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Dispersive estimates for the wave equation
inside cylindrical convex domains

LEN MEAS

Abstract. The dispersive and Strichartz estimates are essential for establishing well posedness
results for nonlinear equations as well as long time behaviour of solutions to the equation. While
in the boundary-less case these estimates are well understood, the case of boundary the situation
can become much more difficult. In this work, we establish local in time dispersive estimates for
solutions of the model case Dirichlet wave equation inside cylindrical convex domains £ C R? with
smooth boundary 99 # (). In this paper, we provide detailed proofs of the results established in
[16, 17]. Let us recall that dispersive estimates are key ingredients to prove Strichartz estimates.
Strichartz estimates for waves inside an arbitrary domain 2 have been proved by Blair, Smith,
Sogge [4, 5]. Optimal estimates in strictly convex domains have been obtained in [12]. Our case of
cylindrical domains is an extension of the result of [12] in the case when the nonnegative curvature
radius depends on the incident angle and vanishes in some directions.

Konveksin lierion aaltoyhtilon hajonta-arvioita

Tiivistelm&. Hajonta-arviot ja Strichartzin arviot ovat oleellisia vélineitd osoitettaessa, etta
epéilineaarinen yhtild on hyvinasetettu, tai méaritettaessa sen ratkaisujen pitkén aikavélin kiyttay-
tymistd. Nama arviot ymmaérretddn hyvin reunattomassa tilanteessa, mutta reunallinen tapaus voi
olla paljon vaikeampi. Téassé tyossa johdamme ajallisesti rajattuja hajonta-arvioita mallitapaukses-
sa, joka koskee Dirichlet’s aaltoyht#lon ratkaisuita siledreunaisissa (9 # ) konvekseissa lieridis-
si Q C R3. Esitimme yksityiskohtaiset todistukset aiemmissa toissd [16, 17| saaduille tuloksille.
Hajonta-arviot ovat avaintyokalu Strichartzin arvioiden todistamisessa. Blair, Smith ja Sogge [4, 5]
ovat todistaneet Strichartzin arvioita mielivaltaisessa alueessa €2 kulkeville aalloille. Optimaaliset
arviot aidosti konvekseissa alueissa on saatu ldhteessd [12]. Tarkastelemamme lieridalueen tapaus
yleistda lahteen [12] tulosta tapauksessa, jossa ei-negatiivinen kaarevuusséide riippuu tulokulmasta

ja haviaa joissakin suunnissa.

1. Introduction

1.1. The cylindrical model problem. Let Q = {z > 0, (y,2) € R*} C R?
with smooth boundary 92 = {x = 0}, and let P be the wave operator

P =0 — (07 + (1+2)0 4 02).
We consider solutions of the linear Dirichlet-wave equation inside €2
(1.1) Pu= 0, Ul = 5@7 atU|t:0 = 0, Uy = 0,

with v = u(t,z,y,2), and for a > 0, 6, = 0y—ay—0.-0. We use the notation
T = %at,n = %Gy,f = %Ox,c = %83 for the Fourier variables and h € (0,1]. The
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Riemannian manifold (Q,A) with A = 92 4 (1 4 )] + 9 can be locally seen as
a cylindrical domain in R3 by taking cylindrical coordinates (r, 6, z), where we set
r=1—x/2,0 =y, and z = z. The problem is local near the boundary 02 = {z = 0}.
Let (a,0,0) € 2, a > 0. In local coordinates, a is the distance from the source point
to the boundary. We assume a is small enough as we are interested only in highly
reflected waves, which we do not observe if the waves do not have time to hit the
boundary. This gives us interesting phenomena such as caustics near the boundary.

We remark that when there is no z variable (or when y € R" and 8; is replaced
by A,), it is the Friedlander model. In this case, the optimal dispersive estimates
were recently obtained by Ivanovici, Lebeau, and Planchon in [12].

Recall that at time ¢t > 0, the waves propagating from the source of light highly
concentrate around a sphere of radius ¢. For a variable coefficients metric, if two
different light rays emanating from the source do not cross (that is, if ¢ is smaller
than the injectivity radius), one may then construct parametrices using oscillatory
integrals where the phase encodes the geometry of wave front. In our scenario,
the geometry of the wave front becomes singular in arbitrarily small times which
depend on the frequency of the source and its distance to the boundary. In fact, a
caustic appears between the first and the second reflection of the wave front. Let
us give a brief overview of what caustics are (see [12, Section 1.1]). Geometrically,
caustics are defined as envelopes of light rays coming from the source of light. At
the caustic point we expect the light to be singularly intense. Analytically, caustics
can be characterized as points where usual bounds on oscillatory integrals are no
longer valid. The classification of asymptotic behavior of the oscillatory integrals
with caustics depends on the number and the order of their critical points that are
real. Let us consider an oscillatory integral

1 i
up(z) = W /eﬁq)(z’@g(z,(,h) d¢, z€RY (eR, he(01].
We assume that @ is smooth and that g is compactly support in z and ¢. If 9P # 0
in an open neighborhood of the support of g, the repeated integration by parts
yields |uy(z)| = O(hY) for any N > 0. If ;@ = 0 and 97® # 0 (nondegenerate
critical points), then the stationary phase method yields ||up| L~ = O(1). If there
are degenerate critical points, we define them to be caustics, as ||up||z is no longer
uniform bounded. The order of a caustic x is defined as the infimum of x’ such that
|up||ze = O(h™"). Let us give some useful examples of degenerate phase functions.

The phase function of the form ®g(z, () = % + 2z1( + 2o corresponds to a fold with

order Kk = %. A typical example is the Airy function. The next canonical form is given

by the phase function of the form ®¢(z, () = % + 21% + 25( + 23, which corresponds

to a cusp singularity with order x = i. A swallowtail canonical form is given by the
phase ®5(z,() = 45—5 + z1<3—3 + 2242—2 + 23( + 24 with order kK = 13—0.

The crucial result of this work is the extension of the result of [12] to the case
of our model cylindrical convex domains which have the following property: the
nonnegative curvature radius depends on the incident angle and vanishes in some
directions.

The main goal of this work is to construct a local parametrix and establish a
local in time dispersive estimates for solution u to (1.1).

1.2. Some known results. The dispersive estimates for the wave equation
in R? follows from the representation of the solution as a sum of Fourier integral
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operators [see |1, 6, 7|]. They read as follows:

d—1
. h 2
(1.2) ||x<th>eiW—ARd||L1<Rd>w<m>SCh_dmi”{1’<) }

i

where Aga is the Laplace operator in R?. Here and in the sequel, the function y
belongs to C§°(]0, co[) and is equal to 1 on [1,2] and D, = 19,.

Inside strictly convex domains 2p of dimensions d > 2, the optimal (local in
time) dispersive estimates for the wave equations have been established by Ivanovici,
Lebeau, and Planchon in [12|. More precisely, they have proved that

-1
(1.3)  [IX(hD)e*™ 2P| @)1 (ap) < Ch % min {1, (%) } :
where Ap is the Laplace operator on 2. Due to the caustics formation in arbitrarily
small times, (1.3) induces a loss of 1/4 powers of (h/|t|) factor compared to (1.2).
Let us also recall a few results about Strichartz estimates [see [12], section 1]: let
(2, g) be a Riemannian manifold without boundary of dimensions d > 2. Local in
time Strichartz estimates state that

(1.4) [ull Lo-r,r)i2m(@)) < Cr (”UOHHﬁ(Q) + Hul”Hﬁ—l(Q)) )

where H? denotes the homogeneous Sobolev space over Q of order § and 2 < ¢,7 < 0o
satisfy

q * ro 2
Here u = u(t, x) is a solution to the wave equation
(0} = Au=0in (=T,T) x Q, u(0,z) =wug(z), u(0,r)=u(z),
where A, denotes the Laplace-Beltrami operator on (€2, g). The estimates (1.4) hold
on 2 =R?% and Gij = 0ij.
In [5], Blair, Smith, Sogge proved the Strichartz estimates for the wave equation
on (compact or noncompact) Riemannian manifold with boundary. They proved that

the Strichartz estimates (1.4) hold if €2 is a compact manifold with boundary and
(g,r,B) is a triple satisfying

1 d d 34d1 <cdd gy
-4+ -==-—74, for ¢ 7T 2 -
q r 2 E+;§§, d>4.

Recently in [12], Ivanovici, Lebeau, and Planchon have deduced a local in time
Strichartz estimates (1.4) from the optimal dispersive estimates inside strictly convex
domains of dimensions d > 2 for a triple (d, ¢, 3) satisfying

1 d—1 1 1 1
N B YR R N AN
q 2 4)\2 r 2 r q

For d > 3 this improves the range of indices for which sharp Strichartz do hold
compared to the result by Blair, Smith, Sogge in [5]. However, the results in [5]
apply to any domains or manifolds with boundary.

The latest results in [14] on Strichartz estimates inside the Friedlander model
domain have been obtained for pairs (g, r) such that

< (-0
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This result improves on the known results for strictly convex domains for d = 2,
while in [12] only gives a loss of .

In this paper, A < B means that there exists a constant C' such that A < CB
and this constant may change from line to line but is independent of all parameters.
Similarly, A ~ B means there exist constants C4, Cy such that C1'B < A < CyB. We
denote f(1,h) € Oce(h) for ¢ € T if, uniformly in a € [h57, 1],

Va, N, 3C,n such that sup|d5f(9,h)| < Conh”,
vel’

and O((z,y)’) means any function of the form
l,m r Yy )
—,=,a,N
z y f <N7 N’ a?
with f smooth uniformly in a, N and [ +m = j.

By definition, a function f(w) admits an asymptotic expansion for w — 0 when
there exists a (unique) sequence (¢, ), such that, for any n,

: —(n+1) . n| —
zlulg%)w (f(w) ;cnw ) Crtl-

We will denote f(w) ~, >, cpaw™.

1.3. Main results. Our main results concerning the local in time dispersive
estimates and Strichartz estimates inside the cylindrical convex domain €2 are stated
below. Let G, be the Green function for (1.1).

Theorem 1.1. There exists C' such that for every h € |0,1], every t € [—1,1]
and every a € |0, 1] the following holds:

1

3/4
(1.5) IX(hD)Ga(t, 2y, )| 1= < Ch> min {1, (h) }

As in [12], Theorem 1.1 states that a loss of 1/4 powers of (h/|t|) appears com-
pared to (1.2) . We will obtain in Theorems 1.3, 1.4, 1.5 better results, in particular
near directions which are close to the axis of the cylinder.

As a consequence of Theorem 1.1, conservation of energy, interpolation and 77T
arguments, we obtain the following set of (local in time) Strichartz estimates.

Theorem 1.2. Let (2, A) be defined as before. Let u be a solution of the wave
equation on §):
(0} = Au=0 in Q,
Ujt=0 = Uo, 3tu\t=o = U1, Ulg=0 = 0.

Then for all T' there exists Cr such that

[wll Lago,ryser @) < Cr (HUOHHB(Q) + ”UlHHﬁ—l(Q)> ,

E < §<1 — 1), and the scaling [ = 3(1 — 1) — 1
q  4\2 r 2 r q

Theorem 1.2 improves the range of indices for which sharp Strichartz estimates

do hold compared to [5]. Notice however that the results in [5] apply to arbitrary
domains or manifolds with non-empty boundary. The proof of Theorem 1.2 follows
the classical arguments, we first prove the frequency-localized Strichartz estimates

with
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by utilizing the frequency-localized dispersive estimates, interpolation and TT™ argu-
ments. We then apply the Littlewood-Paley squarefunction estimates [see [2, 3, 15|
to get the Strichartz estimates [Theorem 1.2] in the context of cylindrical domains
[see [18]].

1.4. Green function and precise dispersive estimates. The proofs of
frequency-localized dispersive estimates are based on the construction of parametrices
for the fundamental solution of the wave equation (1.1) and (possibly degenerate)
stationary phase method.

We begin with the construction of the local parametrix for (1.1) by utilizing the
spectral analysis of —A with Dirichlet condition on the boundary to obtain first the
Green function associated to (1.1). The Laplace operator we work with on the half
space €2 is equal to

A=+ (1+x)0; + 82,
with the Dirichlet condition on the boundary 0€2. We notice that a useful feature of
this particular Laplace operator is that the coefficients of the metric do not depend
on the vairables y, z and therefore this allows us to take the Fourier transform in y
and z. Now taking the Fourier transform in y, z-variables yields

—Aye =07+ L+’ + ¢
For n # 0,—A, is a self-adjoint, positive operator on L?*(R;) with a compact
resolvent. Let (e)r>1 be an orthonormal basis in L?(R ) of Dirichlet eigenfunctions
of —A, ¢ and let (\);, be the associated eigenvalues. These eigenfunctions are explicit
in term of Airy functions

o - |77|1/3A 2/3,..
€k _ek(xan) - fk /{51/6 Z(|n| x wk)

with associated eigenvalues
Ae =M, €) = 0* + ¢ + wiln|*?,

where (—wy ), denote the zeros of Airy function in decreasing order and for all k£ > 1,
[x are constants so that ||ex(.,7)||z2®,) = 1. Observe that (fi) is uniformly bounded
in a fixed compact subset of |0, oo as a consequence of

—92 1 —2
/ AiQ(w)dw ~ 4—/ |w|_1/2(1 + O(w_l))dw ~ |cuk|1/2
_ T J

Wi

and

5 \2/3
For a € Q, let g,(t, z,n, () be the solution of
(07 = (9 — (L +2)n* = ¢*))ga = 0,
Ya|z=0 = 0, Yajt=0 = 5I=a7 atga\t:O =0.
We have
(1.6) ga(t,z,m,C) = Z Cos(t)\,lg/Q)ek(x, n)ex(a,n).

k>1

Here §,—, denotes the Dirac distribution on R, ,a > 0 and it may be decomposed as

follows:
5J::a = Z ek(fE, n)ek(av 7))

k>1
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Now taking the inverse Fourier transform, the Green function for (1.1) is given by
1 % z
ga<t7 T, Y, Z) = 4—7_‘_2 /6 ot Oga<t7 z,, C) d?7 dC,

1 .
.7 — i 2 [ € cos(eAeu(z, 0/ R)eaa, /) dn
E>1

We thus get the following formula for 2x(hD;)G,

(DGl 2:0:2) = gy 3 [ HOT O
k>1
(1.8) x ex(a, n/h)x((n? + ¢ + wph®2 || Y)Y dndc.

On the wave front set of the above expression, one has 7 = (7% + (% +wph?/3|n|4/3)1/2,

In order to prove Theorem 1.1, we only need to work near tangential directions;
therefore we will introduce an extra cutoff to insure |7 — (n? + ¢?)/2| small, which
is equivalent to wih??|n|*/? small. Then, we are reduced to prove the dispersive
estimate for G, joc:

. wih?/3|n|4/3)1/
leoc(t,x,y, ) 47T2h,2 Z/eh(yWJr C)e h(n +¢2wy h2/3|n|4/3)1/2 (:L’ n/h)ek(a n/h)

k>1
(1.9) x xo(n* + C)xa(wih®? ) dndc,
where the cut-off functions x( and x; are defined in Section 2.
¢
n

Figure 1. Phase space.

The phase space in Figure 1 illustrates the different regimes of n; that is n is
bounded below by a constant ¢y and 7 is close to zero, where we will establish the
dispersive estimates.

To obtain the local in time dispersive estimates, we will cut the n integration in
(1.9) in different pieces (Figure 1). More precisely, we write

(1.10) Gator =Gacot >, Gam+  Gaeos
cov/a<2my/a<eo

where G, ., is associated with the integration for |n| > ¢y, G,.m is associated with the
integration for |n| ~ 2™y/a, and G, , is associated with the integration for 0 < |n| <
60\/&.

We will prove the following results. Let € € ]0,1/7].
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Theorem 1.3. There exists C such that for every h € ]0,1], every t € [h, 1], the
following holds:

Ik 1/2
(1.11) ||ga,co(t,x,y,z)||Loo(x§a) < Ch 3(;) y(t, h,a),

with
1/3

b if a < 3079,

v(t, h,a) =

t

1/2 .
(ﬁ) +a'BhVh ifa > 30 € €0, €.

Observe that in Theorem 1.3 we get the same estimate as in Ivanovici-Lebeau—
Planchon [12].

Theorem 1.4. There exists C such that for every h € ]0,1], every t € [h, 1], the
following holds :

B\ 12
|Gam(t, 2, Y, 2)|| Lo (z<a) < Ch™3 (;) Y (t, h,a),
with
( 1/3 D)
(1) e s ()
1/2
nttsha) = Qmin{ (4) " 20Vl toutm @  + o2

2(1-¢)
if a > (th\/a) , € €10, ¢€l.
\

For 2/a ~ 1, Theorem 1.4 yields the same result as in Theorem 1.3. We notice
that the estimates get better when |n|( ~ 2™y/a) decreases. This is compatible with
the intuition that less curvature implies better dispersion.

