

satisfies the classical dispersive estimate for the wave equation in three-dimensional
space; that is,

∣

∣Ga,0(T,X, Y, z, h)
∣

∣ ≤ Ch−3

(

h

t

)

.

Thus it remains to prove the Theorem 2.5 for the sum over 1 ≤ N ≤ C0a
−1/2.

First, we can apply the stationary phase method to deal with the ζ̃-integration
appearing in Ga,N as the following lemma.

Lemma 2.6. One has

JN,a,h =

ˆ

e
i
h
|η|(zζ̃+t(1+ζ̃2+aω̃)1/2)χ0(η

2(1 + |ζ̃|2)) dζ̃

=

(

h

t

)1/2

e
i
h
|η|

√
t2−z2(1+aω̃)1/2χ̃0,

where χ̃0 is a classical symbol of order 0 with small parameter h/t.

Proof. We apply the classical stationary phase method for JN,a,h. First we make
a change of variable z = tz̃. Let the phase function φ be

φ(ζ̃; z̃, ω̃, a) = z̃ζ̃ + (1 + ζ̃2 + aω̃)1/2.
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Differentiating with respect to ζ̃, we get

∂ζ̃φ = z̃ +
ζ̃

(1 + ζ̃2 + aω̃)1/2
.

On the support of χ0, we have
∣

∣

∣

ζ̃

(1+ζ̃2+aω̃)1/2

∣

∣

∣
≤ 1 − 2δ1 for some δ1 > 0 small. If

|z̃| ≥ 1− δ1, then the contribution of ζ̃-integration is OC∞((h/t)∞) by integration by
parts. Thus we may assume that |z̃| < 1 − δ1. In this case, the phase φ admits a

unique critical point on the support of χ0. It is given by ζ̃c = − z̃(1+aω̃)1/2√
1−z̃2 and this

critical point is nondegenerate since

∂2
ζ̃
φ =

1 + aω̃

(1 + ζ̃2 + aω̃)3/2
> 0.

Then by the stationary phase method (as |z̃| < 1− δ1),

JN,a,h =

(

h

t

)1/2

ei|η|
t
h

√
1−z̃2(1+aω̃)1/2 χ̃0. �

By Lemma 2.6, (2.9) becomes

Ga,c0(t, x, y, z)

=
∑

N∈Z

(−i)Na2
(2π)4h4

(

h

t

)1/2 ˆ

e
i
h
Φ̃N,a,h|η|3χ̃0ψ0χ1(1− χ1) ds̃ dσ̃ dω̃ dη,

(2.12)

where Φ̃N,a,h = ΦN,a,h(., ζ̃c, .); that is,

Φ̃N,a,h = yη + |η|t
√
1− z̃2(1 + aω̃)1/2 + a3/2|η|

(

s̃3

3
+ s̃(X − ω̃)

+
σ̃3

3
+ σ̃(1− ω̃)− 4

3
Nω̃3/2 +

h

a3/2|η|NB
(

ω̃3/2a3/2|η|/h
)

)

.(2.13)

Now we introduce the change of variables

t = a1/2T, y + t
√
1− z̃2 = a3/2Y,

(1 + aω̃)1/2 − 1 = aγa(ω̃) =
aω̃

1 + (1 + aω̃)1/2
and λ =

a3/2

h
|η|.

We get (2.13) as follows:

Φ̃N,a,h = a3/2|η|
{

Y + T
√
1− z̃2γa(ω̃) +

s̃3

3
+ s̃(X − ω̃) +

σ̃3

3
+ σ̃(1− ω̃)

− 4

3
Nω̃3/2 +

h

a3/2|η|NB
(

ω̃3/2a3/2|η|/h
)

}

.(2.14)

First, we study geometrically the set of critical points CN,a,h of the associated La-

grangian manifold ΛN,a,h for the phase function Φ̃N,a,h. The set of critical points is
defined by

Ca,N,h = {(t, x, y, s̃, σ̃, ω̃, η) | ∂s̃Φ̃N,a,h = ∂σ̃Φ̃N,a,h = ∂ω̃Φ̃N,a,h = ∂ηΦ̃N,a,h = 0}.
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Then Ca,N,h is defined by a system of equations

X = ω̃ − s̃2, ω̃ = 1 + σ̃2,

T =
2(1 + aω̃)1/2√

1− z̃2

(

s̃+ σ̃ + 2Nω̃1/2

(

1− 3

4
B′
(

ω̃3/2λ
)

))

,

Y = −T
√
1− z̃2γa(ω̃)−

s̃3

3
− s̃(X − ω̃)− σ̃3

3
− σ̃(1− ω̃) +Nω̃3/2

(

4

3
− B′

(

ω̃3/2λ
)

)

.

We may parametrize Ca,N,h by (s̃, σ̃) near origin:

X = 1 + σ̃2 − s̃2, ω̃ = 1 + σ̃2,

T =
2√

1− z̃2
(1 + a+ aσ̃2)1/2

(

s̃+ σ̃ + 2N(1 + σ̃2)1/2
(

1− 3

4
B′
(

(1 + σ̃2)3/2λ
)

))

,

Y = H1(a, σ̃)(s̃+ σ̃) +
2

3
(s̃3 + σ̃3) +

4

3
NH2(a, σ̃)

(

1− 3

4
B′
(

(1 + σ̃2)3/2λ
)

)

,

with

H1(a, σ̃) = −(1 + σ̃2)
(1 + a + aσ̃2)1/2

1 + (1 + a+ aσ̃2)1/2
,

H2(a, σ̃) = (1 + σ̃2)3/2
−3− 4a− 4aσ̃2

2 + a+ aσ̃2 + 3(1 + a + aσ̃2)1/2
.

Let Λa,N,h ⊂ T ∗R3 be the image of Ca,N,h by the map

(t, x, y, s̃, σ̃, ω̃, η) 7−→ (x, t, y, ξ = ∂xΦ̃N,a,h, τ = ∂tΦ̃N,a,h, η = ∂yΦ̃N,a,h).

Then Λa,N,h ⊂ T ∗R3 is a Lagrangian submanifold parametrized by (s̃, σ̃, η)

X = 1 + σ̃2 − s̃2,

T =
2√

1− z̃2
(1 + a+ aσ̃2)1/2

(

s̃+ σ̃ + 2N(1 + σ̃2)1/2
(

1− 3

4
B′
(

(1 + σ̃2)3/2λ
)

))

,

Y = H1(a, σ̃)(s̃+ σ̃) +
2

3
(s̃3 + σ̃3) +

4

3
NH2(a, σ̃)

(

1− 3

4
B′
(

(1 + σ̃2)3/2λ
)

)

,

ξ = ηs̃a1/2, τ = η
√
1− z̃2(1 + a+ aσ̃2)1/2, η = η.

On Ca,N,h, we have ω̃ = 1 + σ̃2, thus the projection of Λa,N,h onto R
3 is

X = 1 + σ̃2 − s̃2,

T =
2√

1− z̃2
(1 + a+ aσ̃2)1/2

(

s̃+ σ̃ + 2N(1 + σ̃2)1/2(2.15)

×
(

1− 3

4
B′
(

(1 + σ̃2)3/2λ
)

))

,

Y = H1(a, σ̃)(s̃+ σ̃) +
2

3
(s̃3 + σ̃3) +

4

3
NH2(a, σ̃)

(

1− 3

4
B′
(

(1 + σ̃2)3/2λ
)

)

.
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As in [12], we rewrite the system (2.15) in the following form

X = 1 + σ̃2 − s̃2,

Y = H1(a, σ̃)(s̃+ σ̃) +
2

3
(s̃3 + σ̃3)(2.16)

+
2

3
H2(a, σ̃)(1 + σ̃2)−1/2

(

T
√
1− z̃2

2(1 + a+ aσ̃2)1/2
− s̃− σ̃

)

,

and

2N

(

1− 3

4
B′
(

ω̃3/2λ
)

)

= (1 + σ̃2)−1/2

(

T
√
1− z̃2

2(1 + a+ aσ̃2)1/2
− s̃− σ̃

)

.(2.17)

Remark 2.7. Notice that from (2.17) in the range of T ∈ ]0, a−1/2], we can
reduce the sum over N ∈ Z of Ga,N in (2.9) to the sum over 1 ≤ N ≤ C0a

−1/2.

For a given a and (X, Y, T ) ∈ R3, (2.16) is a system of two equations for unknown
(s̃, σ̃) and (2.17) gives an equation for N . We are looking for a solutions of (2.16) in
the range

a ∈ [hα, a0], α < 2/3, a|σ̃|2 ≤ ǫ0, 0 < T ≤ a−1/2, X ∈ [0, 1] with a0, ǫ0 small.

Then for a given point (X, Y, T ) ∈ [−2, 2]×R× [0, a−1/2], let us denote by N (X, Y, T )
the set of integers N ≥ 1 such that (2.15) admits at least one real solution (σ̃, s̃, λ)
with a|σ̃|2 ≤ ǫ0 and λ ≥ λ0. We denote by N C(X, Y, T ) the set of complex N
such that (2.15) admits at least one complex solution (σ̃, s̃, λ) with σ̃ ∈ U , where
U = {σ̃ ∈ C, |σ̃| ≤ 0.5 or |Im(σ̃)| ≤ |Re(σ̃)|/

√
3} and a|σ̃|2 ≤ ǫ0 and λ ≥ λ0.

We have the following lemma on the geometric estimates whose proof follows the
same line as in the proof of Lemma 2.18 and Lemma 2.19 in [12].

Lemma 2.8. There exists a constant C0 such that the followings hold:

(1) For all (X, Y, T ) ∈ [0, 1]× R× [0, a−1/2], one has the cardinal of N (X, Y, T ),
|N (X, Y, T )| ≤ C0, and N C(X, Y, T ) is a subset of the union of four disks of

radius C0.

(2) For all (X, Y, T ) ∈ [0, 1]× R× [0, a−1/2], the subset of N,

N1(X, Y, T ) =
⋃

|Y ′−Y |+|T ′−T |≤1,|X′−X|≤1

N (X ′, Y ′, T ′)

has cardinality satisfying

|N1(X, Y, T )| ≤ C0(1 + Tλ−2ω̃−3).

We notice that for ω̃ ≤ 3/4, we get rapid decay in λ by integration by part in σ̃.
In particular, we may replace 1 − χ1 by 1 in (2.12). Moreover, the swallowtails will
appear when s̃ = σ̃ = 0 i.e. for ω̃ = 1. For this reason, we introduce a cutoff function
χ2(ω̃) ∈ C∞

0 (]1/2, 3/2[), 0 ≤ χ2 ≤ 1, χ2 = 1 on ]3
4
, 5
4
[ in the integral (2.12) and we

denote by Ga,N,2 the corresponding integral. This Ga,N,2 corresponds to the regime
of swallowtails. We write Ga,N = Ga,N,1 +Ga,N,2. Ga,N,1 is defined by introducing χ3

in (2.12). We will have ω̃ ≥ 5/4 on the support of χ3.
To summarize, we have Ga,c0 as follows:

Ga,c0 =
∑

1≤N≤C0a−1/2

Ga,N =
∑

1≤N≤C0a−1/2

(Ga,N,1 +Ga,N,2) ,
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where

Ga,N,1 =
(−i)Na2
(2π)4h4

(

h

t

)1/2 ˆ

e
i
h
Φ̃N,a,h|η|3χ̃0ψ0χ1χ3(ω̃)ds̃dσ̃dω̃dη,

Ga,N,2 =
(−i)Na2
(2π)4h4

(

h

t

)1/2 ˆ

e
i
h
Φ̃N,a,h|η|3χ̃0ψ0χ1χ2(ω̃)ds̃dσ̃dω̃dη.

In what follows, we get the estimates for these oscillatory integrals based on the
(degenerate) stationary phase type result which consists in the precise study of where

the phase Φ̃N,a,h may be stationary.

2.3.1. The analysis of Ga,N,1. Let us recall that the Ga,N,1 is the oscillatory
integral which corresponds to the regime where there are no swallowtails.

The estimates of Ga,N,1 can be obtained by combining the estimates of the fol-
lowing oscillatory integrals.

• First, for (s̃, σ̃)-integrations, we use the stationary phase method.
• Then, for ω̃-integration, we apply the degenerate phase method.
• Finally, for η-integration, we distinguish by cases that contribute to the esti-

mates when we apply the stationary phase method. Meanwhile, the contribu-
tion in the estimates also comes from the cardinality of N1 defined in Lemma
2.8.

Our main results of this subsection are Proposition 2.9 and Proposition 2.10.

Proposition 2.9. Let α < 2/3.There exists C such that for all h ∈ ]0, h0], all

a ∈ [hα, a0], all X ∈ [0, 1], all T ∈ ]0, a−1/2], all Y ∈ R, all z ∈ R, the following holds:
∣

∣

∣

∣

∣

∣

∑

2≤N≤C0a−1/2

Ga,N,1(T,X, Y, z; h)

∣

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2

h1/3.

Proof. First of all, we apply the stationary phase method to (s̃, σ̃)-integrations
since on the support of χ3 we have ω̃ > 1. Let I be defined by

I =

ˆ

eiλ
(

s̃3

3
−s̃(ω̃−X)+ σ̃3

3
−σ̃(ω̃−1)

)

ds̃ dσ̃

= (ω̃ −X)1/2(ω̃ − 1)1/2
ˆ

eiλ(ω̃−X)3/2
(

s̃3

3
−s̃
)

eiλ(ω̃−1)3/2
(

σ̃3

3
−σ̃
)

ds̃ dσ̃,

where we made a change of variables s̃ = (ω̃ −X)1/2s̄, σ̃ = (ω̃ − 1)1/2σ̄ in the second
line but for simplicity, we keep the notations s̃, σ̃. Thus by the stationary phase near
the critical points s̃ = ±1, σ̃ = ±1 and integration by parts in s̃, σ̃ elsewhere we get

I = λ−1(ω̃ −X)−1/4(ω̃ − 1)−1/4eiλ
(

± 2
3
(ω̃−X)3/2± 2

3
(ω̃−1)3/2

)

b±c± +OC∞(λ−∞),

with b±, c± are classical symbols of degree 0 in large parameter λ(ω̃ − X)3/2 and
λ(ω̃ − 1)3/2 respectively. Notice that I is a part of the Ga,N,1 corresponding to the
integrations in s̃, σ̃. Therefore, we obtain

Ga,N,1(T,X, Y, z; h) =
(−i)Na2λ−1

(2π)4h4

(

h

t

)1/2 ˆ

ei
a3/2

h
Y η|η|3G̃a,N,1 dη,

G̃a,N,1(T,X, Y, z; h) =
∑

ǫ1,ǫ2

ˆ

eiλΦ̃N,ǫ1,ǫ2Θǫ1,ǫ2 dω̃ +OC∞(λ−∞),
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where ǫj = ±,Θǫ1,ǫ2(ω̃, a, λ) = χ̃0ψ0χ1χ3(ω̃)(ω̃−X)−1/4(ω̃−1)−1/4bǫ1cǫ2 which satisfy
∣

∣ω̃l∂lω̃Θǫ1,ǫ2

∣

∣ ≤ Clω̃
−1/2, and the phase functions are given by

Φ̃N,ǫ1,ǫ2(T,X, z; ω̃) = T
√
1− z̃2γa(ω̃) +

2

3
ǫ1(ω̃ −X)3/2

+
2

3
ǫ2(ω̃ − 1)3/2 − 4

3
Nω̃3/2 +

N

λ
B(ω̃3/2λ).(2.18)

Let us denote

Ga,N,1,ǫ1,ǫ2(T,X, Y, z; h) =
(−i)Na2λ−1

(2π)4h4

(

h

t

)1/2 ˆ

ei
a3/2

h
Y η|η|3G̃a,N,1,ǫ1,ǫ2 dη,(2.19)

G̃a,N,1,ǫ1,ǫ2(T,X, z;λ) =

ˆ

eiλΦ̃N,ǫ1,ǫ2Θǫ1,ǫ2(ω̃, a, λ) dω̃.

