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A fibered Tukia theorem for nilpotent Lie groups

Tullia Dymarz, David Fisher and Xiangdong Xie

Abstract. We establish a Tukia-type theorem for uniform quasiconformal groups of a Carnot

group. More generally we establish a fiber bundle version (or foliated version) of Tukia theorem for

uniform quasiconformal groups of a nilpotent Lie group whose Lie algebra admits a diagonalizable

derivation with positive eigenvalues. These results have applications to quasi-isometric rigidity of

solvable groups [DFX].

Lien nollanjuuriryhmien säikeittäinen Tukian lause

Tiivistelmä. Todistamme Tukian-tyyppisen lauseen Carnot’n ryhmän tasaisesti kvasikonfor-

misille ryhmille. Yleisemmin osoitamme, että Tukian lauseen säiekimppuversio pätee sellaisen Lien

nollanjuuriryhmän tasaisesti kvasikonformisille ryhmille, jonka Lien algebralla on lävistäjämuodon

kanssa yhtäpitävä derivaatta ja tämän ominaisarvot ovat positiivisia. Näillä tuloksilla on sovelluksia

ratkeavien ryhmien kvasi-isometriseen jäykkyyteen [DFX].

1. Introduction

In this paper we study uniform quasiconformal groups of simply connected nilpo-
tent Lie groups. The nilpotent Lie groups considered in this paper are those whose
Lie algebras admit a diagonalizable derivation with positive eigenvalues. We start
with the special case of Carnot groups.

Let N be a Carnot group equipped with a left invariant Carnot–Carathéodory
metric dCC. Let N̂ = N∪{∞} be the one-point compactification of N . A homeomor-

phism f : N̂ → N̂ is K-quasiconformal for some K ≥ 1 if f : (N\{f−1(∞)}, dCC)→
(N\{f(∞)}, dCC) is K-quasiconformal. A 1-quasiconformal map is also called con-

formal. A group G of homeomorphisms of N̂ is uniformly quasiconformal if there is
some K ≥ 1 such that every g ∈ G is K-quasiconformal. If G′ is a conformal group of
N̂ and f is a self quasiconformal map of N̂ , then fG′f−1 is a uniform quasiconformal
group of N̂ . A natural question is when a uniform quasiconformal group of N̂ arises
this way.

Let G be a group of homeomorphisms of N̂ . Then G also acts diagonally on the
space of distinct triples

T (N̂) =
{

(x, y, z) : x, y, z ∈ N̂ , x 6= y, y 6= z, z 6= x
}

of N̂ . Our first result is the following.

Theorem 1.1. Let N be a Carnot group. There is a left invariant Carnot–
Carathéodory metric d0 on N with the following property. Let G be a uniform
quasiconformal group of N̂ . If the action of G on the space of distinct triples of N̂
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is co-compact, then there is some quasiconformal map f : N̂ → N̂ such that fGf−1

consists of conformal maps with respect to d0.

The metric d0 has the largest conformal group in the sense that the conformal
group of any left invariant Carnot–Carathéodory metric is conjugated into the con-
formal group of d0, see Definition 2.2 and Lemma 2.3. In general it is not possible to
conjugate a uniform quasiconformal group into the conformal group of an arbitrary
left invariant Carnot–Carathéodory metric, see Section 6 for an example.

Theorem 1.1 was first established by Tukia [T86] for N = R
n (n ≥ 2) and was

later generalized by Chow [Ch96] to the case when N is an Heisenberg group. Before
Tukia’s result, Sullivan [S78] proved that, when n = 2 every uniform quasiconformal
group (without the assumption of cocompactness of the induced action on the space
of distinct triples) is quasiconformally conjugate to a conformal group.

Tukia’s theorem has applications to rigidity of quasi-actions and quasi-isometric
rigidity of finitely generated groups. So does Theorem 1.1. A quasi-action of a group
Γ on a metric space X is an assignment γ 7→ Gγ where Gγ is a self quasi-isometry of
X such that

(1) Gγ is an (L,A) quasi-isometry where L and A are uniform over all γ ∈ Γ.
(2) Gγη and Gγ ◦Gη are bounded distance apart in the sup norm, uniformly over

all γ, η ∈ Γ.
(3) GId is bounded distance from the identity map on X.

A quasi-action is cobounded if there is a bounded set S ⊂ X such that for any x ∈ X
there is γ ∈ Γ such that Gγ(x) ∈ S.

The standard example of a cobounded quasi-action arises when Γ is a group
with a left invariant metric (for example, a finitely generated group with a word
metric or a Lie group with a left invariant Riemannian metric) and φ : Γ → X is
a quasi-isometry with coarse inverse φ̄. Then γ 7→ φ ◦ Lγ ◦ φ̄ defines a cobounded
quasi-action of Γ on X, where Lγ is the left translation of Γ by γ. We note, however,
that there exist “non-proper” cobounded quasi-actions and so these do not come from
a quasi-isometry between a group and a metric space.

A quasi-action {Gγ|γ ∈ Γ} of Γ on a metric space X is quasi-conjugate to a
quasi-action {G′

γ|γ ∈ Γ} of Γ on another metric space X ′ if there is a quasi-isometry
f : X → X ′ and a constant C > 0 such that d(G′

γ(f(x)), f(Gγ(x))) ≤ C for all x ∈ X
and all γ ∈ Γ.

The relation between quasi-actions and uniform quasiconformal groups is through
negative curvature. A self quasi-isometry of a Gromov hyperbolic space X induces a
self quasiconformal map of the Gromov boundary ∂X of X (equipped with a visual
metric), and a quasi-action of a group Γ on a Gromov hyperbolic space X induces a
uniform quasiconformal group action of Γ on ∂X. A quasi-conjugation between quasi-
actions of Γ on two Gromov hyperbolic spaces X, X ′ corresponds to a quasiconformal
conjugation between the uniform quasiconformal actions of Γ on ∂X and ∂X ′.

The standard Carnot group dilations of N define an action of R on N . Let
S = N ⋊ R be the associated solvable Lie group. Then S with any left invariant
Riemannian metric is a Gromov hyperbolic space [H74]. Its boundary is ∂S ≃ N̂ .
Exploiting the above connection between quasi-isometries of S and quasi-conformal
maps of N̂ we get the following corollary to Theorem 1.1.

Corollary 1.2. Let N be a Carnot group and S = N ⋊ R be the associated
solvable Lie group. There is a left invariant Riemannian metric g0 on S with the
following property. Let G be a group that quasi-acts on S. If the quasi-action is
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co-bounded, then the quasi-action is quasi-conjugate to an isometric action of G on
(S, g0).

We next turn to uniform quasiconformal groups on more general nilpotent Lie
groups. Let N be a simply connected nilpotent Lie group with Lie algebra n and
D a derivation of n. We say (N,D) is a diagonal Heintze pair if D has positive
eigenvalues and is diagonalizable over R. Let (N,D) be a diagonal Heintze pair. A
distance d on N is called D-homogeneous if it is left invariant, induces the manifold
topology on N and such that d(etDx, etDy) = etd(x, y) for all x, y ∈ N and t ∈ R,
where {etD|t ∈ R} denotes the automorphisms of N generated by the derivation D.
By Theorem 2 of [HSi90], D-homogeneous distances exist on N . It is easy to see
that any two D-homogeneous distances on N are biLipschitz equivalent. We will
always equip N with a D-homogeneous distance. Hence it makes sense to speak of a
biLipschitz map of N without specifying the D-homogeneous distance.

Let (N,D) be a diagonal Heintze pair. Then there is a sequence of D-invariant
Lie sub-algebras {0} = n0 ⊂ n1 ⊂ · · · ⊂ ns = n with the following properties: each
ni−1 is an ideal of ni with the quotient ni/ni−1 a Carnot Lie algebra; D induces
a derivation D̄ : ni/ni−1 → ni/ni−1 which is a multiple of the Carnot derivation of
ni/ni−1. See Section 5.1 for more details. Let Ni be the connected Lie subgroup of
N with Lie algebra ni. Then N/Ni is a homogeneous manifold and the natural map
πi : N/Ni−1 → N/Ni is a fiber bundle with fiber the Carnot group Ni/Ni−1. We call
the sequence of subgroups 0 = N0 < N1 < · · · < Ns = N the preserved subgroup

sequence.
Let d be a D-homogeneous distance on N . In general d does not induce any

metric on the homogeneous space N/Ni when Ni is not normal in N . Nonethe-
less, it induces a metric on the fibers Ni/Ni−1 of πi : N/Ni−1 → N/Ni. Further-
more, every biLipschitz map F of N permutes the cosets of Ni for each i. Hence
F induces a map Fi : N/Ni → N/Ni and a bundle map of πi : N/Ni−1 → N/Ni.
The restriction of Fi−1 to the fibers of πi are biLipschitz maps of the Carnot group
Ni/Ni−1 in the following sense. For each p ∈ N , let Fp = LF (p)−1 ◦ F ◦ Lp, where
Lx denotes the left translation of N by x. Notice that the map (Fp)i−1 : N/Ni−1 →
N/Ni−1 satisfies (Fp)i−1(Ni/Ni−1) = Ni/Ni−1. The statement above simply means
(Fp)i−1|Ni/Ni−1

: Ni/Ni−1 → Ni/Ni−1 is biLipschitz with respect to any left invariant
Carnot–Carathéodory metric on Ni/Ni−1. See Section 5.1 for more details.

A group Γ of homeomorphisms of a metric space X is a uniform quasisimilarity

group if there is a constant K ≥ 1 such that each γ ∈ Γ satisfies (Cγ/K)d(x, y) ≤
d(γ(x), γ(y)) ≤ CγKd(x, y) for some Cγ > 0 and all x, y ∈ X. A bijection f : X → X
is a similarity if there is some L > 0 such that d(f(x), f(y)) = Ld(x, y) for all
x, y ∈ X.

Theorem 1.3. Let (N,D) be a diagonal Heintze pair and Γ be a uniform qua-
sisimilarity group of (N,D) that acts cocompactly on the space of distinct pairs of
N (or equivalently Γ a group that quasi-acts coboundedly on S = N ⋊D R). Let I =
{i|1 ≤ i ≤ s, dim(Ni/Ni−1) ≥ 2}. Then there exists a biLipschitz map F0 : N → N
and a left invariant Carnot–Carathéodory metric di on Ni/Ni−1 for each i ∈ I such
that for each p ∈ N and each g ∈ F0ΓF

−1
0 , the map (gp)i−1|Ni/Ni−1

: (Ni/Ni−1, di)→
(Ni/Ni−1, di) is a similarity.

Ideally one would like to conjugate the group Γ in Theorem 1.3 into a group of
similarities of N with respect to some D-homogeneous distance. But this question
is still open in general. A positive answer was given in [DFX] in the case when the



656 Tullia Dymarz, David Fisher and Xiangdong Xie

preserved subgroup sequence has only two terms 0 < N1 < N . Its proof is much
more involved algebraically and uses Theorem 1.3 as a crucial ingredient.

When s ≥ 2, [CP17] implies that every quasiconformal map of N̂ = N ∪ {∞}
fixes ∞ and restricts to a biLipschitz map of N . From this it is easy to see that a
uniform quasiconformal group of N̂ restricts to a uniform quasisimilarity group of
N . Therefore there is no loss of generality in Theorem 1.3 in considering a uniform
quasisimilarity group of N instead of a uniform quasiconformal group of N̂ .

When s = 1, then N is Carnot and depending on N not all quasiconformal maps
of N̂ are necessarily biLipschitz. In this case, Theorem 1.3 simply asserts that if the
quasiconformal group from Theorem 1.1 happens to consist of biLipschitz maps then
the conjugating map can be chosen to be biLipschitz.

Theorem 1.3 was proved in [Dy10] in the case when N is a Euclidean group. In
the case N = R, this result can be found in the appendix of [FM99] and no additional
assumptions other than uniformity are needed on the group.