Theorem 1.5. There exists C' such that for every h € |0, 1], every t € [h, 1], the
following holds:

B /2 B 172
112 Gt Aoz < 7 (5) min{ (1) valouta |

Let us verify that Theorem 1.1 is a consequence of Theorems 1.3, 1.4 and 1.5.
We may assume |t| > h, since for [t| < h, the best bound for the dispersive es-
timate is equal to Ch™3 by Sobolev inequality. Then, by symmetry of the Green
function, we may assume ¢ € [h, 1] and < a. Then Theorem 1.1 is a consequence
of > ,(2™Va) ~ (2M/a)” for v > 0.

In Section 2, we prove Theorem 1.3. To do so, we use the representation of G, ., as
a sum of the eigenmodes (over k) which is used to prove the estimates for a < hi(=e),
e € ]0,1/7[. Using the Airy-Poisson summation formula (see Lemma 2.4), G, .,
can be also represented as a sum over N € Z (its summands will be seen to be
waves corresponding to the number of reflections on the boundary, indexed by N)
for a > hi1=)_for ¢ € 10, €¢[. These local parametrices can be written in terms of a
sum of oscillatory integrals with phase functions containing an Airy type terms with
degenerate critical points. We give a precise analysis of the Lagrangian in the phase
space associated to these oscillatory integrals. This geometric analysis allows us to
track the degeneracy of the phases when we apply the stationary phase method.
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In Section 3, we prove Theorem 1.4. To get the estimates for G, ,,,, we distinguish
2mh\/a)§(1_5), e €10,1/7[: here,
we follow ideas in section 2 and construct a local parametrix as a sum over eigen-
modes. The second case is a > (ﬁ)%(l’el), for € € ]0,¢[: there, the Airy—Poisson
summation formula yields the representation of G, ,, as a sum over NV € Z.

In Section 4, we prove Theorem 1.5. Notice that as ¢ is small, the estimates
for G,., are in fact those in free case. To get that, we first compute the trajectories
of the Hamiltonian flow for the operator P. At this frequency localization there is
at most one reflection on the boundary of the cylinder. Moreover, we follow the
techniques from section 2 and obtain an expression for G, ., to which we apply the
stationary phase method. It is particularly interesting that this localization gives us
an oscillatory integral (the local parametrix) with nondegenerate phase function; this
is due to the geometric study of the associated Lagrangian which rules out the cusps
and swallowtails regimes for a given fixed time ¢, |t| < 1 if € is small.

In all these sections, we will assume that the integration with respect to n is
restricted to n > 0, since the case 7 < 0 is exactly the same.

between two different cases. The first case is a < (

2. Dispersive estimates for |n| > ¢

In this section, we prove Theorem 1.3. The key ingredient is to construct local
parametrices for the regimes a < h31=9 for € € 10,1/7[, and for a > hi=) for ¢ €
10, €] respectively. These are oscillatory integrals to which we apply the (degenerate)
stationary phase type arguments to get the desired estimates. The Airy—Poisson
summation formula [see Lemma 2.4| gives us the parametrix as a sum over multiple
reflections on the boundary as illustrated in the following diagram.

Spectral analysis of —A

>_(FIOs) S(FIOs)

k —-| Parametrix |- N
(eigenmodes) (reflections)

o z Bk =

2.1. Dispersive estimates for 0 < a < h31~9 with € € ]0,1/7[. In
this subsection, we prove local in time dispersive estimates for the function G, .,. In

the regime 0 < a < h3(1=9) with € € 10,1/7[, the parametrix reads as a sum over
eigenmodes k. Taking into account the asymptotic behaviour of the Airy functions,
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we deal with different values of k£ as follows: for small values of k£, we use Lemma
3.5[12] to get the estimates; for large values of k, we use the asymptotic expansion
of the Airy functions. The last case, the parametrix is a sum of oscillatory integrals
to which we apply [12, Lemma 2.20]. Recall that the parametrix in this frequency
localization and near tangential directions is equal to

5 21 o h2/3|p[4/3)1/2
Gaco(t, 2, y, 2) = 47r2h2 Z/eh(ymr O i+ ah® B D2 00 TR ew(a, m/h)

k>1
(2.1) X X0(C* + 0o () x1(weh? ") (1 = x1)(ewi) dn dC.

Here

e Yo € C5°,0 < x0 < 1,x0 is supported in the neighborhood of 1.

o Yy € C(co/2,00),0 < by < 1, ¢hp(n) =1 for n > ¢.

e x1 € C§°,0 < x1 < 1,x; is supported in (—o0,2¢],x1 = 1 on (—o0,¢], for
e > 0 small. x; is used to localize in tangential directions. Notice that on
the support of x1, we have w,h?/3|n|*3 < 2¢ and since wy, ~ k?/3; we obtain
k< h‘ TR Thus since 7 is bounded from below, we may assume that k£ < e/h.

Moreover, we have (1 — x1)(ewy) = 1 for every k > 1 since w; ~ 2.33.

The main result of this section is the following proposition.

Proposition 2.1. Let € € |0, 1/7[ There exists C' such that for every h € |0, 1],
every t € [h,1] and every 0 < a < h30-9 y € R,z € R, the following holds:

B\ 5/6
(22) ||ga7m<t,x,y,z>||m<x§a>SCh—?’(;) .

Proof. First, we study the integration in (. Let
= / e b xo(¢* 4 1) dC.

Recall that xo € C§° is supported near 1. The phase function ¢, is given by

or(C) = ;( + (P + )

|72/3 > 0. We introduce a change of variables ¢ = |77|§:, z = tZ.

with v = h?3wg|n
Then we obtain

ou(Q) = Inl(2C + (1 + ¢+ 7)),
Differentiating with respect to 5 , we get

¢
Opbr = |77|( (1+§2+7)1/2)'

Because 7 is bounded from below, ¢ = (/|| is also bounded, therefore we have

1 — 24y, for some ¢; > 0 small. Then if |Z| > 1 — d;, the contribution

¢
‘(1t52+v)1/2 =
of (-integration is O¢=((h/t)*°) by integration by parts. Thus we may assume that

|Z] <1 —6;. In this case, the phase ¢, has a unique critical point on the support of

. . x 3 / . .. . . .
Xo- It is given by (. = —Z(%Q and this critical point is nondegenerate since

1+~
D2 = ( _ )>O
I\




604 Len Meas

Then we obtain by the stationary phase method (as |Z| < 1 —d1)

Y

W2 e
J = <?) elnIMVI=22 ()= g

where g is a classical symbol of order 0 with small parameter h/t. Hence we get

1 1/2 i /752 1/2
Gaeo(t,2,y,2) = (h) Z/eﬁ(y’”'”t =224 )ek(x,n/h)ek(a,n/h)

4r2h2 \ t
E>1

(2.3) x Xoo(n)x1(¥In*) (1 = x1) (evh ™ |n|*?) dn.

Next, we observe that G, ., contains Airy functions which behave differently de-
pending on the various values of k. To deal with it, we split the sum over k into
Ga,co = Ya,<r + Ga>1, Where in G, .1, only the sum over 1 < £k < L is considered.

Estimates for G, ;. To get the estimates for G, .1, we need the following
lemma, which follows from the bound |Ai(s)| < C(1 + |s|)~'/%.

Lemma 2.2. [12, Lemma 3.5] There exists Cyy such that for L > 1, the following
holds:

sup < Z k=13 A% (b — wk)> < CoL'3,
beR \ 57,
We use the Cauchy—Schwarz inequality for (2.3) and Lemma 2.2 to get
B 172
Gucelie SH72(5) 3 Wi 1 = ) Ai 1 — ),

1<k<L

B\ /2 1/2
5 B3 (?) h1/3 ( Z I]{;—l/::zjéha(}f2/::z‘m2/33j _ wk)>

1<k<L

1/2
% ( Z k*l/BA,i2<hf2/3|,’7|2/3a_ wk)) ’

1<k<L
B /2
< h*3 (_) h1/3L1/3

We only have to prove (2.2) for t > h. Let e € |0,1/3] and L = h™°. If t < h€, then
L< %, hence

L
”ga,<L(t7x7y7Z)”L°° < Chis (;) .

We are reduced to the case t > h¢ > h'/3. Then we apply the stationary phase for
n-integration of the form

/e%¢kAi(h_2/3|n|2/3x — wi) Ai(h3n|*3a — wy) dn,

with the phase function
o) =y +tvV1—2(1+7)"?).

To deal with this integral, we rewrite ®, = hAWV; where \ = twih is a large
parameter. We have |82\I/k| > ¢ > 0. To apply the stationary phase, we need to

~1/3
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check that one has for some v > 0 one has

|8%Az( 2/3|n|2/3x —wp)| < Cj)\j(l/Q_”).

Since one has supysq [b'Ai®) (b — wy)| < C’lwzl/ ?, it is sufficient to check that there
exists € > 0 such that for t > h® and k < h™¢,

wz/Q < (twyph™V/3)0/2=0)
This holds if € < 1/7. Therefore the estimate for € < 1/7 and t > A€ is

B\ V2T
"1m§aga,<L<t,x,y,2)"Loo < Ch,73 <?) h1/3 Z k1/3)\1/2:| 7

1<k<h—¢

IN

3(h V2 1/3 -1 —1/3\~
Ch3( = RN R (twph TR T

t
1<k<h—¢

/2 1/2
ew(5) [(5)
t L\ ¢ ’
A\ 2 7 p\ /3
<Ch3| = — )
<a(3) (%)

Estimates for G, ~1. We now deal with large values of k, L < k < ¢/h with
L > Dmax{h™,1/t}, D > 0 large constant. We are left to prove (2.2) holds true for
Ga,>1, defined by the sum over L <k < ;. For k> Dh™“and 0 <x < a < h%(l_g),
we have

IN

we — [nPPRRBr > w2

Therefore we can use the asymptotic expansion of the Airy function (see Appendix)

V) = Zwie%i(fﬁ)?»/z<_19)*1/4\11i(—19) for —9¥ > 1, where w® = e™/4

and where W4 are given in the Appendix. By the definition of e;, we have

1/3h71/3 o
eularnfh) = fk'”'TAz(h 2Bl — ),

|77|1/3h 1/3
k1/6

ZW T Rilwn—ln?/3h=2/ay2 P (Wi — In|2/3h=2/37)
(wi — |n)2/3h=23z) /4"

i g,
/ e P aki’i dn,
-
with the phase functions are defined by

_ 2 9
Ot a,y, 2, a5m) = yn + nltV1 — 22(14+4)% £ Sy = )% £ snl(y = a)®?,

and the symbols are given by

We can rewrite G, -1, as follows:

1 h 1/2
(24) ga,>L<t7x7yaz): Z Amr2h2 (?)
+

L<k<E

B _ 12
o (@0, him) = W= Xoxa () (1= xa) (e h ™ ) 5w w™

X (v = 2) My = a) (PR (y = ) Ui ([nPhE (y — a)).
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We have 3170, = —270, and for 0 <z <a < 27,
(Y0, (v — )7V < Ciy ™V < Cj(hk) V5

moreover, W, are classical symbols of order 0 at infinity which is true in this case
since we have

PR (y = 2)] > wi /2 > Ch7,

since k > L > h™°. Hence we obtain that for all j, there exists C; such that
|0 (x, a, by m)| < Cj(hk) 2,
since in the symbols aki’i there is a factor (hk)~'/3 and we apply 7 derivatives to the
product (v — x)~4(y — a)~Y* to get another factor (hk)~/3.
Therefore, to establish the dispersive estimates for G, -, it suffices to estimate
the oscillatory integral of the form

itt 44
/eh koo dn.

To get the estimates for this integral, we set q),f’i = h)\@/),f’i, where A = tw,h~1/3. Tt
defines a new large parameter since A > ¢ > 0 as wy ~ k23 k> 1/t, and t > h. The
following result gives an estimate of these oscillatory integrals.

Proposition 2.3. Let € € ]0,1/7[. For small €, there exists a constant C' inde-
pendent of a € (O,hg(l’e)], telhl],ze(0,a,ycR, zcRandkc [L, ;] such
that the following holds:

/ei)\w;ivio_;t,:l: dn‘ < C(hk)_Q/?’)\_l/g.

Proof of Proposition 2.3.  Since (hk)% 30’2:’i are classical symbols of degree 0
compactly supported in 7, we apply the stationary phase method to an integral of
the form

Jy = / M (hk) Bt diy.

We have to prove that the following inequality holds uniformly with respect to the
parameters:

|Jy| < XT3,
Let us recall that

_ 2 9
MY (L, w0y, 2m) = yn + [ntv/1 — 22(1 4+ )% £ sy = x)3? £ Sy = a)®?.

We compute

2
MO =y + V1 — 22

2
17% +oa(y — )" ga(v —a)'?,

and we need to consider four cases. Let 0 = 2 € [0,1],a = o € [0, ). Indeed,
since wy ~ k¥3, k > Dh~¢ and a < h31-9 it follows that a = ak~2/3h=2/3 <
D=2Bqh=30-9 < D23 .= g, Let p = |n|™¥3, V = L2 4nq define the

twkhQ/S

function F(y) by

1+ 2y 1~
3 6+ﬁ+0(’)/2).

=14+7F0), F(y)=

[a—
+
2



Dispersive estimates for the wave equation inside cylindrical convex domains 607

With these notations we get:
2
O™ =V + V1= 2pF (B*Pwip) + S (£0(p — 00)' £ (p— 0)'V?),

R30—)
t

where 1 = %; it satisfies 0 < p < min{1, h=¢/3t'/3} and thus px may be
Wi

small or arbitrary large. In fact, if t > A, u < ha=9¢=1 < h1/3=4€/3 which is small
if e < 1/4. If t < h¢, we have p < h'/372¢/3t=2/3 which could be large when t < h'/27¢,
First, we consider the case where p is bounded. We now study the critical points.
We take p = |n|~%/3 as variable, we get

Oudi* = VI=Z(F(7) +7F' (1) + 5 (£8(p = 60) 7 £ (p— ) 2),
Doy ™ = V1= 2 Pwp(2F'(7) +9F" () — %( +0(p—0a) P2 £ (p—a) ™).
For e small enough, there exists ¢ > 0 independent of £ < + such that

(2.5) 10,0, | + [920,00 | > c.

Indeed, we observe that (p—a)~/? > §(p—da) /2 and F(y)+~F'(v) ~ 4. Thus we
get |8p8,71pki’+| > ¢; > 0. Other cases, 8,,8,71/12[’_ could vanish and when this happens
we have

19,0, 05| < 1/100 = %(,0 — )12 > 0.05.

Then we have [020,1), | > ¢, > 0. Moreover, for any function f, we have

a(1-9)
20 fp=a)=8flp=da) =1 =0)f(p=da)= [ [lp—sa=td

Taking f(t) = t~/2, we get that
10,0,0;77] < 1/100 = p(1—3) >c> 0.

Applying (2.6) with f(t) = t7%2, we obtain [020,1, | > ¢/2 > 0. As a consequence
of (2.5) together with [12, Lemma 2.20| (see Appendix), we get that the proposition
holds true for u bounded.

It remains to study the case where p is large. For (+,4) or (—,+) case, we
study again the critical points and we take A = Ay as a large parameter. Since §(p —
5a) ™2 4 (p— )2 > ¢ > 0, we have |9,0,1 7| > ¢ > 0. Hence | J1| < C(Au)~2.
For (4, —) and (—,—) cases, we can use (2.6). We distinguish between two cases:
if u(1 — ¢) is bounded, the computation of the derivatives of the phase functions
Y yields the inequality (2.5) and the conclusion follows the [12, Lemma 2.20]. If
pu(1—0) is large, we take A" = Au(1 —6) as a large parameter in J; . Since by (2.6),
we have

[(p— )2 = 6(p — ba) 2| = ¢(1 — )

with ¢ > 0. We get that [3,0,1; | > ¢ > 0 and hence |J;| < C(\u(1 —6))"V2. O
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To summarize, the Proposition 2.3 yields the dispersive estimates for G, for
the large values of k, L < k < e/h as follows:

1/2
|1o<aGasr(t, .y, 2)||re < Ch™2 (%) Z(hk:)_Q/?’)\—l/?’,

(hkj)f2/3(twkh71/3)fl/3’

IN
Q
=
&
A~
| >
~
=
[N}

(hk;)72/31571/3]€72/9hl/97

h 1/2 h 1/3
SCh‘?’(;) (?) P R

k<
B\ /6

< Ch3| =

car(®)”

where we used \ = twiph~/3 in the second line, and wy, ~ k2/3 in the third line. This
concludes the proof of Proposition 2.1. O

IA
Q
=
&
R
| >
~
=
[N}

2.2. Airy—Poisson summation formula. Let AL(z) = eT™/3Ai(eT™/32) | we
have Ai(—z) = Ay (2) + A_(2). For w € R, set

L(w) =7 +ilog (i;gi;)

As in Lemma 2.7 in [10], the function L is analytic, strictly increasing and satisfies

4

L(0)=7/3, lim L(w)=0, L(w)= §w3/2 — B(W¥?), forw > 1,
w—>—00
with
(2.7) B(w) ~igw Y bjw ™, bR, by >0,

Jj=1
and for all £ > 1, the following holds
L(wy) =27k < Ai(—w) =0, L'(wy) = 27r/ Ai*(x — wy,) du.
0

Recall that f; are constants such that ||eg(.,n)||L2,) = 1. This gives us

B )
2 2r

/ Ai?(x — wy) do =
0

The next lemma, whose proof can be found in [13], is the key tool to transform the
sum over the eigenmodes k to the sum over N.