We are reduced to proving the following inequality:
∣

∣

∣

∣

∣

∑

2≤N≤C0a−1/2

Ga,N,1,ǫ1,ǫ2(T,X, Y, z; h)

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2

h1/3,(2.20)

with a constant C independent of h ∈ ]0, h0], a ∈ [h2/3, a0], X ∈ [0, 1], T ∈ [0, a−1/2].
For convenience, let Ω = ω̃3/2 be a new variable of integration and we get

G̃a,N,1,ǫ1,ǫ2(T,X, z;λ) =

ˆ

eiλΦ̃N,ǫ1,ǫ2 Θ̃ǫ1,ǫ2(Ω, a, λ) dΩ;(2.21)

Θ̃ǫ1,ǫ2(Ω, a, λ) are smooth functions with compact support in Ω. As dω̃ = 2
3
Ω−1/3dΩ,

we get
∣

∣Ωl∂lΩΘ̃ǫ1,ǫ2

∣

∣ ≤ ClΩ
−2/3 with Cl independent of a, λ and the phases (2.18)

become

Φ̃N,ǫ1,ǫ2(T,X, z, ω̃; a, λ) = T
√
1− z̃2γa(Ω) +

2

3
ǫ1(Ω

2/3 −X)3/2

+
2

3
ǫ2(Ω

2/3 − 1)3/2 − 4

3
NΩ +

N

λ
B(Ωλ).

We now study the critical points. We have

∂ΩΦ̃N,ǫ1,ǫ2 =
2

3

(

Ha,ǫ1,ǫ2(T,X, z; Ω)− 2N
(

1− 3

4
B′(Ωλ)

)

)

,

Ha,ǫ1,ǫ2 = Ω−1/3

(

T

2

√
1− z̃2(1 + aΩ2/3)−1/2 + ǫ1(Ω

2/3 −X)1/2

+ ǫ2(Ω
2/3 − 1)1/2

)

,(2.22)

∂ΩHa,ǫ1,ǫ2 =
1

3
Ω−4/3

(

− T

2

√
1− z̃2(1 + aΩ2/3)−3/2(1 + 2aΩ2/3)

+ ǫ1X(Ω2/3 −X)−1/2 + ǫ2(Ω
2/3 − 1)−1/2

)

.

We will first prove that (2.20) holds true in the case (ǫ1, ǫ2) = (+,+). We have that
the equation ∂ΩHa,+,+(Ω) = 0 admits a unique solution Ωq = Ω+

q (T,X, z, a) > 1 such
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that

lim
T→∞

Ω+
q (T,X, z, a) = 1 uniformly in X, z, a,(2.23)

0 >
9

2
Ω5/3
q ∂2ΩHa,+,+(Ωq) = −aT

2

√
1− z̃2

(

1 + aΩ2/3
q

)−5/2
(

1

2
− aΩ2/3

q

)

− 1

2

(

Ω2/3
q − 1

)−3/2 − 1

2
X
(

Ω2/3
q −X

)−3/2
.

Thus, the function Ha,+,+(Ω) is strictly increasing on [1,Ωq[ and strictly decreasing
on ]Ωq,∞[. Observe that

Ha,+,+(1) =
T

2

√
1− z̃2(1 + a)−1/2 + (1−X)1/2, lim

Ω→∞
Ha,+,+ = 2.(2.24)

For all k, there exist constant Ck such that

∀Ω ≥ 1, |∂kΩ(NB′(Ωλ))| ≤ CkNλ
−2Ω−(k+2).(2.25)

Let T0 ≫ 1. First, suppose that 0 ≤ T ≤ T0. Since Ha,+,+(Ω) ≤ C(1 + T ) and for

N ≥ N(T0) = C(1 + T0) for some constant C, we get |∂ΩΦ̃N,+,+| ≥ c0N with the

constant c0 > 0. Then by integration by parts, we get |G̃a,N,1,+,+| ∈ O(N−∞λ−∞)
and this implies

sup
T≤T0,X∈[0,1],Y ∈R,z∈R

∣

∣

∣

∣

∣

∣

∑

N(T0)≤N≤C0a−1/2

Ga,N,1,+,+(T,X, Y, z)

∣

∣

∣

∣

∣

∣

∈ OC∞(h∞).

Next, for 0 ≤ T ≤ T0 and 2 ≤ N ≤ N(T0), we may estimate the sum by the sup of

each term. In this case, we see that Φ̃N,+,+ has at most a critical point of order 2
near Ω = Ωq and

|∂ΩΦ̃N,+,+|+ |∂2ΩΦ̃N,+,+|+ |∂3ΩΦ̃N,+,+| ≥ c > 0.

Moreover, if N ≥ 2, we have a positive lower bound for |∂ΩΦ̃N,+,+(Ω)| for large

values of Ω; thus the contribution of G̃a,N,1,+,+ is OC∞(λ−∞) for large values of Ω.

The critical point of order 2 near Ω = Ωq, the estimate of G̃a,N,1,+,+ is given by the

Lemma 2.20 [12] which yields |G̃a,N,1,+,+(T,X, z;λ)| ≤ Cλ−1/3 with C independent
of T ∈ [0, T0], X ∈ [0, 1]. Hence from (2.19), we get

sup
X∈[0,1],Y ∈R,z∈R

∣

∣

∣

∣

∣

∣

∑

2≤N≤N(T0)

Ga,N,1,+,+(T,X, Y, z, h)

∣

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

h−1a2λ−1λ−1/3
)

,

≤ Ch−3

(

h

t

)1/2

h1/3.

Then we prove that (2.20) holds true for T0 ≤ T ≤ a−1/2. Like before, we may
assume N ≤ C1T with C1 large, the contribution of the sum on N such that C1T ≤
N ≤ C0a

−1/2 being negligible. From (2.23), we may choose T0 large enough so that
Ω+
q (T,X, z, a) < Ω0 with Ω0 > 1 for T ≥ T0 and we may assume with a constant

c > 0 that

|∂2ΩΦ̃N,+,+(Ω)| ≥ cTΩ−4/3, ∀Ω ≥ Ω0, ∀T ≥ T0, ∀N ≤ C0a
−1/2.

Therefore, on the support of Θ̃+,+, the phase Φ̃N,+,+ admits at most one critical point
Ωc = Ωc(T,X, z,N, λ, a) and this critical point is nondegenerate. Because N ≥ 2,
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from the first item of (2.22) we get Ω
1/3
c ≤ T and this implies Ω

1/3
c ∼ T/N . As a

consequence, if T/N ∼ 1 then Ωc ∼ 1. By stationary phase method, we get

|G̃a,N,1,+,+(T,X, z;λ)| ≤ Cλ−1/2T−1/2 with C independent of N.

If T/N ≫ 1, then we perform the change of variable Ω = Ω̃(T/N)3 in (2.21); the
unique critical point Ω̃c remains in a fixed compact interval of ]0,∞[. We have

∂k
Ω̃
Θ̃+,+(Ω̃(T/N)3, a, λ) ≤ ck(N/T )

2Ω̃−2/3−k.

Thus by the stationary phase method, we get

sup
2≤N≤C1T,X∈[0,1],z∈R

|G̃a,N,1,+,+(T,X, z;λ)| ≤ Cλ−1/2T−1/2.

It remains to estimate the sum
∣

∣

∣

∣

∣

∣

∑

2≤N≤C0a−1/2

Ga,N,1,+,+(T,X, Y, z; h)

∣

∣

∣

∣

∣

∣

.

Let GN(T,X, z, λ, a) = Φ̃N,+,+(T,X, z,Ωc(T,X, z,N, λ, a), λ, a). Therefore, by the
stationary phase method at the critical point Ωc = Ωc(T,X, z,N, λ, a) in (2.21), we
obtain

G̃a,N,1,+,+(T,X, z, h) = λ−1/2T−1/2eiλGN (T,X,z,λ,a)ψN(T,X, λ, a),

with ψN (T,X, λ, a) is a classical symbol of order 0 in λ. Therefore, if we denote

λ̃ = a3/2/h = λ/η, we have

Ga,N,1,+,+(T,X, Y, z; h) =
(−i)Na2λ−1

(2π)4h4

(

h

t

)1/2

λ−1/2T−1/2

×
ˆ

eiλ̃|η|(Y+GN (T,X,z,λ̃η,a))ψN |η|3 dη.(2.26)

It is an oscillatory integral with large parameter λ̃ and phase

LN (T,X, Y, z, ηλ̃) = |η|
(

Y +GN(T,X, z, λ̃η, a)
)

.

By construction, the equation

∂ηLN = Y +GN (T,X, z, λ, a) + λ∂λGN(T,X, z, λ, a) = 0

implies that (X, Y, T ) belongs to the projection of Λa,N,h on R3. As in the proof of
Proposition 2.14 [12], we see that the contribution of Ga,N,1,+,+ for the sum over N
such that N /∈ N1(X, Y, T ) is O(λ−∞). Thus it remains to estimate the sum

∣

∣

∣

∣

∣

∑

N∈N1(X,Y,T )

Ga,N,1,+,+(T,X, Y, z, h)

∣

∣

∣

∣

∣

.(2.27)

We apply the stationary phase method for η-integral with the phase function LN .
We have

∂ηLN = Y +GN + λ∂λGN ,

with

λ∂λGN = λ∂λΦ̃N,+,+(T,X,Ωc, a, λ) =
N

λ

(

− B(λΩc) + λΩcB
′(λΩc)

)

.

Then we obtain

∂2ηLN =
N

η
(λΩc)∂λ(λΩc)B

′′(λΩc).
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On the other hand, ∂λΩc satisfies

∂λΩc∂
2
ΩΦ̃N,+,+(Ωc) = −∂λ∂ΩΦ̃N,+,+(Ωc) = −NΩcB

′′(λΩc).

As we have ∂2ΩΦ̃N,+,+(Ωc) ≥ cTΩ
−4/3
c , Ω

1/3
c ∼ T/N , and for ω large, we have

B′′(ω) ∼ ω−3. We get

|∂λΩc| ≤ cT−1Ω4/3
c NΩc(λ

−3Ω−3
c ) ≤ cλ−3Ω−1

c .

This yields

|∂λ(λΩc)| = |λ∂λΩc + Ωc| ≥ cΩc(1− cλ−2Ω−2
c ) ≥ c′Ωc.

Hence we deduce that

|∂2ηLN | ≥ CNλ−2Ω−1
c .

Therefore η-integration produces a factor q−1/2 with q = Nλ−1Ω−1
c . Let us recall

that

|N1(X, Y, T )| ≤ C0(1 + Tλ−2Ω−2
c ).

We get the estimates of the sum in (2.27) by distinguishing between many cases which
depend on whether there are contributions from η-integration and the cardinality of
N1, |N1(X, Y, T )| as follows:

First case, if Ω
1/3
c ∼ T/N ∼ 1, then T ∼ N and

• if N ≤ λ, then there is no contribution from η-integration and we have |N1| ≤
C0. Hence the estimate is
∣

∣

∣

∣

∣

∑

N∈N1

Ga,N,1,+,+

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

h−1λ−1a2λ−1/2T−1/2
)

≤ Ch−3

(

h

t

)1/2

a−1/4h1/2 ≤ Ch−3

(

h

t

)1/2

h1/3,

since a−1/4h1/2 ≤ h1/3 when a ≥ h2/3.
• if λ < N ≤ λ2, then there is a contribution q−1/2 factor from η-integration

and we also have |N1| ≤ C0. We get
∣

∣

∣

∣

∣

∑

N∈N1

Ga,N,1,+,+

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

h−1λ−1a2λ−1/2T−1/2N−1/2λ1/2
)

≤ Ch−3

(

h

t

)1/2
(

h−1a2λ−2
)

≤ Ch−3

(

h

t

)1/2

h1/3.

• if N > λ2, then there are contributions from both q−1/2 factor from η-
integration and |N1| ≤ C0Tλ

−2. Thus the estimate is
∣

∣

∣

∣

∣

∑

N∈N1

Ga,N,1,+,+

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
∑

N∈N1

(

h−1λ−1a2λ−1/2T−1/2N−1/2λ1/2
)

≤ Ch−3

(

h

t

)1/2
(

h−1λ−1a2T−1|N1(X, Y, T )|
)

≤ Ch−3

(

h

t

)1/2
(

a−5/2h2
)

≤ Ch−3

(

h

t

)1/2

h1/3.

Second case, if T/N ≫ 1, then Ωc ≫ 1. We have
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• if N ≤ λΩc, then there is no contribution from η-integration. Moreover, we
have |N1| ≤ C0. To see this point, assume by contradiction T ≥ λ2Ω2

c ; this

implies Ω
1/3
c ∼ T/N ≥ λΩc which is impossible since Ωc ≫ 1. Thus the

estimate is

∣

∣

∣

∣

∣

∑

N∈N1

Ga,N,1,+,+

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

h−1λ−1a2λ−1/2T−1/2
)

≤ Ch−3

(

h

t

)1/2

a−1/4h1/2 ≤ Ch−3

(

h

t

)1/2

h1/3.

• if N > λΩc and λΩ
2/3
c < T ≤ λ2Ω2

c , then there is a contribution q−1/2 factor
from η-integration and we also have |N1| ≤ C0. We get

∣

∣

∣

∣

∣

∑

N∈N1

Ga,N,1,+,+

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

h−1λ−1a2λ−1/2T−1/2N−1/2λ1/2Ω1/2
c

)

≤ Ch−3

(

h

t

)1/2
(

h−1a2λ−2
)

≤ Ch−3

(

h

t

)1/2

h1/3.

• if N > λΩc and T > λ2Ω2
c , then there are contributions from both q−1/2 factor

from η-integration and |N1| ≤ C0Tλ
−2Ω−2

c . We get

∣

∣

∣

∣

∣

∑

N∈N1

Ga,N,1,+,+

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
∑

N∈N1

(

h−1λ−1a2λ−1/2T−1/2N−1/2λ1/2Ω1/2
c

)

≤ Ch−3

(

h

t

)1/2
(

h−1λ−1a2T−1Ω2/3
c |N1(X, Y, T )|

)

≤ Ch−3

(

h

t

)1/2
(

h−1a2λ−3
)

(T/N)−4 ≤ Ch−3

(

h

t

)1/2

h1/3.

Next, we prove that (2.20) holds true in the case (ǫ1, ǫ2) = (+,−). In this case, from
the last item of (2.22), X ∈ [0, 1], and B′′(λΩ) ∼ λ−3Ω−3 we get that for T > 0,
∂ΩHa,+,−(Ω)+

3N
2
λB′′(λΩ) < 0; that is, the function Ha,+,−(Ω)+

3N
2
B′(λΩ) decreases

on [1,∞[ from Ha,+,−(1)+
3N
2
B′(λ) = T

2

√
1− z̃2(1+a)−1/2+(1−X)1/2+ 3N

2
B′(λ) to

(

Ha,+,− + 3N
2
B′(λ.)

)

(∞) = 0. The equation ∂ΩΦN,+,− = 0 admits a unique solution
Ωc and it is nondegenerate; thus we can argue as (+,+) case. Finally, the case
(ǫ1, ǫ2) = (−,+) is similar to (+,+) case and (ǫ1, ǫ2) = (−,−) is similar to (+,−)
case. The proof of proposition is complete. �

Now we prove the estimates for N = 1.

Proposition 2.10. Let α < 2/3. There exists C such that for all h ∈ ]0, h0], all

a ∈ [hα, a0], all X ∈ [0, 1], all T ∈ ]0, a−1/2], all Y ∈ R, all z ∈ R, the following holds:

∣

∣

∣
Ga,1,1(T,X, Y, z; h)

∣

∣

∣
≤ Ch−3

(

h

t

)1/2
(

(

h

t

)1/2

+ h1/3

)

.
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Proof. Let us recall that

Ga,1,1 =
(−i)a2λ−1

(2π)4h4

(

h

t

)1/2 ˆ

ei
a3/2

h
Y η|η|3G̃a,1,1 dη,

G̃a,1,1 =
∑

ǫ1,ǫ2

ˆ

eiλΦ̃1,ǫ1,ǫ2Θǫ1,ǫ2 dω̃ +OC∞(h∞).

We recall that ǫj = ±,Θǫ1,ǫ2(ω̃, a, λ) = χ̃0ψ0χ1χ3(ω̃)(ω̃ − X)−1/4(ω̃ − 1)−1/4bǫ1cǫ2
which satisfy

∣

∣ω̃l∂lω̃Θǫ1,ǫ2

∣

∣ ≤ Clω̃
−1/2. The only difference with the case N ≥ 2 is in

the study of the phase Φ̃1,+,+ since in the case N = 1 we may have a critical point
ω̃c large. Let

G̃a,1,1,+,+ =

ˆ

eiλΦ̃1,+,+Θ+,+(ω̃, a, λ) dω̃,(2.28)

with the phase function

Φ̃1,+,+(T,X, z; ω̃) = T
√
1− z̃2γa(ω̃) +

2

3
(ω̃ −X)3/2

+
2

3
(ω̃ − 1)3/2 − 4

3
ω̃3/2 +

1

λ
B(λω̃3/2),

and Θ+,+(ω̃, a, λ) is a classical symbol of order −1/2 with respect to ω̃. Let denote
χ3(ω̃) ∈ C∞

0 (]ω̃1,∞[) with ω̃1 large and set

J̃1,+,+ =

ˆ

eiλΦ̃1,+,+Θ+,+(ω̃, a, λ)χ3(ω̃) dω̃.(2.29)

To prove the proposition, it suffices to verify |J̃1,+,+| ≤ Cλ−1/2T−1/2. We have

∂ω̃Φ̃1,+,+ =
T

2

√
1− z̃2(1 + aω̃)−1/2 − ω̃−1/2

2
(1 +X) +OC∞(ω̃−3/2),

∂2ω̃ω̃Φ̃1,+,+ =
−Ta
4

√
1− z̃2(1 + aω̃)−3/2 +

ω̃−3/2

4
(1 +X) +OC∞(ω̃−5/2).