The case N = R is used for the last step in the proof of quasi-isometric rigidity of
SOL by Eskin–Fisher–Whyte [EFW12], [EFW13], while the cases covered in [Dy10]
are used to prove quasi-isometric rigidity of higher rank generalizations of SOL by
Peng in [P11a], [P11b]. Similarly Theorem 1.3 played a crucial role in the proof of
quasi-isometric rigidity of a class of solvable groups [DFX].

The group SOL = R
2
⋊ R where the action of R scales by et on the first co-

ordinate and by e−t along the second. This action gives rise to two foliations by
hyperbolic planes (which we view as R ⋊ R). More generally a SOL-like group is
a semi-direct product (N1 × N2) ⋊ R, where Ni is a simply connected nilpotent Lie
group with Lie algebra ni, and the action of R on N1×N2 is generated by a derivation
D = (−D1, D2) of n1×n2 and Di is a derivation of ni whose eigenvalues have positive
real part. A SOL-like group is foliated by two families of negatively curved solvable
Lie groups Ni⋊Di

R (these are called Heintze groups and they are exactly those solv-
able Lie groups admitting left invariant Riemannian metrics with negative sectional
curvature). The quasi-isometric rigidity result proved in [DFX] are for SOL-like
groups where (Ni, Di) is either of Carnot type or has a preserved subgroup sequence
of length two. We remark that the quasi-isometric rigidity for non-unimodular SOL-
like groups where (Ni, Di) is of Carnot type is included in Theorem C, [Fe22] and
that proof does not use Tukia type theorems.
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2. Preliminaries

2.1. Carnot groups. Let N be a Carnot group with Lie algebra n = V1⊕· · ·⊕Vk.
The exponential map exp : n→ N is a diffeomorphism. We will identify N and n via
the exponential map. For any t > 0, the Carnot group dilation δt : n→ n is given by
δt(
∑k

j=1 xj) =
∑k

j=1 t
jxj , with xj ∈ Vj. They are similarities w.r.t. any left invariant

Carnot–Carathéodory metric d: d(δt(x), δt(y)) = t d(x, y) for any x, y ∈ n. The

determinant of δt : n→ n is tQ, where Q =
∑k

j=1 jmj is the homogeneous dimension
of N .
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Let {ejl : 1 ≤ l ≤ mj} be a basis for Vj, 1 ≤ j ≤ k. Let n = dim n. Then the
map R

n → N given by (xjl) → exp(
∑

j,l xjlejl) is a diffeomorphism and the push-
forward of the Lebesgue measure under this map is a Haar measure on N . We shall
use the notation |A| for the Haar measure of a subset A ⊂ N . Define a function
ρ : n→ [0,∞) by

ρ

(

∑

j,l

xjlejl

)

=

k
∑

j=1

mj
∑

l=1

|xjl|
1

j .

Then ρ(δt(x)) = t ρ(x) for all x ∈ n. There is an associated “distance” dρ given
by dρ(x, y) = ρ((−x) ∗ y). It is easy to see that dρ is left invariant and satisfies
dρ(δt(x), δt(y)) = t dρ(x, y). Hence dρ is biLipschitz equivalent with any left invari-
ant Carnot–Carathéodory metric d: there exists some constants L ≥ 1 such that
d(x, y)/L ≤ dρ(x, y) ≤ Ld(x, y) for all x, y ∈ N .

Let V1 be equipped with an inner product and we may assume {e1l : 1 ≤ l ≤ m1}
is an orthonormal basis for V1. Let X1l be the left invariant vector field on N
determined by e1l. For any smooth function u : U → R defined on an open subset of
N , define the horizontal gradient ▽u of u by:

▽u =

m1
∑

l=1

(X1lu)X1l.

The length of ▽u is:

|▽u| =

√

√

√

√

m1
∑

l=1

(X1lu)2.

Let d be the left invariant Carnot–Carathéodory metric on N determined by the
inner product on V1, let U, V ⊂ N be open subsets, and f : U → V a homeomorphism.
For x ∈ U and r > 0 with B(x, r) ⊂ U , let

Lf (x, r) = sup
d(y,x)≤r

d(f(x), f(y)), lf(x, r) = inf
d(y,x)≥r

d(f(x), f(y)).

Define

K(f, x) = lim sup
r→0

Lf(x, r)

lf (x, r)
.

We call f K-quasiconformal for some K ≥ 1 if K(f, x) ≤ K for a.e. x ∈ U .
Let U, V ⊂ N be open subsets, and f : U → V a quasiconformal map. By

[P89], f is Pansu differentiable a.e. and the Pansu differential Df(x) is a graded
automorphism for a.e. x ∈ U . Recall that an automorphism A : n → n is graded if
it commutes with δt for all t > 0; equivalently A is graded if A(Vj) = Vj for each
1 ≤ j ≤ k. Furthermore, f is absolutely continuous w.r.t. the Haar measure, see
[P89]. For any x ∈ U , define

Lf (x) = lim sup
y→x

d(f(x), f(y))

d(x, y)
, lf (x) = lim inf

y→x

d(f(x), f(y))

d(x, y)
.

By Lemma 3.3 in [CC06], for a.e. x ∈ U , we have

Lf (x) = max{Df(x)X : X ∈ V1, |X| = 1},
lf (x) = min{Df(x)(X) : X ∈ V1, |X| = 1},
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and K(f, x) =
Lf (x)

lf (x)
. For any x ∈ U , the volume derivative of f at x is:

f ′(x) = lim
r→0

|f(B(x, r))|
|B(x, r)| ,

which exists a.e. and is a.e. finite. By (4.1) in [CC06], lf (x)
Q ≤ f ′(x) ≤ Lf (x)

Q for
a.e. x ∈ U , where Q is the homogeneous dimension of N .

2.2. Homogeneous distances on nilpotent Lie groups. Let (N,D) be a
diagonal Heintze pair. Let 0 < λ1 < · · · < λr be the distinct eigenvalues of D and
n = ⊕jVλj

be the decomposition of n into the direct sum of eigenspaces of D. An
inner product 〈·, ·〉 on n is called a D-inner product if the eigenspaces corresponding
to distinct eigenvalues are perpendicular with respect to 〈·, ·〉. By the construction in
Theorem 2 of [HSi90], given any D-inner product 〈·, ·〉 on n, there is a D-homogeneous

distance d on N such that d(0, x) = 〈x, x〉
1

2λj for x ∈ Vλj
.

For computational purposes, we also define a function ρ that is biLipschitz equiv-
alent to a D-homogeneous distance d. For any D-inner product 〈·, ·〉 on n define a
“norm” on n by

||v|| =
∑

i

|vi|
1

λi ,

where v =
∑

i vi with vi ∈ Vλi
. Then define ρ by ρ(x, y) = ||x−1 ∗ y||. We identify

n and N . Clearly ρ is left invariant, induces the manifold topology and satisfies
ρ(etDx, etDy) = etρ(x, y) for all x, y ∈ n and t ∈ R. It follows that for any D-
homogeneous distance d on n, there is a constant L ≥ 1 such that d(x, y)/L ≤
ρ(x, y) ≤ L · d(x, y) for all x, y ∈ n. The explicit formula for ρ will make the
calculations much easier.

Lemma 2.1. Let φ be an automorphism of N . Then φ is biLipschitz if and only
if dφ is “layer preserving”; that is, dφ(Vλj

) = Vλj
for each j.

Proof. First suppose φ is biLipschitz. Let 0 6= v ∈ Vλj
and write dφ(v) =

∑

i xi

with xi ∈ Vλi
. Then dφ(tv) =

∑

i txi. We have

ρ(0, tv) = |v|
1

λj |t|
1

λj

and
ρ(0, dφ(tv)) =

∑

i

|xi|
1

λi |t|
1

λi .

The biLipschitz condition implies xi = 0 when i 6= j by letting t→∞ or t→ 0.
Conversely assume dφ is layer preserving. Then there is some constant C ≥ 1

such that

(1) |v|/C ≤ |dφ(v)| ≤ C|v|
for all v ∈ Vλj

, ∀j. Now let v ∈ n. Write v =
∑

j vj with vj ∈ Vλj
. Then dφ(v) =

∑

j dφ(vj). We have ρ(0, v) =
∑

j |vj|
1

λj and ρ(0, dφ(v)) =
∑

j |dφ(vj)|
1

λj . Now the

claim follows from (1). �

An automorphism φ of N is called graded if it satisfies the condition in Lemma 2.1.
We denote by Autg(N) the group of graded automorphisms of N .

For any D-homogeneous distance d on N , let Sim(N, d) be the group of similari-
ties of (N, d). By Theorem 1.2 in [KLD17] and Lemma 2.1, Sim(N, d) has the struc-
ture Sim(N, d) = N⋊(R×K), where R acts on N by the automorphisms {etD | t ∈ R}
and K ⊂ Autg(N) is a compact Lie subgroup. Given two D-homogeneous distances
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d1, d2 on N , although (N, d1) and (N, d2) are biLipschitz, a similarity of (N, d1) in
general is not a similarity of (N, d2) and so their associated similarity groups can
be very different; see Section 6 for an example in the case of Carnot groups. The
following is a notion of D-homogeneous distance with the largest similarity group. It
is similar to Definition 0.2 in [GJ19].

Definition 2.2. Let (N,D) be a diagonal Heintze pair. A D-homogeneous dis-
tance d0 on N is maximally symmetric (with respect to similarities) if for any D-
homogeneous distance d on N , there is a biLipschitz automorphism φ of N such that
φSim(N, d)φ−1 ⊂ Sim(N, d0).

Lemma 2.3. Let (N,D) be a diagonal Heintze pair. Then N admits a maximally
symmetric D-homogeneous distance.

Proof. Since N is simply connected, Autg(N) can be identified with the group
of graded automorphisms Autg(n) of n. It is easy to see that Autg(n) is a real alge-
braic variety and so has only a finite number of connected components by Whitney’s
theorem [Wh57]. Therefore Autg(N) is a Lie group with finitely many components.

Let K0 be a maximal compact subgroup of Autg(N). Recall n = ⊕jVλj
. For each

j let 〈·, ·〉j be a K0-invariant inner product on Vλj
. Let 〈·, ·〉 be the inner product

on n that agrees with 〈·, ·〉j on Vλj
such that Vλi

and Vλj
are perpendicular to each

other for i 6= j. Let d be a D-homogeneous distance on N associated to this inner
product. Although dφ is a linear isometry of (n, 〈, 〉) for any φ ∈ K0, it is not clear
that φ is an isometry of (N, d). Let m be the normalized Haar measure on K0.
Define a new distance d0 on N by d0(x, y) =

´

K0
d(k(x), k(y))dm(k). Now it is easy

to check that d0 is a K0-invariant D-homogeneous distance on N associated to 〈, 〉
and Sim(N, d0) = N ⋊ (R×K0).

Now let d be an arbitrary D-homogeneous distance on N . As observed above,
Sim(N, d) = N ⋊ (R × K), where K is a compact subgroup of Autg(N). Since
Autg(N) has only a finite number of components, there is some φ ∈ Autg(N) such
that φKφ−1 ⊂ K0. Since N is normal in N ⋊ Aut(N) and φ is graded we have
φSim(N, d)φ−1 ⊂ Sim(N, d0). �

Let G be a connected Lie group with a left invariant distance d that induces the
manifold topology, and H a closed normal subgroup of G. We define a distance on
G/H by d̄(xH, yH) = inf{d(xh1, yh2)|h1, h2 ∈ H}. Then d̄ is a left invariant distance
on G/H that induces the manifold topology and the quotient map (G, d)→ (G/H, d̄)
is 1-Lipschitz. Since H is normal, we have d̄(xH, yH) = d(xh1, yH) = d(yh2, xH) =
dH(xH, yH) for any h1, h2 ∈ H , where dH denotes the Hausdorff distance. If F is a
biLipschitz map of (G, d) that permutes the cosets of H , then F induces a biLipschitz
map F̄ : (G/H, d̄)→ (G/H, d̄) with the same biLipschitz constant as F .

Let (N,D) be a diagonal Heintze pair and d a D-homogeneous distance on N .
Assume w is an ideal of n such that D(w) ⊂ w. Then D induces a derivation D̄
of n/w and (N/W, D̄) is also a diagonal Heintze pair, where W is the Lie subgroup
of N with Lie algebra w. In this case, the distance d̄ on N/W induced by d is a
D̄-homogeneous distance.