Lemma 2.4. (Airy—Poisson summation formula) The following equality holds

true in D'(R,),
. 1
—iNL(w) __
E e =27 E 7L’(wk)5w:w’“'

NEeZ keN*
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That is, for ¢(w) € C§°,

> [ dw—27rZL,

Nez keN*
Now We rewrite (1 9) using the definition of the eigenfunctions e, and we replace

the factor kl =i by L, . We get

1 | fx]? 2 2/3),,4/3Y1/2
+2¢) 2424 wiph?/3n|*/3) 2/3
ga,co (t; T,Y,z ) (27‘(‘)2}],8/3 / +(yn Z k1/3 +(n k n | |

k>1

* xo(n” + C)vo(mxa(weh®? 1Y) (1 = xa) (ewn)
x Ai (h’2/3|77|2/3:c - wk) Ai <h’2/3\n\2/3a - wk) dndc,

= G | OO X e g
s Wi
k>1

* xo(n” + C)vo(mxa(weh®? 1Y) (1 = x1) (ewn)
x Ai (h’2/3|77|2/3:c - wk) Ai <h’2/3\n\2/3a - wk) dndc,

1 / 7 (n+20) 27rz O ‘”k ¢! (P HC ARV ) 2/3

X Xo(n* + QQ)@/)o(ﬁ)Xl(wh2/3|77|4/3)(1 = x1)(ew)
X Ai(h’2/3|n|2/3:c - w)Ai(h’2/3\n\2/3a - w) dw dn dC.

Using Lemma 2.4, G, ., becomes

1 i z —i w z 24 Lh2/3|p|4/3)1/2
Gucalb,.9,2) = g [ £H010) 3 N g
NEeZ

X Xo(C® + n*) o (m)xa (wh®?n]**) (1 = xa) (ew)
X Ai (h_2/3|n|2/3x — w)Az( “231|?3a — w) dw dn dc.

From definition of the Airy function (see Appendix)

)

N
(A (W)) — (N o 3iNW2 iINBW?/?)
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where for w € R, we recall that B(w) € R is defined as in (2.7). It follows that

(_1)N i 20) it (n2c2awh2/3|n|4/3)1/2
Gueo (2,9, 2) = D yosayps | O g2
NezZ

x xo(¢* +0?)o(m)xa (Wh™ [ **)(1 = x1) (ew) (j;g)

x Ai <h_2/3|n|2/3x - w)Az’ (h_2/3|77|2/3a — w) dw dn dc,

(2.8) =y (2;;4%

NEeZ

. 3 3
o / o (g oGO+ oo 3 2024 5 (nf? S —wh® )45 o (nf* Sa—wh?/?))

< nl*x0(¢* + 170 () x1 (wh*[n]?) (1 — x1) (ew)
x e FINWPHNBWY2) oo do dndc,

1/3 and

From the first to the second line, we made a change of variables s = Sh™
o = Yh'/3 in the Airy functions; but for simplicity we keep the notations s, o.
Therefore, (2.8) is a local parametrix that reads as a sum over N. Notice that our
parametrix coincides with the constructed sum over reflected waves in [12] since each
term has essentially the same phase. In the sequel, we refer the sum over N € Z as
the summands of waves corresponding to the number of reflections on the boundary,

indexed by N.

2.3. Dispersive estimates for a > h3(1=¢), ¢ € 10, €[. In this subsection,
we establish the local in time dispersive estimates for the parametrix in the form
(2.8) as a sum over N € Z in the regime a > h30~<), for ¢ € ]0,¢[. Recall that
our local parametrix under the form (2.8) is constructed from (1.9) together with
the Lemma 2.4. It is a sum of oscillatory integrals with phase functions containing
an Airy type terms with degenerate critical points. We give a precise analysis of
the Lagrangian in the phase space associated to these oscillatory integrals. This
geometric analysis allows us to track the degeneracy of the phases when we apply
the stationary phase method.

x

| /

‘ N = 2 Swallowtails regime ‘

Figure 2. Swallowtails.

To deal with (2.8), we introduce a change of variables

aw = h2/3W|77|_2/3a T = G,X, g = |71|§> § = a1/2|77|1/3§7 o = a1/2|n|1/36~7.
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Then we can rewrite G, ., as follows:

(2.9) Gaco(t, 2,9,2) = > Gan,

Nez
with for each N € Z,

()

Gulto..2) = ore [ ef® e a1+ 1CE)oln) o)
(2.10) x (1 —x1)(eah™3n|*3%) d5 d& do d¢ dn,

with the phase function Oy o5 = Py anlt, z,y, 2; 5,6, .C, n),

3
v = -+ Inl=C + lt(1 + C2 + a)? +a3/2|n|( HX —3)+

o
3
4

h
~3/2 3/2,.3/2
gNw/ +a3/2wNB( / /|n|/h))

The main result of this subsection is Theorem 2.5. It gives the estimate of the sum
over N of the oscillatory integrals of the form (2.10) by using the stationary phase
type estimates with degenerate critical points.

Theorem 2.5. Let o < 2/3. There exists C' such that for all h € 0, ho|, all
a € [h* ap], all X € [0,1], all T €]0,a""?], all Y € R, all z € R, the following holds:

(2.11) > Gun(T XY,z h)| < Ch* h v h 1/2+a1/8h1/4 .
) 9 ) 9~ — t t

0<N<Cga—1/2

+5(1—a)—

Notice that the first part on the right hand side of (2.11) corresponds to the
free space estimates in R?, while the contribution in the second part appears as a
consequence of the presence of caustics (cusps and swallowtails type).

First of all, we observe that when N = 0, G, satisfies PG, = 0 and the asso-
ciated data at time ¢ = 0 is a localized Dirac at = a,y = 0,2 = 0. Therefore, G,
satisfies the classical dispersive estimate for the wave equation in three-dimensional
space; that is,

(GunlT, X, Y, 2, )| < 0h3<%).

Thus it remains to prove the Theorem 2.5 for the sum over 1 < N < Cpa~ /2.

First, we can apply the stationary phase method to deal with the é—integration
appearing in G, n as the following lemma.

Lemma 2.6. One has

i 2C C2+ai)l/ e
T = / eHIGEHOE a2 21 4 1E2)) dé

)

N2 i a2
— (?) eh MVEE=2%(1+ad) / Yo
where Y is a classical symbol of order 0 with small parameter h/t.

Proof. We apply the classical stationary phase method for Jy , . First we make
a change of variable z = tZ. Let the phase function ¢ be

$(C;2,@,a) = 20+ (1 + C + a@) 2,
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Differentiating with respect to 5 , we get

- ¢
0z =2+ — .
o (142 + aw)'/?
On the support of xq, we have m < 1 — 24, for some 6; > 0 small. If

Z| > 1 — 6y, then the contribution of (-integration is O¢e((h/t)*°) by integration b
g Y g Y

parts. Thus we may assume that |Z] < 1 — d;. In this case, the phase ¢ admits a

unique critical point on the support of yo. It is given by [, = —M and this

V1-22
critical point is nondegenerate since
14 aw
(14 2+ aw)3/?

Then by the stationary phase method (as |Z| <1 — ),

n\? i|n| tV1-22(14+aw)'/? &
INan = n en Xo- H

2 4
=

By Lemma 2.6, (2.9) becomes

ga7co (ta z,Y, Z)

(—=i)Na? (h 1/2 i G
= (2m)iht (i) /‘ﬁ et PP oo (1 — x1) d5 da di dny,
NeZ

(2.12)

where éN,avh =P onl. fc, .); that is,

3
P — - S - -
o =y + VI (1408 4 a2 (45X - 3)

53 4
2.13 — 4+ 5(1 — @) — =N*?
(2.13) +gtoll-w)—ghe )

NB(®3/2a3/2|n|/h)>.

Now we introduce the change of variables

t=ad'?T, y+tv1-22=d"?%,
aw a®/?

N2 1 = ) = -
(1+aw) 1 = av,(0) 15 (1t ad)? and A - 7]

We get (2.13) as follows:

~ a3 ~3
o = a3/2|n|{Y +TV1 = 2279,(@) + % +3(X - @) + % +6(1-a)

4 h
2.14 — —NG??
( ) 3 W™+ 3727

NB(@3/2a3/2|n|/h)}.

First, we study geometrically the set of critical points Cy 4 of the associated La-
grangian manifold Ay, for the phase function ®y, 5. The set of critical points is

defined by
Ca,N,h = {(tﬂfa Y, S, 57@7?7) \ ag&)N,a,h = aéci)N,a,h = &Dci)N,a,h = 8n(i)N,a,h = 0}-
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Then C, v, is defined by a system of equations

X=0-5§8, o=1+4d%
21 +aw)'\? (. ~1/2 3 o ~3/2
=3 ~3 4
Y = TVI = 2y,(@) — % X —@) - % —5(1— @) + N2 (g . B’(&J?’/Q)\)).

We may parametrize C, y 5 by (5, 5) near origin:

X=1+4+62-3, o=1+4>

= ——(1+a+as?)"? (3 +6 4 2N(1 +5%)? <1 - 23/((1 + 62)3/2)\))>,

Y = Hi(a,6)(5+6) + %(53 +6°) + %NHQ(CL, &) (1 — %B’((l + &2)3/2)\)) ,

(1+a+ ag?)'/?
1+ (14+a+ac?)'/?’
-3 — 4a — 4ac?

24+a+ac?+3(1+a+ac?)l/?

Hy(a,5) = —(1+ &%)

Hy(a,5) = (1+52)

Let Ay n C T*R3 be the image of C, v, by the map
(t,2,9,8,6,0,10) — (2,69, = 0u®Pnan, ™= O PNnan = OyPnan)
Then Ay, C T*R? is a Lagrangian submanifold parametrized by (3, d,7)

X =145 —3,

2
r— o rar a2 (e an o (1- G (e ),
G+ 6) + 2+ ) + o ~ 3 ~213/2
Y:H1(a,0)(8+a)+§(s +a)+§NH2(a,o—) 1—ZB<(1+J) )\> 7

¢=nia?, T=nV1-2(1+a+as*)? n=n.
On Cy np, we have w =1+ &2, thus the projection of A, N, onto R3 is

X =1+5%-3,
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As in [12], we rewrite the system (2.15) in the following form

X =1+5%-3,

(2.16) Y = Hy(a,5)(5+6) + 2(53 + %)

3
2 TV1 =22
‘H V(1 + 52)-1/2 s =
+ S Ha(a,5)(1+6?) (2(1+a+a62)1/2 5 a),

and
3 (3 - 9\ 12 TV1— 22 I
(2.17) 2N<1 4B (w >\> =(1+77) 2(1+ a + ag2)1/2 570

Remark 2.7. Notice that from (2.17) in the range of T € ]0,a"'/?], we can
reduce the sum over N € Z of G,y in (2.9) to the sum over 1 < N < Cpa~Y/2.

For a given a and (X,Y,T) € R3, (2.16) is a system of two equations for unknown
(5,5) and (2.17) gives an equation for N. We are looking for a solutions of (2.16) in
the range

a€[h® ag), «<2/3, a|lg)*<e, 0<T <aY? X e€[0,1] with ao, € small.

Then for a given point (X, Y, T) € [-2,2] xR x[0,a/?], let us denote by N'(X,Y, T)
the set of integers N > 1 such that (2.15) admits at least one real solution (7, §, \)
with a|g|> < € and A > X\g. We denote by N(X,Y,T) the set of complex N
such that (2.15) admits at least one complex solution (7,35, A) with ¢ € U, where
U={5¢€C,|5] <0.5or [Im(5)| < |Re(5)|/v3} and a|5|? < ey and A > ).

We have the following lemma on the geometric estimates whose proof follows the
same line as in the proof of Lemma 2.18 and Lemma 2.19 in [12].

Lemma 2.8. There exists a constant Cy such that the followings hold:

(1) For all (X,Y,T) € [0,1] x R x [0,a"'/?], one has the cardinal of N'(X,Y,T),
IN(X,Y,T)| < Cy, and NC(X,Y,T) is a subset of the union of four disks of
radius Cj.

(2) For all (X,Y,T) € [0,1] x R x [0,a"/?], the subset of N,

M(X,Y,T) = U N (XY, T

Y/ =Y |+|T'=T|<1,| X=X |<1
has cardinality satisfying

IM(X,Y,T)| < Co(14+TA2073).

We notice that for @ < 3/4, we get rapid decay in A by integration by part in &.
In particular, we may replace 1 — x; by 1 in (2.12). Moreover, the swallowtails will
appear when § = ¢ = 0 i.e. for @ = 1. For this reason, we introduce a cutoff function
x2(@) € C°(11/2,3/2[), 0 < x2 < 1, xo = 1 on |3, 2[ in the integral (2.12) and we
denote by G, n2 the corresponding integral. This G, y2 corresponds to the regime
of swallowtails. We write Gy v = Gy N1+ Gan2. Gani is defined by introducing xs
in (2.12). We will have @ > 5/4 on the support of xs.

To summarize, we have G, ., as follows:

ga7co - Z Ga7N - Z (Ga,NJ + Ga,N,Q) 5

1<N<Cpa~1/2 1<N<Cpa~1/2
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where
( —i)Na? 1/2 i i
G‘%Nvl - (27T)4h4 < ) /ehq)N’a’h|n|3>~<0w0X1X3(‘D)d§do-da)dna
( Z)N 2 1/2 .
Cara = oryipt <‘) / eh PV P Yotox x2(@)didadidn.

In what follows, we get the estimates for these oscillatory integrals based on the
(degenerate) stationary phase type result which consists in the precise study of where
the phase ®y .5 may be stationary.

2.3.1. The analysis of G4 n,1. Let us recall that the G, n 1 is the oscillatory
integral which corresponds to the regime where there are no swallowtails.

The estimates of G, n,1 can be obtained by combining the estimates of the fol-
lowing oscillatory integrals.

e First, for (8, 7)-integrations, we use the stationary phase method.

e Then, for w-integration, we apply the degenerate phase method.

e Finally, for n-integration, we distinguish by cases that contribute to the esti-
mates when we apply the stationary phase method. Meanwhile, the contribu-
tion in the estimates also comes from the cardinality of A defined in Lemma
2.8.

Our main results of this subsection are Proposition 2.9 and Proposition 2.10.

Proposition 2.9. Let a < 2/3.There exists C' such that for all h € |0, hg], all
a € [h* ap], all X € [0,1], all T €]0,a""?], all Y € R, all z € R, the following holds:

B 12
Y. Gana(TX.Y,zh)| < Ch—?’(;) ne.
2<N<Cpa—1/2
Proof. First of all, we apply the stationary phase method to (3,5 )-integrations
since on the support of x5 we have @ > 1. Let I be defined by

[ /eiA(fg(@X)+f’a(@1)) J5d

=%w-x¥”@—iﬂﬂ/?wwxw%%é)Mwlw%%—)ﬁda

1/25 1/2~

where we made a change of variables § = (0 — X)'/?5,6 = (0 — 1)"/%7 in the second
line but for simplicity, we keep the notations §, 7. Thus by the stationary phase near
the critical points § = +1,6 = 41 and integration by parts in s, ¢ elsewhere we get

I = )\71(&«] - X)71/4<aj _ 1)71/4629\(:&%(~ )3/2:|: (@-1) 3/2)b;tc;|: + Ocoo()\ oo)7

with b,cy are classical symbols of degree 0 in large parameter A(@ — X)3? and

M@ — 1)*/2 respectively. Notice that I is a part of the G, v corresponding to the
integrations in §, g. Therefore, we obtain

(—i)¥a2A L (R\V2 [
Ga7N71<T,X,Y,Z; h,) = W ? e h

3éa,N,l dT],

éa,N,l(Ta X,Y,z;h) = Z eAEN 1 g Oy e A0 + Ooe (A™°),

€1,€2
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where €; = £, 0, ,(©,a,\) = Xowoxlxg(d))(@—X)*l/‘l(d)— 1)*1/41951052 which satisfy

‘&Jl@fb@q@ < Cyw~12, and the phase functions are given by
~ 2
Dy en(T, X, 2,0) = TV1 — 227, (0) + gel(@ — X)¥?
2 4 N
(2.18) + 562(@ —1)32 — gNaf””/Q + XB(JJ?’/Q)\).