Thus, we see that to get a large critical point ω̃c, T must be small. It follows that

ω̃
−1/2
c ∼ T and thus ∂2ω̃ω̃Φ̃1,+,+(ω̃c) ∼ T 3. Now we can make a change of variable
ω̃ = T−2υ̃ in (2.29). Because Θ+,+(ω̃, a, λ) is a classical symbol in ω̃ of order −1/2;

thus Θ̃+,+(T
−2υ̃, a, λ) = T−1υ̃1/2Θ+,+(T

−2υ̃, a, λ) is a classical symbol of order 0 in

υ̃ ≥ υ̃0 > 0 uniformly in T ∈ ]0, T0] and we also have ∂2υ̃υ̃Φ̃1,+,+ ∼ T−1 or T∂2υ̃υ̃Φ̃1,+,+ ∼
1. Therefore, the stationary phase method yields

|J̃1,+,+| =
∣

∣

∣

∣

∣

1

T 2

ˆ

ei(
λ
T
)T Φ̃1,+,+Tυ−1/2Θ̃+,+(ω̃, a, λ)χ3(T

−2υ̃) dυ̃

∣

∣

∣

∣

∣

≤ C
1

T

( λ

T

)−1/2

|J̃1,+,+| ≤ Cλ−1/2T−1/2,

which is the desired result. �

2.3.2. The Analysis of Ga,N,2. Recall that the Ga,N,2 is a sum of oscilla-
tory integrals which corresponds to the regime where there are swallowtails; that is,
corresponding to the case when s̃ = σ̃ = 0 i.e. for ω̃ = 1.

The estimates of Ga,N,2 can be obtained by combining the estimates of the fol-
lowing oscillatory integrals.

• First, we consider the ω̃-integration by using the stationary phase method.
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• Then, for η-integration, we distinguish by cases that we can apply the sta-
tionary phase method, namely there is an η-integration contribution when
N ≫ λ, while there is no η-integration contribution as N . λ. Meanwhile,
the contribution in the estimates also comes from the cardinality of N1 defined
in Lemma 2.8.

• Finally, for (s̃, σ̃)-integrations, we consider 2 cases that contribute to the
estimates, namely N ≥ λ1/3 (Lemma 2.12) and N < λ1/3 (Lemma 2.13).

Our result of this subsection is Proposition 2.11.

Proposition 2.11. Let α < 2/3.There exists C such that for all h ∈ ]0, h0], all

a ∈ [hα, a0], all X ∈ [0, 1], all T ∈ ]0, a−1/2], all Y ∈ R, all z ∈ R, the following holds:
∣

∣

∣

∣

∣

∑

1≤N≤C0a−1/2

Ga,N,2(T,X, Y, z; h)

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2

a1/8h1/4.

Proof. First, we rewrite Ga,N,2 in the form

Ga,N,2 =
(−i)Na2
(2π)4h4

(

h

t

)1/2 ˆ

ei
a3/2

h
Y η|η|3G̃a,N,2 dη,(2.30)

G̃a,N,2 =

ˆ

eiλφ̃N,a,hχ̃0ψ0χ1χ2(ω̃) ds̃ dσ̃ dω̃,

with the phase

φ̃N,a,h(T,X, z; s̃, σ̃, ω̃) = T
√
1− z̃2γa(ω̃) +

s̃3

3
+ s̃(X − ω̃)

+
σ̃3

3
+ σ̃(1− ω̃)− 4

3
Nω̃3/2 +

N

λ
B(ω̃3/2λ).

Since ω̃ is close to 1 on the support of χ2, we may localize s̃, σ̃ in a compact set. Let
K = {s̃, σ̃ ∈ [−1, 1], ω̃ = 1} and K1 be a suitable neighborhood of K depending on
the support of χ2. Introduce a cutoff function χ4(s̃, σ̃, ω̃) ∈ C∞

0 equal to 1 near K1.
Then the contribution of G̃a,N,2 outside K1 is OC∞(λ−∞) as a result of integration
by parts. Therefore we obtain

G̃a,N,2(T,X, z, h) =

ˆ

eiλφ̃N,a,hχ(s̃, σ̃, ω̃, a) ds̃ dσ̃ dω̃ +OC∞(λ−∞),(2.31)

χ(s̃, σ̃, ω̃, a, h) = χ̃0ψ0χ1χ2(ω̃)χ4(s̃, σ̃, ω̃),

with OC∞(λ−∞) uniform in T,X, z,N, a and χ is a classical symbol of order 0 in h
with support near K1. We first perform the integration with respect to ω̃. We have

∂ω̃φ̃N,a,h =
T

2

√
1− z̃2(1 + aω̃)−1/2 − s̃− σ̃ − 2Nω̃1/2

(

1− 3

4
B′(ω̃3/2λ)

)

,

∂2ω̃ω̃φ̃N,a,h = −Nω̃−1/2(1 +OC∞(λ−2ω̃−3)) +OC∞(a1/2).

Because ∂2ω̃ω̃φ̃N,a,h < 0, it follows that ∂ω̃φ̃N,a,h decreases from ∂ω̃φ̃N,a,h(1) > 0 to

∂ω̃φ̃N,a,h(∞) < 0. Therefore φ̃N,a,h admits a unique nondegenerate critical point ω̃c
and we are interested in the values of parameters such that ω̃c close to 1; then we
must have T̃ = T/4N ∈ compact set of R+, namely [1/2, 3/2]. In addition, from the

equation ∂ω̃φ̃N,a,h = 0, we get

T

2

√
1− z̃2(1 + aω̃)−1/2 = s̃+ σ̃ + 2Nω̃1/2

(

1− 3

4
B′(ω̃3/2λ)

)

.(2.32)
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Now we study the solution of (2.32) with λ = ∞; in this case, we have

ω̃1/2(1 + aω̃)1/2 = T̃
√
1− z̃2 − 1

2N
(s̃+ σ̃)(1 + aω̃)1/2.

The solution of this equation is of the form ω̃c =
∑

Fk(a, T̃ , s̃/N, σ̃/N) where Fk
are homogeneous functions of degree k in (s̃/N, σ̃/N) (see [12, Lemma 2.23]). By
comparing the terms with the same homogeneous degree in (s̃/N, σ̃/N), we get

F0(1 + aF0) = T̃ 2(1− z̃2) which gives F0 =
2T̃ 2(1− z̃2)

1 +
√

1 + 4aT̃ 2(1− z̃2)
,

and

(1 + 2aF0)F1 = − T̃

N

√
1− z̃2(s̃+ σ̃)(1 + aF0)

1/2.

We define

F1 = −E0

N
(s̃+ σ̃)(1 + aF0)

1/2,

E−1
0 =

√

F0

√

1 + aF0

(

1

F0
+

a

1 + aF0

)

.

Therefore ω̃c = F0 + F1 + O2 with the notation Oj means any function of the form
F =

∑

k≥j
Fk. Then by the implicit function theorem, we get that the equation

ω̃1/2(1 + aω̃)1/2
(

1− 3

4
B′(ω̃3/2λ)

)

= T̃
√
1− z̃2 − 1

2N
(s̃+ σ̃)(1 + aω̃)1/2

has solution of the form ω̃c = F0 + F1 + O2 +
g0
λ2

with g0 is a function of degree 0

in λ. By substituting ω̃c into φ̃N,a,h, we get a phase function which is denoted by

Ψ̃N,a,h = φ̃N,a,h(., ω̃c, .). It is given by

Ψ̃N,a,h = T
√
1− z̃2γa(F0) +

s̃3

3
+ s̃(X − F0) +

σ̃3

3
+ σ̃(1− F0)

+
E0

N
(1 + aF0)

1/2(s̃+ σ̃)2 − 1

4N2
(s̃+ σ̃)3 + aNO3

+
g0
λ2

+N

(

− 4

3
F

3/2
0 +

g1
λ2

)

.

Therefore, by applying the stationary phase method for (2.31), we get

G̃a,N,2 =
1√
λN

ˆ

eiλΨ̃N,a,hχ̃(T̃ , s̃, σ̃, 1/N, a, h) ds̃ dσ̃ +OC∞(λ−∞),

with χ̃ is a classical symbol of order zero in h. Now, with λ̃ = λ/η, (2.30) becomes

Ga,N,2 =
(−i)Na2
(2π)4h4

(

h

t

)1/2
1√
λN

ˆ

eiλ̃|η|(Y+Ψ̃N,a,h)|η|3χ̃ ds̃ dσ̃ dη +OC∞(λ−∞).

We study the η-integration with the phase function LN = η(Y + Ψ̃N,a,h) and a large

parameter λ̃. Follow the arguments in the proof of Proposition 2.9, we have

∂ηLN = Y + Ψ̃N,a,h + λ∂λΨ̃N,a,h = 0
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implies that (X, Y, T ) belongs to the projection of ΛN,a,h on R
3 and the sum for N

such that N /∈ N1(X, Y, T ) gives OC∞(λ−∞) (see [12, Lemma 2.24]). Hence it remains
to estimate the sum

∣

∣

∣

∣

∣

∑

N∈N1

Ga,N,2(T,X, Y, z; h)

∣

∣

∣

∣

∣

.

We also have |∂2ηLN | ≥ CNλ−2ω̃
−3/2
c . It follows that there are 2 cases to consider.

• If N . λ, then the contribution of the η-integration is OC∞(λ−∞) as a conse-
quence of integration by parts.

• If N ≫ λ, then by the stationary phase method, the η-integration gives a
contribution of a factor (Nλ−1)−1/2 since ω̃c ∼ 1.

Therefore, for N ≫ λ, it yields

Ga,N,2 =
(−i)Na2
(2π)4h4

(

h

t

)1/2
1√
λN

λ1/2N−1/2

ˆ

eiλ̃LN (ηc)|η|3χ̃1 ds̃ dσ̃ +OC∞(λ−∞).(2.33)

Moreover, we note that the phase function LN (ηc) satisfies ∂s̃LN (ηc) = ηc∂s̃Ψ̃N,a,h,

∂σ̃LN (ηc) = ηc∂σ̃Ψ̃N,a,h. In addition, when ∂s̃LN(ηc) = ∂2s̃LN(ηc) = 0 ; that is, when

∂s̃Ψ̃N,a,h = ∂2s̃ Ψ̃N,a,h = 0, we have ∂3s̃LN (ηc) = ηc∂
3
s̃ Ψ̃N,a,h and similar for σ̃. Thus the

study the critical points of the phase LN(ηc) in (s̃, σ̃)-integrations is the same as ones

with the phase Ψ̃N,a,h. As in [12], to avoid multiplication of symbol by a classical

symbol of order 0 in λ, we can replace Ψ̃N,a,h by ψ̃a,N,h, where

ψ̃N,a,h(T,X ; s̃, σ̃) = T
√
1− z̃2γa(F0) +

s̃3

3
+ s̃(X − F0) +

σ̃3

3
+ σ̃(1− F0)

+
E0

N
(1 + aF0)

1/2(s̃+ σ̃)2 − 1

4N2
(s̃+ σ̃)3 + aNO3.

Let us recall that O3 represents any function of the form F =
∑

k≥3 Fk, where Fk are
homogeneous functions of degree k in (s̃/N, σ̃/N).

In what follows, we get the estimates of the oscillatory integral associated with
the phase function ψ̃a,N,h for different values ofN , namely for N ≥ λ1/3 and N < λ1/3.
Our results are Lemma 2.12 and Lemma 2.13.

Lemma 2.12. There exists a constant C such that for all N ≥ λ1/3,

1√
N

∣

∣

∣

∣

ˆ

eiλψ̃N,a,hχ̃1 ds̃ dσ̃

∣

∣

∣

∣

≤ Cλ−5/6.(2.34)

Here C is a constant independent of N ≥ 1, X ∈ [0, 1], T ∈ ]0, a−1/2], a ∈ [hα, a0]
and λ ∈ [λ0,∞[ with a0 small and λ0 large.

Proof. Adapting the arguments in the proof of Lemma 2.25 [12]. It is sufficient
to prove that for all N ≥ λ1/3,

∣

∣

∣

∣

ˆ

eiλψ̃N,a,hχ̃1 ds̃ dσ̃

∣

∣

∣

∣

≤ Cλ−2/3.(2.35)

Set X − F0 = −Aλ−2/3, 1 − F0 = −Bλ−2/3, s̃ = λ−1/3x′, σ̃ = λ−1/3y′. It remains to
prove that

∣

∣

∣

∣

ˆ

eiψ̂N,a,hχ̃1(λ
−1/3x′, λ−1/3y′, . . .) dx′ dy′

∣

∣

∣

∣

≤ C,(2.36)
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with the phase function ψ̂N,a,h given by

ψ̂N,a,h = Tλ
√
1− z̃2γa(F0)−Ax′ +

x′3

3
− By′ +

y′3

3

+
E0λ

1/3

N
(1 + aF0)

1/2(x′ + y′)2 − 1

4N2
(x′ + y′)3 + aNO3.

Then (2.36) is an oscillatory integral over a domain of integration of size λ2/3 whose
parameters F0, E0, λ

1/3/N are bounded.
We will prove that the constant C is uniform with respect to (A,B). We introduce

new variables (r, θ) and write (A,B) = (r cos θ, r sin θ) with r ≤ c0λ
2/3. We have

∂x′ψ̂N,a,h = −A + x′2 +
2E0

N
(1 + aF0)

1/2λ1/3(x′ + y′)

− 3

4N2
(x′ + y′)2 + aN−2λ−1O

(

(x′, y′)2
)

,

∂y′ ψ̂N,a,h = −B + y′2 +
2E0

N
(1 + aF0)

1/2λ1/3(x′ + y′)

− 3

4N2
(x′ + y′)2 + aN−2λ−1O

(

(x′, y′)2
)

.

Moreover, the compactly support of χ̃1 in (s̃, σ̃) yields

sup
(x′,y′)

∣

∣

∣
∂γ(x′,y′)χ̃1(λ

−1/3x′, λ−1/3y′, . . .)
∣

∣

∣
≤ Cγ(1 + |x′|+ |y′|)−|γ|,

with Cγ independent of T, a,N, λ. Therefore, the oscillatory integral is bounded for
0 ≤ r ≤ r0, where r0 is a fixed constant, and for large (x′, y′) as a consequence of
integration by parts.

For r ∈ [r0, c0λ
2/3], we rescale variables (x′, y′) = r1/2(x′′, y′′) and we set ψ̂N,a,h =

r3/2ψ∗
N,a,h and χ′(x′′, y′′, . . .) = χ̃1(r

1/2λ−1/3x′′, r1/2λ−1/3y′′, . . .). Since r1/2λ−1/3 is
bounded, we still have

sup
(x′′,y′′)

∣

∣

∣
∂γ(x′′,y′′)χ

′
∣

∣

∣
≤ Cγ(1 + |x′′|+ |y′′|)−|γ|.

It remains to prove

r

∣

∣

∣

∣

ˆ

eir
3/2ψ∗

N,a,hχ′ dx′′ dy′′
∣

∣

∣

∣

≤ C.(2.37)

Now we study the critical points of ψ∗
N,a,h. We have

∂x′′ψ
∗
N,a,h = − cos θ + x′′2 − 3

4N2
(x′′ + y′′)2

+ r−1/2O((x′′, y′′)) + aN−1λ−1r3/2O((x′′, y′′)2),

∂y′′ψ
∗
N,a,h = − sin θ + y′′2 − 3

4N2
(x′′ + y′′)2

+ r−1/2O((x′′, y′′)) + aN−1λ−1r3/2O((x′′, y′′)2).
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and

∂2x′′x′′ψ
∗
N,a,h = 2x′′ − 3

2
(x′′ + y′′) + r−1/2O(1) + aN−1λ−1r3/2O((x′′, y′′)),

∂2x′′y′′ψ
∗
N,a,h = ∂2y′′x′′ψ

∗
N,a,h = −3

2
(x′′ + y′′) + r−1/2O(1) + aN−1λ−1r3/2O((x′′, y′′)),

∂2y′′y′′ψ
∗
N,a,h = 2y′′ − 3

2
(x′′ + y′′) + r−1/2O(1) + aN−1λ−1r3/2O((x′′, y′′)).