2.3. Homogeneous manifolds with negative curvature. Let N be a Carnot
group with Lie algebra n = V1 ⊕ · · · ⊕ Vk. The standard dilations δt of N define an
action of R on N = n:

t · x = δet(x) for t ∈ R and x ∈ n.
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Let S = N ⋊ R be the associated semi-direct product. Then S is a solvable Lie
group. By [H74] S admits a left invariant Riemannian metric with negative sectional
curvature. For x0 ∈ N , the path cx0

: R→ S, cx0
(t) = (x0, t), is a geodesic in S. We

call cx0
a vertical geodesic. All vertical geodesics are asymptotic as t → ∞, and so

they determine a point ∞ in the ideal boundary. If t → −∞ all vertical geodesics
diverge from one another. We call such geodesics downward oriented. Every geodesic
ray in S is asymptotic to either an upward oriented vertical geodesic or a downward
oriented vertical geodesic. It follows that the ideal boundary ∂S of S can be identified
with N̂ = N ∪ {∞}, where points in N correspond to downward oriented vertical
geodesics.

2.4. Sphericalization of metrics and measures. Let (X, d) be an unbounded

metric space and p ∈ X a base point. Let ∞ be a point not in X and set X̂ =
X ∪{∞}. The sphericalized metric d̂p of d relative to the base point p is a metric on

X̂ satisfying:

d(x, y)

4(1 + d(p, x))(1 + d(p, y))
≤ d̂p(x, y) ≤

d(x, y)

(1 + d(p, x))(1 + d(p, y))
for x, y ∈ X,

and d̂p(x,∞) = 1
(1+d(p,x))

. Furthermore, a proof similar to that of Proposition 4.1

in [BHX08] shows that the identity map id : (X, d) → (X, d̂p) is 1-quasiconformal.

It follows that a homeomorphism f : (X̂, d̂p) → (X̂, d̂p) is quasiconformal (1-quasi-
conformal) iff the restriction f : (X\{f−1(∞)}, d) → (X\{f(∞)}, d) is quasiconfor-
mal (1-quasiconformal). We shall use this observation when we study quasiconformal

maps of N̂ .
Let (X, d, ν) be a metric measure space, with ν a Borel regular measure. The

metric measure space (X, d, ν) is α-Alhfors regular for some α > 0 if there is some
constant C > 0 such that rα/C ≤ ν(B(x, r)) ≤ Crα for all balls B(x, r) with
radius 0 < r ≤ diam(X, d). Now let (X, d, ν) be a α-Alhfors regular metric measure
space with (X, d) unbounded and p ∈ X a base point. Li and Shanmugalingam

[LS15] defined a measure ν̂p on (X̂, d̂p) which is also α-regular and showed that

(X, d, ν) supports a p-Poincare inequality if and only if (X̂, d̂p, ν̂p) supports a p-
Poincare inequality (see Theorem 1.1 in [LS15]) . Furthermore, the two measures ν
and ν̂p are comparable on any bounded subset of (X, d); that is, for any bounded
subset A ⊂ (X, d), there is a constant C ≥ 1 such that ν(E)/C ≤ ν̂p(E) ≤ Cν(E)
for any E ⊂ A. We shall use this in the case of a Carnot group N equipped with a
left invariant Carnot–Carathéodory metric and the Lebesgue measure.

3. Lemmas on quasiconformal maps of Carnot groups

In this section we collect some results on quasiconformal maps of Carnot groups.
These will be used in Section 4.2 for the proof of Theorem 1.1.

Let N be a Carnot group equipped with a left invariant Carnot–Carathéodory
metric and N̂ = N ∪{∞} its one-point compactification. A ring in N̂ is a connected

open subset R ⊂ N̂ whose complement has two connected components. We always
work with rings R satisfying ∞ /∈ R̄. Let C0 and C1 be the two components of ∂R.
An admissible function for R is a C∞ function u : N → R with u|C0

= 0 and u|C1
= 1.

The conformal capacity of R is:

C(R) = inf
u

ˆ

N

|▽u|Q dx,
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where Q is the homogeneous dimension of N , u ranges over all admissible functions
for R, and the integral is with respect to the Lebesgue measure. The above infimum
remains the same if we enlarge the class of admissible functions to include all Sobolev
functions in C(R̄) ∩W 1,Q(R), see Proposition 11 in [KR95], where the proof is valid

for all Carnot groups. In particular, if f : N̂ → N̂ is quasiconformal, R is a ring with
∞, f−1(∞) /∈ R̄ and u : N → R is an admissible function for f(R) as defined above,
then u ◦ f is admissible for R in the generalized sense and so can be used in the
estimate for C(R).

Let Γ be a curve family in N . A non-negative Borel function ρ : N → [0,+∞]
is an admissible function of Γ if

´

γ
ρ ds ≥ 1 for every locally rectifiable curve γ in Γ.

The conformal modulus of Γ is:

M(Γ) = inf
ρ

ˆ

N

ρQ dx,

where Q is the homogeneous dimension of N and ρ varies over all admissible functions
of Γ.

It is a classical result that for any ring R in R
n, the capacity agrees with the

modulus, C(R) = M(Γ(R,C0, C1)), where Γ(R,C0, C1) is the collection of curves in
R joining C0 and C1. This result has been generalized to the case of Carnot groups
by Markina [M03].

The following result says that a quasiconformal map preserving conformal capac-
ity of rings must be a conformal map.

Lemma 3.1. Let f : N̂ → N̂ be a quasiconformal map. Suppose C(R) =

C(f(R)) for any ring R in N̂ satisfying ∞, f−1(∞) /∈ R̄. Then f is conformal.

Proof. Let p ∈ N\{f−1(∞)} be a point such that f is Pansu differentiable
at p and the Pansu differential Df(p) is a graded automorphism of N . Then the
maps δ 1

t
◦ Lf(p)−1 ◦ f ◦ Lp ◦ δt converges to Df(p) uniformly on compact subsets as

t→ +0. Since left translations and the standard Carnot dilations are conformal and
so preserve the capacities, all the maps δ 1

t
◦ Lf(p)−1 ◦ f ◦ Lp ◦ δt preserve capacities.

Now the continuity of capacities implies the limiting map Df(p) also preserves the
capacity. Hence we may assume f is a graded automorphism of N that preserves
capacity of rings. By the result of Markina [M03] cited above,

M(Γ(R,C0, C1)) = M(Γ(f(R), f(C0), f(C1)))

for any ring R. We need to show that f is a similarity.
The proof below is a modification of the proof of Theorem 36.1 in [V71].
We first construct the rings that we will use. For this we identify N with its

Lie algebra n = V1 ⊕ · · · ⊕ Vk. We fix an inner product on n so that the Vj’s
are perpendicular to each other and that on V1 it agrees with the inner product
on V1 that defines the left invariant Carnot–Carathéodory metric on N . Denote
mj = dim(Vj). By the singular value decomposition, there exist orthonormal bases
{ej1, · · · , ejmj

} and {ẽj1, · · · , ẽjmj
} of Vj and positive numbers λj1 ≥ · · · ≥ λjmj

such

that f(ejl) = λj
jlẽjl.
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Let

C0 =

{

∑

j,l

xjlejl : x11 = 0, |x1l| ≤ 1 for l = 2, · · · , m1,

|xjl| ≤ 1 for j ≥ 2, 1 ≤ l ≤ mj

}

.

We will construct a rectangular box Y that contains C0 in its interior Y̊ and the ring
will be R = Y̊ \C0.

Claim. For each pair (j, l), 2 ≤ j ≤ k, 1 ≤ l ≤ mj , there is a polynomial Pjl(δ)
without constant term satisfying the following property: for 0 < δ ≪ 1, let

Y =

{

∑

j,l

xjlejl : |x11| ≤
δ

λ11

, |x1l| ≤ 1 +
δ

λ1l

for 2 ≤ l ≤ m1,

|xjl| ≤ 1 + Pjl(δ) for j ≥ 2, 1 ≤ l ≤ mj

}

,

then d(C0, ∂Y ) = δ
λ11

and d(f(C0), ∂f(Y )) = δ.

We will first assume the claim and finish the proof of the lemma, and then prove
the claim. We consider the ring R = Y̊ \C0. Note ∂R has two components: C0 and
C1 := ∂Y .

Let Γ1 and Γ2 be the families of curves defined by:

Γ1 =

{

x ∗ (0, δ

λ11
)e11 : x ∈ C0

}

, Γ2 =

{

x ∗ (− δ

λ11
, 0)e11 : x ∈ C0

}

.

The claim d(C0, ∂Y ) = δ
λ11

and the definition of Y implies Γ1,Γ2 ⊂ Γ := Γ(R,C0, C1).
The curves in Γ1 and Γ2 are respectively contained in the disjoint Borel sets C0 ∗
(0, δ

λ11
)e11 and C0 ∗ (− δ

λ11
, 0)e11. This implies M(Γ) ≥ M(Γ1) + M(Γ2), see Theo-

rem 6.7 in [V71]. The standard calculation in quasiconformal analysis (see 7.2 in
[V71]) shows that

M(Γ1) = M(Γ2) =
|C0 ∗ [0, δ

λ11
]e11|

( δ
λ11

)Q
=

Ln−1(C0) · ( δ
λ11

)

( δ
λ11

)Q
,

where Ln−1(C0) is the (n− 1)-dimensional Lebesgue measure of C0 and n = dim(n).
So we have

M(Γ) ≥M(Γ1) +M(Γ2) =
2Ln−1(C0)

( δ
λ11

)Q−1
.(2)

By the claim the minimal distance between the two boundary components f(C0)
and f(C1) of f(R) is δ. Now by Theorem 7.1 in [V71], with Γ̃ = Γ(f(R), f(C0), f(C1))
and J the absolute value of the determinant of f ,

M(Γ̃) ≤ |f(R)|
δQ

=
J · |R|
δQ

=
J · Ln−1(F ) · 2 δ

λ11

δQ
,(3)

where F = {
∑

j,l xjlejl ∈ Y : x11 = 0}.
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Since M(Γ) = M(Γ̃), (2) and (3) imply

λQ
11 ≤ J · L

n−1(F )

Ln−1(C0)
.

Since Ln−1(F )/Ln−1(C0) → 1 as δ → 0, we get λQ
11 ≤ J . On the other hand, by

Lemma 3.3 in [CC06], f(B(0, 1)) ⊂ B(0, λ11), which implies

J · |B(0, 1)| = |f(B(0, 1))| ≤ |B(0, λ11)| = λQ
11|B(0, 1)|

and so J ≤ λQ
11. Hence J = λQ

11. This implies f maps the ball B(0, 1) onto the ball
B(0, λ11) and so must be a similarity.

Proof of the claim. We only write down the proof for d(f(C0), ∂f(Y )) = δ, as the
proof for d(C0, ∂Y ) = δ

λ11
is very similar. Let Pjl be a polynomial without constant

term and Y be as defined in the claim. By the formula for f we have

f(C0) =

{

∑

j,l

yjlẽjl : y11 = 0, |y1l| ≤ λ1l for l = 2, · · · , m1, |yjl| ≤ λjl for j ≥ 2

}

and

f(Y ) =

{

∑

j,l

yjlẽjl : |y11| ≤ δ, |y1l| ≤ λ1l + δ for l = 2, · · · , m1,

|yjl| ≤ λjl + λjlPjl(δ) for j ≥ 2

}

;

First note that 0 ∈ f(C0), δẽ11 ∈ ∂f(Y ) and d(0, δẽ11) = δ. So d(f(C0), ∂f(Y )) ≤ δ.
It suffices to show for suitable choices of Pjl we have Nδ(f(C0)) ⊂ f(Y ).