Let us denote

(—=)Na2A~t (B2 [ w .
(219) Ga,N,l,el,ez (T7 X7 Y7 Z3 h) = W ? e h Y77|77|3GG7N,1761,62 dT},

Ga,N71761762 (T, )(7 Z; )\) — /ei)\‘I)N,e1,e2 @61,62 ((D’ a, )\) do.

We are reduced to proving the following inequality:

1/2
(2.20) < COh~3 (%) h/3,

Z Ga7N71761752 <T7 X7 Y7 Z, h)

2<N<Cpa—1/2

with a constant C independent of h € |0, hol, a € [h?/3,ao], X € [0,1], T € [0,a"/2].
For convenience, let Q = @3/2 be a new variable of integration and we get

(221) Ga,N,l,el,ez (T, X7 2 )‘> = / ei)\(i)N’el’SQ 661762 (Qa a, )\) dQv

(:)61752((2, a, A) are smooth functions with compact support in §2. As dw = %Q*I/3d9,
we get }Qlaé(:)q@} < Q2723 with C; independent of a, A and the phases (2.18)
become

- 2
Dy ereo(T, X, 2,050, ) = TV — 227,(Q) + g61(92/3 — X)3/2
2 4 N
+ 26(Q¥3 —1)2 — _NQ + = B(Q)N).
3 3 A
We now study the critical points. We have
. 2 3
OB v = 5 Hoereo T, X, 259) = 2N(1 -8B (m)) ,
T
Hyeyoy = Y3 (5\/1 — 22(1+aQ*?) 72 4 (Y7 — X))V
(2.22) + 6 (Q%3 — 1)1/2>,
L a3 T = 2/3\—3/2 2/3
OaHue e = gQ — 5\/1 — 22(1 4+ aQ??) 722 (1 + 2a02%/7)

+ ElX(QQ/?, o X)—1/2 + 62(92/3 o 1)—1/2) )

We will first prove that (2.20) holds true in the case (1, €2) = (4, +). We have that
the equation 0o H, 4 +(©2) = 0 admits a unique solution Q, = Qf (T, X, 2, a) > 1 such
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that
(2.23) lim Q;’(T, X, z,a) =1 wuniformly in X, 2, a,

T—o00

9 al' —— =5/2 (1
0> 592/3832Ha,+,+<9q) Y 1z (1 + an/B.) <§ - an/s)

Loz —3/2 1 2/3 —3/2
- dowr -y - Dx (e - x)
Thus, the function H, () is strictly increasing on [1,§2,[ and strictly decreasing
on |€,, co[. Observe that

T
. a = — —Z +a) 7+ (1 - , m H, = 2.
2.24 Ho i (1) = 5 V1—22(1 2 4 (1 - X)Y? Jim Hy =2
—00
For all k, there exist constant C} such that
(2.25) VQ > 1, |05(NB'(QN)] < CpNA2Q ++2),
Let Ty > 1. First, suppose that 0 <7 < Tj. Since H, 4 +(Q2) < C(1+T) and for

N > N(Ty) = C(1 + Tp) for some constant C, we get [0o®Py 4 | > N with the
constant ¢y > 0. Then by integration by parts, we get |Gon1+.+| € O(N-®°A™>)

and this implies

sup Z Ga,N,1,+,+<T7 X7 Y7 Z) S OCw(hoo)
T<Tp,X€[0,1],YER,zER N(Tp)<N<Coa—1/2
Next, for 0 < T < Ty and 2 < N < N(Tp), we may estimate the sum by the sup of

each term. In this case, we see that (iDN7+,+ has at most a critical point of order 2
near () = (2, and

0@ 1 4| + 060N+ |+ [05Pn 1 4| > ¢ > 0.

Moreover, if N > 2, we have a positive lower bound for \8Q§>N7+,+(Q)| for large
values of €2; thus the contribution of éa7N717+,+ is Ogee (A7) for large values of €.
The critical point of order 2 near 2 = €),, the estimate of ém N.1.+4.+ 1S given by the
Lemma 2.20 [12] which yields |Gy n.144(T, X, z;A)| < CA™Y3 with C independent
of T € [0,Tp], X € [0, 1]. Hence from (2.19), we get

B\ 12

XE[OILYER2€R |9 N v (Ty)
1/2
< Cp? (%) /3.

Then we prove that (2.20) holds true for Ty < T < a~'/2. Like before, we may
assume N < CT with C] large, the contribution of the sum on N such that CiT <
N < Coa='/? being negligible. From (2.23), we may choose T large enough so that
QJ(T, X, z,a) < Qg with Qg > 1 for T > Ty and we may assume with a constant
¢ > 0 that

By (Q)] > T3, YQ>Qy, VT > Ty, YN < Coa V2

Therefore, on the support of (:)+7+, the phase ® N+,+ admits at most one critical point
Q. = Q(T, X, 2, N, A\, a) and this critical point is nondegenerate. Because N > 2,
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from the first item of (2.22) we get (/* < T and this implies QF° ~ T/N. As a
consequence, if T/N ~ 1 then 2. ~ 1. By stationary phase method, we get

|Ganis (T, X, 2 0)| < CA™Y2TY2  with C independent of N.
If T/N > 1, then we perform the change of variable Q = Q(T/N)? in (2.21); the
unique critical point 2. remains in a fixed compact interval of |0, oo[. We have
L0, L (UT/N)*,a,\) < o (N/T)?Q72/37F,
Thus by the stationary phase method, we get

sup |C~JG,N71,+7+(T, X,z \)| < CXTYRTY2,
2<N<C1T,X€0,1],2€R

It remains to estimate the sum

Y Ganair s (T, XY, 2 h)].

2<N<Cpa—1/2

Let Gn(T, X, 2, A\ a) = (iJNﬂL,Jr(T, X,2,Q(T, X, z, N,\,a), \,a). Therefore, by the
stationary phase method at the critical point Q. = Q.(T, X, z, N, \,a) in (2.21), we
obtain

éa,N71,+7+(T7 Xa 2y h) = )‘71/2T71/26»\GN(T7X7Z7)\7G)¢N(Tv X7 )‘7 a’)a

with YN (T, X, A, a) is a classical symbol of order 0 in A. Therefore, if we denote
A =a%?/h = \/n, we have
(=)Na*A" 2 —1/27-1
G, T,X,Y,z;h) = ————"— | — | NV2T71/2
7N,l,+,+< y Ny Iy 25 ) (27T)4h4 t

(2.26) x [ e R

It is an oscillatory integral with large parameter A and phase
Ln(T, X,Y, z,n\) = || (Y+ Gy(T, X, z, Xn,a)) )
By construction, the equation
Oy =Y +GN(T, X, 2, N\, a) + \O\GN(T, X, 2,\,a) =0

implies that (X,Y,T) belongs to the projection of A, x, on R3. As in the proof of
Proposition 2.14 [12], we see that the contribution of G, 14 + for the sum over N
such that N ¢ N1(X,Y,T) is O(A~*). Thus it remains to estimate the sum

(2.27) Y Gunast(T,XY,2,h)

NeN:i(X,Y,T)

We apply the stationary phase method for 7-integral with the phase function Ly.
We have
oLy =Y + Gy + Ah\Gy,
with

) N
MNNG = A0rB 44 (T, X, Q0. ) = (= BOL) + A2B (M)

Then we obtain N
Ly = ;(AQC)@(AQC)B”(AQC).
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On the other hand, 0,(2. satisfies
NGO+ + () = —0300Pn 4 +(Q) = —NQB"(AQ,).
As we have 3Py 1 (Qe) > IO QMR ~ T/N, and for w large, we have
B"(w) ~ w™3. We get
05| < TIQENQAT3Q%) < ed 20t
This yields
1O (AQ2)| = A + Q| > (1 — eAT2Q%) > Q..

Hence we deduce that
02Ly| > CNAT2Q
Therefore n-integration produces a factor ¢~'/2 with ¢ = NA7'Q;!. Let us recall
that
INMU(X, Y, T)| < Co(1 +TA2Q.?).
We get the estimates of the sum in (2.27) by distinguishing between many cases which
depend on whether there are contributions from 7-integration and the cardinality of
N1, INL(X, Y, T)| as follows:
First case, if O ~ T/N ~ 1, then T'~ N and
e if N < ), then there is no contribution from 7-integration and we have |N;| <
Cy. Hence the estimate is

: : Ga7N717+7+

h 1/2
<Ch~? G) (R AP ATPT )
NeN:

- h 1/2 - - h, 1/2
< Ch 317 a 1/4h1/2 < Ch 317 h1/3
> p = + )

since a Y4pY2 < B3 when a > h2/3.
e if \ < N < A2, then there is a contribution ¢~'/? factor from n-integration
and we also have |[N;| < Cy. We get

1/2
Z Ganisi| < O3 <ﬁ) (h71)\71a2)\71/2T71/2N71/2)\1/2)
NeN; t
h 1/2 h 1/2
< Ch3<?) (h'a®A\7?) < Ch?’(?) W3,

e if N > A2 then there are contributions from both ¢~'/? factor from n-
integration and |[N;| < CoT'A™2. Thus the estimate is

Z Ga7N,17+,+ < Ch_3 <%)1/2 Z (h_l)\_1(1,2)\_1/2T_1/2N_1/2)\1/2)
NeNl NeNl
B 172

B b 1/2 B B h 1/2
<Ch?(— ) (a 2p?) < ChP " W3,

Second case, if T/N > 1, then €. > 1. We have



620 Len Meas

o if N < X}, then there is no contribution from n-integration. Moreover, we
have |[Nj| < Cy. To see this point, assume by contradiction T' > A2Q?; this

implies Qv ~ T /N > X, which is impossible since €. > 1. Thus the
estimate is

E Ga,N1+,+

NeM

-3 h 2 —1y—1_2y\—-1/2p—1/2
<Ch (=] (h'IATaPATVPTT)
- t

-3 h 2 —1/4711/2 -3 h 2 1/3

o if N > AQ. and M2/® < T < X202, then there is a contribution ¢~Y/2 factor
from n-integration and we also have |Ni| < Cy. We get

1/2
< Ch—3 <ﬁ) (h_l)\_1(1,2)\_1/2T_1/2N_1/2)\1/291/2)
> P c

73h1/2 —1_2y-2 73h1/213
<cn?( 2] (e <O - W3,

§ GanNit

NeN;

e if N > \Q. and T > A2Q2, then there are contributions from both ¢~/2 factor
from n-integration and [Nj| < CoTA2Q 2. We get

1/2
Z Ga,N,1,+,+ < ChL=3 (E) Z (h71)\71a2)\71/2T71/2N71/2)\1/2Qi/2)
NeN; t NeN;
h 1/2
<Ch™3 (;) (RIATPTIQ2BIN(X, Y, T)))

_s(h 2 ~1_2y-3 —4 _s(h 2 1/3
<on®(Z) (AAP)aN <o (1) w

Next, we prove that (2.20) holds true in the case (€1, €2) = (+, —). In this case, from
the last item of (2.22), X € [0,1], and B”"(AQ2) ~ A73Q73 we get that for T > 0,
OaH, 1~ () +2XAB"(AQ) < 0; that is, the function H, 4 () + 2 B/(AQ) decreases
on [1,00[ from H, 4 (1) + 323X B'(\) = L1 = 2(1+a) "2+ (1 - X)2+ 3 B'()) to
(Ho+— + 2 B'(X.))(c0) = 0. The equation do®y - = 0 admits a unique solution
Q2. and it is nondegenerate; thus we can argue as (+,+) case. Finally, the case
(€1,€2) = (—,+) is similar to (+,+) case and (e, €3) = (—, —) is similar to (+, —)
case. The proof of proposition is complete. O
Now we prove the estimates for N = 1.

Proposition 2.10. Let o < 2/3. There exists C' such that for all h € |0, hy|, all
a € [h* ap], all X € [0,1], all T €]0,a""?], all Y € R, all z € R, the following holds:

h 1/2 h 1/2
Ga,l,l(Tu X7 sz; h)’ < Chis <?) ((z) + h1/3 .
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Proof. Let us recall that

(=)@ RN\ e
CGar1 = o “’

Cogn =Y [ ?P20, ., di + O (h).
€1,€2
We recall that ¢; = +,0,, ,(@,a,)) = Xotoxixs(@)(@ — X)" V4@ — 1)"Y4b,, ¢,
which satisfy |©'9L0 < Cy@w~'2. The only difference with the case N > 2 is in

the study of the phase <f>1,+7+ since in the case N = 1 we may have a critical point
w, large. Let

a,1,1 d77>

€1,€2

(228) Ga71’17+’+ = /eiAé1’+’+@+,+<aJ7 a, )\) d(IJ,
with the phase function

N 2
i (T, X, 2.0) = TVI = 229(0) + 5 (@ — X)*
2 4 1

+ g(a) —1)*% - 5@3/2 + XB(Aaf"’/Q),

A) is a classical symbol of order —1/2 with respect to @. Let denote

and O, (@,
(W) € C (]wl, [) with @& large and set

(2.29) Jisg = / PO, (@, a, \)xs(@) dad.

To prove the proposition, it suffices to verify |J 4 4| < CA~Y2T~1/2. We have
~1/2

. T
05144 = SVI = 2(1+0a@)? = ———(1+ X) + Oc=(@7*%),

- —Ta _ B o3/2
Dao®ra4 = — V1= 2(1+0@) ™ + ——(1+ X) + Oc~ (@),

Thus, we see that to get a large critical point @., T" must be small. It follows that
@ "% ~ T and thus 92,®, , (&) ~ T3. Now we can make a change of variable
w=T7"20 in (2.29). Because O, (@, a, )\) is a classical symbol in @ of order —1/2;
thus O, (T720,a,\) = T~'0Y20, (T~%0,a, \) is a classical symbol of order 0 in
0 > g > 0 uniformly in 7" € ]0, Tp] and we also have Ry~ T L or TPy 4 ~

1. Therefore, the stationary phase method yields

j L[ )i pa - o 1 /AN -1/2
‘JLJF,JF‘ - ﬁ/eZ(T)TCI)L-F&TU 1/2@+,+<w7a7 )\)X?)(T 2U> dv < CT(T)
[T g4l SCATRTTY2,
which is the desired result. ]

2.3.2. The Analysis of G4 n2. Recall that the Gy n2 is a sum of oscilla-
tory integrals which corresponds to the regime where there are swallowtails; that is,
corresponding to the case when s = =0 i.e. for w = 1.

The estimates of G, n2 can be obtained by combining the estimates of the fol-
lowing oscillatory integrals.

e First, we consider the w-integration by using the stationary phase method.



622 Len Meas

e Then, for n-integration, we distinguish by cases that we can apply the sta-
tionary phase method, namely there is an n-integration contribution when
N > ), while there is no n-integration contribution as N < A. Meanwhile,
the contribution in the estimates also comes from the cardinality of ; defined
in Lemma 2.8.

e Finally, for (§,&)-integrations, we consider 2 cases that contribute to the
estimates, namely N > A\'/3 (Lemma 2.12) and N < A'/? (Lemma 2.13).

Our result of this subsection is Proposition 2.11.

Proposition 2.11. Let o < 2/3.There exists C' such that for all h € ]0, hy], all
a € [h% ap], all X € [0,1], all T €]0,a="?], all Y € R, all z € R, the following holds:

1/2
Z Gona2(T, XY, 2, h) g(]h—?’(%) q/Bpl/A

1<N<Cpa—1/2

Proof. First, we rewrite G n2 in the form

—i)Na2 (R\ 1a%/2 =
(230 Guve =G (v) [ P Guvac

Gana = [ e*™Merggiboxixe(@) d3 dé do,

with the phase
3

TV1 — 227,(@) + % +3(X — Q)

5 4 N
+ % +3(1-&) =SNG + TB@E2N).