For small a and large r0, we may localize the integral to a compact set in (x′′, y′′)
as a result of integration by parts for large (x′′, y′′). The Hessian of ψ∗

N,a,h, that we
denote by HN (x

′′, y′′), takes the form

HN(x
′′, y′′) = det

(

∂2x′′x′′ψ
∗
N,a,h ∂2x′′y′′ψ

∗
N,a,h

∂2y′′x′′ψ
∗
N,a,h ∂2y′′y′′ψ

∗
N,a,h

)

= 4x′′y′′ − 3

N2
(x′′ + y′′)2 + r−1/2O(1) + aN−1λ−1r3/2O((x′′, y′′)).

Thus for N ≥ 2, a small and r0 large, outside (x′′, y′′) = (0, 0), define a smooth curve
Γ = {(x′′, y′′) such that HN(x

′′, y′′) = 0}; that is, Γ is close to the union of two lines

c(x′′ + y′′)± (x′′ − y′′) = 0, c2 = N2−3
N2 ∈ [1/4, 1]. Then we have 2 cases to consider

• The contribution of points (x′′, y′′) outside Γ to the integral is OC∞(r−3/2) by
the usual stationary phase method and we get

r

∣

∣

∣

∣

ˆ

eir
3/2ψ∗

N,a,hχ′ dx′′ dy′′
∣

∣

∣

∣

≤ Cr−1/2.

• The contribution of points (x′′, y′′) close to Γ is given by Lemma 2.21 [12].
For any values of θ, the hypothesis of part (a) Lemma 2.21 [12] holds true,
then we get

r

∣

∣

∣

∣

ˆ

eir
3/2ψ∗

N,a,hχ′ dx′′ dy′′
∣

∣

∣

∣

≤ Cr(r3/2)−5/6 = Cr−1/4.

Hence in any cases, (2.37) is satisfied. �

To summarize, recall that T ∼ N in this case and hence the cardinality of N1,
|N1(X, Y, T )| ≤ C0(1 + Tλ−2). We deduce the estimates for the sum of Ga,N,2 with
Lemma 2.12 for N ≥ λ1/3 as follows:

• If λ1/3 ≤ N ≤ λ, there is no contribution from η-integration and we have the
cardinality of N1, |N1| ≤ C0. We obtain

∣

∣

∣

∣

∑

N∈N1

Ga,N,2(T,X, Y, z; h)

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

h−1a2λ−1/2λ−5/6
)

≤ Ch−3

(

h

t

)1/2

h1/3.
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• If λ ≤ N ≤ λ2, then there is a (Nλ−1)−1/2 factor contribution from η-
integration and we also have the cardinality of N1, |N1| ≤ C0. We get

∣

∣

∣

∣

∑

N∈N1

Ga,N,2(T,X, Y, z; h)

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

h−1a2T−1/2λ−5/6
)

≤ Ch−3

(

h

t

)1/2
(

h−1a2λ−1/2λ−5/6
)

≤ Ch−3

(

h

t

)1/2

h1/3.

• If N > λ2, then there are contributions from both (Nλ−1)−1/2 from η-
integration and the cardinality of N1, |N1| ≤ C0Tλ

−2. We get
∣

∣

∣

∣

∑

N∈N1

Ga,N,2(T,X, Y, z; h)

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
∑

N∈N1

(

h−1a2
1

N
λ−2/3

)

≤ Ch−3

(

h

t

)1/2
(

h−1a2λ−2/3T−1|N1(X, Y, T )|
)

≤ Ch−3

(

h

t

)1/2
(

a−2h5/3
)

≤ Ch−3

(

h

t

)1/2

h1/3.

Lemma 2.13. There exists a constant C such that for all N < λ1/3,

1√
N

∣

∣

∣

∣

ˆ

eiλψ̃N,a,hχ̃1 ds̃ dσ̃

∣

∣

∣

∣

≤ CN−1/4λ−3/4.(2.38)

Notice that Lemma 2.13 says that for N large it gives a better estimate and it is
compatible with the estimate (2.34) for N ∼ λ1/3.

Proof. Let λ
N3 = Λ ≥ 1 and we take Λ as a new large parameter. To get the

estimates of our oscillatory integral, we set

X − F0 = −pN−2, 1− F0 = −qN−2, s̃ = −x̄/N, σ̃ = −ȳ/N.
It yields ψ̃N,a,h = N−3ψ̄N,a,h. Then it remains to prove that

∣

∣

∣

∣

ˆ

eiΛψ̄N,a,hχ̃1(x̄/N, ȳ/N, . . .) dx̄ dȳ

∣

∣

∣

∣

≤ CΛ−3/4,(2.39)

with the phase ψ̄N,a,h takes the form

ψ̄N,a,h = px̄− x̄3

3
+ qȳ − ȳ3

3
+ E0(1 + aF0)

1/2(x̄+ ȳ)2

+
1

4N2
(x̄+ ȳ)3 + TN3

√
1− z̃2γa(F0) + aN−2O

(

(x̄, ȳ)3
)

.

We have

∂x̄ψ̄N,a,h = p− x̄2 + 2E0(1 + aF0)
1/2(x̄+ ȳ)

+
3

4N2
(x̄+ ȳ)2 + aN−2O

(

(x̄, ȳ)2
)

,(2.40)

∂ȳψ̄N,a,h = q − ȳ2 + 2E0(1 + aF0)
1/2(x̄+ ȳ)

+
3

4N2
(x̄+ ȳ)2 + aN−2O

(

(x̄, ȳ)2
)

,
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and

∂2x̄x̄ψ̄N,a,h = −2x̄+ 2E0(1 + aF0)
1/2 +

3

2N2
(x̄+ ȳ) + aN−2O((x̄, ȳ)),

∂2x̄ȳψ̄N,a,h = ∂2ȳx̄ψ̄N,a,h = 2E0(1 + aF0)
1/2 +

3

2N2
(x̄+ ȳ) + aN−2O((x̄, ȳ)),

∂2ȳȳψ̄N,a,h = −2ȳ + 2E0(1 + aF0)
1/2 +

3

2N2
(x̄+ ȳ) + aN−2O((x̄, ȳ)).

The Hessian of ψ̄N,a,h, that we denote by HN (x̄, ȳ, a), takes the form

HN (x̄, ȳ, a) = det

(

∂2x̄x̄ψ̄N,a,h ∂2x̄ȳψ̄N,a,h
∂2ȳx̄ψ̄N,a,h ∂2ȳȳψ̄N,a,h

)

= 4x̄ȳ − 4E0(1 + aF0)
1/2(x̄+ ȳ)− 3

N2
(x̄+ ȳ)2 + aN−2O

(

(x̄, ȳ)
)

.(2.41)

Lemma 2.14. There exist constants r0 and C such that for all (p, q) such that

|(p, q)| ≥ r0,
∣

∣

∣

∣

ˆ

eiΛψ̄N,a,hχ̃1(x̄/N, ȳ/N, . . .) dx̄ dȳ

∣

∣

∣

∣

≤ CΛ−5/6.(2.42)

Proof of Lemma 2.14. Apply the arguments in the proof of Lemma 2.26 [12]. Set
(p, q) = (r cos θ, r sin θ) with r ≥ r0. Let χ ∈ C∞

0 (|(x̄, ȳ)| < c) with small c and χ = 1
near 0. Then from (2.40), we get by integration by parts in (x̄, ȳ), for all k,

∣

∣

∣

∣

ˆ

eiΛψ̄N,a,hχ(r−1/2(x̄, ȳ))χ̃1(x̄/N, ȳ/N, . . .) dx̄ dȳ

∣

∣

∣

∣

≤ Cr−kΛ−k.

For |(x̄, ȳ)| large, we make a change of variable (x̄, ȳ) = r1/2(x′, y′) and we set ψ̄′
N,a,h =

r−3/2ψ̄N,a,h. Then it remains to prove
∣

∣

∣

∣

r

ˆ

eir
3/2Λψ̄′

N,a,h(1− χ)(x′, y′)χ̃1(r
1/2x′/N, r1/2y′/N, . . .) dx′ dy′

∣

∣

∣

∣

≤ CΛ−5/6.

We observe that since (1 − χ)(x′, y′) = 0 near 0, (1 − χ)(x′, y′) = 1 for |(x′, y′)| ≥ c
and χ̃1 is compactly support, we still have

sup
(x′,y′)

∣

∣

∣

∣

∂γ(x′,y′)(1− χ)(x′, y′)χ̃1(r
1/2x′/N, r1/2y′/N, . . .)

∣

∣

∣

∣

≤ Cγ(1 + |x′|+ |y′|)−|γ|.

The phase ψ̄′
N,a,h is of the form

ψ̄′
N,a,h = (cos θ)x′ − x′3

3
+ (sin θ)y′ − y′3

3
+

1

4N2
(x′ + y′)3

+
TN3

r3/2

√
1− z̃2γa(F0) + aN−2O((x′, y′)3).

We get that

∂x′ψ̄
′
N,a,h = cos θ − x′2 +

3

4N2
(x′ + y′)2 + aN−2O((x′, y′)2),

∂y′ψ̄
′
N,a,h = sin θ − y′2 +

3

4N2
(x′ + y′)2 + aN−2O((x′, y′)2).
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and

∂2x′x′ψ̄
′
N,a,h = −2x′ +

3

2N2
(x′ + y′) + aN−2O((x′, y′)),

∂2x′y′ψ̄
′
N,a,h = ∂2y′x′ψ̄

′
N,a,h =

3

2N2
(x′ + y′) + aN−2O((x′, y′)),

∂2y′y′ψ̄
′
N,a,h = −2y′ +

3

2N2
(x′ + y′) + aN−2O((x′, y′)).

Thus for small a and large r0, by integration by parts, we may localize the integral
to a compact set in (x′, y′). The Hessian of ψ̄′

N,a,h, that we denote by H′
N(x

′, y′, a),
takes the form

H′
N(x

′, y′, a) = det

(

∂2x′x′ψ̄
′
N,a,h ∂2x′y′ψ̄

′
N,a,h

∂2y′x′ψ̄
′
N,a,h ∂2y′y′ψ̄

′
N,a,h

)

= 4x′y′ − 3

N2
(x′ + y′)2 + aN−2O((x′, y′)).

We apply the same argument as before, for N ≥ 2, a small and r0 large, outside
(x′, y′) = (0, 0), we set Γ = {(x′, y′) such that H′

N(x
′, y′) = 0} and there are 2 cases

to consider:

• The contribution of points (x′, y′) outside Γ to the integral is O(r−3/2Λ−1) by
the usual stationary phase method; that is,

∣

∣

∣

∣

r

ˆ

eir
3/2Λψ̄′

N,a,h(1− χ)(x′, y′)χ̃1(r
1/2x′/N, r1/2y′/N, . . .) dx′ dy′

∣

∣

∣

∣

≤ Cr−1/2Λ−1.

• The contribution of points (x′, y′) close to Γ given by Lemma 2.21[12]. For
any values of θ, the hypothesis of part (a) Lemma 2.21[12] holds true, then
we get

∣

∣

∣

∣

r

ˆ

eir
3/2Λψ̄′

N,a,h(1− χ)(x′, y′)χ̃1(r
1/2x′/N, r1/2y′/N, . . .) dx′ dy′

∣

∣

∣

∣

≤ Cr(r3/2Λ)−5/6

≤ Cr−1/4Λ−5/6. �

Lemma 2.15. There exist constants r0 and C such that for all (p, q) such that

|(p, q)| ≤ r0,
∣

∣

∣

∣

ˆ

eiΛψ̄N,a,hχ̃1(x̄/N, ȳ/N, ...)dx̄dȳ

∣

∣

∣

∣

≤ CΛ−3/4.(2.43)

Proof of Lemma 2.15. Now we consider the case |(p, q)| ≤ r0. There exists c > 0
independent of N ≥ 2 such that

∀(x̄, ȳ) ∈ R
2,

∣

∣

∣

∣

x̄2 − 3

4N2
(x̄+ ȳ)2

∣

∣

∣

∣

+

∣

∣

∣

∣

ȳ2 − 3

4N2
(x̄+ ȳ)2

∣

∣

∣

∣

≥ c(x̄2 + ȳ2).(2.44)

Then by integration by parts, (2.40) gives a contribution OC∞(Λ−∞) to the integral
(2.39) for large values (x̄, ȳ). Then we may assume that (x̄, ȳ) is in compact set. It
remains to prove

∣

∣

∣

∣

ˆ

eiΛψ̄N,a,hχ̃1dx̄dȳ

∣

∣

∣

∣

≤ CΛ−3/4,
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with the phase

ψ̄N,a,h = px̄− x̄3

3
+ qȳ − ȳ3

3
+ E0(1 + aF0)

1/2(x̄+ ȳ)2 +
1

4N2
(x̄+ ȳ)3

+ TN3
√
1− z̃2γa(F0) + aN−2O

(

(x̄, ȳ)3
)

and the Hessian HN (x̄, ȳ, a) of ψ̄N,a,h is given by (2.41).
For a small, the set Γ = {(x̄, ȳ, a) such that HN(x̄, ȳ) = 0} is a smooth curve

that is close to the elliptic 4x̄ȳ−4E0(1+aF0)
1/2(x̄+ ȳ)−3(x̄+ ȳ)2 = 0 for N = 1 and

close to hyperbola 4x̄ȳ−4E0(1+aF0)
1/2(x̄+ ȳ)− 3

N2 (x̄+ ȳ)
2 = 0 for N ≥ 2. It remains

to use [12, Lemma 2.21] (see Appendix) for (x̄, ȳ) near (p, q) with |(p, q)| ≤ r0. Hence,
there are 3 cases to consider:

• If (p, q) is outside Γ, then the contribution to the integral is Λ−1 by usual
stationary phase method.

• If (0, 0) 6= (p, q) is close to Γ, the contribution to the integral is given by
Lemma 2.21 [12]. Since the hypothesis of part (a) in Lemma 2.21 [12] holds
true, then near (p, q) the contribution to the integral is Λ−5/6.

• If (p, q) = (0, 0), we have (x̄, ȳ) near (0, 0) and hypothesis of part (b) in Lem-
ma 2.21 [12] holds true. Then the contribution to the integral is Λ−3/4. �

Lemma 2.14 and Lemma 2.15 yield the proof of Lemma 2.13. �

Notice that when N < λ1/3, there is no contribution from η-integration and the
cardinality of N∞, |N1| ≤ C0. As a consequence, we obtain the estimates for the sum
of Ga,N,2 for N < λ1/3 as follows:

∣

∣

∣

∣

∑

N∈N1

Ga,N,2(T,X, Y, z; h)

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

h−1a2λ−1/2N−1/4λ−3/4
)

≤ Ch−3

(

h

t

)1/2
(

a1/8h1/4N−1/4
)

.

We notice that we get the same estimates for N = 1,

∣

∣

∣
Ga,1,2(T,X, Y, z; h)

∣

∣

∣
≤ Ch−3

(

h

t

)1/2
(

h−1a2λ−1/2λ−3/4
)

≤ Ch−3

(

h

t

)1/2
(

a1/8h1/4
)

.

To summarize, putting these estimates together we proved that
∣

∣

∣

∣

∣

∑

1≤N≤C0a−1/2

Ga,N,2(T,X, Y, z; h)

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

h1/3 + a1/8h1/4
)

.

Notice that h1/3 ≤ a1/8h1/4 when a ≥ h2/3; hence the proof of the Proposition 2.11 is
complete. �

Proof of Theorem 2.5. Putting the estimates in Proposition 2.9, 2.10 and 2.11
together yields the desired result. �

3. Dispersive estimates for ǫ0
√
a ≤ η ≤ c0

In this section, we prove Theorem 1.4. To get the estimates for Ga,m, we dis-

tinguish between two different cases. The first case deals with a ≤
(

h
2m

√
a

)
2
3
(1−ǫ)

,
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ǫ ∈ ]0, 1/7[, where we follow ideas in section 2 and construct a local parametrix

as a sum over eigenmodes. The second case is a ≥
(

h
2m

√
a

)
2
3
(1−ǫ′)

, for ǫ′ ∈ ]0, ǫ[,

where the Airy–Poisson summation formula yields the representation of Ga,m as a
sum over N ∈ Z, representing waves corresponding to the number of reflections on
the boundary.

Recall that we have

(3.1) Ga(t, x, y, z) =
1

4π2h2

∑

k≥1

ˆ

e
i
h
Φkσk dη dζ,

where the phase Φk and the function σk are defined by

Φk = yη + zζ + t(η2 + ζ2 + ωkh
2/3η4/3)1/2,

σk = ek(x, η/h)ek(a, η/h)χ0(ζ
2 + η2)χ1(ωkh

2/3η4/3)(1− χ1)(εωk).