Let w ∈ Nδ(f(C0)). Then we can write w = y ∗ z with y ∈ f(C0) and d(0, z) ≤ δ.
By the BCH formula we have w = y + z + 1

2
[y, z] + · · · . Write w =

∑

j,lwjlẽjl,

y =
∑

j,l yjlẽjl, z =
∑

j,l zjlẽjl. As d(0, z) ≤ δ, we have |zjl| ≤ δj. As y11 = 0 and

|y1l| ≤ λ1l for l ≥ 2 we have |w11| ≤ δ and |w1l| ≤ λ1l+ δ for l ≥ 2. For j ≥ 2 we have
wjl = yjl + Qjl, where Qjl is a polynomial of zst and yst with s ≤ j such that each
monomial in Qjl has at least one zst as a factor. As |yst| ≤ λst and |zs,t| ≤ δs, we
see that there is a polynomial Pj,l with no constant term such that |Qjl| ≤ λjlPjl(δ).
This finishes the proof of the claim. �

In Lemmas 3.2, 3.3 and 3.4 we fix an inner product on n so that the Vj ’s are
perpendicular to each other; this determines a left invariant Carnot–Carathéodory
metric dCC on N and a Haar measure on N ; the metric on N̂ will be the sphericalized
metric d̂CC of dCC with respect to the origin and the measure on N̂ will be the
sphericalized measure m of the Haar measure with respect to the origin. See the end
of Section 2 for more details.

Note that Lemma 3.2 and 3.3 hold more generally for quasisymmetric maps
on Alhfors regular metric measure spaces that satisfies a Poincare inequality: their
proofs use only the reverse Holder inequality which holds in such generality, see
Theorem 7.11 of [HK98].

Lemma 3.2. Let f : (N̂, d̂CC) → (N̂, d̂CC) be an η-quasisymmetric map. Then
there exist constants a, b > 0 depending only on N and η that satisfy the following.
For any ball B1 ⊂ N̂ with center x, let B2 be the largest ball in f(B1) with center
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f(x). Then for any measurable E ⊂ N̂ ,

m(f(E) ∩B2)

m(B2)
≤ a

(

m(E ∩ B1)

m(B1)

)b

.

Proof. By [J86], N with the Carnot–Carathéodory metric and the Lebesgue

measure supports a 1-Poincare inequality. Then Theorem 1.1 of [LS15] implies N̂
with the sphericalized metric and sphericalized measure also supports a 1-Poincare
inequality. By Theorem 7.11 in [HK98], there is some ǫ > 0 and a constant C
depending only on N and η such that

(

1

m(B)

ˆ

B

µ1+ǫ
f dm

)
1

1+ǫ

≤ C

(

1

m(B)

ˆ

B

µf dm

)

for all balls B in N̂ . Here µf is the volume derivative of f defined by:

µf(x) = lim
r→0

m(f(B(x, r)))

m(B(x, r))
,

which exists and is finite for m-a.e. x ∈ N̂ . Now for a measurable E,

m(f(E) ∩ B2) =

ˆ

E∩f−1(B2)

µf dm ≤
ˆ

E∩B1

µf dm =

ˆ

B1

µf · XE∩B1
dm

≤
(
ˆ

B1

µ1+ǫ
f dm

)
1

1+ǫ

m(E ∩ B1)
ǫ

1+ǫ

≤ Cm(B1)
− ǫ

1+ǫ

(
ˆ

B1

µf dm

)

m(E ∩B1)
ǫ

1+ǫ

= Cm(B1)
− ǫ

1+ǫm(f(B1))m(E ∩ B1)
ǫ

1+ǫ .

Hence,

m(f(E) ∩B2)

m(f(B1))
≤ C

(

m(E ∩B1)

m(B1)

)
ǫ

1+ǫ

.

Since f is η-quasisymmetric, we have f(B1) ⊂ η(1)B2, where η(1)B2 is the ball in

(N̂, d̂CC) with the same center as B2 and with radius η(1) times that of B2. Now

the Alhfors regularity of N̂ implies m(f(B1)) ≤ C1m(B2) for some constant C1 ≥ 1
depending only on η and the constant in Alhfors regularity condition. The lemma
follows. �

Lemma 3.3. Let F be a compact family of K-quasiconformal maps from N̂ to
N̂ . Then there exist positive constants b′, b, a′, a depending only on F and N such
that

a′(m(E))b
′ ≤ m(f(E)) ≤ a(m(E))b

for all measurable E ⊂ N̂ and all f ∈ F .

Proof. Since F is a compact family of K-quasiconformal maps, there exists some
homeomorphism η : [0,∞)→ [0,∞) such that every f ∈ F is η-quasisymmetric. Let

r0 = 1/10. For any x ∈ N̂ and any f ∈ F , let r′′ = r′′(x, f) > 0 be the largest
number such that B(f(x), r′′) ⊂ f(B(x, r0)). Let r′ = r′(x, f) > 0 be the largest
number such that f(B(x, r′)) ⊂ B(f(x), r′′). By Lemma 3.2 the following holds for
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any measurable E ⊂ B(x, r′):

m(f(E))

m(B(f(x), r′′))
≤ a

(

m(E)

m(B(x, r0))

)b

.

Note that r′′ and r′ are continuous functions of x, f . Since N̂ and F are compact,
we have

r′0 = inf
x∈N̂,f∈F

r′(x, f) > 0.

Also set

r′′0 = sup
x∈N̂,f∈F

r′′(x, f) ≤ diam(N̂).

Now the space N̂ can be covered by a finite number of balls {B(xj, r
′
0)}kj=1 with radius

r′0. Let E ⊂ N̂ be any measurable subset. Then f(E) =
⋃k

j=1 f(E ∩ B(xj , r
′
0)). By

using the Alhfors regularity of the metric measure space (N̂, d̂,m) we obtain:

m(f(E)) ≤
k
∑

j=1

a

(

m(E ∩B(xj , r
′
0))

m(B(xj , r0))

)b

m(B(f(xj), r
′′
0))

≤
k
∑

j=1

a
Cr′′0

Q

(rQ0 /C)b
m(E ∩ B(xj , r

′
0))

b ≤ kaCr′′0
Q

(rQ0 /C)b
m(E)b.

This establishes the second inequality in the lemma. The first inequality holds since
the family F−1 = {f−1|f ∈ F} is also a compact family of K-quasiconformal maps.

�

Lemma 3.4. Let {fj : N̂ → N̂} be a sequence of K-quasiconformal maps that

converge uniformly to a quasiconformal map f : N̂ → N̂ . Suppose for any compact
subset F ⊂ N̂ satisfying ∞, f−1(∞) /∈ F , and any ǫ > 0,

|{x ∈ F : K(fj , x) ≥ 1 + ǫ}| → 0 as j →∞.

Then f is conformal.

Proof. We shall show that f satisfies the assumption of Lemma 3.1. Let R be a
ring in N̂ satisfying ∞, f−1(∞) /∈ R̄. Let C0 and C1 be the two components of ∂R.
For a > 0, let

R̃a = {z ∈ f(R) : B(z, a) ⊂ f(R)}.
Then fj(R) ⊃ R̃a for j sufficiently large (depending on a).

Let ǫ > 0. Let ũa be admissible for R̃a so that
ˆ

R̃a

|▽ũa|Q dx ≤ C(R̃a) + ǫ.

One can assume ũa is smooth and is 0 on a neighborhood of C0 and 1 on a neighbor-
hood of C1. Extend ũa to N̂ by continuity and being constant on the two components
of N̂\R̃a. Then clearly

ˆ

R̃a

|▽ũa|Q dx =

ˆ

R̃

|▽ũa|Q dx

for R̃ ⊃ R̃a.
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Let uj = ũa ◦ fj. Then uj is admissible for f−1
j (R̃a) and hence also admissible for

R. The chain rule (see Lemma 3.7 in [CC06]) implies Duj(x) = Dũa(fj(x)) ◦Dfj(x)
for a.e. x ∈ R. Hence Duj(x)|V1

= Dũa(fj(x))|V1
◦Dfj(x)|V1

and

|Duj(x)|V1
| ≤ |Dũa(fj(x))|V1

| · |Dfj(x)|V1
|.

Notice that |Duj(x)|V1
| = |▽uj(x)|, |Dũa(fj(x))|V1

| = |▽ũa(fj(x))| and

|Dfj(x)|V1
|Q = LQ

fj
(x) = lQfj (x)K

Q(fj , x) ≤ f ′
j(x)K

Q(fj , x)

due to Lemma 3.3 and (4.1) in [CC06]. It follows that

|▽uj(x)|Q ≤ KQ(fj, x)f
′
j(x)|▽ũa(fj(x))|Q.

Set Ej = {x ∈ R : K(fj , x) ≥ 1 + ǫ}. The assumption that ∞, f−1(∞) /∈ R̄

implies that there are compact subsets K1, K2 ⊂ N with R̄ ⊂ K̊1 and f(R) ⊂ K̊2.
There is a constant C ≥ 1 such that m(E)/C ≤ |E| ≤ C m(E) for any E ⊂ K1 or
E ⊂ K2. By assumption |Ej | → 0 as j → +∞. Now Lemma 3.3 implies |fj(Ej)| → 0.

We have

C(R) ≤
ˆ

R

|▽uj|Q dx ≤
ˆ

R

KQ(fj , x)f
′
j(x)|▽ũa(fj(x))|Q dx

≤ (1 + ǫ)Q
ˆ

fj(R)

|▽ũa|Q dx+KQ

ˆ

fj(Ej)

|▽ũa|Q dx.

Since |fj(Ej)| → 0 as j → +∞, the second term above goes to 0 as j →∞. Hence

C(R) ≤ (1 + ǫ)Q(C(R̃a) + ǫ),

and so C(R) ≤ C(R̃a) for small a. We claim that C(R̃a) → C(f(R)) as a → 0.
Indeed, for any δ > 0 there is a smooth function v, admissible for f(R) with value 0
in a neighborhood of f(C0) and value 1 in a neighborhood of f(C1), such that

ˆ

f(R)

|▽v|Q dx ≤ C(f(R)) + δ.

For small enough a, v is also admissible for R̃a and
ˆ

f(R)

|▽v|Q dx =

ˆ

R̃a

|▽v|Q dx.

Since
ˆ

R̃a

|▽v|Q dx ≥ C(R̃a) ≥ C(f(R)) ≥
ˆ

f(R)

|▽v|Q dx− δ

and δ is arbitrary, we have C(R̃a)→ C(f(R)) as a→ 0. Hence C(R) ≤ C(f(R)).
Finally as K(f−1

j , fj(x)) = K(fj , x), Lemma 3.3 implies that f−1
j , f−1 also satisfy

the assumption in the lemma and we conclude that C(f(R)) ≤ C(R). Now we have
verified the assumption of Lemma 3.1 and so f is conformal. �

4. Tukia-type theorem for Carnot groups

In this section we prove Theorem 1.1 and Corollary 1.2.

4.1. Existence of invariant measurable conformal structure.In this sub-
section we show that every uniform quasiconformal group of N̂ leaves invariant a
measurable conformal structure on N̂ .
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Let m ≥ 2 be an integer and X the space of symmetric, positive definite real
m×m matrices with determinant 1. The general linear group GL(m,R) acts on X
by

M [S] = (detM)−
2

mMSMT

for M ∈ GL(m,R) and S ∈ X, where MT is the transpose of M . Then SL(m,R) ⊂
GL(m,R) acts on X transitively, and the stabilizer of SL(m,R) at Im is SO(m).
Hence X = SL(m,R)/SO(m). The homogeneous manifold X = SL(m,R)/SO(m)
is a symmetric space of non-compact type (see table V on page 518 of [Hel78]) and
so has nonpositive sectional curvature.

The Riemannian distance d on X is invariant under the action of GL(m,R) and
satisfies:

d(Im, ODOT) =
√

a21 + · · ·+ a2m,

where Im is the identity matrix, O is orthogonal and D is diagonal with diagonal
entries ea1 ≥ · · · ≥ eam , see [Ma71, p. 27]. We notice that the dilatation of a non-
singular linear map A := UDV T : Rm → R

m (where D is as above and U, V are
orthogonal) is given by:

K(A) := K(A, 0) =
max{|AX| : |X| = 1}
min{|AX| : |X| = 1} =

ea1

eam
= ea1−am .