Since w is close to 1 on the support of x2, we may localize s, ¢ in a compact set. Let
K ={3,6 € [-1,1],0 = 1} and K; be a suitable neighborhood of K depending on
the support of ys. Introduce a cutoff function x4(8,5,@) € C§° equal to 1 near Kj.
Then the contribution of (N}’a, n2 outside K is Ogee (A7) as a result of integration
by parts. Therefore we obtain

&N@,h(Ta X7 Z;5 ga 67 (:))

(2.31) Gana(T, X, 2,h) = /ei)“;;N’”vhx(é,&,cD,a) dsde di + Oce (A7),

X<§7 5-7 (:J, a, h) = >~(0¢0X1X2 (CD)X4<§7 5-7 (IJ),
with Oges (A7) uniform in 7, X, z, N,a and x is a classical symbol of order 0 in h
with support near K;. We first perform the integration with respect to @. We have
~ T 3
Osbnan = 5VI—2(1+az) =55 - 2Nw1/2<1 - ZB’(aﬁ/ﬁ)),
Rsonan = —No ™21+ O (A 207%)) + O (a'/?).

Because 8%@<;~5N,a7h < 0, it follows that d;,quﬂ,h decreases from 8@(}~5N,a7h(1) > 0 to
6@&5]\77@,;1(00) < 0. Therefore QZN)N,a,h admits a unique nondegenerate critical point @,
and we are interested in the values of parameters such that @. close to 1; then we
must have T' = T /4N € compact set of R, namely [1/2,3/2]. In addition, from the
equation Q;,QBN’a,h =0, we get

T 3
(2.32) SVI=2(1+a2) ™ =546+ 2N (1 - Z1}3’(af°’/2A)>.
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Now we study the solution of (2.32) with A = oo; in this case, we have
- 1
P+ a0)? =TV1— 22 — o (T + ai)'/?,

The solution of this equation is of the form &, = 3 Fy(a,T,5/N,5/N) where F
are homogeneous functions of degree k in (§/N,5/N) (see |12, Lemma 2.23]). B
comparing the terms with the same homogeneous degree in (5/N,5/N), we get

272(1 — 22)

Fy(1+ aFy) = T?(1 — 2%) which gives F, = =
1+ /1 +4af2(1 - 2)

9

and
(14 2aFy)F, = —%M(g +6)(1 + aFy)Y2,
We define
F, = ?\?( +6)(1 + aFy)'?,

\/FO 1+a[FO< 1+GFO)

Therefore w. = Fy + Fy + Oy with the notation O; means any function of the form

F = 3" Fi. Then by the implicit function theorem, we get that the equation
k>j

221 +a2) (1= SBEYVN) = TVI =2 — (54 6)(1 + ad)?

has solution of the form @, = Fy + Fi + Oy + 3 with go is a function of degree 0
in A\. By substituting w. into ¢N7a,h, we get a phase function which is denoted by
Unah = ONah(., D, .). It is given by

3

Unan =TV1—=227,(F) + - + (X F0)+§+5(1—F0)
E 1
+—0(1+aF)1/2(3+5)2—W(§+&)3+a]\7(’)3
9o 4 32 01

Therefore, by applying the stationary phase method for (2.31), we get

Gang = \/_/ eNINan (T, 5,6,1/N, a, h) d5dé + Ocse (A,

with ¥ is a classical symbol of order zero in h. Now, with A = A/5, (2.30) becomes
(—=i)Na? (h S| / 3 i " e e _
Gonog=~——-| — - A YY) |n135 d5 d& dn <+ O reo (X)),
NV,2 (2m)iht \ ¢ VAN € [n|"x d do dn + Oge( )

We study the 7-integration with the phase function Ly = (Y + ¥ N.ah) and a large
parameter A\. Follow the arguments in the proof of Proposition 2.9, we have

OpLy =Y + Unap + AU an =0
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implies that (X,Y,T) belongs to the projection of Ay ,; on R* and the sum for N
such that N ¢ N1 (X,Y,T) gives Ocos (A\~°) (see [12, Lemma 2.24]). Hence it remains
to estimate the sum

Z Ga,N,Q(T, XY, z; h) .

NeM

We also have |8,2,LN| > CNA20:. . Tt follows that there are 2 cases to consider.

e If N < A, then the contribution of the n-integration is Oge(A™%°) as a conse-
quence of integration by parts.

e If N > ), then by the stationary phase method, the 7n-integration gives a
contribution of a factor (NA™')~/2 since @, ~ 1.

Therefore, for N > A, it yields

. 1/2
(2.33) Gang = (=% (h /LAI/QN1/2/eiiLN<"c>|n|3>zl d5dé + Ocee (A7),
” (2m)*ht \t) /AN

Moreover, we note that the phase function Ly(7.) satisfies 0;Ly(n.) = ncagﬁ/N,avh,
95 Ln(ne) = 105V N op. In addition, when 9;Ly(n.) = 02Ly(n.) = 0 ; that is, when
sVUnNan = 02Unapn =0, we have 02 Ly (n.) = 1,03V 5 4, and similar for 5. Thus the
study the critical points of the phase Ly(1.) in (5, )-integrations is the same as ones
with the phase ¥y, 5. As in [12], to avoid multiplication of symbol by a classical
symbol of order 0 in A, we can replace Wy, by ¥ nn, Where

~ 53 5.3

Unan(T,X;8,0) =TV1 — 227,(Fy) + 3 +5(X — Fy) + 3 +a(1 - Fp)

FE L |
+ W(](l +aF)Y?(5+5)% - CICh 5)2 4+ aNOs.

Let us recall that Oj represents any function of the form F' =), . Fj,, where Fj, are
homogeneous functions of degree k in (5/N,5/N). -

In what follows, we get the estimates of the oscillatory integral associated with
the phase function ’l[)a’ ~,;, for different values of N, namely for N > A3 and N < A3,
Our results are Lemma 2.12 and Lemma 2.13.

Lemma 2.12. There exists a constant C' such that for all N > \/3,

1 0
(2.34) ——| [ ey, dsds
VN

Here C' is a constant independent of N > 1, X € [0,1],7 € ]0,a""?], a € [h*, ay)
and \ € [A\g, 00| with ag small and \g large.

< ONO/6,

Proof. Adapting the arguments in the proof of Lemma 2.25 [12]. It is sufficient
to prove that for all N > A\/3,

(2.35) ' / eMoNangy dide| < CATY3,

Set X — Fy = —AXN"%3 1 — Fy = —BX%2/3,5 = A3, 6 = A\™Y3y/. It remains to
prove that

(2.36) ’ /e“Z’N’avh)Zl()\l/‘g:c', AV Y da dy| < C,
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with the phase function Q;Nﬂ,h given by

13 13
Unan =TMWI — 2y, (Fy) — Az’ + — — By + L

3 3
Eg\/3

+— (1+ aFy)V2 (2 + /)% —

4N2(:c +9)? + aNOs.
Then (2.36) is an oscillatory integral over a domain of integration of size A*? whose
parameters Fy, Fy, A3 /N are bounded.

We will prove that the constant C'is uniform with respect to (A, B). We introduce
new variables (r,6) and write (A, B) = (rcosf,rsinf) with r < cgA?3. We have

2F,
8 ’l/}Nah—_A+x/2+ i (1—|—GF)1/2)\1/3(.’L‘ _'_y)

— L+ )P aN A0 (0 y ),

P 2F),
Opinan = =B +y” + T (L+ak) PAVG +4f)

L@ Y+ aNAO(( g ),

Moreover, the compactly support of x; in (§,5) yields

sup 6( , ,)Xl()\ Vg A=13y/ . )’ <O+ ||+ |y ),
(z',y")

with C independent of T',a, N, A\. Therefore, the oscillatory integral is bounded for
0 < r < rg, where 1¢ is a fixed constant, and for large (2/,y’) as a consequence of
integration by parts.

For r € [rg, coA%/?], we rescale variables (z/,y') = r'/2(z",y") and we set Yy o5 =
7“3/2#)}‘\,@& and \'(z",y",...) = xu(r' PXTBL" 2Ny ). Since r/2A73 s
bounded, we still have
"y

s (0| < G+ + 1D

(:B” 7y//

It remains to prove

(2.37) r <C.

2. 3/2,1,%
/ezr wN,a,hX/ d:L‘”dy”

Now we study the critical points of ¢, ,. We have

3
am”@ij,a,h = — COS 0 + $/I2 4N2 (l‘ + Yy )

+17120((@, ") + aNTIATR0((a" '),
X . 3
8y”¢N,a7h —_ _ 51119 + y//Z 4N2 (IL‘H + y//)Q
4+ 1/20(( " //)) —I—aNfl)\fl’r’B/QO((:L’”,yl/)Q).
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and

3
g ap = 22" = S (2" +¢") + r20(1) + aN I 20((2", "),

3
8§,,y,,¢;‘v7a,h = a;”:v”@bj\/,a,h — _5(:[// + y//) + 7“_1/20(1) + aN_lA_lrg/QO((l‘”, y//))’

3
a;”y”w}k\/,a,h _ 2y// _ §<x// + y//> + 7’71/20(1) + aNfl)\flr3/2O<<x//’y//)).

For small a and large rg, we may localize the integral to a compact set in (z”,y")
as a result of integration by parts for large (2”,3"). The Hessian of ¢, ,, that we
denote by Hy(z",y"), takes the form

H(2",y") = det (ai”f”wvv“vh 85”@”%7“”‘)

2 * 2
ay//x// wN7a,h ay// y// ¢7V,a7h

_ 41‘”?/” . %(ZL‘” +y//)z +T_1/20(1) + aN_l)\_l’r‘g/QO((l‘”,y”)).

Thus for N > 2, a small and rq large, outside (2”,y"”) = (0,0), define a smooth curve
' = {(2”,y") such that Hy(z",y") = 0}; that is, I is close to the union of two lines
(" +y") £ (@" —y") =0, = N]f,g?’ € [1/4,1]. Then we have 2 cases to consider

e The contribution of points (z”,4”) outside I to the integral is Oge (r~3/2) by
the usual stationary phase method and we get

r /eirg/ijv,a,hX/dl‘/,dy/, < CT_l/Q.

e The contribution of points (z”,y") close to I' is given by Lemma 2.21 [12].
For any values of 6, the hypothesis of part (a) Lemma 2.21 [12] holds true,
then we get

r < Cr(r3/?)=5/6 = cr=4,

- n3/2, %
/ezr wN,a,hX/ dl’//dy//

Hence in any cases, (2.37) is satisfied. O

To summarize, recall that T ~ N in this case and hence the cardinality of N7,
IM(X,Y,T)| < Co(1+TA?). We deduce the estimates for the sum of G, yo with
Lemma 2.12 for N > \/3 as follows:

o If \1/3 < N < ), there is no contribution from n-integration and we have the
cardinality of Ny, |NV;| < Cy. We obtain

1/2
Y Gawa(T, XY, 2 h)’ < Ch‘?’(%) (R a2~/ \=5/6)

NeN;
h 1/2
<Ch3<—) hi/3.
- t
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e If A < N < A2, then there is a (NA™')~/2 factor contribution from -
integration and we also have the cardinality of N7, |N;| < Cy. We get

h 1/2
Y GawalT, XY,z h)' < Ch‘?’(?) (b= a>T 127\ 75/)

NeM

-3 h 2 -1 _2y—-1/2y-5
<Ch3( =] (b 'a®ATHENTHE)
= t

. (h 1/2
<Ch3( =) n/s,
= t

e If N > )2 then there are contributions from both (NA™1)~'/2 from -
integration and the cardinality of N, [N7| < CoTA2. We get

h 1/2 1
. =3[ —-1.2 - y—2/3
Z GG,N72<T7 X7 Y7 Z; h’)' S Ch (t) Z (h a N)\ )

NeN NeN;

1/2
<Ch™® (%) (W 'a® AT HN(X, Y, T)))

- h 1/2 - - h 1/2
<Ch?{— ) (a WP < Ch? - W3,

Lemma 2.13. There exists a constant C' such that for all N < \'/3,

1 "
(2.38) ——| [ ey d5da
VN

Notice that Lemma 2.13 says that for NV large it gives a better estimate and it is

compatible with the estimate (2.34) for N ~ /3.
Proof. Let % = A > 1 and we take A as a new large parameter. To get the
estimates of our oscillatory integral, we set

X—Fy=-pN? 1-Fy=—-qN? §=-z/N, &=—¢/N.

< CN71/4)\73/4.

It yields 'J}N,a,h = N3y on. Then it remains to prove that

(2.39) ‘ / eMNang (z/N,y/N, .. ) dzdy| < CA™3*,
with the phase ¥y, takes the form
PO 2 o2
YN,a,p = PT — TTW-3F Eo(1 +akFy) /*(Z +9)
r = _ o
+ m(w + )2 + TN*V1 — 227,(F,) + aN 20((x, y)g).
We have
Othnan =p— T+ 2Eo(1 + aFy)'? )
2.4 —
(2.40) bl

( (Z+y
z+§)° +aN?0((2,5)%),
Ognan =q— G+ 2Eo(1 4 aFp)*(z + §)

)

3 _ o
+W($+?/2+GN *0((z,9)%),
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and

3
2N?

a**wNah = gfd—}N,a,h = 2Ey(1 + aFp)'/? +

P nan = =2+ 2E5(1 + aFp)? + —— (7 + 9) + aN20((z, 7)),

3
2N?

573 (T +7) +aN?0((7,7)).

52 (T 7)) +aN?0((7, 7)),
Bayonan = =20 + 2Eo(1 + aFp)'? + 2N2
The Hessian of ¥y, 1, that we denote by Hy(Z, 7, a), takes the form

. UNan OZnan
HN (ZE’ y7 ) d t (62’17Z)N a, h aggd)]\f,a,h

(2.41) = 47y — 4Ey(1 + aFp)*(z + 9) — k — (@ +9)*+aN?0((z,7)).

N2
Lemma 2.14. There exist constants 1o and C' such that for all (p,q) such that
()| = 7o,

(2.42)

/ MNNang (Z/N,§/N,...) dT dy’ < CAPS,
Proof of Lemma 2.14. Apply the arguments in the proof of Lemma 2.26 [12]. Set

(p,q) = (rcos,rsin®) with r > ro. Let x € C3°(|(Z,9)| < ¢) with small c and x =1
near 0. Then from (2.40), we get by integration by parts in (Z,y), for all k,

[ )l V.. g < Ot

For |(z, )| large, we make a change of variable (z, ) = r*/?(a’,y') and we set ¢y , ), =
r=3/ Q@Nﬂ,h. Then it remains to prove

"’“ / e M (1= ) (@, o) (P22 N, P2y N, ) dad dy| < CA5S,

We observe that since (1 — x)(2’,y') = 0 near 0, (1 — x)(2/,y') = 1 for |(2/,y')| > ¢
and Y is compactly support, we still have

sup
(="y")

0&,@,)(1 _ X)(Jf,,y')fa( 1/2 //N 7,1/2 //N )‘ 7<1 + |.T,| + |y/|)—\»y\

The phase ¢}, , is of the form

B 13 13
van = (cos0)a’ = T + (sin0)y’ = o + 51
TN3

7z V1= #7a(Fo) +aN” 20((,y)?).

.T, 4 y/)3

We get that

- 3
Oty g = cOSO — 2" + m(wl +9)? +aN?0((=',y)?),

a wNah =sinf — yl2 + — (l‘/ + y/)Q + (lNiQO(({L‘I, y/)2)'

4N?
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and

. 3
82’x’¢§\7,a,h —22' + W("LJ + y/) + (IN_QO((I‘,, y/))7

. . 3
82/y/'l/}§\[7a’h == 65/1./1/};\/’7a’h 2N2 (.T _'_ y ) + aN 20((.T y ))

ajly/’(%vﬂ’h 2y + —= 2N2 (ZLJ + y,) + aN_QO((Ij, y/))
Thus for small a and large 7o, by integration by parts, we may localize the integral
to a compact set in (2',y). The Hessian of ¢y , ,,, that we denote by H'n(2', ', a),
takes the form
% 92,
HI {L'I, I,(l — det ( 'z’ ¥ N,a,h 'y’ ¥ N,a,h
N( Yy ) a;’m/’l/jg\ﬂa,h aS/y/'l/fg\fﬂ’h

3 _
= 42’y — m(w' +9)? +aN"20((',y))).
We apply the same argument as before, for N > 2. a small and ry large, outside
(«',y) = (0,0), we set T' = {(2/,¢) such that H'y(z',y’) =0} and there are 2 cases
to consider:

e The contribution of points (7/,') outside T to the integral is O(r—*2A~1) by
the usual stationary phase method; that is,

’7«/6"3/2Aw§v,a,h(1 —X)($/,y/)>21( 1/2 //N T1/2 I/N )d[L‘Id’yl < 07“71/2/\71.

e The contribution of points (z’,y) close to I' given by Lemma 2.21[12|. For
any values of 6, the hypothesis of part (a) Lemma 2.21[12] holds true, then
we get

< Cr(rg/QA)_5/6

T/eirs/QAwgv,a,h(]_ —X)($,,y,)>2 ( 1/2 //N T1/2 //N )d[L‘ldy,

< Cr VANTE/6 O

Lemma 2.15. There exist constants ro and C' such that for all (p,q) such that
(0, )| < 7o,

(2.43)

/“‘Wah 1(Z/N,5/N, .. )d:zdg'gCA?’/‘*.