We have to get L∞ estimates for Ga in the range t ∈ [h, 1], when the integral in (3.1)
is restricted to values of η ∈ [ǫ0

√
a, c0] with c0 small. Let µ2 be defined by

µ2 = η2 + ωkh
2/3η4/3.

Observe that µ2 is small since ωkh
2/3η4/3 is small by the truncation χ1 and η is small.

Let χ4 ∈ C∞
0 ] − 1, 1[ with χ4 = 1 on [−1/2, 1/2] and D ≥ 1. Let Ja(t, x, y, z) be

defined by

Ja(t, x, y, z) =
1

4π2h2

∑

k≥1

ˆ

e
i
h
Φkχ4

(

tµ2

Dh

)

σk dη dζ.

The following lemma tells us that Ja satisfies the free dispersive estimate.

Lemma 3.1. There exists a constant C independent of a constant D such that

|Ja(t, x, y, z)| ≤ Ch−3

(

h

t

)

D.

Proof. On the support of χ4, one has η2 ≤ Dh/t and hω
3/2
k η2 ≤ (Dh/t− η2)3/2.

This implies that the sum over k is restricted to k ≤ c0
(Dh/t−η2)3/2

hη2
. Since one has

ek(x, η/h) = fkk
−1/6(η/h)1/3Ai((η/h)2/3x− ωk), Lemma 2.2 gives

|Ja(t, x, y, z)| ≤ Ch−2

ˆ

η2≤Dh/t
(η/h)2/3

(Dh/t− η2)1/2

h1/3η2/3
dη(3.2)

= Ch−3

ˆ

η2≤Dh/t
(Dh/t− η2)1/2 dη

and the result follows from
´

η2≤Dh/t(Dh/t−η2)1/2 dη = (Dh/t)
´

x2≤1
(1−x2)1/2 dx. �

Observe that in the range η ≥ c0, one has µ2 ≥ c20, so the condition tµ2/h ≤
D is equivalent to t ≤ Ch and the above lemma is irrelevant. But in the range
η ∈ [ǫ0

√
a, c0], the above lemma becomes useful since it tells us that we may now

assume that λ = tµ2/h is a large parameter. Since we allow some loss in the dispersive
estimate with respect to the free case, we may even assume that we have λ = tµ2/h ≥
(h
t
)−ǫ for some ǫ > 0 (take D = (h

t
)−ǫ), and therefore in the sequel a term like

OC∞(λ−∞) will be negligible. We are now in position to eliminate the ζ-integration
in (3.1). This is the purpose of the following lemma. Recall that the truncation
χ0(ζ

2+ η2) localizes ζ2+ η2 near 1. Therefore, for η small, ζ will be close to 1 or −1.
In the sequel, we assume ζ near 1.



632 Len Meas

Lemma 3.2. Let λ = tµ2/h ≥ 1, z̃ = z/t and φ(z̃, µ2, ζ) = 1
µ2
(z̃ζ+(ζ2+µ2)1/2).

Let

I(z̃, µ2, η;λ) =

ˆ

ζ∼1

eiλφ(z̃,µ
2,ζ)χ0(ζ

2 + η2) dζ.

There exists 0 < c1 < C1 such that the following holds true:

(3.3) For z̃ /∈ [−1 + c1µ
2,−1 + C1µ

2] one has sup
z̃,µ2,η

|I(z̃, µ2, η;λ)| ∈ OC∞(λ−∞).

For z̃ ∈ [−1 + c1µ
2,−1 + C1µ

2], set z̃ = −1 + z∗µ2. There exists a classical symbol

of degree 0 in λ, σ0(z
∗, η, µ2;λ), such that one has

(3.4) I(z̃, µ2, η;λ) =

(

h

tµ2

)1/2

ei
tµ
h
(1−z̃2)1/2σ0(z

∗, η, µ2;λ).

Proof. One has

∂ζφ =
1

µ2
(z̃ + ζ(ζ2 + µ2)−1/2), ∂2ζφ = (ζ2 + µ2)−3/2 ≥ c > 0

and ∂jζφ is bounded for all j ≥ 2. Since

ζ(ζ2 + µ2)−1/2 = 1− µ2

2ζ2
+O(µ4),

(3.3) follows by integration by parts. For z̃ ∈ [−1 + c1µ
2,−1 + C1µ

2], and with
z̃ = −1 + z∗µ2, one has

φ = z∗ζ + (ζ + (ζ2 + µ2)1/2)−1

and a unique critical point ζc = −µz̃(1− z̃2)1/2 with critical value

φ(ζc) =
ζc
µ2

(z̃ − 1/z̃) = (1− z̃2)1/2/µ ∈ O(1).

Therefore, by stationary phase we get that (3.4) holds true. �

Using Lemmas 3.1 and 3.2, we are now reduced to the study of

(3.5)
1

4π2h2

(

h

t

)1/2
∑

k≥1

ˆ

e
i
h
(yη+tµ(1−z̃2)1/2) σ̃k

µ
dη

where σ̃k is defined by

σ̃k = σ0(z
∗, η, µ2;λ)

(

1− χ4

( tµ2

Dh

)

)

ek(x, η/h)ek(a, η/h)χ1(ωkh
2/3η4/3)(1− χ1)(εωk).

To get L∞ estimate for the parametrix in the range η ∈ [ǫ0
√
a, c0], we will use a

Litttlewood–Paley decomposition in η. We choose

ψ1 ∈ C∞
0 (]0.5, 2.5[), 0 ≤ ψ1 ≤ 1 such that

∑

m∈Z
ψ1(2

mx) = 1 for all x > 0,

and we introduce the cut-off function ψ1(
η

2m
√
a
) in (3.5). In the sequel, we will

therefore have

ǫ0 ≤ 2m ≤ c0/
√
a.
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We will use the notations

η = 2m
√
a η̃, h = 2m

√
a h̃,

µ2 = η2 + ωkh
2/3η4/3 = (2m

√
a)2(η̃2 + ωkh̃

2/3η̃4/3) = (2m
√
a)2µ̃2,

γ = ωkh
2/3η−2/3 = ωkh̃

2/3η̃−2/3.

We define Ga,m by the formula

(3.6) Ga,m(t, x, y, z) =
1

4π2h2

(

h

t

)1/2
∑

k≥1

ˆ

e
i
h

(

yη+tµ(1−z̃2)1/2
)

ψ1

(

η

2m
√
a

)

σ̃k
µ
dη.

Observe that due to the truncation χ1, we have k ≤ ε
hη2

in the above sum. Using the

change of variable η = 2m
√
aη̃, we get with ỹ = y/t, since dη/µ = dη̃/µ̃

(3.7) Ga,m(t, x, y, z) =
1

4π2h2

(

h

t

)1/2
∑

1≤k≤ ε
(2m

√
a)3h̃

ˆ

e
it
h̃

(

ỹη̃+µ̃(1−z̃2)1/2
)

gkψ1(η̃) dη̃,

where gk is defined by

gk =
1

µ̃
σ0(z

∗, η, µ2;λ)

(

1− χ4

(

tµ2

Dh

))

ek(x, η̃/h̃)ek(a, η̃/h̃)χ1(ωkh
2/3η4/3)(1−χ1)(εωk).

Lemma 3.3. Let M ≥ 1 be given. There exists CM such that for all m, a, h
such that 2m

√
a ≤ hM , the following holds true:

(3.8) |Ga,m| ≤ CMh
−3

(

h

t

)1/2

2m
√
a| log(2m√a)|.

Proof. One has h̃ ≥ 1/M and hence,

|ek(x, η̃/h̃)| ≤ Ck−1/6
( η̃

h̃

)1/3

ω
−1/4
k .

Moreover, we have µ̃ ≥ ω
1/2
k h̃1/3η̃2/3. Therefore, we get

|Ga,m| ≤ C ′′h−2

(

h

t

)1/2
∑

1≤k≤ ε
(2m

√
a)3h̃

ω
−1/2
k h̃−1/3k−1/3

(1

h̃

)2/3

ω
−1/2
k

≤ C ′h−3

(

h

t

)1/2

2m
√
a| log(22mah)| ≤ Ch−3

(

h

t

)1/2

2m
√
a| log(2m√a)|. �(3.9)

From the above lemma, we get in the range h̃ ≥ 1/M the estimate

|Ga,m| ≤ CMh
−3(h/t)1/2(2m

√
a)1/3(hM)2/3| log(hM)|.(3.10)

This estimate is even better than the free estimate Ch−3(h/t). Therefore, in the

sequel we will assume h̃ ≤ h̃0 with h̃0 small and recall that h̃ = h/(2m
√
a). To

establish the local in time estimates for the Ga,m, we follow the strategy of Section 2.

We distinguish between two different cases. First case, if a ≤ h̃
2
3
(1−ǫ), for a given

ǫ ∈ ]0, 1/7[, we use the sum over eigenmodes. Second case, if a ≥ h̃
2
3
(1−ǫ′), with

ǫ′ ∈ ]0, ǫ[, we use the Airy–Poisson summation formula [see Lemma 2.4] and we
rewrite Ga,m as a sum over N ∈ Z.

3.1. Dispersive estimates for 0 < a ≤ h̃
2

3
(1−ǫ), with ǫ ∈ ]0, 1/7[. The

following Proposition 3.4 gives a local in time dispersive estimates for Ga,m and is the
main result of this subsection.
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Proposition 3.4. Let ǫ ∈ ]0, 1/7[. There exists C such that for all h ∈ ]0, 1], all

0 < a ≤ h̃
2
3
(1−ǫ), and all t ∈ [h, 1], the following holds true:

‖1x≤aGa,m(t, x, y, z)‖L∞ ≤ Ch−3(2m
√
a)1/3

(

h

t

)5/6

.(3.11)

Proof. Recall that Ga,m is defined by

(3.12) Ga,m(t, x, y, z) =
1

4π2h2

(

h

t

)1/2
∑

1≤k≤ ε
(2m

√
a)3h̃

ˆ

e
it
h̃
(ỹη̃+µ̃(1−z̃2)1/2)gkψ1(η̃) dη̃,

with gk equal to

gk =
1

µ̃
σ0(z

∗, η, µ2;λ)

(

1− χ4

(

tµ2

Dh

))

ek(x, η̃/h̃)ek(a, η̃/h̃)χ1(ωkh
2/3η4/3)(1−χ1)(εωk).

Recall from (3.10) that we may assume h̃ ≤ h̃0 with h̃0 small. Since Ga,m contains
Airy functions which behave differently depending on the various values of k, we
split the sum over k in (3.12) in two pieces. We fix a large constant D and we write

Ga,m = Ga,m,<+Ga,m,>, where in Ga,m,< only the sum over 1 ≤ k ≤ Dh̃−ǫ is considered.

Proof of (3.11) for Ga,m,<. Recall the definition of Ga,m,<:

(3.13) Ga,m,<(t, x, y, z) =
1

4π2h2

(

h

t

)1/2
∑

1≤k≤Dh̃−ǫ

ˆ

e
it
h̃

(

ỹη̃+µ̃(1−z̃2)1/2
)

gkψ1(η̃) dη̃,

gk = f 2
kk

−1/3

(

η̃2/3

µ̃h̃2/3

)

σ0(z
∗, η, µ2;λ)

(

1− χ4

(

tµ2

Dh

))

χ1(ωkh
2/3η4/3)(1− χ1)(εωk)nk,

nk = Ai((η̃/h̃)2/3x− ωk)Ai((η̃/h̃)
2/3a− ωk).

Let us first assume t2m
√
a ≤ h̃ǫ. Since we have µ̃ = (η̃2 + ωkh̃

2/3η̃4/3)1/2 ≥ η̃, we get
the estimate

|gk| ≤ Ch̃−2/3k−1/3
∣

∣

∣
Ai((η̃/h̃)2/3x− ωk)Ai((η̃/h̃)

2/3a− ωk)
∣

∣

∣
.

By Lemma 2.2, this implies

∑

1≤k≤Dh̃−ǫ

|gk| ≤ Ch̃−2/3(h̃−ǫ)1/3 ≤ C(h̃)−2/3(t2m
√
a)−1/3 = Ch−1(2m

√
a)1/3

(

h

t

)1/3

and (3.11) follows from (3.13).

Let us now assume t2m
√
a ≥ h̃ǫ. Observe that in the range k ≤ D̃h−ǫ, we have

ωkh̃
2/3 ≤ Ch̃2/3(1−ǫ) ≤ Ch̃

2/3(1−ǫ)
0

small. Hence, γ = ωkh̃
2/3η̃−2/3 is small and

µ̃ = η̃(1 + γ)1/2 = η̃ + η̃1/3ωkh̃
2/3/2 +O((ωkh̃

2/3)2).

Therefore, we get
∣

∣

∂2µ̃
∂η̃2

∣

∣ ≥ cωkh̃
2/3 with c > 0, and for all j ≥ 2,
∣

∣

∣

∣

∂j µ̃

∂η̃j

∣

∣

∣

∣

≤ Cjωkh̃
2/3.

We will apply the stationary phase in η̃ in each term of the sum in (3.13) with the
phase function

Φk(η̃) =
t

h̃

(

ỹη̃ + µ̃(1− z̃2)1/2
)

.
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Let Λk = th̃−1/3ωk2
m
√
a, and let Ψk(η̃) the phase function defined by

tΦk

h̃
= ΛkΨk.

Lemma 3.5. Let g̃k = k1/3h̃2/3gk. There exists C such that for all 1 ≤ k ≤ Dh̃−ǫ,
the following holds true:

(3.14)

∣

∣

∣

∣

ˆ

eiΛkΨk g̃kψ1(η̃) dη̃

∣

∣

∣

∣

≤ Cmin
{

1,Λ
−1/2
k

}

.

Proof. We may assume Λk ≥ 1 since we have |g̃k| ≤ C. Recall from Lemma 3.2
that we may assume

√
1− z̃2 ∼ µ = 2m

√
aµ̃ ∼ 2m

√
a. Therefore, there exists c > 0

such that for all 1 ≤ k ≤ Dh̃−ǫ one has
∣

∣

∣

∣

∂2Ψk

∂η̃2

∣

∣

∣

∣

=

∣

∣

∣

∣

t

h̃Λk

∂2µ̃

∂η̃2

√
1− z̃2

∣

∣

∣

∣

≥ c > 0

and for all j ≥ 2,
∣

∣

∂jΨk

∂η̃j

∣

∣ ≤ Cj. Thus, to apply the stationary phase, we just need to

check that there exist ν > 0 and for all j, a constant Cj such that

(3.15)

∣

∣

∣

∣

∂j g̃k
∂η̃j

∣

∣

∣

∣

≤ CjΛ
j(1/2−ν)
k , ∀k ≤ Dh̃−ǫ .

In Lemma 3.2, z∗ is defined by z̃ = −1 + z∗µ2, but since we have here µ ∼ 2m
√
a

we may as well define z∗ by z̃ = −1 + z∗22ma. Then z∗ becomes independent of η̃.
Recall λ = tµ2/h. Since η = 2m

√
aη̃ and all the derivatives of γ and µ̃ with respect

to η̃ are bounded, we get
∣

∣

∂jλ
∂η̃j

∣

∣ ≤ Cjλ for all j. Since λ is bounded on the support of
derivatives of χ4, the term

f 2
k η̃

2/3σ0(z
∗, η, µ2;λ)

(

1− χ4

(

tµ2

Dh

))

χ1(ωkh
2/3η4/3)(1− χ1)(εωk)

satisfies the estimate (3.15), and therefore, it remains to show that the function
Ai(( η̃

h̃
)2/3x − ωk) satisfies the estimate (3.15) uniformly in x ∈ [0, a]. Let set θ =

xh̃−2/3 ≥ 0 and r = η̃2/3 which belongs to a compact subset of ]0,∞[. One has
∂lr(Ai(rθ − ωk)) ∼ (rθ)lAi(l)(rθ − ωk). Since for all l one has

sup
b≥0

|blAi(l)(b− ωk)| ≤ Clω
3l/2
k ,

we get that (3.15) holds true if

∃β > 3, c > 0, cωβk ≤ Λk = th̃−1/3ωk2
m
√
a

We have t2m
√
a ≥ h̃ǫ, and cω2

k ≤ h̃−4ǫ/3, thus this holds for ǫ < 1/7. �

Therefore, we get the following estimate for Ga,m,< and t2m
√
a ≥ h̃ǫ

‖1x≤aGa,m,<(t, x, y, z)‖L∞ ≤ Ch−2

(

h

t

)1/2




∑

1≤k≤Dh̃−ǫ

k−1/3h̃−2/3(th̃−1/3ωk2
m
√
a)−1/2





≤ Ch−2

(

h

t

)1/2

(t2m
√
a)−1/2h̃−(1/2+ǫ/3)

≤ Ch−3(2m
√
a)1/3

(

h

t

)5/6
(

h

(

t

h

)1/3

(2m
√
a)−1/3(t2m

√
a)−1/2h̃−(1/2+ǫ/3)

)

.
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This concludes the proof of Proposition 3.4 for Ga,m,< since t2m
√
a ≥ h̃ǫ implies

h2/3t−1/6(2m
√
a)−5/6h̃−(1/2+ǫ/3) ≤ h̃1/6−ǫ/2.