It follows that there is a function φ : [0,∞)→ [0,∞) (one may choose φ(t) = et − 1)
with φ(t)→ 0 as t→ 0 such that

(4) K(A) ≤ 1 + φ(d(Im, AA
T )).

Let N be a Carnot group with Lie algebra n = V1⊕· · ·⊕Vr. Let V1 be equipped
with an inner product. Let m = dim(V1). By using an orthonormal basis for V1, we
can identify the special orthogonal group SO(V1) associated with the inner product
with SO(m,R) and similarly identify SL(V1) with SL(m,R). Hence

X = SL(V1)/O(V1).

A measurable conformal structure on N̂ = N ∪ {∞} is an essentially bounded
measurable map

µ : U → X

defined on a full measure subset U ⊂ N . Note we do not require µ to be defined
everywhere on N̂ . In particular, we prefer µ not defined at ∞.

For a quasiconformal map f : N̂ → N̂ and a measurable conformal structure µ
on N̂ , the pull-back measurable conformal structure f ∗µ is defined by:

f ∗µ(x) = (Df(x)|V1
)T [µ(f(x))]

= (det(Df(x)|V1
))−

2

m (Df(x)|V1
)Tµ(f(x))(Df(x)|V1

), for a.e. x ∈ N.

Here we are using the fact that a quasiconformal map is Pansu differentiable
a.e. This is similar to the definition of pull-back of a Riemannian metric under a
smooth map. It is easy to check that (g ◦ f)∗µ = f ∗(g∗µ), where f, g : N̂ → N̂ are

quasiconformal maps and µ is a measurable conformal structure on N̂ .
A quasiconformal map f is called conformal with respect to the measurable con-

formal structure µ if f ∗µ = µ; in other words, µ(x) = (Df(x)|V1
)T [µ(f(x))] for a.e.

x ∈ N .



668 Tullia Dymarz, David Fisher and Xiangdong Xie

Proposition 4.1. Let G be a uniform quasiconformal group of N̂ . Then there
is a measurable conformal structure on N̂ such that every g ∈ G is conformal with
respect to µ.

Proof. We first assume G is countable. Since G is countable and for each g ∈ G,
the Pansu differential Dg(x) exists and is a graded automorphism for a.e. x ∈ N ,
there is a measurable, G-invariant subset U of full measure such that Dg(x) exists
and is a graded automorphism for all g ∈ G and at all x ∈ U . Let µ0 be the
left invariant conformal structure on N associated with an inner product on V1 (so
µ0 : N → X is a constant map). For each x ∈ U , set Mx = {g∗µ0(x) : g ∈ G}. Since
G is a uniform quasiconformal group, Mx is a bounded subset of X. The assignment
x 7→Mx is G-invariant: for any f ∈ G,

f ∗Mf(x) = f ∗{g∗µ0(f(x)) : g ∈ G} = {(g ◦ f)∗µ0(x) : g ∈ G} = Mx.

Since Mx is a bounded subset of the non-positively curved symmetric space X, there
exists a unique circumcenter P (Mx) in X for the subset Mx, see for example [BH,
p. 179]. Define µ : U → X by µ(x) = P (Mx). Since the assignment x 7→ Mx is
G-invariant, µ is also G-invariant.

It remains to show µ is measurable. Enumerate G = {g0, g1, · · · }, and let
M(x, j) = {g∗i µ0 : i ≤ j} and µj(x) = P (M(x, j)). Now, Y 7→ P (Y ) is continuous
with respect to the Hausdorff metric (see [T86, p. 334]). This implies µj is measur-
able. Since µj converges to µ point-wise, µ is also measurable. This completes the
proof when G is countable.

Now let G be a general uniform quasiconformal group of N̂ . Let G0 ⊂ G be a
countable subgroup of G that is dense in the topology of uniform convergence. By
the above argument, there is a G0-invariant measurable conformal structure µ. It
follows that µ is also G-invariant as a uniform limit of a sequence of µ-conformal
maps is µ-conformal. This follows from an analogue of Theorem D in [T86] in the
setting of Carnot groups. The proof of Theorem D in [T86] is valid for Carnot groups
after some small modifications: to blow up maps in the Carnot group setting one
needs to conjugate using Carnot dilations. �

Let G0 be a countable dense subgroup of G as above. If the induced action of
G on the space of distinct triples of N̂ is cocompact, then the same is true for the
induced action of G0. Another way to handle the case of an uncountable group G is
to first run the argument from the next subsection to conjugate G0 into the conformal
group, then the same map also conjugates G into the conformal group since the limits
of conformal maps are conformal maps.

4.2. Conjugating into the conformal group. In this subsection we will
prove Theorem 1.1 and Corollary 1.2.

A map µ : U → Y , where U ⊂ N is open and Y is a metric space, is called
approximately continuous at x0 ∈ U if for any ǫ > 0, the set µ−1(B(µ(x0), ǫ)) has
density 1 at x0; that is, if

|B(x0, r) ∩ µ−1(B(µ(x0), ǫ))|
|B(x0, r)|

→ 1

as r → 0. By Theorem 2.9.13 in [F69], if Y is separable and µ is measurable, then µ
is approximately continuous a.e.

Let N be a Carnot group and S = N ⋊ R the negatively curved homogeneous
manifold associated with N . There is a natural map π : T (∂S)→ S, that assigns to
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each distinct triple (ξ1, ξ2, ξ3) ∈ T (∂S) the center of the triple. To be more precise,
π(ξ1, ξ2, ξ3) is defined to be the orthogonal projection of ξ3 onto the complete geodesic
ξ1ξ2. We observe that for any compact C ⊂ S, the set π−1(C) is compact in T (∂S).

Let G be a group of homeomorphisms of ∂S. Then G also acts diagonally on
T (∂S): g(ξ1, ξ2, ξ3) = (g(ξ1), g(ξ2), g(ξ3)). Recall that a point ξ ∈ ∂S is said to be
a radial limit point of G if there exists a sequence of elements {hj}∞j=1 of G with
the following property: for any triple T = (ξ1, ξ2, ξ3) ∈ T (∂S), and any complete
geodesic γ asymptotic to ξ, there exists a constant C > 0 with π(hj(T )) → ξ and
d(π(hj(T )), γ) ≤ C.

We recall that each inner product on V1 determines a left invariant Carnot–
Carathéodory metric on N .

Theorem 4.2. Let G be a uniform quasiconformal group of N̂ and µ a G-
invariant measurable conformal structure on N̂ . Suppose there is a point p ∈ N ⊂ N̂
such that µ is approximately continuous at p and p is also a radial limit point for
G. Then there exists a quasiconformal map f : N̂ → N̂ and an inner product on
V1 such that fGf−1 consists of conformal maps with respect to the left invariant
Carnot–Carathéodory metric determined by this inner product.

Proof. The left translation action of S = N ⋊ R on itself is by isometries.
The elements in R translate the vertical geodesic above the origin 0 in N and the
boundary homeomorphisms induced by them are the standard Carnot group dilations
of N . We shall use δ̃t to denote the isometry of S that induces the standard Carnot
group dilation δt.

We may assume p = 0 is the origin of N . Fix a triple T ∈ T (∂S) and let γ
be the vertical geodesic above 0. Since 0 is a radial limit point of G, there exists
a sequence of elements {hj}∞j=1 of G and a constant C > 0 with π(hj(T )) → 0
and d(π(hj(T )), γ) ≤ C. Fix a point x0 ∈ γ. For each j there is some sj > 0 with

sj → +∞ as j →∞ such that d(δ̃sj ◦π◦hj(T ), x0) ≤ C. Since δ̃sj is an isometry of S,

we have δ̃sj ◦π = π◦δsj . Hence d(π◦δsj ◦hj(T ), x0) ≤ C and so the set {δsj ◦hj(T )}∞j=1

lies in the compact subset π−1B̄(x0, C). Hence there is a constant a > 0 such that if
T = (x1, x2, x3) is the distinct triple, then d(δsj ◦hj(xk), δsj ◦hj(xl)) ≥ a for all j and
all 1 ≤ k 6= l ≤ 3. It follows that the family {δsj ◦hj}∞j=1 of K-quasiconformal maps

is precompact. Define fj : N̂ → N̂ by fj = δsj ◦ hj . By passing to a subsequence,

we may assume fj converges uniformly to a K-quasiconformal map f : N̂ → N̂ . We
shall show that for any g ∈ G, fgf−1 is conformal with respect to the left invariant
Carnot–Carathéodory metric determined by µ(0).

Let g ∈ G and denote g̃ = fgf−1, g̃j = fjgf
−1
j . Let µj = (f−1

j )∗µ. Since µ is
G-invariant, g̃j is conformal with respect to µj:

g̃∗jµj = (f−1
j )∗g∗f ∗

j (f
−1
j )∗µ = (f−1

j )∗g∗µ = (f−1
j )∗µ = µj.

Note µj = (f−1
j )∗µ = (δ−1

sj
)∗(h−1

j )∗µ = (δ−1
sj
)∗µ. So for q ∈ N ,

µj(q) = (δ−1
sj
)∗µ(q) = (Dδ−1

sj
(q)|V1

)T [µ(δ−1
sj
(q))] = µ(δ−1

sj
(q))

since Dδt(q)|V1
is an Euclidean dilation.

Let F ⊂ N̂ be a compact subset such that ∞, g̃−1(∞) /∈ F . There is a compact
subset F0 of N such that F ⊂ F0, g̃j(F ) ⊂ F0 for all sufficiently large j. Since
µ is approximately continuous at 0 and sj → ∞, the equality µj(q) = µ(δ−1

sj
(q))
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implies that for any ǫ > 0 there are subsets Aj ⊂ F0 with |Aj| → 0 as j → ∞ and
d(µj(x), µ(0)) ≤ ǫ for x ∈ F0\Aj .

The maps g̃−1
j and g̃−1 form a compact family of K-quasiconformal maps. By

Lemma 3.3, we have |g̃−1
j (Aj)| → 0 as j →∞. Set Bj = Aj ∪ g̃−1

j (Aj). Now we have
|Bj| → 0 as j →∞ and d(µj(x), µ(0)) ≤ ǫ and d(µj(g̃j(x)), µ(0)) ≤ ǫ for x ∈ F\Bj.
Since g̃j is µj-conformal, we have µj(x) = (Dg̃j(x)|V1

)T [µj(g̃j(x))] for a.e. x. Now

d(µj(x), (Dg̃j(x)|V1
)T [µ(0)]) = d(µj(g̃j(x)), µ(0)) ≤ ǫ

for a.e. x ∈ F\Bj . Combining this with d(µj(x), µ(0)) ≤ ǫ we get

d(µ(0), (Dg̃j(x)|V1
)T [µ(0)]) ≤ 2ǫ

for a.e. x ∈ F\Bj. By Lemma 3.3 in [CC06] and (4) we have K(g̃j, x) = K(Dg̃j(x)|V1
)

≤ 1+φ(2ǫ) for a.e. x ∈ F\Bj. This implies the assumption of Lemma 3.4 is satisfied
and so g̃ is conformal. �

Proof of Theorem 1.1. Let G0 be a countable dense subgroup of G. By Proposi-
tion 4.1, there exists a G0-invariant measurable conformal structure µ on N̂ . Since
the action of G0 on T (∂S) is co-compact, every point in ∂S is a radial limit point.

By Theorem 2.9.13 in [F69], µ is approximately continuous at a.e. point in N̂ . By

Theorem 4.2, there exists a quasiconformal map f of N̂ such that fG0f
−1 is a con-

formal group of N̂ with respect to some left invariant Carnot–Carathéodory metric
dCC on N . Since fG0f

−1 is dense in fGf−1 and the limits of conformal maps are
conformal, we conclude that fGf−1 is also a conformal group with respect to dCC .

For any left invariant Carnot–Carathéodory metric d on N , let Conf(N̂ , d) be the

group of conformal maps of N̂ with respect to d. We next show that there is a fixed
left invariant Carnot–Carathéodory metric d0 on N such that for any left invariant
Carnot–Carathéodory metric d on N , the group Conf(N̂ , d) can be conjugated into

Conf(N̂, d0) by a graded automorphism of N . For this we use the result of Cowling
and Ottazzi [CO15] on conformal maps of Carnot groups. By Theorem 4.1 of [CO15]
there are two cases depending on whether N is the Iwasawa N group of a real rank-
one simple Lie group.