Proof of Lemma 2.15. Now we consider the case |(p, q)| < 9. There exists ¢ > 0
independent of N > 2 such that

L, 3

4N2 > co(z* + 7).

_ _ 3

Then by integration by parts, (2.40) gives a contribution Og(A~>°) to the integral
(2.39) for large values (Z,y). Then we may assume that (z,y) is in compact set. It
remains to prove

' / eiAwN’avhxld:Z*dg’ < CA3/4,
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with the phase
_ i.?) g?) 1
YN = PT — 3 +qy — Ey + Eo(1+ aky)' (2 4+ 9)* + W(f +7)°

+ TN3V1 = 227,(Fy) + aN~20((z,5)%)

and the Hessian Hy (7,7, a) of ¥y .n is given by (2.41).

For a small, the set I' = {(Z,y,a) such that Hy(z,y) = 0} is a smooth curve
that is close to the elliptic 427 —4Eo(1 +aFp) /(2 +79) —3(Z+y)? = 0 for N = 1 and
close to hyperbola 42§ —4Ey(1+aFy)/?(Z+7) — 2 (2+7)? = 0 for N > 2. It remains
to use [12, Lemma 2.21] (see Appendix) for (z, y) near (p, q) with |(p, q)| < ro. Hence,
there are 3 cases to consider:

e If (p,q) is outside T, then the contribution to the integral is A~! by usual
stationary phase method.

e If (0,0) # (p,q) is close to I', the contribution to the integral is given by
Lemma 2.21 [12]|. Since the hypothesis of part (a) in Lemma 2.21 [12] holds
true, then near (p, q) the contribution to the integral is A=/6.

e If (p,q) = (0,0), we have (z,y) near (0,0) and hypothesis of part (b) in Lem-
ma 2.21 [12] holds true. Then the contribution to the integral is A=%/4. [

Lemma 2.14 and Lemma 2.15 yield the proof of Lemma 2.13. U

Notice that when N < A3, there is no contribution from 7-integration and the
cardinality of N, [N1] < Cy. As a consequence, we obtain the estimates for the sum
of Ggno for N < A3 as follows:

1/2
Z Gana(T, XY, 2; h)‘ < Ch™3 (%) (h71a2A*1/2N*1/4)C3/4)

NeM

—Bh’l/2 1/811/4 n7—1/4
<ch?®(=) (aBRVANTY).
- t

We notice that we get the same estimates for N =1,

1/2
N B L

-3 h V2 1/811
<ch?(=) (an'%).
- t

To summarize, putting these estimates together we proved that

1/2
Z Gana(T, X,Y, 2 h)| < Ch™? (%) (W3 + a'/Bp1/).

1<N<Cga~1/2

Notice that h'/? < a'/*hY* when a > h?*/?; hence the proof of the Proposition 2.11 is

complete. 0
Proof of Theorem 2.5. Putting the estimates in Proposition 2.9, 2.10 and 2.11
together yields the desired result. 0

3. Dispersive estimates for egv/a < 1 < ¢y

In this section, we prove Theorem 1.4. To get the estimates for G,,,, we dis-

2(1—e
tinguish between two different cases. The first case deals with a < (th \/5)3(1 )

Y
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€ 10,1/7[, where we follow ideas in section 2 and construct a local parametrix
201_¢

as a sum over eigenmodes. The second case is a > (ﬁ)?’(l ), for € € 10, €],

where the Airy—Poisson summation formula yields the representation of G, ,, as a

sum over N € Z, representing waves corresponding to the number of reflections on
the boundary.
Recall that we have

(3.1) Ga(t,x,y,2) = 2h2 Z/eh Foy dn dc,

k>1

where the phase ®; and the function o, are defined by
O = yn+ 2+ 107 + G+ wh )2,
or, = ex(@,n/h)ex(a,n/h)xo(C* +n*)xa (weh® 0 ") (1 = x1) (ewy).

We have to get L™ estimates for G, in the range ¢ € [h, 1], when the integral in (3.1)
is restricted to values of 1 € [egy/a, ¢o] with ¢ small. Let u? be defined by

M2 _ ?72 + th2/37]4/3-

Observe that 2 is small since w;h?3n*/3 is small by the truncation y; and 7 is small.
Let x4 € C§°] — 1,1] with x4 = 1 on [—1/2,1/2] and D > 1. Let J,(t,z,y,2) be

defined by
Talt,x,y,2) = QhQZ/ ( )akdndg

k>1
The following lemma tells us that 7, satisfies the free dispersive estimate.

Lemma 3.1. There exists a constant C' independent of a constant D such that

oty 2.y, 2)] < Ch—g(g)p.

Proof. On the support of y4, one has n2 < Dh/t and hw}/*n? < (Dh/t — n?)3/2.

This implies that the sum over k is restricted to k < ¢ %72)3/2. Since one has
ex(z,n/h) = frk=Y%(n/n)3Ai((n/h)**z — wy), Lemma 2.2 gives
_2)1/2
—2 2/3(Dh/t n*)
(3.2) Ttz 9] < 00 [ o P

=Ch3 / (Dh/t —n*)%dn
2<Dh/t

and the result follows from fnth/t(Dh/t—nQ)1/2 dn = (Dh/t) [, ,(1—2*)?*dz. O

Observe that in the range > co, one has u* > ¢, so the condition tu?/h <
D is equivalent to t < Ch and the above lemma is irrelevant. But in the range
n € leov/a, col, the above lemma becomes useful since it tells us that we may now
assume that A = tu?/h is a large parameter. Since we allow some loss in the dispersive
estimate with respect to the free case, we may even assume that we have A = tu?/h >
(&)~ for some € > 0 (take D = (£)7°), and therefore in the sequel a term like
Oc= (A=) will be negligible. We are now in position to eliminate the (-integration
n (3.1). This is the purpose of the following lemma. Recall that the truncation
Xo(¢%+n?) localizes (2 +n* near 1. Therefore, for 1 small, ¢ will be close to 1 or —1.
In the sequel, we assume ( near 1.
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Lemma 3.2. Let A\ =tp?/h > 1,2 = z/t and ¢(z, u*,¢) = %(2C+(§2+u2)1/2).
Let

I(Z, 1%, 3 A) =/ eMEH O30 (¢ + n?) .
¢~

There exists 0 < ¢; < C} such that the following holds true:

(3.3) Forz ¢ [—1+cu® —1+4+ Cip?] one has sup |I(Z, 1%, 1m;\)| € Ogo(A™).

Z,u2,m

For z € [—1 + c1p?, —1 + Cp?], set z = —1 + z*u®. There exists a classical symbol
of degree 0 in \, oo(z*,n, u*; \), such that one has

h 1/2 it 52\1/2
(3.4) I(Z, 12 m; \) = (W—Q) e E g0 (2%, 1P N).
Proof. One has

0c¢ = %(5 HUC )T, Ro=(C )2 e>0

and 8é¢> is bounded for all 7 > 2. Since

2
CC+p2) 2 =1- % +0(ub),

(3.3) follows by integration by parts. For Z € [~1 + ciu?, —1 + Cyp?], and with
Z

= —1 4 z*u?, one has

0= 2"CH(CH P+
and a unique critical point (. = —pZ(1 — 22)'/2 with critical value

Ce /- - ~
d(Ce) = E(Z —1/2)=(1-2)"/ue 0(1).
Therefore, by stationary phase we get that (3.4) holds true. O

Using Lemmas 3.1 and 3.2, we are now reduced to the study of

(3 5) 1 h 1/2 Z/ %(yn+tu(1_22)1/2)5—k d
. —— = e —
4m2h2 \ t i g

k>1

where 7}, is defined by
2

G = oo(2", m, p%; )\)(1 — X4(%))ek(az, n/h)er(a,n/h)x1(weh?37*3) (1 = x1) (ewy).

To get L estimate for the parametrix in the range n € [e9\/a, ¢o], we will use a
Litttlewood—Paley decomposition in . We choose
Yy € C5°(]0.5,2.5[),0 < ¢y <1 such that Z P1(2"x) =1 for all z > 0,

meZ

and we introduce the cut-off function wl(ﬁ) in (3.5). In the sequel, we will
therefore have

€ < 2™ < c/Va.
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We will use the notations
n=2"Vaiq, h=2"Vah,
it = b = (27Va) (77 + weh® ) = (27 a) i,
= wph?3n 3 = g B2,
We define G, ,,, by the formula

1 h i 22)1/2) n og
B h yn—i—tu (1-2%) _r
(36) ga,m(t7x7y7z) - 47T2h2 (t) Z/ " wl(Qm\/a) ,U d

k>1

Observe that due to the truncation xi, we have k < h% in the above sum. Using the
change of variable n = 2™/an, we get with § = y/t, since dn/u = dn/j

1 h 1/2 (yn-l-u(l 22)1/2) ~ ~
(3.7)  Gam(t,z,y,2) = yrerel s Z eh g1 (1) dn,
1<k<

<k<Gmvmn

where g is defined by
1, tp? s s
g = s ) (1 () JenCo et s ok 5) (1) ).

Lemma 3.3. Let M > 1 be given. There exists C'y; such that for all m,a,h
such that 2™\/a < hM, the following holds true:

B 12
(3.8) |Gam| < Cyh™3 (?) 2"/a|log(2™/a)|.
Proof. One has h > 1 /M and hence,

- _ 7\1/3 _
ex(e /B < R0 (1) T

Moreover, we have i > w;/ 2R/ 372/3 Therefore, we get

[ R\"? IS R 7. R
g <cn (D)5 ()
1<k<

k<G
B\ /2 B\ 12
(3.9) gC’h‘i”(?) 9™ /a| log(22™ah)| gCh‘i”(;) o™ /a|log(2™V/a)|. O

From the above lemma, we get in the range h>1 /M the estimate
(3.10) (Gagnl < Carh™>(h/1)M2(27v/a) P (hM)?* | log(hM)].

This estimate is even better than the free estimate Ch=3(h/t). Therefore, in the
sequel we will assume h < hy with ho small and recall that h = h/(2™\/a).
establish the local in time estimates for the G, ,,, we follow the strategy of Section 2.
We distinguish between two different cases. First case, if a < iﬁ(l’e), for a given
¢ €10,1/7[, we use the sum over eigenmodes. Second case, if a > h3(~<) with
" € ]0,¢[, we use the Airy—Poisson summation formula [see Lemma 2.4] and we
rewrite G, ,, as a sum over N € Z.

3.1. Dispersive estimates for 0 < a < h3i(1—9 with € € 10,1/7[. The
following Proposition 3.4 gives a local in time dispersive estimates for G, ,,, and is the
main result of this subsection.
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Proposition 3.4. Let € € ]0,1/7[. There exists C' such that for all h € ]0, 1], all
0<a< hg(l’e), and all t € [h, 1], the following holds true:

B\ 5/6
(311) ”]lxgaga,m(t,l’,y,Z)”Loo < Ch73<2m\/5)1/3 <?> .
Proof. Recall that G, ,, is defined by

1 h\ 2 it (Gt E(1—52)1/2)
(312) ga,m<t7 z,y, Z) = W (?) Z / (ynJﬂu(l gkwl( ) dn7
1<k<

v
with g equal to
2

gk = %00(2‘*,77,#2; A) (1 - X4<$h)) ex(z, 7i/h)er(a, /) x1 (weh® ) (1—x1) (ewy,).-

Recall from (3.10) that we may assume h < izo with izo small. Since G, ,, contains
Airy functions which behave differently depending on the various values of k, we
split the sum over k in (3.12) in two pieces. We fix a large constant D and we write
Gam = Gam,<+Yam,>, where in G, ,,, - only the sum over 1 < k < Dh~¢ is considered.

Proof of (3.11) for G, m <. Recall the definition of G, ,, <:

1/2
(3.13)  Gam<(t,z,y,2) = ;<%> > /eh(@mwu 2 1/2)gk1/)1< ) di,

472 h? .
1<k<Dh-¢

27.-1/3 772/3 % 2 tNZ 2/3.4/3
ar = [k m oo(2",m, 55 A) [ 1 — x4 Dh X1 (weh™" ™) (1 = x1) (ew ) g,

ne = Ai((7/R)Pa — w) Ai((/ )P0 — ).

Let us first assume $27/a < h. Since we have ji = (7% + w,h?37/3)V2 > 71, we get
the estimate

98] < CR™2k % | Ai((/ )0 = ) Ai((7/ )0 — wi)]|
By Lemma 2.2, this implies

1/3
S ol < OIS < ol e = ot v ()
1<k<Dh~<
and (3.11) follows from (3.13).

Let us now assume ¢2™+/a > he. Observe that in the range k < Dh’e, we have

wh2/? < OR300 < Cﬁg/:&(ke)
small. Hence, v = wph?37~%/3 is small and
=+ )" =0+ 0" Pwh®? )2+ O((weh®?)?).
Therefore, we get ’82[" > cwph?? with ¢ > 0, and for all j>2,
o
a J

We will apply the stationary phase in 7 in each term of the sum in (3.13) with the
phase function

< C wkh2/3

O (7) = = (i + (1 — 22)1?) .

}z| ~
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Let Ay = th™ /3w, 2™ /a, and let W (
t

il

) the phase function defined by
k

KA

=

Lemma 3.5. Let g, = k'/3h%/3g,,. There exists C such that forall1 < k < Dh™,
the following holds true:

/ e M Gy (7) dﬁ’ < C'min {1,A,;”2} .

Proof. We may assume Ay, > 1 since we have |gi| < C. Recall from Lemma 3.2
that we may assume V1 — 2% ~ p = 2™\/aji ~ 2™y/a. Therefore, there exists ¢ > 0
such that for all 1 < k < Dh™¢ one has

(3.14)

O*v t O
’ R L V=2 N
on hAy, On
and for all j > 2, }88]—;71’]’“} < Cj. Thus, to apply the stationary phase, we just need to
check that there exist ¥ > 0 and for all j, a constant C; such that
Y e N
(3.15) ‘ Ih) < oAV g < Dhe
onJ

In Lemma 3.2, 2* is defined by Z = —1 + 2*u?, but since we have here p ~ 2™\/a
we may as well define z* by 2 = —1 + 2*2*™a. Then z* becomes independent of 7.
Recall A\ = tu?/h. Since n = 2™ /an and all the derivatives of v and i with respect

to 77 are bounded, we get ‘%ﬁ“ < CjA for all j. Since A is bounded on the support of

derivatives of y4, the term
2

N . t
s ) (1= v () ) and9)(1 = o) )

satisfies the estimate (3.15), and therefore, it remains to show that the function
Ai((%)Q/gx — wy) satisfies the estimate (3.15) uniformly in z € [0,a]. Let set 0 =

xh™2 > 0 and r = 7*?3 which belongs to a compact subset of ]0,c0[. One has
OL(Ai(r0 — wi)) ~ (r0)' Ai®D(rf — wy). Since for all [ one has

sup [P AiD (b — wy)| < C’lwzl/Q,
b>0

we get that (3.15) holds true if
36 >3,6>0, <A =thPuw2™/a
We have t2"/a > h¢, and awi < h—4/3 thus this holds for € < 1/7. O
Therefore, we get the following estimate for Go .« and t2™/a > h¢

h 1/2 ~ ~
ILecaGam<(t 2,9, 2) e < Ch?(;) Y kTPRTR T w2 a) T
1<k<Dh~¢

-2 h 12 —1/27 —(1/2 3
<Ch72 =) (t2mya) V2R (/23
= t

t

< Ch7(2"a)'? G)S/G (h (ﬁ) " (2m¢5)1/3<t2m¢5)1/2ﬁ<1/2+6/3>) .
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This concludes the proof of Proposition 3.4 for G, ,, < since t2™\/a > he implies
R2/3=1/8 (9m [q)=5/6],~(1/2+e/3) < j1/6-¢/2,
Proof of (3.11) for G, n~. For k > Dh~¢ with D large and a < h?30-9 one has
Wi — ﬁ*2/3f)2/3a > wy/2.