Proof of (3.11) for Ga,m,>. For k ≥ Dh̃−ǫ with D large and a ≤ h̃2/3(1−ǫ) one has

ωk − h̃−2/3η̃2/3a ≥ ωk/2.

Since γ = ωkh̃
2/3η̃−2/3, we get γ − a ≥ a and γ − a ≥ γ/2. Then by the definition of

ek and asymptotic of the Airy functions, we obtain

Ga,m,>(t, x, y, z) =
∑

h̃−ǫ≤k≤ ε
(2m

√
a)3h̃

1

4π2h2

(

h

t

)1/2
∑

±,±

ˆ

e
i
h̃
Φ±,±

k σ±,±
k ψ1(η̃)dη̃,(3.16)

with phase functions defined by

Φ±,±
k (η̃) = η̃

[

y + t
√
1− z̃2(1 + γ)1/2 ± 2

3
(γ − x)3/2 ± 2

3
(γ − a)3/2

]

,(3.17)

and the symbols are given by

σ±,±
k (η̃) = f 2

kk
−1/3h̃−1/3η̃−2/3σ0(z

∗, η, µ2, λ)

(

1− χ4

(

tµ2

Dh

))

χ1(ωkh
2/3η4/3)

× (1− χ1(ǫωk))(γ − x)−1/4(γ − a)−1/4(1 + γ)−1/2ω±ω±

×Ψ±
(

η̃2/3h̃−2/3(γ − x)
)

Ψ±
(

η̃2/3h̃−2/3(γ − a)
)

,

where Ψ± are classical symbols of order 0 at infinity. In Lemma 3.2, z∗ is defined by
z̃ = −1+z∗µ2, but since we have here µ ∼ 2m

√
a(1+ωkh̃

2/3)1/2 we may as well define

z∗ by z̃ = −1 + z∗22ma(1 + ωkh̃
2/3). Then z∗ becomes independent of η̃. Observe

that for all j, there exists Cj , C
′
j such that for all k one has

|∂jη̃γ| ∼ Cjγ, |∂jη̃µ̃| ≤ C ′
jµ̃, |∂jη̃µ2| ≤ C ′

jµ
2 ≤ C ′

j.

Since λ = tµ2/h = t2m
√
a

h̃
(1+γ), we get

∣

∣

∂jλ
∂η̃j

∣

∣ ≤ Cjλ for all j. Finally, λ is bounded on

the support of derivatives of χ4 and there exists c1 > 0 such that η̃2/3h̃−2/3(γ−a) ≥ c1.

Since γ ∼ (kh̃)2/3, we get that for all j, there exists Cj such that for all k one has

(3.18) |∂jη̃σ±,±
k (η̃)| ≤ Cj(kh̃)

−2/3(1 + γ)−1/2.

We notice that for the values of k, Dh̃−ǫ ≤ k ≤ 1
hη2

, we get γ ∈
[

2a, 1
22ma

]

. In what

follows, we distinguish between the two cases: γ ∈ [2a, 1] and γ ∈
[

1, 1
22ma

]

.

• The first case γ ∈ [2a, 1] corresponds to h̃−ǫ ≤ k ≤ h̃−1. Let denote Λk =

t2m
√
aωkh̃

−1/3 and Φ±,±
k = h̃ΛkΨ

±,±
k .

Proposition 3.6. There exists a constant C independent of a ∈ ]0, h̃2/3(1−ǫ)],
t ∈ [h, 1], x ∈ [0, a], y ∈ R, z ∈ R, and k ∈ [h̃−ǫ, h̃−1] such that the following holds:

∣

∣

∣

∣

ˆ

eiΛkΨ
±,±
k σ±,±

k ψ1(η̃) dη̃

∣

∣

∣

∣

≤ C(h̃k)−2/3Λ
−1/3
k .

Proof of Proposition 3.6. By (3.18), Proposition 3.6 is obvious for Λk ≤ 1. In
the case Λk ≥ 1, we use µ̃ ∼ 2m

√
a which implies t

√
1− z̃2 ∼ t2m

√
a. Then the proof

is the same as the proof of Proposition 2.3, if one replaces (h, t) in Proposition 2.3

by (h̃, t2m
√
a). �
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Hence the corresponding estimate of Ga,m,> for h̃−ǫ ≤ k ≤ h̃−1 is given by

‖1x≤aGa,m,>(t, x, y, z)‖L∞ ≤ Ch−2

(

h

t

)1/2
∑

h̃−ǫ≤k≤h̃−1

(h̃k)−2/3(t2m
√
aωkh̃

−1/3)−1/3

≤ Ch−2

(

h

t

)1/2

h̃−2/3(t2m
√
a)−1/3h̃1/9

∑

k≤1/h̃

k−8/9

≤ Ch−3

(

h

t

)5/6

(2m
√
a)1/3.

• The second case γ ∈
[

1, 1
22ma

]

corresponds to h̃−1 ≤ k ≤ 1
22mah

. We still define

Λk and Ψ±,±
k by Λk = t2m

√
aωkh̃

−1/3 and Φ±,±
k = h̃ΛkΨ

±,±
k .

Proposition 3.7. There exists a constant C independent of a ∈ ]0, h̃2/3(1−ǫ)],
t ∈ [h, 1], x ∈ [0, a], y ∈ R, z ∈ R, and k ∈ [h̃−1, 1

22mah
] such that the following holds:

∣

∣

∣

∣

ˆ

eiΛkΨ
±,±
k σ±,±

k ψ1(η̃) dη̃

∣

∣

∣

∣

≤ C(h̃k)−1Λ
−1/3
k .

Proof of Proposition 3.7. One has γ ∼ (kh̃)2/3. Thus γ ≥ 1 and (3.18) imply

|∂jη̃σ±,±
k (η̃)| ≤ Cj(kh̃)

−1. Therefore, Proposition 3.7 is obvious for Λk ≤ 1. In the
case Λk ≥ 1 we proceed as in the Proposition 2.3 . Recall that z̃ is close to −1 and
z̃ = −1 + z∗22ma(1 + ωkh̃

2/3) with z∗ in a compact set of ]0,∞[. We write

t
√
1− z̃2

h̃Λk

1 + 2γ/3

(1 + γ)1/2
=

√
z∗(1− z̃)1/2η̃−2/3F̃ (γ),

with

F̃ (γ) =
2(1 + ωkh̃

2/3)1/2

3(1 + γ)1/2
(1 + 1/γ).

For γ large one has F̃ (γ) ∼ 1, F̃ (γ) + γF̃ ′(γ) ∼ 1. Moreover, one has

ωkh̃
2/3(2F̃ ′(γ) + γF̃ ′′(γ)) ∼ ωkh̃

2/3γ−1 ∼ 1.

Hence the proof is the same as the proof of Proposition 2.3, if one replaces (h, F ) in

Proposition 2.3 by (h̃, F̃ ). �

Using Proposition 3.7, we get the estimate of Ga,m,> for h̃−1 ≤ k ≤ 1
22mah

:

‖1x≤aGa,m,>(t, x, y, z)‖L∞ ≤ Ch−2

(

h

t

)1/2
∑

h̃−1≤k

(h̃k)−1(t2m
√
aωkh̃

−1/3)−1/3

≤ Ch−2

(

h

t

)1/2

t−1/3(2m
√
a)−1/3h̃−8/9

∑

h̃−1≤k

k−11/9

≤ Ch−3

(

h

t

)5/6

(2m
√
a)1/3.

This concludes the proof of Proposition 3.4. �

3.2. Dispersive estimates for a ≥ h̃
2

3
(1−ǫ′), for ǫ′ ∈ ]0, ǫ[. In this sub-

section, we assume a ≥ h̃
2
3
(1−ǫ′), for some ǫ′ ∈ ]0, ǫ[ and we establish a local in time
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dispersive estimates for Ga,m. Observe that Λ = a3/2/h̃ ≥ h̃−ǫ
′
is a large parameter.

Recall from (3.12) that Ga,m is defined by

Ga,m(t, x, y, z)

=
1

4π2h2

(

h

t

)1/2
∑

1≤k≤ ε
(2m

√
a)3h̃

ˆ

e
i
h̃

(

yη̃+tµ̃(1−z̃2)1/2
)

g(ωk, η̃, h̃)ψ1(η̃) dη̃,
(3.19)

with g(ωk, η̃, h̃) equal to

g =
1

µ̃
σ0(z

∗, η, µ2;λ)

(

1− χ4

(

tµ2

Dh

))

ek(x, η̃/h̃)ek(a, η̃/h̃)χ1(ωkh
2/3η4/3)(1−χ1)(εωk),

and we recall h = 2m
√
ah̃, η = 2m

√
aη̃, µ = 2m

√
aµ̃, and

γ = ωh̃2/3η̃−2/3, µ̃ = η̃(1 + γ)1/2 .

We will use the same notations as in section 2,

t = a1/2T, x = aX, y + t
√
1− z̃2 = a3/2Y.

Let ω = η̃2/3h̃−2/3aω̃. We get γ = aω̃ and (1 + aω̃)1/2 − 1 = aγa(ω̃) = aω̃
1+(1+aω̃)1/2

.

Then we use the Airy–Poisson summation formula, and we get

Ga,m =
∑

N

Ga,m,N

with

(3.20) Ga,m,N(t, x, y, z) =
(−1)N

(2π)4h4

(

h

t

)1/2

a2(2m
√
a)2
ˆ

eiΛΦNχmη̃
2ψ1(η̃) ds̃ dσ̃ dω̃ dη̃

with the phase function

ΦN(s̃, σ̃, ω̃, η̃) = η̃

[

Y + T (1− z̃2)1/2γa(ω̃) +
s̃3

3
+ s̃(X − ω̃)

+
σ̃3

3
+ σ̃(1− ω̃)− 4

3
Nω̃3/2 +

N

Λη̃
B
(

ω̃3/2Λη̃
)

]

,

and symbol χm(a, t, z; η̃, ω̃, h̃) equal to, with λ = t2m
√
aµ̃2/h̃,

(3.21) χm =
1

µ̃
σ0(z

∗, η, µ2;λ)(1−χ4(λ/D))χ1((2
m
√
a)2η̃2aω̃)(1−χ1)(εη̃

2/3h̃−2/3aω̃).

Observe that we get the same phase function ΦN as in section 2, but we have to take
care of the fact that now (1 − z̃2)1/2 may be small. Therefore, in order to use the
results of section 2, we introduce the notation T̃ = T (1− z̃2)1/2. Set

Ca,m,N,h = {(t, x, y, s̃, σ̃, ω̃, η̃) such that ∂s̃ΦN = ∂σ̃ΦN = ∂ω̃ΦN = ∂η̃ΦN = 0}.
Hence Ca,m,N,h is defined by the system of equations

X = ω̃ − s̃2, ω̃ = 1 + σ̃2,

T̃ = 2(1 + aω̃)1/2
(

s̃+ σ̃ + 2Nω̃1/2

(

1− 3

4
B′
(

ω̃3/2Λη̃
)

))

,

Y = −T̃ γa(ω̃)−
s̃3

3
− s̃(X − ω̃)− σ̃3

3
− σ̃(1− ω̃) +Nω̃3/2

(

4

3
− B′

(

ω̃3/2Λη̃
)

)

.
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We define the Lagrangian submanifold Λa,m,N,h ⊂ T ∗
R

3 as the image of Ca,m,N,h by
the map

(t, x, y, s̃, σ̃, ω̃, η̃) 7−→ (x, t, y, ξ = ∂xΦN , τ = ∂tΦN , η = ∂yΦN ).

Then the projection of Λa,m,N,h onto R3 is defined by the system of equations

X = 1 + σ̃2 − s̃2,(3.22)

Y = H1(a, σ̃)(s̃+ σ̃) +
2

3
(s̃3 + σ̃3)

+
2

3
H2(a, σ̃)(1 + σ̃2)−1/2

(

T̃

2(1 + a+ aσ̃2)1/2
− s̃− σ̃

)

,

where H1, H2 are defined in Section 2 and

2N

(

1− 3

4
B′
(

ω̃3/2Λη̃
)

)

= (1 + σ̃2)−1/2

(

T̃

2(1 + a + aσ̃2)1/2
− s̃− σ̃

)

.(3.23)

Remark 3.8. We notice from (3.23) in the range of T ∈ ]0, a−1/2], we can still
reduce the sum over N ∈ Z to the sum over 1 ≤ N ≤ C0a

−1/2 since T̃ ≤ T .

This system yields the cardinality of N and N1 such that |N (X, Y, T )| ≤ C0

and |N1(X, Y, T )| ≤ C0

(

1 + T̃Λ−2ω̃−3
)

, respectively. Recall that here the notations

N ,N 1 are those defined in Section 2.
Our main result of this subsection is Theorem 3.9, which gives dispersive esti-

mates for the sum over N of Ga,m,N .

Theorem 3.9. Let α < 2/3 and h̃ = h/(2m
√
a). There exists C such that for

all h ∈ ]0, h0], all a ∈
[

h̃α, a0

]

, all x ∈ [0, a], all t ∈ ]h, 1], all y ∈ R, all z ∈ R, the

following holds:
∣

∣

∣

∣

∣

∑

1≤N≤C0a−1/2

Ga,m,N(t, x, y, z)

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

min

{(

h

t

)1/2

, 2m
√
a

}

+ a1/8h1/4(2m
√
a)3/4

)

.

We notice as in section 2, that for ω̃ ≤ 3/4, we get rapid decay in Λ by integration
by parts in σ̃. In particular, we may replace 1 − χ1 by 1 in (3.21). As in section 2,
we introduce a cutoff function χ2(ω̃) ∈ C∞

0 (]1/2, 3/2[), 0 ≤ χ2 ≤ 1, χ2 = 1 on ]3
4
, 5
4
[

and we denote by Ga,m,N,2 the corresponding integral. Hence, we get

Ga,m,N = Ga,m,N,1 +Ga,m,N,2 +OC∞(Λ−∞),

where Ga,m,N,1 is defined by a cutoff χ3 with ω̃ ≥ 5/4 on the support of χ3.

3.2.1. The analysis of Ga,m,N,1. The main results in this subsection are
Proposition 3.10 and Proposition 3.11.

Proposition 3.10. Let α < 2/3 and h̃ = h/(2m
√
a). There exists C such that

for all h ∈ ]0, h0], all a ∈
[

h̃α, a0
]

, all x ∈ [0, a], all t ∈ ]h, 1], all y ∈ R, all z ∈ R, the

following holds:
∣

∣

∣

∣

∣

∣

∑

2≤N≤C0a−1/2

Ga,m,N,1(t, x, y, z; h)

∣

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2

h1/3(2m
√
a)2/3.
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Proof. On the support of χ3, we can apply the stationary phase method for
(s̃, σ̃)-integrations with large parameter Λη̃; hence we get

Ga,m,N,1 =
(−1)Na2Λ−1

(2π)4h4
(2m

√
a)2
(

h

t

)1/2 ˆ

eiΛY η̃η̃ψ1(η̃)G̃a,m,N,1 dη̃,

G̃a,m,N,1 =
∑

ǫ1,ǫ2

ˆ

eiΛη̃ΦN,m,ǫ1,ǫ2Θǫ1,ǫ2(1 + aω̃)−1/2 dω̃,

with symbols Θǫ1,ǫ2, where ǫj = ±, have a support in ω̃ ≤ (2m
√
a)−2/a, and such

that |ω̃l∂lω̃Θǫ1,ǫ2| ≤ Clω̃
−1/2 with Cl independent of a,m. The phase functions are

ΦN,m,ǫ1,ǫ2(ω̃) = T̃ γa(ω̃)+
2

3
ǫ1(ω̃ −X)3/2+

2

3
ǫ2(ω̃ − 1)3/2−4

3
Nω̃3/2+

N

Λη̃
B
(

ω̃3/2Λη̃
)

.