Let d be a left invariant Carnot–Carathéodory metric on N . First assume N
is the Iwasawa N group of a real rank-one simple Lie group I. We may assume
I = Isom(X) is the isometry group of a rank one symmetric space X of noncompact
type. Then the ideal boundary ∂X of X can be identified with N ∪ {∞}. In this

case, Theorem 4.1 of [CO15] states that the action of each g ∈ Conf(N̂, d) on N̂
agrees with the action of some φ(g) ∈ I. This φ(g) is clearly unique and the map

Conf(N̂, d) → I, g 7→ φ(g) defines an injective homomorphism. It is known that in
this case there is a left invariant Carnot–Carathéodory metric d0 on N = ∂S\{∞}
such that I = Conf(N̂, d0). Such a left invariant Carnot–Carathéodory metric d0
is described in Section 9 of [P89]. Lemma 9.6 there implies I ⊂ Conf(N̂ , d0) and

Proposition 11.5 there states Conf(N̂, d0) ⊂ I. Hence the statement holds in this
case.

Next we assume N is not the Iwasawa N group of a real rank-one simple Lie
group. In this case, Theorem 4.1 of [CO15] states that for each g ∈ Conf(N̂ , d), we
have g(N) = N and g|N : (N, d) → (N, d) is a similarity. In other words, we have

Conf(N̂, d) = Sim(N, d). Now we finish the proof by applying Lemma 2.3. �
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Proof of Corollary 1.2. Let N be a Carnot group and S = N⋊R be the associated
solvable Lie group. Let G be a group that quasi-acts co-boundedly on S. This
induces a uniform quasiconformal action of G on ∂S = N̂ such that the induced
action on the space of distinct triples is co-compact. By Theorem 1.1 there is a fixed
(independent of G) left invariant Carnot–Carathéodory metric d0 on N such that

G is quasiconformally conjugate to a subgroup of Conf(N̂, d0). It now suffices to
show that there is a left invariant Riemannian metric g0 on S such that every map
in Conf(N̂ , d0) is the boundary map of some isometry of (S, g0). Again we will use
Theorem 4.1 of [CO15].

First assume N is the Iwasawa N group of a real rank-one simple Lie group I. In
this case, as observed in the proof of Theorem 1.1, Conf(N̂ , d0) injects into I, which
is the isometry group of a left invariant Riemannian metric g0 on S. Next we assume
N is not the Iwasawa N group of a real rank-one simple Lie group. In this case, each
g ∈ Conf(N̂, d0) has the form g|N = Ln ◦ δtg ◦Ag for some n ∈ N , tg > 0, where Ln is
left translation by n ∈ N , δt (t > 0) is a Carnot dilation, and Ag : (N, d0)→ (N, d0)
is an isometry and also a graded automorphism of N . Let n = V1 ⊕ · · · ⊕ Vk be
the Carnot grading of n. Then the map Conf(N̂ , d0) → GL(Vj), g 7→ Ag|Vj

is a
group homomorphism whose image has compact closure. It follows that there is
some Conf(N̂, d0)-invariant inner product <,>j on Vj . Now we equip s = n ⋊ R

with the inner product <,> satisfying: (1) <,> agrees with <,>j on Vj; (2) the
subspaces Vj , 1 ≤ j ≤ k and {0} × R ⊂ n ⋊ R are all perpendicular to each other

with respect to <,>. For each g ∈ Conf(N̂ , d0), define a map φ(g) : S → S by
φ(g)(x, t) = L(n,tg)(Agx, t), where L(n,tg) is the left translation of S by (n, tg) ∈ S.
Then φ(g) is an isometry of (S, g0) with its induced boundary map equal to g|N =
Ln ◦ δtg ◦ Ag and φ : G→ Isom(S, g0) is a group homomorphism, where g0 is the left
invariant Riemannian metric on S determined by <,>.

Finally we recall that a self quasiconformal map of ∂S = N̂ extends to a quasi-
isometry of S. Combining this with the preceding two paragraphs we conclude that
the original quasi-action of G on S is quasi-conjugate to an isometric action of G on
(S, g0). �

5. A fibered Tukia theorem for diagonal Heintze pairs

In this section we prove a fiber bundle version of Tukia’s Theorem (Theorem 1.3)
in the spirit of [Dy10] for diagonal Heintze pairs. We first explain that such a group
N admits an iterated fibration structure with Carnot group fibers and that each self
biLipschitz map of N induces bundle maps. The fiber Tukia theorem states that
after a biLipschitz conjugation the induced maps between the fibers are similarities.

5.1. BiLipschitz maps of a diagonal Heintze pair. Before we prove the
fiber Tukia theorem, we first look at individual biLipschitz maps of a diagonal Heintze
pair (N,D).

Let (N,D) be a diagonal Heintze pair and 0 < λ1 < · · · < λr the distinct
eigenvalues of D. Let n = ⊕jVλj

be the decomposition of the Lie algebra n of N into
eigenspaces. If V ⊂ n is a linear subspace such that D(V ) ⊂ V then V is graded,
that is, V = ⊕j(V ∩Vλj

). It follows that if V ⊂ V ′ are two linear subspaces of n such
that D(V ) ⊂ V , D(V ′) ⊂ V ′, then V ′/V = ⊕j(V

′ ∩ Vλj
)/(V ∩ Vλj

) and D induces a
linear map on V ′/V and acts on (V ′ ∩ Vλj

)/(V ∩ Vλj
) by multiplication by λj .

Now let h1 be the Lie sub-algebra of n generated by Vλ1
. We say (N,D) is of

Carnot type if h1 = n. In general, inductively define hi = N(hi−1) for i ≥ 2, where
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for a Lie sub-algebra h ⊂ n, N(h) = {X ∈ n | [X, Y ] ∈ h, ∀Y ∈ h} denotes the
normalizer of h in n. Then there is some integer m ≥ 1 such that hm = n. We next
explain how to refine the sequence 0 < h1 < · · · < hm. It is not hard to see that
D(h1) ⊂ h1, and by using the definition of derivation we obtain D(hi) ⊂ hi for all i.
Hence D induces a diagonal derivation D̄ of hi/hi−1 with positive eigenvalues. Then
for every i, if (hi/hi−1, D) is of non-Carnot type, we can repeat the above process:
first take the Lie sub-algebra generated by the eigenspace of the smallest eigenvalue of
D, then take the normalizers. In this way we obtain a sequence of Lie sub-algebras of
hi/hi−1: 0 = h̄i,0 < h̄i,1 < · · · < h̄i,mi

= hi/hi−1. Let qi : hi → hi/hi−1 be the quotient
map and set hi,j = q−1

i (h̄i,j). The refinement of the sequence 0 < h1 < · · ·<hm is
obtained as follows: for those i such that (hi/hi−1, D) is of non-Carnot type, we insert
between hi−1 and hi the sequence hi,1 < · · · < hi,mi−1. This refinement process can
be further repeated and eventually we must stop since n is finite dimensional. At the
end, we obtain a sequence of Lie sub-algebras 0 = n0 < n1 < · · · < ns = n such that
ni−1 is an ideal of ni for every i, D(ni) ⊂ ni, and each (ni/ni−1, D̄) is of Carnot type
(that is, ni/ni−1 is a Carnot algebra and D induces a derivation D̄ of ni/ni−1 that
is a multiple of a Carnot derivation). We remark that when we talk about Carnot
algebra here we include the case of abelian Lie algebra. In other words, (ni/ni−1, D)
is of Carnot type when ni/ni−1 is some R

n and D̄ is a standard Euclidean dilation.
Let Ni be the connected Lie subgroup of N with Lie algebra ni. Then Ni−1 is normal
in Ni and Ni/Ni−1 is a Carnot group.

Definition 5.1. Given a diagonal Heintze pair (N,D), we call 1 = N0 < N1 <
· · · < Ns = N the sequence of subgroups defined by the process above the preserved

subgroups sequence.

Let d be a D-homogeneous distance on N . The restriction of d on Ni is a D|ni-
homogeneous distance on Ni. As Ni−1 ⊳ Ni, d induces a distance d̄ on Ni/Ni−1, see
end of Section 2.2. By the preceding paragraph, this distance d̄ is a D̄-homogeneous

distance and hence is biLipschitz with d̄
1

λ

CC, where d̄CC is a Carnot–Carathéodory
metric on Ni/Ni−1 and λ > 0 is the smallest eigenvalue of D̄. For each i we have a
fibration πi : N/Ni−1 → N/Ni with fiber Ni/Ni−1. The distance d does not induce
any distance on N/Ni when Ni is not normal in N . However, as indicated above, d
still induces a distance d̄ on the fibers Ni/Ni−1.

The following result in particular applies to biLipschitz maps of N (when h1 6= n).

Theorem 5.2. [CP17] Suppose (N,D) is not of Carnot type. Then every qua-
sisymmetric map F : N → N permutes the left cosets of N1 and is biLipschitz.

By Lemma 3.2, [CPS17] (see also Lemma 4.4, [LX15] in the Carnot case), for
a connected Lie subgroup H ⊂ N , two left cosets g1H , g2H are at finite Hausdorff
distance from each other if and only if g1H , g2H lie in the same left coset of N(H),
the normalizer of H in N . It follows that a biLipschitz map F : N → N permutes the
cosets of Ni for every i. As a consequence, F induces a map Fi : N/Ni → N/Ni and
a bundle map of the fibration πi : N/Ni−1 → N/Ni. In general we cannot talk about
the metric property of these maps as d does not induce a metric on N/Ni when Ni

is not normal in N . However, the restriction of F to cosets of Ni yields a biLipschitz
map of Ni, that is, Fp|Ni

= (LF (p)−1 ◦ F ◦ Lp)|Ni
: Ni → Ni is biLipschitz for every

p ∈ N . As Fp|Ni
also permutes the cosets of Ni−1, it induces a biLipschitz map

Fi,p : Ni/Ni−1 → Ni/Ni−1. In other words, the restrictions of Fi−1 to the fibers of the
fibration πi : N/Ni−1 → N/Ni are biLipschitz maps between the fibers. Observe that
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as Ni−1 ⊳ Ni, we have Fi,p = Fi,q when q = pw for some w ∈ Ni−1. Because of this,
we may define Fi,h for h ∈ N/Ni−1 by Fi,h = Fi,p for any p ∈ N satisfying h = pNi−1.

Remark 5.3. Note that for q = pw with w ∈ Ni − Ni−1, we have Fi,q(Ni−1) 6=
Fi,p(wNi−1) however the Pansu differentials satisfy DFi,p(wNi−1) = DFi,q(0) by the
definition of Pansu differential.

For convenience, we introduce the following terminology.

Definition 5.4. Let (N,D) be a diagonal Heintze pair with preserved subgroups
sequence 1 = N0 < N1 < · · · < Ns = N . Let F : N → N be a biLipschitz map. We
say F is an i-similarity for some 1 ≤ i ≤ s if there exists a Carnot–Carathéodory
metric d̄i on Ni/Ni−1 such that Fi,p : (Ni/Ni−1, d̄i)→ (Ni/Ni−1, d̄i) is a similarity for
any p ∈ N . The map F is a fiber similarity if it is an i-similarity for each i. A
uniform quasisimilarity group Γ of N is a fiber similarity group if there exist Carnot–
Carathéodory metrics d̄i on Ni/Ni−1 such that each γ ∈ Γ is a fiber similarity with
respect to these metrics.

5.2. Invariant measures on homogeneous spaces. Let N be a simply
connected nilpotent Lie group and H a closed connected Lie subgroup. Then the
homogeneous space N/H admits a N -invariant measure. By Theorem 1.2.12 and its
proof in [CG90], the product of a Haar measure mH on H and an invariant measure
mN/H on N/H is a Haar measure on N , in the following sense. There is a smooth
submanifold K ⊂ N and a measure m′ on K with the following properties: (1)
the map P : K × H → N , (k, h) 7→ kh, is a diffeomorphism and P∗(m

′ × mH) is a
Haar measure on N ; (2) (π ◦ ι)∗(m′) = mN/H , where ι : K ⊂ N is the inclusion and
π : N → N/H is the quotient map.