Since v = wkﬁ2/3ﬁ*2/3, we get v —a > a and 7 — a > /2. Then by the definition of
er and asymptotic of the Airy functions, we obtain

316) Gunotten= S ph(t) g;/ ()

h=e<k< o Zmsn

with phase functions defined by

. . — 2 2
BT B = iy VT ) S - D - )
and the symbols are given by

t 2
O-I:fti( ) f k~ 1/3h 1/3 2/3 00(2*7777#27)‘) (1 — X4 (gh)) Xl(wkh2/3n4/3)

X (1= xa(ewp))(y = 2) V4 (y = ) (1 +79) 7 Pwtw®
X W (PR — ) )W (PR — )

where W are classical symbols of order 0 at infinity. In Lemma 3.2, z* is defined by
% = —1+2z*1:%, but since we have here i ~ 2"/a(1+w;h*?)"/? we may as well define
2 by 2 = —1 4 2*22"a(1 + wih?®3). Then z* becomes independent of 7. Observe
that for all j, there exists C;, C} such that for all k one has

|02y ~ Cyy, |04 < C’ﬂ, 002] < Cly® < C.

Since A = tu?/h = tQm\/_(lefy) we get ‘ ‘ < CjAforall j. Finally, A is bounded on

the support of derivatives of x4 and there eX1sts ¢1 > 0 such that 73023 (y—a) > ¢.
Since v ~ (kh)?/3, we get that for all j, there exists C; such that for all k one has

(3.18) B0 ()] < Ci(kR) (14 7) 712

We notice that for the values of k, Dh~¢ < k < thQ, we get v € [2(1, ﬁ} In what
follows, we distinguish between the two cases: v € [2a,1] and v € [1 L}

) 22mg
e The first case v € [2a, 1] corresponds to h™¢ < k < h™'. Let denote Aj, =
2™ /aw,h'/? and q)lf’i = hAk\I/:’i.

Proposition 3.6. There exists a constant C' independent of a € |0, h2/30-)]
teh1],xe€0,a],y€R, z€R, and k € [h=°,h™!] such that the following holds:

(/””k Ty () dif| < C(hk) AL,

Proof of Proposition 3.6. By (3.18), Proposition 3.6 is obvious for Ay < 1. In
the case Ay > 1, we use i ~ 2™/a which implies ty/1 — 22 ~ t2™,/a. Then the proof

is the same as the proof of Proposition 2.3, if one replaces (h,t) in Proposition 2.3

by (h,t2™\/a). O
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Hence the corresponding estimate of G, ~ for h=¢ < k < h™! is given by

B b 1/2
||1$§aga7m7>(taxayaZ)HLOO S Ch 2(;) Z

h—e<k<h—

e
< Ch_2 <%) h—2/3(t2m\/a)—1/3ﬁl/9 Z k?_8/9

k<1/h

(ﬁk:)‘2/3(752”\/5%}3‘1/3)‘1/3
1

B 5/6
<Ch™? <?) (2™v/a)'/3.
e The second case v € [1, ﬁ] corresponds to h™! < k < ﬁ We still define

Ay and \If;t’i by A, = t2m\/5wk}~f1/3 and q):’i = izAk\Iff’i.
Proposition 3.7. There exists a constant C' independent of a € |0, ﬁ2/3(1_5)]7

telhl),zel0,a,yeR, z€R, and k € [h1, | such that the following holds:

' / eiAkW?*ajwl(f,) dﬁ' < C(hk)™'AY.

Proof of Proposition 3.7.  One has v ~ (kh)*3. Thus v > 1 and (3.18) imply
\@%aki’i(ﬁﬂ < Cj(kh)~'. Therefore, Proposition 3.7 is obvious for Ay < 1. In the
case A, > 1 we proceed as in the Proposition 2.3 . Recall that Z is close to —1 and
Z=—1+ 2*22"a(1 4 w,h?/®) with z* in a compact set of ]0, co[. We write

WVI=Z1429/3 _

WA, (1t)2 V7 (1= 2257 F (),
k

with
N 0
F(y) = 2L
3(1+~)V

For ~ large one has F'(y) ~ 1, F(y) +vF’'(y) ~ 1. Moreover, one has
wih®P(2F (v) + 7 F (7)) ~ w3y ~ 1

(L+1/7).

Hence the proof is the same as the proof of Proposition 2.3, if one replaces (h, F') in
Proposition 2.3 by (h, F). O

Using Proposition 3.7, we get the estimate of G, ,, ~ for hl <k < ok

— 22mah:

B 172 . .
[LacoGms 0 ) < ()T S )2 a9y

h-1<k

1/2
<Ch72 (E) t71/3<2m\/5)71/3i1178/9 § k*ll/g
- t

h—1<k
B\ /6
<Ch? (?) (2"\/a)'/3.

This concludes the proof of Proposition 3.4. O]

3.2. Dispersive estimates for a > izg(l_‘f'), for € € ]0,€[. In this sub-

(1—¢€

section, we assume a > h ), for some ¢ € ]0, e[ and we establish a local in time
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dispersive estimates for G, ,,. Observe that A = a’/? / h>h"*1isa large parameter.
Recall from (3.12) that G, ,, is defined by

Gam(t, z,y, 2)

1/2
(3.19) _ 1 <h) Z / i (yita(1—22)1/2) g(w
= — k7n7 )1/}1< )dﬁ?
dmh? \ t 1<k<— e

<k<Gmvan

with g(wg, 7, h) equal to
L. s t? 7 e 2/3, 4/3
9= ﬁao(z 15 I\ =xal 5 ) Jen(@ i/ R)ex(as i/ h)xa (wih™ ™) (1= x1) (ewr),
and we recall h = 2™\/ah,n = 2™ \/aij, p = 2™/aji, and
v =whPi R =14+ 9)?
We will use the same notations as in section 2,
t=a?T, z=aX, y+tv1-22=d%.

Let w = 7?3h~2Pap. We get v = a® and (1 4+ a@)'/? — 1 = a, (@) = W

Then we use the Airy—Poisson summation formula, and we get

= E Ga,m,N
N

with
1 N 1/2 A
B20) Golt.0.009) = it (7)) @2VaP [N i) ds do did

with the phase function

3
Ox(5,6.6,0) = 1[Y 4 (1= 2 (0) + 5 450X~

53 4 N
+ S 451 -@) - NG + 18 (@)
and symbol x,,(a,t, z; 7, @, iz) equal to, with \ = t2m\/5ﬂ2/i~z,

(3.21) xm = %Uo(z*m,uza N (L=xs(A/D))xa((2"Va) iPad) (1—x1) (e h=*Pad).

Observe that we get the same phase function ®y as in section 2, but we have to take
care of the fact that now (1 — 22)/2 may be small. Therefore, in order to use the
results of section 2, we introduce the notation T'= T(1 — 22)1/2. Set

Ca,m,N,h = {(t, T, Yy, 5, 5‘,(;), ’f~]) SUCh that 85<I>N = &;CI)N = 8@(131\[ = 8ﬁ<I>N = O}
Hence Cg v, is defined by the system of equations

X=0-3, =144
T =2(1 + a)"/? <s 4G+ 2NGY? (1 iB’( 3/2A77)))

Y = —T,(@) — 3 X — @) — ; — (1 — @) + N&¥? (;‘ B’(@3/2Aﬁ>).

»
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We define the Lagrangian submanifold A, np C T *R3 as the image of Cam,N,n DY
the map

(t,z,y,5,0,0,0) — (z,t,y,§ = 0,Pn, 7 = 0PN, n = 0,Dn).
Then the projection of A, v, onto R? is defined by the system of equations
(3.22) X=1+6"-3,

Y = Hi(a,6)(5 +6)+ =(5° +5°)

where H,, Hy are defined in Section 2 and
3 T
(3.23) 2N(1 - B (@3/2/\77)) = (1+ &2)—1/2( — - 5).

2(14a + ac?)'/?
Remark 3.8. We notice from (3.23) in the range of T € ]0,a"'/2], we can still

reduce the sum over N € Z to the sum over 1 < N < Cya~/? since T' < T.
This system yields the cardinality of N' and Nj such that IN(X,Y,T)| < Cp
and |V (X,Y,T)| < Cy (1 + fA_2@_3), respectively. Recall that here the notations

N, N, are those defined in Section 2.
Our main result of this subsection is Theorem 3.9, which gives dispersive esti-
mates for the sum over N of G, n-

Theorem 3.9. Let o < 2/3 and h = h/(2™\/a). There exists C such that for
all h € 10, ho), all a € [iﬂ,ao], all v € [0,a], all t € [h,1], all y € R, all » € R, the
following holds:

Z Gomn(t,z,y,2)

1<N<Copa—1/2

s h s h\ ' 1/871/4 3/4
<Ch n min | | & 2" ap +a' Pt (2Ma) .

We notice as in section 2, that for @ < 3/4, we get rapid decay in A by integration
by parts in . In particular, we may replace 1 — x; by 1 in (3.21). As in section 2,
we introduce a cutoff function x»(@) € C§°(]1/2,3/2[),0 < x2 < 1,x2 = 1 on |3, 3]
and we denote by G, n2 the corresponding integral. Hence, we get
Ga,m,N = Ga,m,N,l + Ga,m,N,Z + OCOO (A—oo)’

where Gy 1 is defined by a cutoff x3 with @ > 5/4 on the support of xs.

3.2.1. The analysis of Ggm,n,1- The main results in this subsection are
Proposition 3.10 and Proposition 3.11.

Proposition 3.10. Let o < 2/3 and h = h/(2™\/a). There exists C' such that
for all h € ]0, hol, all a € [h*,ao], all z € [0,a], all t € |k, 1], all y € R, all z € R, the
following holds:

h 1/2
Y. Gamwalt,z,y,zh) gCh?’(?) W3 (2m\a)3,

2<N<Cpa—1/2
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Proof. On the support of x3, we can apply the stationary phase method for
(8, 7)-integrations with large parameter A7; hence we get

—1)Na2A ! R\ V2 AV~ 1 o\ A -
Ga,m,N,l = ((Q)W<2m\/a)2 (?) /€ZAY77771/}1 (n)Ga,m,N,l dn7

Gamya =Y [ €21V meaa0, (14 ap)™? di,
€1,€2
with symbols O, .,, where ¢; = +, have a support in @ < (2™y/a)"?/a, and such
that |©'OLO, .,| < C)&~Y2 with C; independent of @, m. The phase functions are
DN meren (@) = T%(aj)ﬁel(@ - X)3/2+262(@ - 1)3/2—§N@3/2+l3(w3/2m) :
3 3 3 An
Let us define

—1)Na2A-! N2 [ iy o i
Ga,m,N,l,El,eg = Mw@mﬁy (?) /elAynT/wl(n)Ga,m,N,l,el,eg d?’],

s AN ~\N—1/2 3~
Gam,Nler,e0 = E NN merea @, (14 aw) 12 d.

€1,€2

We are reduce to prove the following inequality

L
(3.24) > Gamniee(tzy zh)| < Ch (?) hY3(2m\/a)?3,
2<N<Cpa—1/2
with a constant C' independent of m, h € ]0, ho],a € [ﬁ2/3,a0],x € [0,al,t € [h,1].
We proceed as in the proof of Proposition 2.9. Let us recall that on the support of
X1 we have aw < £/2?™a; hence aw could be small or large. We distinguish between

two cases. ~
The first case is aw < 1. Let Ty > 1. We get the following results:

e For 0 < T < Ty, N > N(Tp), then we apply the integration by parts to get
|Ga,m,N,1,+,+| GOCoo(N_OOA_OO) and

o sSup Z Ga,m,N,l,-{—;f— GOCOO(hOO)'
TSTQ,XG[O,H,(?J,Z)GRQ N(To)§N§Ca_1/2
eFor 0 < T < TO,Z < N < N(fo), [12, Lemma 2.20] yields the following
estimate |Gy m N1 44| < CA~/3 and

h 1/2
sup Z Ga,m,N,1,+,+ S Ch_3 (;) (h_1a2<2m\/5>2A_4/3)

I<T 2 -
T<To,X€[0,1],(y,2)€R 2<N<N(Tp)

_s(h 2 1/3 (om 2/3
<cn?(T) nsEnVaps,

e For Ty < T < a V2(1 — 2%)Y2, we still use the same notation as before
Q = @?; we have |03Pn i | > ¢T3 and a nondegenerate critical
point 2. which satisfies for N > 2, QL3 % Hence, we have also either
T /N bounded or large, the stationary phase yields

|éa,m,N,1,+,+| S CA_l/QT_l/Q .
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Moreover, the f-integration produces a ¢~/? factor contribution where ¢ =
NA7'Q-! when ¢ > 1. Thus, we get the estimates as follows:

If T/N is bounded, Q. stays in a compact subset of [1, o[, and we get T ~ N.

o If N < A% we have |[N;| < Cj. Hence, the estimate is

1/2 B
< COp3 <%) (h71A71a2<2m\/5)2A71/2T—1/2)

: : Ga7m7N717+7+

NeM

3N 2 —1/43,1/2 1/20—1/2
Ch3( =) a YARM2(2ma) AT
t

IN

B 172
h_3 (?) hl/?)(Qm\/a)Z/?)7

IN
Q

since T' > Ty and a~/4h'/2 < RY/3(2™\/a)"/® when a > h2/3.
e If N > A2 then there is the contribution ¢~'/2 from 7-integration and |N;| <
CoTA~2. Thus, the estimate is

1/2

< Ch® (ﬁ) Z (h_lA_laZ(Zm\/E)QA_l/QT_l/QN_l/ZAl/Z)
t NeN;

1/2

(R~ AT (2" VP T~ M(X, Y, T)))

1/2 3
(a5/2h22m /a)
/2

h1/32m\/5

1/2

h1/3(2m\/5)2/3.

E Gam,N1,+,+

NeN;

~

N
Q
=

N— — N~

S S

(

Next, if T'/N is large then €, is large.

o If N < AQ., then there is no contribution from 7-integration. Moreover,
we have |[Nj| < Cp since T > A?Q? implies 0P~ T/N > XQ. which is
impossible since Q. is large. Thus, the estimate is

_s(h 2 1/3 2/3
<o) nrenva
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e If N > \Q, and T > A{Qg, then there is the contribution ¢~'/? from 7-
integration and [NV;| < CoT'A™2Q_ 2. We get

1/2 i
Z GamNi++| < Ch3(%) Z (h*lA*1a2<2m\/a)2T71/2N71/29(1:/2)

NeN; NeN

IN

1/2 .
ChB(%) (h'ATN? (2" Va) TP INU(X, Y, T)))

IN

Ch™ (ﬁ) - (h'a?(2™a)*A ™)

t

_3(h 2 1/3 (om 2/3
<Ch n h'3 (27" a)??.

The result of the other cases of (€1, €3) can be achieved by proceeding along the
same lines as in the proof for G, y1 in Section 2.

The second case if a@ > 1, then a critical point Q. satisfies Q8 (14aQZ/*)1/2 ~ %
for N > 2. This yields, since T > CT with C large,

T>CT >CNQ/? =CNw!/? > CNa™Y/?
which contradicts ¢ < 1. O

Now we prove the following estimate for N = 1.

Proposition 3.11. Let a < 2/3 and h = h/(2™/a). There exists C' such that
for all h € ]0, ho), all a € [h*,ao], all z € [0,a], all t € [k, 1], all y € R, all z € R, the
following holds:

’Ga,m,1,1<t7 z, Y,z h’)}

<Ch™? (?) v <min { (%) 1/2, 2"\/al 1og(2m\/5)|} + h1/3(2m\/5)2/3> :

Proof. Let us recall

—1 2A71 h 1/2 ‘ i B
%(21%\/5)2(?) /eZAynﬁw1<ﬁ)Ga,m,1,l dﬁ7

Ga,m,l,l = g 62An¢1,m,61762 @El,€2<1 + an)*l/Q da.

€1,€2

Ga,m,l,l =

The only difference with the case N > 2 is in the study of the phase ®;,, ; 4 since
in the case N =1 we may have a critical point @, large. Let

(325) éa7m71,17+,+ — /eiAq>1,m,+,+@+7+(1 +a(:))_1/2 d(D,
with the phase function
d, = Ty, (Q) + 2(@ — X)32 ¢ 2(@ —1)%% 2ty iB(Aaﬁ/Qﬁ)
e ¢ 3 3 3 A7 ’

and O, ; is a classical symbol of order —1/2 with respect to @ which satisfies
|@'oLe, | < o2 Let x3(@) € C°(Jan, oof) with @ large and set

(3.26) J = / eAPLmt 0, x3(@)(1 4 a®) V2 dw.
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To prove the proposition, we just have to verify

(3.27) at/?2m\/a|J| < C min { <%> 1/2, 2"\/al| 1og(2m\/5)\}.

We first observe that on the support of the integral defined in (3.26), one has aw <
(2m\/a)~% = L. Hence, we get

|]]| SC(l—l— dy)SCal/QlogL.

L/a 1 B 1/ L 1
/1 Va(l +ax) da:>—0<1+a /a Vy(l+vy)

0227 \/alJ| < C2™/a| log(2™/a)|.