Let us define

Ga,m,N,1,ǫ1,ǫ2 =
(−1)Na2Λ−1

(2π)4h4
(2m

√
a)2
(

h

t

)1/2 ˆ

eiΛY η̃η̃ψ1(η̃)G̃a,m,N,1,ǫ1,ǫ2 dη̃,

G̃a,m,N,1,ǫ1,ǫ2 =
∑

ǫ1,ǫ2

ˆ

eiΛη̃ΦN,m,ǫ1,ǫ2Θǫ1,ǫ2(1 + aω̃)−1/2 dω̃.

We are reduce to prove the following inequality
∣

∣

∣

∣

∣

∣

∑

2≤N≤C0a−1/2

Ga,m,N,1,ǫ1,ǫ2(t, x, y, z, h)

∣

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2

h1/3(2m
√
a)2/3,(3.24)

with a constant C independent of m, h ∈ ]0, h0], a ∈
[

h̃2/3, a0
]

, x ∈ [0, a], t ∈ [h, 1].
We proceed as in the proof of Proposition 2.9. Let us recall that on the support of
χ1 we have aω̃ ≤ ε/22ma; hence aω̃ could be small or large. We distinguish between
two cases.

The first case is aω̃ ≤ 1. Let T̃0 ≫ 1. We get the following results:

• For 0 ≤ T̃ ≤ T̃0, N ≥ N(T̃0), then we apply the integration by parts to get

|G̃a,m,N,1,+,+|∈OC∞(N−∞Λ−∞) and

sup
T̃≤T̃0,X∈[0,1],(y,z)∈R2

∣

∣

∣

∣

∣

∣

∑

N(T̃0)≤N≤Ca−1/2

Ga,m,N,1,+,+

∣

∣

∣

∣

∣

∣

∈ OC∞(h∞).

• For 0 ≤ T̃ ≤ T̃0, 2 ≤ N ≤ N(T̃0), [12, Lemma 2.20] yields the following

estimate |G̃a,m,N,1,+,+| ≤ CΛ−1/3 and

sup
T̃≤T̃0,X∈[0,1],(y,z)∈R2

∣

∣

∣

∣

∣

∣

∑

2≤N≤N(T̃0)

Ga,m,N,1,+,+

∣

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

h−1a2(2m
√
a)2Λ−4/3

)

≤ Ch−3

(

h

t

)1/2

h1/3(2m
√
a)2/3.

• For T̃0 ≤ T̃ ≤ a−1/2(1 − z̃2)1/2, we still use the same notation as before
Ω = ω̃3/2; we have |∂2ΩΦN,m,+,+| ≥ cT̃Ω−4/3 and a nondegenerate critical

point Ωc which satisfies for N ≥ 2, Ω
1/3
c ∼ T̃

N
. Hence, we have also either

T̃ /N bounded or large, the stationary phase yields

|G̃a,m,N,1,+,+| ≤ CΛ−1/2T̃−1/2.
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Moreover, the η̃-integration produces a q−1/2 factor contribution where q =
NΛ−1Ω−1

c when q ≥ 1. Thus, we get the estimates as follows:

If T̃ /N is bounded, Ωc stays in a compact subset of [1,∞[, and we get T̃ ∼ N .

• If N ≤ Λ2, we have |N1| ≤ C0. Hence, the estimate is

∣

∣

∣

∣

∣

∑

N∈N1

Ga,m,N,1,+,+

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

h−1Λ−1a2(2m
√
a)2Λ−1/2T̃−1/2

)

≤ Ch−3

(

h

t

)1/2

a−1/4h1/2(2m
√
a)1/2T̃−1/2

≤ Ch−3

(

h

t

)1/2

h1/3(2m
√
a)2/3,

since T̃ ≥ T̃0 and a−1/4h1/2 ≤ h1/3(2m
√
a)1/6 when a ≥ h̃2/3.

• If N > Λ2, then there is the contribution q−1/2 from η̃-integration and |N1| ≤
C0T̃Λ

−2. Thus, the estimate is

∣

∣

∣

∣

∣

∑

N∈N1

Ga,m,N,1,+,+

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
∑

N∈N1

(

h−1Λ−1a2(2m
√
a)2Λ−1/2T̃−1/2N−1/2Λ1/2

)

≤ Ch−3

(

h

t

)1/2
(

h−1Λ−1a2(2m
√
a)2T̃−1|N1(X, Y, T )|

)

≤ Ch−3

(

h

t

)1/2
(

a−5/2h̃22m
√
a
)

≤ Ch−3

(

h

t

)1/2

h̃1/32m
√
a

≤ Ch−3

(

h

t

)1/2

h1/3(2m
√
a)2/3.

Next, if T̃ /N is large then Ωc is large.

• If N ≤ ΛΩc, then there is no contribution from η̃-integration. Moreover,

we have |N1| ≤ C0 since T̃ ≥ Λ2Ω2
c implies Ω

1/3
c ∼ T̃ /N ≥ λΩc which is

impossible since Ωc is large. Thus, the estimate is

∣

∣

∣

∣

∣

∑

N∈N1

Ga,m,N,1,+,+

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2

h1/3(2m
√
a)2/3.

• If N > ΛΩc and T̃ ≤ Λ2Ω2
c , we also have |N1| ≤ C0. Thus, we get the estimate

∣

∣

∣

∣

∣

∑

N∈N1

Ga,m,N,1,+,+

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2

h1/3(2m
√
a)2/3.
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• If N > λΩc and T̃ > Λ2Ω2
c , then there is the contribution q−1/2 from η̃-

integration and |N1| ≤ C0T̃Λ
−2Ω−2

c . We get
∣

∣

∣

∣

∣

∑

N∈N1

Ga,m,N,1,+,+

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
∑

N∈N1

(

h−1Λ−1a2(2m
√
a)2T̃−1/2N−1/2Ω1/2

c

)

≤ Ch−3

(

h

t

)1/2
(

h−1Λ−1a2(2m
√
a)2T̃−1Ω2/3

c |N1(X, Y, T )|
)

≤ Ch−3

(

h

t

)1/2
(

h−1a2(2m
√
a)2Λ−3

)

≤ Ch−3

(

h

t

)1/2

h1/3(2m
√
a)2/3.

The result of the other cases of (ǫ1, ǫ2) can be achieved by proceeding along the
same lines as in the proof for Ga,N,1 in Section 2.

The second case if aω̃ ≥ 1, then a critical point Ωc satisfies Ω
1/3
c (1+aΩ

2/3
c )1/2 ∼ T̃

N

for N ≥ 2. This yields, since T ≥ CT̃ with C large,

T ≥ CT̃ ≥ CNΩ1/3
c = CNω1/2

c ≥ CNa−1/2

which contradicts t ≤ 1. �

Now we prove the following estimate for N = 1.

Proposition 3.11. Let α < 2/3 and h̃ = h/(2m
√
a). There exists C such that

for all h ∈ ]0, h0], all a ∈
[

h̃α, a0
]

, all x ∈ [0, a], all t ∈ [h, 1], all y ∈ R, all z ∈ R, the

following holds:
∣

∣Ga,m,1,1(t, x, y, z; h)
∣

∣

≤ Ch−3

(

h

t

)1/2
(

min

{(

h

t

)1/2

, 2m
√
a| log(2m√a)|

}

+ h1/3(2m
√
a)2/3

)

.

Proof. Let us recall

Ga,m,1,1 =
(−1)a2Λ−1

(2π)4h4
(2m

√
a)2
(

h

t

)1/2 ˆ

eiΛY η̃η̃ψ1(η̃)G̃a,m,1,1 dη̃,

G̃a,m,1,1 =
∑

ǫ1,ǫ2

ˆ

eiΛη̃Φ1,m,ǫ1,ǫ2Θǫ1,ǫ2(1 + aω̃)−1/2 dω̃.

The only difference with the case N ≥ 2 is in the study of the phase Φ1,m,+,+ since
in the case N = 1 we may have a critical point ω̃c large. Let

G̃a,m,1,1,+,+ =

ˆ

eiΛΦ1,m,+,+Θ+,+(1 + aω̃)−1/2 dω̃,(3.25)

with the phase function

Φ1,m,+,+ = T̃ γa(ω̃) +
2

3
(ω̃ −X)3/2 +

2

3
(ω̃ − 1)3/2 − 4

3
ω̃3/2 +

1

Λη̃
B(Λω̃3/2η̃),

and Θ+,+ is a classical symbol of order −1/2 with respect to ω̃ which satisfies
|ω̃l∂lω̃Θ+,+| ≤ Clω̃

−1/2. Let χ3(ω̃) ∈ C∞
0 (]ω̃1,∞[) with ω̃1 large and set

J =

ˆ

eiΛΦ1,m,+,+Θ+,+χ3(ω̃)(1 + aω̃)−1/2 dω̃.(3.26)
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To prove the proposition, we just have to verify

(3.27) a1/22m
√
a|J | ≤ Cmin

{(

h

t

)1/2

, 2m
√
a| log(2m√a)|

}

.

We first observe that on the support of the integral defined in (3.26), one has aω̃ ≤
(2m

√
a)−2 = L. Hence, we get

|J | ≤ C

(

1 +

ˆ L/a

1

1
√

x(1 + ax)
dx

)

= C

(

1 + a−1/2

ˆ L

a

1
√

y(1 + y)
dy

)

≤ Ca−1/2 logL.

This implies

a1/22m
√
a|J | ≤ C2m

√
a| log(2m√a)|.

We have

∂ω̃Φ1,m,+,+ =
T̃

2
(1 + aω̃)−1/2 − ω̃−1/2

2
(1 +X) +OC∞(ω̃−3/2),

∂2ω̃ω̃Φ1,m,+,+ =
−T̃ a
4

(1 + aω̃)−3/2 +
ω̃−3/2

4
(1 +X) +OC∞(ω̃−5/2).

At a large critical point we have T̃ 2 ∼ (a + ω̃−1
c )(1 +X)2. Hence, T̃ is small and

∂2ω̃ω̃Φ1,+,+(ω̃c) ∼ T̃ 3(1 + aω̃c)
−5/2.

Let S = (T̃ /(1+X))2−a. Then, we have S ∼ ω̃−1
c , and by stationary phase method,

we get

|J | ≤ C(1 + aω̃c)
3/4Λ−1/2T̃−3/2S1/2.

We have to take care in this section that aω̃c may be large.

• In the case aω̃c ≤ 1, we have S ∼ T̃ 2, and therefore we obtain as before
|J | ≤ CΛ−1/2T̃−1/2, which gives

a1/22m
√
a|J | ≤ C

(

h

t

)1/2

.

• In the case aω̃c ≥ 1, we must have T̃ ∼ √
a, and S = aρ with ρ > 0 small.

Hence, we get |J | ≤ Cρ−1/4a−1/4Λ−1/2. This yields

a1/22m
√
a|J | ≤ Ch1/2

(

(2m
√
a)1/2a−1/2ρ−1/4

)

.

Finally, we observe that we have
√
a ∼ T̃ ∼ ta−1/22m

√
a(1 + aω̃c)

1/2 implies t ∼ a(2m
√
a)−1ρ1/2,

which gives a1/22m
√
a|J | ≤ C(h/t)1/2. The proof of Proposition 3.11 is complete. �

3.2.2. The analysis of Ga,m,N,2. The main result in this subsection is Propo-
sition 3.12.

Proposition 3.12. Let α < 2/3 and h̃ = h/(2m
√
a). There exists C such that

for all h ∈ ]0, h0], all a ∈ [h̃α, a0], all x ∈ [0, a], all t ∈ ]h, 1], all y ∈ R, all z ∈ R, the

following holds:
∣

∣

∣

∣

∣

∣

∑

1≤N≤C0a−1/2

Ga,m,N,2(t, x, y, z; h)

∣

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2

a1/8h1/4(2m
√
a)3/4.
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Proof. Recall

Ga,m,N,2(t, x, y, z)(3.28)

=
(−1)N

(2π)4h4

(

h

t

)1/2

a2(2m
√
a)2
ˆ

eiΛΦNfmη̃
2ψ1(η̃)χ2(ω̃) ds̃ dσ̃ dω̃ dη̃

with the phase function

ΦN (s̃, σ̃, ω̃, η̃) = η̃

[

Y + T̃ γa(ω̃) +
s̃3

3
+ s̃(X − ω̃) +

σ̃3

3

+ σ̃(1− ω̃)− 4

3
Nω̃3/2 +

N

Λη̃
B
(

ω̃3/2Λη̃
)

]

.

To start with, we rewrite Ga,m,N,2 in the following form

Ga,m,N,2 =
(−1)N

(2π)4h4

(

h

t

)1/2

a2(2m
√
a)2
ˆ

eiΛY η̃η̃2ψ1(η̃)G̃a,m,N,2 dη̃,

G̃a,m,N,2 =

ˆ

eiΛη̃φ̃N,mχmχ2(ω̃) ds̃ dσ̃ dω̃,

with the phase function

φ̃N,m(s̃, σ̃, ω̃)= T̃ γa(ω̃) +
s̃3

3
+ s̃(X − ω̃)+

σ̃3

3
+σ̃(1− ω̃)−4

3
Nω̃3/2+

N

Λη̃
B
(

ω̃3/2Λη̃
)

.

Now we can proceed as in the analysis of Ga,N,2 in section 2. More precisely, we apply
the stationary phase method for (ω̃, η̃)-integrations. It yields Λ−1/2 and (NΛ−1)−1/2,
respectively. We have the following facts (see Section 2):

• Lemma 2.12: For N ≥ Λ1/3, there exists C such that
∣

∣

∣

∣

ˆ

eiΛψ̃N,mχ̃ ds̃ dσ̃

∣

∣

∣

∣

≤ CΛ−2/3 and
1√
N

∣

∣

∣

∣

ˆ

eiΛψ̃N,m χ̃ ds̃ dσ̃

∣

∣

∣

∣

≤ CΛ−5/6,

with ψ̃N,m is a perturbation of the phase function obtained from φ̃N,m at the
critical point ω̃c. Hence, we obtain the following estimates:

– When |N1(X, Y, T )| ≤ C0, we get
∣

∣

∣

∣

∣

∑

N∈N1

Ga,m,N,2

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

(2m
√
a)2h−1a2Λ−1/2Λ−5/6

)

≤ Ch−3

(

h

t

)1/2

h1/3(2m
√
a)2/3.

– When |N1(X, Y, T )| ≤ C0T̃Λ
−2, the (NΛ−1)−1/2 factor contributes to the

η̃-integration, and we get
∣

∣

∣

∣

∣

∑

N∈N1

Ga,m,N,2

∣

∣

∣

∣

∣

≤
∑

N∈N1

Ch−3

(

h

t

)1/2
(

(2m
√
a)2h−1a2N−1Λ−2/3

)

≤ Ch−3

(

h

t

)1/2
(

(2m
√
a)2h−1a2Λ−8/3

)

≤ Ch−3

(

h

t

)1/2

h1/3(2m
√
a)2/3.

Recall that we used N ∼ T̃ , |N1| ≤ C0(1 + T̃Λ−2) and a ≥ h̃2/3.
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• Lemma 2.13: For N ≤ Λ1/3, we have

1√
N

∣

∣

∣

∣

ˆ

eiΛψ̃N,mχ̃ ds̃ dσ̃

∣

∣

∣

∣

≤ CN−1/4Λ−3/4.

Therefore, the estimate in this case is given by
∣

∣

∣

∣

∣

∑

N∈N1

Ga,m,N,2

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

(2m
√
a)2h−1a2Λ−1/2Λ−3/4

)

≤ Ch−3

(

h

t

)1/2

a1/8h1/4(2m
√
a)3/4.

Hence putting these estimates together, we get
∣

∣

∣

∣

∣

∣

∑

1≤N≤C0a−1/2

Ga,m,N,2

∣

∣

∣

∣

∣

∣

≤ Ch−3

(

h

t

)1/2
(

h1/3(2m
√
a)2/3 + a1/8h1/4(2m

√
a)3/4

)

.

We notice that h1/3(2m
√
a)2/3 ≤ a1/8h1/4(2m

√
a)3/4 when a ≥

(

h
2m

√
a

)2/3

. The proof

of the Proposition 3.12 is complete. �

Proof of Theorem 3.9. The desired estimate follows from Propositions 3.10,
3.11, 3.12. �

4. Dispersive estimates for |η| ≤ ǫ0
√
a

In this section, we prove Theorem 1.5. We first compute the trajectories of the
Hamiltonian flow for the operator P . At this frequency localization there is at most
one reflection on the boundary. Moreover, we follow the techniques from Sections 2
and 3. It is particularly interesting that at this localization, Ga,ǫ0 is an oscillatory
integral with nondegenerate phase function; this is due to the geometric study of the
associated Lagrangian which rules out the swallowtails regime for |t| ≤ 1 if ǫ0 is small
enough.