Lemma 5.5. Let (N,D) be a diagonal Heintze pair, and H a connected Lie
subgroup of N . Let F : N → N be a biLipschitz map that permutes the cosets of H .
Let F̄ : N/H → N/H be the induced map of the homogeneous space N/H . Then
there is a constant C depending only on the biLipschitz constant of F such that
for any measurable subset A ⊂ N/H the inequality 1

C
mN/H(A) ≤ mN/H(F̄ (A)) ≤

CmN/H(A) holds, where mN/H is an invariant measure on N/H .

Proof. Since the Hausdorff measure on N with respect to a D-homogeneous
distance is a Haar measure and F is biLipschitz, there is a constant depending only
on the biLipschitz constant of F such that 1

C
mN(U) ≤ mN(F (U)) ≤ CmN(U) for

any measurable subset U ⊂ N . Similarly, since the restriction of F to cosets of H is
also biLipschitz, we have 1

C
mH(B) ≤ mH(F (B)) ≤ CmH(B) for measurable subsets

B of cosets of H . Now let A ⊂ N/H be a measurable subset. Let A′ = π−1(A) ∩K,
where K is as above. Let B be a bounded open subset of H . Set U = P (A′×B) ⊂ N .
Then mN (U) = mH(B)mN/H(A). By the above we have

(5)
1

C
mN (U) ≤ mN(F (U)) ≤ CmN (U).

On the other hand,

mN (F (U)) =

ˆ

N

1F (U) dmN =

ˆ

K

(

ˆ

kH

1F (U) dmH) dm
′(k)

≤
ˆ

π−1(F̄ (A))∩K
CmH(B) dm′(k) = CmH(B)mN/H(F̄ (A)).
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Similarly we obtain mN (F (U)) ≥ 1
C
mH(B)mN/H(F̄ (A)). Combining the above in-

equalities we get 1
C2mN/H(A) ≤ mN/H(F̄ (A)) ≤ C2mN/H(A). �

5.3. Conjugating into a fiber similarity group. Let 1 ≤ i ≤ s be such that
dim(Ni/Ni−1) ≥ 2. Recall that the quotient Ni/Ni−1 is a Carnot group. Let Hi be
the first layer of ni/ni−1 and mi = dim(Hi). Notice that mi ≥ 2.

Definition 5.6. A measurable fiber conformal structure on the fibration πi :
N/Ni−1 → N/Ni is an essentially bounded measurable map

µ : N/Ni−1 → X := SL(mi)/SO(mi).

So a measurable fiber conformal structure on the fibration πi : N/Ni−1 → N/Ni

can be thought of as a measurable assignment of inner products (up to scalar multiple)
to horizontal subspaces of the tangent spaces of the fibers (of the fibration). For a
review of SL(n)/SO(n) and its Riemannian distance dX see Section 4.1.

For F : N → N a biLipschitz map we define the pull-back

F ∗µ(pNi−1) = (DFi,p(0)|Hi
)T [µ(Fi−1(pNi−1))]

= (det(DFi,p(0)|Hi
))

− 2

mi (DFi,p(0)|Hi
)Tµ(Fi−1(pNi−1))(DFi,p(0)|Hi

),

for a.e. pNi−1 ∈ N/Ni−1. Notice that the pull-back is well-defined as Fi,p depends
only on the coset pNi−1.

Definition 5.7. We say that F is conformal with respect to µ if F ∗µ(pNi−1) =
µ(pNi−1) for a.e. pNi−1 ∈ N/Ni−1.

Proposition 5.8. Let Γ be a countable uniform quasisimilarity group of (N, d).
Let 1 ≤ i ≤ s be such that dim(Ni/Ni−1) ≥ 2. Then there is a measurable fiber
conformal structure µ on the fibration πi : N/Ni−1 → N/Ni such that every γ ∈ Γ is
conformal with respect to µ.

Proof. There is a Γ-invariant subset U ⊂ N/Ni−1 of full measure such that for all
γ ∈ Γ and all pNi−1 ∈ U the foliated Pansu derivative Dγi,p(0) exists and is a graded
automorphism of Ni/Ni−1. Let µ0 be the N -invariant fiber conformal structure on
the fibration πi : N/Ni−1 → N/Ni that is associated with an inner product on Hi (the
first layer of ni/ni−1). For each pNi−1 ∈ U , set MpNi−1

= {γ∗µ0(pNi−1) : γ ∈ Γ}. Since
Γ is a uniform quasisimilarity group, MpNi−1

is a bounded subset of SL(mi)/SO(mi).
The assignment pNi−1 7→ MpNi−1

is Γ-invariant. Let P (MpNi−1
) be the circumcenter

of MpNi−1
in SL(mi)/SO(mi) and define µ : U → SL(mi)/SO(mi) by µ(pNi−1) =

P (MpNi−1
). Then µ is Γ-invariant and measurable (see the proof of Proposition 4.1

for details). �

For the proof of the main result in this section we need a modified version of
Lemma 3.4.

Lemma 5.9. Let d̄i be a left invariant Carnot–Carathéodory metric on Ni/Ni−1.
For a biLipschitz map G : N → N and any pNi−1 ∈ N/Ni−1, denote by K(Gi,p, 0) the
dilatation of the map Gi,p : (Ni/Ni−1, d̄i) → (Ni/Ni−1, d̄i) at 0. Let {F j : N → N}
be a sequence of (L,C)-quasisimilarities that converge uniformly on compact subsets
to a map F : N → N . Suppose for any compact subset S ⊂ N/Ni−1 and any ǫ > 0
we have

mN/Ni−1
({pNi−1 : pNi−1 ∈ S, K(F j

i,p, 0) ≥ 1 + ǫ})→ 0

as j → ∞, where mN/Ni−1
is an invariant measure on the space N/Ni−1. Then for

every pNi−1 ∈ N/Ni−1, Fi,p is a similarity of (Ni/Ni−1, d̄i).
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Proof. We shall show that for almost every fiber of πi, the map Fi,p and a subse-

quence of {F j
i,p}j satisfy the assumption of Lemma 3.4 and so Fi,p : (Ni/Ni−1, d̄i) →

(Ni/Ni−1, d̄i) is conformal. By Theorem 4.1 of [CO15], Fi,p is a similarity. Since the
limit of similarity maps is a similarity, the same is true for every fiber of πi.

By Theorem 1.2.12 and its proof in [CG90], the product of a Haar measure on
Ni/Ni−1 and an invariant measure on N/Ni is an invariant measure on N/Ni−1, in the
following sense. There is a smooth submanifold Yi of N/Ni−1 and a measure m′ on Yi

with the following properties: (1) the (well-defined) map P : Yi×Ni/Ni−1 → N/Ni−1,
(yNi−1, xNi−1) 7→ yxNi−1, is a diffeomorphism and P∗(m

′×mNi/Ni−1
) is an invariant

measure on N/Ni−1, where mNi/Ni−1
is a Haar measure on Ni/Ni−1; (2) (πi ◦ ι)∗(m′)

is an invariant measure on N/Ni, where ι : Yi ⊂ N/Ni−1 is the inclusion.
Let Bn ⊂ Yi (n ≥ 1) be an exhausting sequence of compact subsets of Yi, and

An ⊂ Ni/Ni−1 (n ≥ 1) be a sequence of balls in Ni/Ni−1 centered at the origin 0 with
radius going to infinity as n → ∞. Set Cn = P (Bn × An) ⊂ N/Ni−1. For integers
n, k, j ≥ 1, let Bn,k,j = {pNi−1 ∈ Cn | K(F j

i,p, 0) ≥ 1 + 1/k} and gn,k,j = 1Bn,k,j

be the characteristic function of Bn,k,j. Then gn,k,j ∈ L1(Cn). By Fubini, for a.e.
h ∈ Bn, the function ghn,k,j : An → [0, 1] given by ghn,k,j(xNi−1) = gn,k,j(P (h, xNi−1))

is integrable, qn,k,j(h) :=
´

An
ghn,k,j(xNi−1) dmNi/Ni−1

is an integrable function on Bn,

and
´

Bn
qn,k,j(h) dm

′(h) =
´

Cn
gn,k,j(pNi−1) dmN/Ni−1

= mN/Ni−1
(Bn,k,j). By the as-

sumption, for fixed n and k we have mN/Ni−1
(Bn,k,j) → 0 as j → ∞, which implies

qn,k,j → 0 in L1(Bn) as j → ∞. This in turn implies that for fixed n, k there is a
null set En,k ⊂ Bn and a subsequence {qn,k,jl}l of {qn,k,j}j such that qn,k,jl(h)→ 0 as
l →∞ for every h ∈ Bn\En,k. Set E =

⋃

k,nEn,k. Then E is a null set in Yi.

Let h ∈ Yi\E. Let A be a compact subset of Ni/Ni−1 and ǫ > 0. Pick n, k
sufficiently large such that 1/k < ǫ and h ∈ Bn, A ⊂ An. By the definition of E we
have qn,k,jl(h)→ 0 as l →∞. Due to DFi,p(xNi−1) = DFi,px(0), we notice that

0← qn,k,jl(h) = mNi/Ni−1
({x ∈ An|K(F jl

i,hx, 0) ≥ 1 + 1/k})
= mNi/Ni−1

({x ∈ An|K(F jl
i,h, x) ≥ 1 + 1/k})

≥ mNi/Ni−1
({x ∈ A|K(F jl

i,h, x) ≥ 1 + ǫ})

as l →∞ and so the assumption of Lemma 3.4 is satisfied by F jl
i,h, l ≥ 1, Fi,h. �

Let S = N ⋊D R be the negatively curved homogeneous space associated with
(N,D). As Γ acts cocompactly on the space of distinct pairs of N , every point of N
is a radial limit point. Such an action induces a cobounded quasi-action on S and
vice versa. Recall that µ is measurable and hence approximately continuous at a.e.
pNi−1 ∈ N/Ni−1.

Theorem 5.10. Assume that dim(Ni/Ni−1) ≥ 2. Let Γ be a uniform quasisim-
ilarity group of N and µ a Γ-invariant measurable fiber conformal structure on the
fibration πi : N/Ni−1 → N/Ni. Suppose there is a point p ∈ N such that µ is approx-
imately continuous at pNi−1 and p is a radial limit point for Γ. Then there exists
a Carnot–Carathéodory metric d̄i on Ni/Ni−1 and a quasisimilarity F0 : N → N
such that F0GF−1

0 consists of elements F where the associated Fi,p : (Ni/Ni−1, d̄i)→
(Ni/Ni−1, d̄i) are similarities for each p ∈ N .

Proof. We may assume p = 0, and use etD to denote the dilation on N and δ̃t to
denote the isometry of S that translates along {0}×R and induces the boundary map
etD. Fix a triple T ∈ T (∂S) and let σ be the vertical geodesic above 0. Since 0 is a
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radial limit point of Γ, there exists a sequence of elements {hj}∞j=1 of Γ and a constant
C > 0 with π(hj(T )) → 0 and d(π(hj(T )), σ) ≤ C. Fix a point x0 ∈ σ. For each j

there is some sj > 0 with sj → +∞ as j → ∞ such that d(δ̃sj ◦ π ◦ hj(T ), x0) ≤ C.

Since δ̃sj is an isometry of S that induces etD, we have δ̃sj ◦ π = π ◦ etD. Hence

d(π ◦ esjD ◦ hj(T ), x0) ≤ C and so the set {esjD ◦ hj(T )}∞j=1 lies in the compact

subset π−1B̄(x0, C). It follows that the family {esjD ◦ hj}∞j=1 of quasisimilarity maps

is precompact. After possibly passing to a subsequence we have that Fj = esjD ◦ hj

converges to a quasisimilarity F0 : N → N uniformly on compact subsets.
We now show that for any γ ∈ Γ, the map F = F0γF

−1
0 has the property that

for all p ∈ N the associated maps Fi,p are similarities of Ni/Ni−1 with respect to the
left invariant Carnot–Carathéodory metric on Ni/Ni−1 determined by µ(0).