This implies

We have
~—1/2
(1+ a@) /2 - “’Tu +X) + Op (@73/7),

2o | M

Do Prm 44 =

—Ta o—3/2
D@m= —— (L +a@) 7 + = —(1 4 X) + Oc= (@7°%).

At a large critical point we have T2 ~ (a + @, 1)(1 4+ X)2. Hence, T is small and
8@%43(1)1,4-,—!—(@0) ~ Tg(l + a(DC)_S/Q-

Let S = (T/(14X))? —a. Then, we have S ~ @, and by stationary phase method,
we get

|J| < C(1 4 ak,)¥/*N~V2T—3/281/2,
We have to take care in this section that aw,. may be large.

e In the case aw. < 1, we have S ~ T2, and therefore we obtain as before
|J| < CA=Y2T=1/2 which gives

B 12

al’?2m\/alJ| < C(;) :
e In the case a®, > 1, we must have T ~ y/a, and S = ap with p > 0 small.

Hence, we get |J| < Cp~'/4a=Y/4A=1/2. This yields
a\29m JalJ| < ChV/? ((Qm\/a)lﬁa’lﬁp’l/‘l) _
Finally, we observe that we have
Va~ T ~taY22m/a(1 4 a®,)Y? implies t ~ a(2™v/a) " p'/?,

which gives a'/22™/a|J| < C(h/t)"/?. The proof of Proposition 3.11 is complete. [

3.2.2. The analysis of G m,N,2- The main result in this subsection is Propo-
sition 3.12.

Proposition 3.12. Let a < 2/3 and h = h/(2"\/a). There exists C' such that
for all h € |0, ho|, all a € [h®, ap, all x € [0,a], all t € |h, 1], all y € R, all z € R, the
following holds:

h 1/2
Z Ga,m,N,? <t7 L, Y, % h’) < Ch73 <?) a1/8h1/4<2m\/5>3/4'

1<N<Cpa~1/2
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Proof. Recall

(3.28) Gamna(t,x,y, 2)
(-1 (h\'"?, 2 [ inew
= (27) i (;) a’(2™Va) /el N fn b1 () X2(@) d5 d& di diy
with the phase function
~ 3 ~3
Oy (3,5,0,7) = ﬁ[Y + Tra(@) + ‘% FEX — @)+ %

4 N
+65(1-@) - §N®3/2 T8 (&% A7)

To start with, we rewrite G, n2 in the following form

A Ay
GamnN2 = W(?) CL2(2m\/5)2/€Z nﬁzwl(ﬁ)Ga,m,Nﬂ dr,

GamnNz = / ANy o (@) dS dé dd,

with the phase function
7 - 5° 5° 4 N
Inm(3,5,0) = Tra(@) +%+ 5(X — @)+%+&(1 — @)= NG+ B (&"/2A7)
7
Now we can proceed as in the analysis of G, n 2 in section 2. More precisely, we apply
the stationary phase method for (&, 7j)-integrations. It yields A=%/2 and (NA~1)~%/2,
respectively. We have the following facts (see Section 2):

e Lemma 2.12: For N > A'/3 there exists C such that
‘ / NN d5 de

with lﬁ N.m 1S a perturbation of the phase function obtained from ) ~N.m at the
critical point @.. Hence, we obtain the following estimates:
— When [N1(X,Y,T)| < Cy, we get

Z Ga,m,N,Q h

1/2
< Ch_g(—) ((2m\/5)2h_1a2/\_1/2/\_5/6)
NeM t

< CAD/8,

1 o
< CA™3 and —— | [ Ny dsds
- VN

s h 2 1/3/om 2/3
<o 7] PEnVa)t

— When [N (X,Y,T)| < CoTA2, the (NA~")~1/2 factor contributes to the
7-integration, and we get

1/2
Z Ga,m,N,Z S Z Ch_3 (%) ((2m\/5)2h_1a2N_1A_2/3)

NeMN NeN

-3 h 12 271 —1 _27—-8/3
<ons(2) (@nvarnteah)

_s(h 2 1/3 (om 2/3
<cn?(T) nenyaps,

Recall that we used N ~ T, [N;| < Co(1 + TA?) and a > h?/3.
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e Lemma 2.13: For N < A3, we have

1 iANDN o 2 A5
— eMNm ¥ d3 do
VN ’/ X

Therefore, the estimate in this case is given by

Z Ga,m,N,Q h

1/2
< Ch—?)(?) ((Qm\/a)Qh—la2A—1/2A—3/4)
NeNy

< CN71/4A73/4.

B\ 12
< Ch3(—) a1/8h1/4(2m\/5>3/4.
- t
Hence putting these estimates together, we get

1/2
Z Ga,m,N,Z < Ch_3 (%) (h1/3(2m\/5)2/3+a1/8h1/4(2m\/5)3/4),

1<N<Cga~1/2

2/3
We notice that h'/3(2m/a)?? < a'/8nY/*(2™\/a)** when a > (th\/a> . The proof
of the Proposition 3.12 is complete. O

Proof of Theorem 3.9. The desired estimate follows from Propositions 3.10,
3.11, 3.12. 0

4. Dispersive estimates for |n| < egv/a

In this section, we prove Theorem 1.5. We first compute the trajectories of the
Hamiltonian flow for the operator P. At this frequency localization there is at most
one reflection on the boundary. Moreover, we follow the techniques from Sections 2
and 3. It is particularly interesting that at this localization, G, ., is an oscillatory
integral with nondegenerate phase function; this is due to the geometric study of the
associated Lagrangian which rules out the swallowtails regime for [¢] < 1 if ¢ is small
enough.

4.1. Free space trajectories. Recall that the operator P is given by
P(t, 2.y, 2,00, 05,0y, 0:) = 0f — (07 + (1 +2)0) + 05).
Now, we compute the trajectories in the free space for the associated symbol
p=8++ 1 +apm -

To do so, we start at to, zo, Yo, 20 With & close to 0, g = 0(o, |0] < ev/a, o ~ 1,
70 = 1,82 + (1 + z0)ng + ¢2 = 1. The Hamilton Jacobi equation is

©=2¢ y=2(l+x); =2 t=-2m
E=-n% =0, (=0; 7=0
This yields
T(s) =105 n(s)=mno; C((s)=Co; E(s) =& —mys;  t(s) =to — 270s;
2(s) = 20 + 2Cos;  x(s) = mo + 2605 — s

1
y(s) = yo +2mo <(1 + 1o)s + &8 — 577353) .
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In our case, we start at tg = 0, xg = a, yo = 2o = 0; the system becomes

(4.1) 7(s) =705 n(s) =mo;  C(s) =Go; &(s) =& —

ts) = —2ps: dﬁZ%w;xU—a+%w—2£

1

(o) =2 (14 a)s + 605 = Jais*)
The Lagrangian Ag e, C T*(R},, .): we have A,, C {p = 0} is parametrized by the
system (4.1) with parameters (s, &, 7, (o) together with (&2 4 (14 a)n2 +¢&)V? = 1;
s is homogeneous of degree —1. Since #(s) = —27ys implies s = —%, we replace it
in the system (4.1). Then (4.1) becomes an homogeneous system parametrizing the
Lagrangian A as follows:

_ o % o o o o M s
z(t) =a— Tot 1 Ot y(t) = - ( (14 a)t+ 27’0t + 1270275 ) ,
(1) = —%t () = & + 2770 () =7 = 1.

The trajectories hit the boundary when z(t) = 0; that is,

o D42 4ty —a = 0.
4
This yields the time t, when x(t.) = 0:
292
t*&]:a—OthNa

Our goal is to prove that at this frequency localization, the trajectories hit the bound-
ary only once for a given fixed time 0 < ¢t < 1. To do this, suppose that the trajectory
hits the boundary at (z = 0, ys, 2, &, s, o), Which is given by the system (4.1). More

precisely, & = —(& + @t*) and we get
€)= & — s, als) = %us — 1B, 1(s) =1, — s

Now, we assume that the trajectory, issuing from the point (z = 0, y., 24, &, 1, (o),
hits the boundary; that is, z(t) = 0, then ¢n2 = 2¢,. This yields

t92<§ - _9 (&0 + %t*) <£0 ) 82C0 ( 02§0 t2> /50)

2 2
62 4 2 1

1622 > 44/ %% pnplies 1) > VY2 Lo
2 C0|9| €0

Therefore, we can only see at most one reflection on the boundary of the cylinder for
0 <t <1 at this frequency location.

4.2. Dispersive estimates for |n| < €pv/a. In this subsection, we are
interested in obtaining dispersive estimates for G, ,. The main result of this section
is the following.

Theorem 4.1. (Theorem 1.5) There exists C' such that for every h € ]0, 1], every
t € [h, 1], the following holds:

B\ 172 B 172
(4.2) 1Gaseo (s T, Y, 2) || Lo (2<a) SCh?’(?) mm{<?) Val log(a)|}.
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We start as in Section 3. Recall that we have
(4.3) Gaeot,x,y,2) = 2h2 Z/eh oy, dn dc,
E>1

where the phase ®; and the function o, are defined by
O = yn + 2+ 10 + G+ w b)),
or = a(n/Va)ew(z,n/h)er(a, 1/h)xo(C* + n?)x1 (@eh®*5"?) (1 — x1) (ew),

with 1y € C5°(] — 20, 2€0[) equal to 1 on [—¢g, €p]. We still use the notation pu? =
n? + wph?3n*3. Let x4 € C§°] — 1,1 with x4 = 1 on [~1/2,1/2]. The following
lemma (for |n| < €yy/a) is a refinement of Lemma 3.1.

Lemma 4.2. Let
- ﬂ2h22/ T ( )dendc

k>1

There exists C such that

nsa(t) () 1)

Proof. As in Lemma 3.1, and taking in account the cutoff vy (n/\/a), we get

|J| < Ch™® (%) /_l (1 — 22y (vy//(ta)) dx

1

and the result follows from

(%)1/2 /11(1 — 2%)Y2, (2 \/h/(ta)) dz < min { (%)1/2, \/a}. O

By the proof of Lemma 3.3, in the case \/a < Mh, we get the estimate

ga,eo

< Coh™ (g) " ahog(va)l,

hence we may assume in what follows that h* = h/4/a is a small parameter.
Using Lemmas 4.2 and 3.2, we are now reduced to the study of

1/2
40) oo = g () 3 febmm e ey s P

k>1 L) K

with &(w) defined by
6 = 00(2", 17, 1% A) (L = xaW)xa (Whn*?) (1 = x1) (ew)
X Ai((n/h)*5s — w) Ai((n /)% — w),

where A = tp?/h. By Airy-Poisson summation formula, we have Jo o = > yez JIn
with

1/2
(4.5) JN:@(%) / £ (yn+tp(1-22)1/2) ~ &(w)(n /h)2/3w2(77/\/_) —iNL(w dwdn
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By the preceding paragraph, we know that it is sufficient to prove an estimate on
J_ 1+ Jo+ Ji. We will focus on Ji, since J_; is similar and .Jy is simpler since it is
the free wave. One has J; equal to:

(h/t)'?

46)  Jy = h4/3/ hor |2/ 2 20V oy g a
(4.6) 1= om e e X w17 A ) T = ds dodn d,

with the phase function

3 3
o1 =yn+ tu(l = 20 4 Tt (P = wh®®) 4 T+ o(nPPa - wh®) = L),
and symbol
X(W, m, :u27 )\7 h’) = 0’0<Z*’ 7, /LQ, )\)<1 - X4<)‘>)X1(Wh2/3774/3)<1 - Xl)(gw)

Recall that
L(w) = %w?’/Z — B(w®?), for w > 1,
with
B(w) ~ijw Y bjw ™, b €R, by > 0.
Jjz1
Lemma 4.3. Let L be as in Section 2.2,

A_(w)
L(w):ﬂ+ilog( )
Ay (w)
Then for all w > 0, we have
L'(w) > 2w/,
This lemma is useful in the geometric study of the canonical set and the La-
grangian submanifold associated to the phase function of J;.

Proof of Theorem 4.1. To study J; in (4.6), we restrict the integral to n > 0
and we first make the change of variables w = h=2/3n?3w* s = n'/3s* 0 = /30,
and we obtain, since p = n(1 + w*)/?

hIOY2 [ s
4 h= G [ Ry (1) e/ V) dsdo ot
with the phase function ¢; equal to
*3
(4.8) b1 = (1 —52)1/2(1+w*)1/2+% + 5% (z — w*)
o+’ h
+ ; + o*(a _ w*) . —L(772/3h_2/3w*).
U]

We have
8s*<;~51 ="t — w*, &,uﬁl =0 +a— w*,
t(l _ 22)1/2(1 + w*)—l/Q

aw* le = 9

h 3
. (S* + O'*) . n—L/(nQ/gh_Q/?)W*)-

Therefore, at a stationary point in s*, o*, w* of <;~51, we must have, using Lemma 4.3,

|s*| < Vw* and |o*| < /(w* — a):
t(1— 221+ w) 2> 2(Vw — /(w* — a)).
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Since (1 — 22) ~ pu=n(1 +w*)"? ¢t <1 and 1 < €+/a we obtain

cova > eptv/a > 2(\/(; —V(w* = a)),

and therefore, we may assume w* > Ma with M large if ¢y is small. This proves
that the swallowtail in the first reflection appears after a time ¢ > 1. Hence we are
reduced to study what happen before the first occurence of a swallowtail. This case
corresponds to a regime where there are no swallowtails and no cusps. We are reduce
to estimate the oscillatory integral J:

1/2 o
(49) 7= [ R0y (1w oo/ st/ (M) s do do

where k € C*(]1/2,00[),0 < k < 1, and & equal to 1 on [1,00[. We then re-perform
the ds* do* integration using the definition of the Airy function, and we make the

change of variables n = /an and w* = aw. As in Proposition 3.11, we get with
A* = CL3/2/h* — a2/h,

a h 1/2 A*y" = ~ ~
I=(i) [T e

J=Y / eN 1 O, 1 k(@/M) (14 a@) Y% do,
£+
Dy o= T(@) + g(a) — X)¥? 4+ g(a; —1)32 — Ao LB(A*af’ﬁﬁ),
’ 3 3 3 AT
Ops = (@—1) V@ - X) VUL (AP (@ - 1)U (A5 (@ — X)),
where W () € C°°([0, +o0]) are classical symbols of degree 0 in 9 — +00. Therefore,
it remains to prove

(4.10) ‘/em*yﬁ aJ 1y (7)) dﬁ‘ < C'min { (%)1/2, Val log(a)|}.

Since on the support of f one has @ < ﬁ, we get

(4.11) |J| < C/ OV (1 + a) V2 do < CaV? | log(ai?)),
1

and this implies
[ et < cvallosa).

Next, we have

~ T
Oobss =5 (1 +ad) @G- X))@ - - 20"+ 0@,

and (14 a@)~ V2T ~ Ty < et < 1. Hence the phases ®_ ., P, have no critical
points w > M /2 large, and this implies in particular for their contribution J* to J
the estimate

|J*| < C(A*7)"V2 = CRY? 20,

which implies

/ NV 0 T 4y () dﬁ' < Ch\/? / i~ 2,(77) dif < C(h /)2,
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For the contribution to J of the phase ®, ,, we use the same proof as the proof of
Proposition 3.11. We thus get the estimate
alJ| < C(h/t)Y2.
This concludes the proof of Theorem 1.5 O]

Appendix

Airy function. Let 9 > 0. The Airy function A7 is defined as follows:
Ai(—9) = i/ei(sg/‘g’s’” ds.
2m Jg
It satisfies the Airy equation
(4.12) A"(9) —9AI(9) =0
Let v = e¥7/3. Obviously, ¥ + Ai(vd) is a solution to (4.12). Any two of

these three solutions Ai(1), Ai(vd), Ai(v*9) yield a basis of solutions to (4.12) and
the linear relation between them is ZJG{OJ,Q} V7 Ai(179) = 0. Then, it follows that

Ai(¥) = —vAi(v9) — pAi(v?), which we rewrite as follows:
Ai(—=9) = e B Ai(e”™3Y) + B Ai(e39) = AL(9) + A_(V),
where we set Ay () = eT/3Ai(e¥7/39). Notice that A_(0)) = A, (J). We also have

the following asymptotic expansions
1

— W€zw/4e§zﬁ3/2 exp T(ﬁ3/2) _ W€z7r/467%“93/2\1l7<19)’
T

with exp T(9¥2) ~yp9 (14 Yoy e ¥72) ~y 270 _(9) as ¥ — +oo and the
corresponding expansion for A, where we define W, () = W_()). Moreover, we
have

A_(9)

A0) _ jo-tior2 o 9, with iB=7-T.
AL (D)
Notice that for ¥ € Ry, B(¥) € R and B(J) ~1y9 Y5, 0077 for ¥ — +o00 and

b1>0.
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