4.1. Free space trajectories. Recall that the operator P is given by

P (t, x, y, z, ∂t, ∂x, ∂y, ∂z) = ∂2t − (∂2x + (1 + x)∂2y + ∂2z ).

Now, we compute the trajectories in the free space for the associated symbol

p = ξ2 + ζ2 + (1 + x)η2 − τ 2.

To do so, we start at t0, x0, y0, z0 with ξ0 close to 0, η0 = θζ0, |θ| ≤ ǫ0
√
a, ζ0 ∼ 1,

τ0 = 1,ξ20 + (1 + x0)η
2
0 + ζ20 = 1. The Hamilton Jacobi equation is

ẋ = 2ξ; ẏ = 2η(1 + x); ż = 2ζ ; ṫ = −2τ ;

ξ̇ = −η2; η̇ = 0; ζ̇ = 0; τ̇ = 0.

This yields

τ(s) = τ0; η(s) = η0; ζ(s) = ζ0; ξ(s) = ξ0 − η20s; t(s) = t0 − 2τ0s;

z(s) = z0 + 2ζ0s; x(s) = x0 + 2ξ0s− η20s
2;

y(s) = y0 + 2η0

(

(1 + x0)s+ ξ0s
2 − 1

3
η20s

3

)

.
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In our case, we start at t0 = 0, x0 = a, y0 = z0 = 0; the system becomes

τ(s) = τ0; η(s) = η0; ζ(s) = ζ0; ξ(s) = ξ0 − η20s;(4.1)

t(s) = −2τ0s; z(s) = 2ζ0s; x(s) = a+ 2ξ0s− η20s
2;

y(s) = 2η0

(

(1 + a)s + ξ0s
2 − 1

3
η20s

3

)

.

The Lagrangian Λa,ǫ0 ⊂ T ∗(R4
t,x,y,z): we have Λa,ǫ0 ⊂ {p = 0} is parametrized by the

system (4.1) with parameters (s, ξ0, η0, ζ0) together with (ξ20 +(1+a)η20 + ζ
2
0)

1/2 = τ0;
s is homogeneous of degree −1. Since t(s) = −2τ0s implies s = − t

2τ0
, we replace it

in the system (4.1). Then (4.1) becomes an homogeneous system parametrizing the
Lagrangian Λ as follows:

x(t) = a− ξ0
τ0
t− η20

4τ 20
t2, y(t) =

η0
τ0

(

−(1 + a)t+
ξ0
2τ0

t2 +
η20

12τ 20
t3
)

,

z(t) = −ζ0
τ0
t, ξ(t) = ξ0 +

η20
2τ0

t, τ(t) = τ0 = 1.

The trajectories hit the boundary when x(t) = 0; that is,

η20
4
t2 + tξ0 − a = 0.

This yields the time t∗ when x(t∗) = 0:

t∗ξ0 = a− ζ20θ
2

4
t2∗ ∼ a.

Our goal is to prove that at this frequency localization, the trajectories hit the bound-
ary only once for a given fixed time 0 < t ≤ 1. To do this, suppose that the trajectory
hits the boundary at (x = 0, y∗, z∗, ξ∗, η∗, ζ0), which is given by the system (4.1). More

precisely, ξ∗ = −(ξ0 +
η20
2
t∗) and we get

ξ(s) = ξ∗ − η20s, x(s) = 2ξ∗s− η20s
2, t(s) = t∗ − 2s.

Now, we assume that the trajectory, issuing from the point (x = 0, y∗, z∗, ξ∗, η∗, ζ0),
hits the boundary; that is, x(t) = 0, then tη20 = 2ξ∗. This yields

tθ2ζ20 = −2

(

ξ0 +
θ2ζ20
2
t∗

)

= −2

(

ξ0 +
θ2ζ20
2

(

a− θ2ζ20
4
t2∗

)

/ξ0

)

,

|tθ2ζ20 | ≥ 4

√

aθ2

2
implies |t| ≥ 4

√

a/2

ζ20 |θ|
≥ 1

ǫ0
≫ 1.

Therefore, we can only see at most one reflection on the boundary of the cylinder for
0 < t ≤ 1 at this frequency location.

4.2. Dispersive estimates for |η| ≤ ǫ0
√
a. In this subsection, we are

interested in obtaining dispersive estimates for Ga,ǫ0. The main result of this section
is the following.

Theorem 4.1. (Theorem 1.5) There exists C such that for every h ∈ ]0, 1], every

t ∈ [h, 1], the following holds:

‖Ga,ǫ0(t, x, y, z)‖L∞(x≤a) ≤ Ch−3

(

h

t

)1/2

min

{(

h

t

)1/2

,
√
a| log(a)|

}

.(4.2)
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We start as in Section 3. Recall that we have

(4.3) Ga,ǫ0(t, x, y, z) =
1

4π2h2

∑

k≥1

ˆ

e
i
h
Φkσk dη dζ,

where the phase Φk and the function σk are defined by

Φk = yη + zζ + t(η2 + ζ2 + ωkh
2/3η4/3)1/2,

σk = ψ2(η/
√
a)ek(x, η/h)ek(a, η/h)χ0(ζ

2 + η2)χ1(ωkh
2/3η4/3)(1− χ1)(εωk),

with ψ2 ∈ C∞
0 (] − 2ǫ0, 2ǫ0[) equal to 1 on [−ǫ0, ǫ0]. We still use the notation µ2 =

η2 + ωkh
2/3η4/3. Let χ4 ∈ C∞

0 ] − 1, 1[ with χ4 = 1 on [−1/2, 1/2]. The following
lemma (for |η| ≤ ǫ0

√
a) is a refinement of Lemma 3.1.

Lemma 4.2. Let

J =
1

4π2h2

∑

k≥1

ˆ

e
i
h
Φkχ4

(

tµ2

h

)

σk dη dζ.

There exists C such that

|J | ≤ Ch−3

(

h

t

)1/2

min

{(

h

t

)1/2

,
√
a

}

.

Proof. As in Lemma 3.1, and taking in account the cutoff ψ2(η/
√
a), we get

|J | ≤ Ch−3

(

h

t

)
ˆ 1

−1

(1− x2)1/2ψ2

(

x
√

h/(ta)
)

dx,

and the result follows from
(

h

t

)1/2 ˆ 1

−1

(1− x2)1/2ψ2

(

x
√

h/(ta)
)

dx ≤ min

{(

h

t

)1/2

,
√
a

}

. �

By the proof of Lemma 3.3, in the case
√
a ≤Mh, we get the estimate

∣

∣

∣
Ga,ǫ0

∣

∣

∣
≤ CMh

−3

(

h

t

)1/2√
a| log(√a)|,

hence we may assume in what follows that h∗ = h/
√
a is a small parameter.

Using Lemmas 4.2 and 3.2, we are now reduced to the study of

(4.4) Ja,ǫ0 =
1

4π2h2

(

h

t

)1/2
∑

k≥1

ˆ

e
i
h
(yη+tµ(1−z̃2)1/2)σ̃(ωk)(η/h)

2/3 2π

L′(ωk)

ψ2(η/
√
a)

µ
dη,

with σ̃(ω) defined by

σ̃ = σ0(z
∗, η, µ2;λ)(1− χ4(λ))χ1(ωh

2/3η4/3)(1− χ1)(εω)

× Ai((η/h)2/3x− ω)Ai((η/h)2/3a− ω),

where λ = tµ2/h. By Airy–Poisson summation formula, we have Ja,ǫ0 =
∑

N∈Z JN
with

(4.5) JN =
1

4π2h2

(

h

t

)1/2 ˆ

e
i
h
(yη+tµ(1−z̃2)1/2)σ̃(ω)(η/h)2/3

ψ2(η/
√
a)

µ
e−iNL(ω) dω dη.
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By the preceding paragraph, we know that it is sufficient to prove an estimate on
J−1 + J0 + J1. We will focus on J1, since J−1 is similar and J0 is simpler since it is
the free wave. One has J1 equal to:

J1 =
(h/t)1/2

(2π)4h2
h−4/3

ˆ

e
i
h
φ1 |η|2/3χ(ω, η, µ2, λ, h)

ψ2(η/
√
a)

µ
ds dσ dη dω,(4.6)

with the phase function

φ1 = yη + tµ(1− z̃2)1/2 +
s3

3
+ s(|η|2/3x− ωh2/3) +

σ3

3
+ σ(|η|2/3a− ωh2/3)− hL(ω),

and symbol

χ(ω, η, µ2, λ, h) = σ0(z
∗, η, µ2;λ)(1− χ4(λ))χ1(ωh

2/3η4/3)(1− χ1)(εω).

Recall that

L(ω) =
4

3
ω3/2 − B(ω3/2), for ω ≥ 1,

with

B(ω) ∼1/ω

∑

j≥1

bjω
−j, bj ∈ R, b1 > 0.

Lemma 4.3. Let L be as in Section 2.2,

L(ω) = π + i log

(

A−(ω)

A+(ω)

)

.

Then for all ω ≥ 0, we have

L′(ω) ≥ 2ω1/2.

This lemma is useful in the geometric study of the canonical set and the La-
grangian submanifold associated to the phase function of J1.

Proof of Theorem 4.1. To study J1 in (4.6), we restrict the integral to η > 0
and we first make the change of variables ω = h−2/3η2/3ω∗, s = η1/3s∗, σ = η1/3σ∗,
and we obtain, since µ = η(1 + ω∗)1/2

(4.7) J1 =
(h/t)1/2

(2πh)4

ˆ

e
iη
h
(y+φ̃1) η (1 + ω∗)−1/2χψ2(η/

√
a) ds∗ dσ∗ dω∗ dη,

with the phase function φ̃1 equal to

φ̃1 = t(1− z̃2)1/2(1 + ω∗)1/2 +
s∗

3

3
+ s∗(x− ω∗)(4.8)

+
σ∗3

3
+ σ∗(a− ω∗)− h

η
L(η2/3h−2/3ω∗).

We have

∂s∗ φ̃1 = s∗
2

+ x− ω∗, ∂σ∗ φ̃1 = σ∗2 + a− ω∗,

∂ω∗ φ̃1 =
t(1− z̃2)1/2(1 + ω∗)−1/2

2
− (s∗ + σ∗)− h1/3

η1/3
L′(η2/3h−2/3ω∗).

Therefore, at a stationary point in s∗, σ∗, ω∗ of φ̃1, we must have, using Lemma 4.3,
|s∗| ≤

√
ω∗ and |σ∗| ≤

√

(ω∗ − a):

t(1− z̃2)1/2(1 + ω∗)−1/2 ≥ 2
(
√
ω∗ −

√

(ω∗ − a)
)

.
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Since (1− z̃2) ∼ µ = η(1 + ω∗)1/2, t ≤ 1 and η ≤ ǫ0
√
a we obtain

ǫ0
√
a ≥ ǫ0t

√
a ≥ 2

(√
ω∗ −

√

(ω∗ − a)
)

,

and therefore, we may assume ω∗ > Ma with M large if ǫ0 is small. This proves
that the swallowtail in the first reflection appears after a time t > 1. Hence we are
reduced to study what happen before the first occurence of a swallowtail. This case
corresponds to a regime where there are no swallowtails and no cusps. We are reduce
to estimate the oscillatory integral J :

J =
(h/t)1/2

(2πh)4

ˆ

e
iη
h
(y+φ̃1) η (1 + ω∗)−1/2χψ2(η/

√
a)κ(ω∗/(Ma)) ds∗ dσ∗ dω∗ dη,(4.9)

where κ ∈ C∞(]1/2,∞[), 0 ≤ κ ≤ 1, and κ equal to 1 on [1,∞[. We then re-perform
the ds∗ dσ∗ integration using the definition of the Airy function, and we make the
change of variables η =

√
aη̃ and ω∗ = aω̃. As in Proposition 3.11, we get with

Λ∗ = a3/2/h∗ = a2/h,

J =
a

(2π)4h3

(

h

t

)1/2 ˆ

eiΛ
∗Y η̃ J̃ ψ2(η̃) dη̃,

J̃ =
∑

±,±

ˆ

eiΛ
∗η̃Φ±,± Θ±,± κ(ω̃/M) (1 + aω̃)−1/2 dω̃,

Φ±,± = T̃ γa(ω̃)±
2

3
(ω̃ −X)3/2 ± 2

3
(ω̃ − 1)3/2 − 4

3
ω̃3/2 +

1

Λ∗η̃
B(Λ∗ω̃3/2η̃),

Θ±,± = (ω̃ − 1)−1/4(ω̃ −X)−1/4Ψ±(Λ
∗2/3η̃2/3(ω̃ − 1))Ψ±(Λ

∗2/3η̃2/3(ω̃ −X))χ,

where Ψ±(ϑ) ∈ C∞([0,+∞[) are classical symbols of degree 0 in ϑ→ +∞. Therefore,
it remains to prove

(4.10)

∣

∣

∣

∣

ˆ

eiΛ
∗Y η̃ aJ̃ ψ2(η̃) dη̃

∣

∣

∣

∣

≤ Cmin

{(

h

t

)1/2

,
√
a| log(a)|

}

.

Since on the support of f one has ω̃ ≤ 1
a2η̃2

, we get

(4.11) |J̃ | ≤ C

ˆ 1
a2η̃2

1

ω̃−1/2(1 + aω̃)−1/2 dω̃ ≤ Ca−1/2| log(aη̃2)|,

and this implies
∣

∣

∣

∣

ˆ

eiΛ
∗Y η̃ aJ̃ ψ2(η̃) dη̃

∣

∣

∣

∣

≤ C
√
a| log(a)|.

Next, we have

∂ω̃Φ̃±,± =
T̃

2
(1 + aω̃)−1/2 ± (ω̃ −X)1/2 ± (ω̃ − 1)1/2 − 2ω̃1/2 +O(ω̃−1/2),

and (1 + aω̃)−1/2T̃ ∼ Tη ≤ ǫ0t ≤ 1. Hence the phases Φ−,±,Φ+,− have no critical
points ω̃ ≥ M/2 large, and this implies in particular for their contribution J∗ to J
the estimate

|J∗| ≤ C(Λ∗η̃)−1/2 = Ch1/2η̃−1/2a−1,

which implies
∣

∣

∣

∣

ˆ

eiΛ
∗Y η̃ aJ̃∗ ψ2(η̃) dη̃

∣

∣

∣

∣

≤ Ch1/2
ˆ

η̃−1/2ψ2(η̃) dη̃ ≤ C(h/t)1/2.
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For the contribution to J of the phase Φ+,+, we use the same proof as the proof of
Proposition 3.11. We thus get the estimate

a|J̃ | ≤ C(h/t)1/2.

This concludes the proof of Theorem 1.5 �

Appendix

Airy function. Let ϑ > 0. The Airy function Ai is defined as follows:

Ai(−ϑ) = 1

2π

ˆ

R

ei(s
3/3−sϑ) ds.

It satisfies the Airy equation

(4.12) Ai′′(ϑ)− ϑAi(ϑ) = 0

Let ν = e2iπ/3. Obviously, ϑ 7→ Ai(νϑ) is a solution to (4.12). Any two of
these three solutions Ai(ϑ), Ai(νϑ), Ai(ν2ϑ) yield a basis of solutions to (4.12) and
the linear relation between them is

∑

j∈{0,1,2} ν
jAi(νjϑ) = 0. Then, it follows that

Ai(ϑ) = −νAi(νϑ) − ν̄Ai(ν̄ϑ), which we rewrite as follows:

Ai(−ϑ) = e−iπ/3Ai(e−iπ/3ϑ) + eiπ/3Ai(eiπ/3ϑ) = A+(ϑ) + A−(ϑ),

where we set A±(ϑ) = e∓iπ/3Ai(e∓iπ/3ϑ). Notice that A−(ϑ) = A+(ϑ̄). We also have
the following asymptotic expansions

A−(ϑ) =
1

2
√
πϑ1/4

eiπ/4e−
2
3
iϑ3/2 expΥ(ϑ3/2) =

1

ϑ1/4
eiπ/4e−

2
3
iϑ3/2Ψ−(ϑ),

with expΥ(ϑ3/2) ∼1/ϑ (1 +
∑

l≥1 clϑ
−3l/2) ∼1/ϑ 2

√
πΨ−(ϑ) as ϑ → +∞ and the

corresponding expansion for A+, where we define Ψ+(ϑ) = Ψ̄−(ϑ̄). Moreover, we
have

A−(ϑ)

A+(ϑ)
= ie−

4
3
iϑ3/2eiB(ϑ3/2), with iB = Υ− Ῡ.

Notice that for ϑ ∈ R+, B(ϑ) ∈ R and B(ϑ) ∼1/ϑ

∑

j≥1 bjϑ
−j for ϑ → +∞ and

b1 > 0.
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