Let γ ∈ Γ and denote γ̃ = F0γF
−1
0 , γ̃j = FjγF

−1
j . Let µj = (F−1

j )∗µ. Since µ is

Γ-invariant, γ̃j is conformal with respect to µj. Additionally, µj = (e−sjD)∗µ so for
q ∈ N and G = e−sjD,

µj(qNi−1) = G∗µ(qNi−1) = (DGi,q(0)|Hi
)T [µ(Gi−1(qNi−1))] = µ(Gi−1(qNi−1))

since DGi,q(0)|Hi
is a constant multiple of the identity map.

Let Z ⊂ N/Ni−1 be a compact subset containing Ni−1 ∈ N/Ni−1. Since µ is
approximately continuous at Ni−1 ∈ N/Ni−1 and sj →∞, the equality µj(qNi−1) =
µ(Gi−1(qNi−1)) implies that for any ǫ > 0 there are subsets Aj ⊂ Z with mN/Ni−1

(Aj)
→ 0 as j →∞ and dX(µj(qNi−1), µ(Ni−1)) ≤ ǫ for qNi−1 ∈ Z\Aj.

The maps γ̃−1
j and γ̃−1 are all (L,C)-quasisimilarities for fixed L and C and so by

Lemma 5.5 we have mN/Ni−1
((γ̃j)

−1
i−1(Aj))→ 0 as j →∞. Set Bj = Aj ∪ (γ̃j)−1

i−1(Aj).
Now we have mN/Ni−1

(Bj) → 0 as j → ∞ and dX(µj(qNi−1), µ(Ni−1)) ≤ ǫ and
dX(µj((γ̃j)i−1(qNi−1)), µ(Ni−1)) ≤ ǫ for qNi−1 ∈ Z\Bj.

Since γ̃j is µj-conformal, we have µj(qNi−1) = (D(γ̃j)i,q(0)|Hi
)T [µj((γ̃j)i−1(qNi−1))]

for a.e. qNi−1 ∈ N/Ni−1. Now

dX(µj(qNi−1), (D(γ̃j)i,q(0)|Hi
)T [µ(Ni−1)]) = dX(µj((γ̃j)i−1(qNi−1)), µ(Ni−1)) ≤ ǫ

for a.e. qNi−1 ∈ Z\Bj . Combining this with dX(µj(qNi−1), µ(Ni−1)) ≤ ǫ , we get

dX(µ(Ni−1), (D(γ̃j)i,q(0)|Hi
)T [µ(Ni−1)]) ≤ 2ǫ

for a.e. qNi−1 ∈ Z\Bj . By (4) this implies that the assumption of Lemma 5.9 is
satisfied by γ̃j (j ≥ 1), γ̃ and so for any p ∈ N , γ̃i,p is a similarity of Ni/Ni−1 with
respect to the left invariant Carnot–Carathéodory metric determined by µ(Ni−1). �

Proof of Theorem 1.3. We observe that we may assume the group Γ is count-
able: Let Γ0 be a countable subgroup of Γ that is dense in the topology of uniform
convergence on compact subsets; if every element of some conjugate of Γ0 is a i-fiber
similarity then the same is true for Γ as the limits of i-fiber similarity maps are i-fiber
similarity maps.

The assumption implies that every point p ∈ N is a radial limit point of Γ and so
Theorem 5.10 can be applied. List the elements of I by i1 < i2 < · · · < ik. We first
conjugate Γ to get a group Γ1 which is a i1-fiber similarity group, then conjugate Γ1

to get a group Γ2 = F0Γ1F
−1
0 which is a i2-fiber similarity group, and so on. We can

finish by induction once we observe that Γ2 is also a i1-fiber similarity group. For
this we just notice that the conjugating map F0 is the limit of a sequence of maps Fj

which are compositions of elements of Γ1 and the dilations etD (t ∈ R) of N . Since
both {etD|t ∈ R} and Γ1 are i1-fiber similarity groups, each Fj is a i1-fiber similarity
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map. As a consequence, the limiting map F0 is also a i1-fiber similarity map. Hence
Γ2 = F0Γ1F

−1
0 is a i1-fiber similarity group. �

6. A counterexample

In this section we exhibit an example which shows that in general it is impossible
to conjugate a uniform quasiconformal group of N̂ into a conformal group with
respect to an arbitrary pre-specified Carnot–Carathéodory metric on N when that
metric is not maximally symmetric.

Let N be a Carnot group and dCC a left invariant Carnot–Carathéodory met-
ric on N . Let IA(N, dCC) be the group consisting of graded automorphisms of N
that are also isometries with respect to dCC . By the main result of [CO15], the
group Conf(N, dCC) of conformal maps of (N, dCC) is generated by left translations,
standard Carnot dilations and IA(N, dCC).

Lemma 6.1. Let N be a Carnot group and d1, d2 two left invariant Carnot–
Carathéodory metrics on N . Suppose there is a quasiconformal map f : (N, d1) →
(N, d2) such that f · Conf(N, d1) · f−1 ⊂ Conf(N, d2), then there is a graded auto-
morphism h of N such that h · IA(N, d1) · h−1 ⊂ IA(N, d2).

Proof. Denote by φ : Conf(N, d1) → Conf(N, d2) the injective homomorphism
given by: φ(g1) = fg1f

−1. Let p ∈ N be a point such that Df(p) exists and is a
graded automorphism. After pre-composing and post-composing with left transla-
tions, we may assume p = f(p) = 0 is the origin. Set h = Df(0).

Let g ∈ IA(N, d1). Then g(0) = 0. It follows that φ(g)(0) = 0 and so φ(g) is
the composition of a standard Carnot dilation and an element of IA(N, d2). Since
{gi : i ∈ N} has compact closure, the same is true for {φ(g)i : i ∈ N}. This follows
from the fact that conjugation by f is continuous. Alternatively one can argue using
the fact that f is quasisymmetric. This implies that φ(g) ∈ IA(N, d2). Being graded
automorphisms, both g and φ(g) commute with Carnot dilations. Now for any t > 0,

δtfδ
−1
t g(δtfδ

−1
t )−1 = δtfδ

−1
t gδtf

−1δ−1
t = δtfgf

−1δ−1
t = δtφ(g)δ

−1
t = φ(g).

Since δtfδ
−1
t converges uniformly on compact subsets to h as t → +∞, we have

hgh−1 = φ(g) ∈ IA(N, d2). Since this is true for every g ∈ IA(N, d1), the lemma
follows. �

We note that for any two left invariant Carnot–Carathéodory metrics d1, d2 on N ,
the group Conf(N, d1) is a uniform quasiconformal group of (N, d2). Furthermore,
the action of Conf(N, d1) on the space of distinct triples of (N, d2) is cocompact. To
see this, let S = N⋊R where R acts on N by Carnot dilations. Then S ⊂ Conf(N, d1).
Furthermore, when equipped with a left invariant Riemannian metric S is Gromov
hyperbolic with ∂S = N ∪{∞} and S acts on itself isometrically and transitively by
left translations. It follows that S and hence Conf(N, d1) acts cocompactly on the

space of distinct triples of N . If every uniform quasiconformal group of N̂ satisfying
the assumptions of Theorem 1.1 can be conjugated into the conformal group with
respect to d2, then there is a quasiconformal map f : N̂ → N̂ such that for any
g ∈ Conf(N, d1), the map fgf−1 : (N\{fg−1f−1(∞)}, d2) → (N\{fgf−1(∞)}, d2)
is conformal. Suppose N has the property that every quasiconformal map of N̂ =
N ∪ {∞} fixes ∞. Then we have (f |N) Conf(N, d1)(f |N)−1 ⊂ Conf(N, d2) and by
Lemma 6.1 we conclude that IA(N, d1) injects into IA(N, d2). Next we exhibit an
example where such an injection does not exist.
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Let N = H ×H be the direct product of the first Heisenberg group with itself.
Theorem 1.1 in [KMX20] implies that every quasiconformal map of N̂ = N ∪ {∞}
fixes ∞. The Lie algebra of N can be written as n = h⊕ h = V1⊕ V2 with first layer
V1 = R

2 ⊕ R
2, where the first R

2 is the first layer of the first h and the second R
2 is

the first layer of the second h. Let e1, e2 denote the standard basis in the first R
2,

and ẽ1, ẽ2 denote the standard basis in the second R
2. We consider two different left

invariant Carnot–Carathéodory metrics d1, d2 on N . The metric d1 is determined
by the inner product <,>1 on V1 that has e1, e2, ẽ1, ẽ2 as an orthonormal basis.
The metric d2 is determined by the inner product <,>2 on V1 that has e1, e2, ẽ1,√

2
2
(ẽ2 − e1) as an orthonormal basis.

Lemma 6.2. (1) IA(N, d1) is isomorphic to (O(2)⊕ O(2))⋊ Z2, where the
generator of Z2 acts on O(2)⊕O(2) by (M1,M2)→ (M2,M1);

(2) IA(N, d2) is isomorphic to (Z2 ⊕ Z2 ⊕ Z2) ⋊ Z2, where the generator of Z2

acts on Z2 ⊕ Z2 ⊕ Z2 by (a, b, c)→ (b, a, c).

Proof. For any element X of a Lie algebra n, let r(X) be the rank of the linear
map

ad(X) : n→ n.

Then r(X) = r(A(X)) for any x ∈ n and any isomorphism A of Lie algebras. Notice
that r(x, y) ≥ 1 for every nonzero element (x, y) ∈ V1 = R

2 ⊕ R
2, and furthermore

r(x, y) = 1 if and only if one of the following happens:

(a) x = 0 and y 6= 0;
(b) y = 0 and x 6= 0.

It follows that for any graded isomorphism A : n→ n, we have one of the following:

(i) A(R2 ⊕ {0}) = R
2 ⊕ {0} and A({0} ⊕ R

2) = {0} ⊕ R
2;

(ii) A(R2 ⊕ {0}) = {0} ⊕ R
2 and A({0} ⊕ R

2) = R
2 ⊕ {0}.

(1) follows easily from the above paragraph.
(2) Now let A ∈ IA(N, d2). First assume A satisfies (i). Note the orthogonal

complement of R2⊕{0} in (V1, <,>2) is E1 := Rẽ1⊕R(
√
2
2
· (ẽ2− e1)), and similarly

the orthogonal complement of {0} ⊕ R
2 is E2 := Re2 ⊕ R(e1 − 1

3
ẽ2). Since A pre-

serves orthogonal complement, we have A(E1) = E1 and A(E2) = E2. Observe that
E1∩ ({0}⊕R

2) = Rẽ1 and E2∩ (R2⊕{0}) = Re2. It follows that A(Rẽ1) = Rẽ1 and
A(Re2) = Re2. Then A also preserves the orthogonal complement of Rẽ1 in {0}⊕R

2

and that of Re2 in R
2 ⊕ {0}. That is, we have A(Rẽ2) = Rẽ2 and A(Re1) = Re1.

From this it is easy to see that there are only 8 such isometric graded isomorphisms.
They are given by A(ẽ1) = ǫ1ẽ1, A(e2) = ǫ2e2, A(e1) = ǫ3e1 and A(ẽ2) = ǫ3ẽ2, where
ǫ1, ǫ2, ǫ3 ∈ {1,−1}. They form a group F isomorphic to Z2 ⊕ Z2 ⊕ Z2.

A similar argument shows that there are also 8 isometric graded isomorphisms
with respect to d2 that satisfy (ii). They are given by A(ẽ1) = ǫ1e2, A(e2) = ǫ2ẽ1,
A(e1) =

1√
3
ǫ3ẽ2 and A(ẽ2) =

√
3ǫ3e1, where ǫ1, ǫ2, ǫ3 ∈ {1,−1}. If we denote by A0

the isometric graded isomorphism corresponding to ǫ1 = ǫ2 = ǫ3 = 1, then these 8
isomorphisms are simply A0 · F . Now it is easy to see that (2) holds. �
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