
Annales Fennici Mathematici
Volumen 48, 2023, 691–702

Non-convexity of extremal length

Nathaniel Sagman

Abstract. With respect to every Riemannian metric, the Teichmüller metric, and the Thurston

metric on Teichmüller space, we show that there exist measured foliations on surfaces whose extremal

length functions are not convex. The construction uses harmonic maps to R-trees and minimal

surfaces in Rn.

Ääripituuden epäkonveksisuus

Tiivistelmä. Osoitamme, että jokaisen Riemannin metriikan, Teichmüllerin metriikan ja Teich-

müllerin avaruuden Thurstonin metriikan suhteen on olemassa mitta–lehtirakenteita sellaisilla pin-

noilla, joiden ääripituusfunktiot eivät ole konvekseja. Näiden rakentaminen perustuu R-puuarvoisiin

harmonisiin kuvauksiin ja avaruuden Rn minimipintoihin.

1. Introduction

Let Σg be a closed oriented surface of genus g ≥ 2, and let Tg be the Teichmüller
space of marked Riemann surface structures on Σg. To any measured foliation F
on Σg we can associate the extremal length function ELF : Tg → (0,∞). Extremal
length functions play a large role in Teichmüller theory. See, for instance, Kerckhoff’s
formula [10, Theorem 4] and the Gardiner–Masur compactification [7].

Liu-Su proved that ELF is plurisubharmonic, and Miyachi proved the stronger
result that it is log-plurisubharmonic (see [13] and [19]). Note that convexity with
respect to a Riemannian metric implies plurisubharmonicity. Rafi–Lenhzen proved
that, on Teichmüller geodesics, extremal length is K-quasi-convex, but they also
constructed a Teichmüller geodesic along which the extremal length is not convex
[12]. Continuing in this direction, Bourque–Rafi proved that the Teichmüller metric
admits non-convex balls by finding foliations and geodesics where the extremal length
is not convex under any reparametrization [3] (see especially Lemma 1.2 in [3]).

In this note, we extend the non-convexity result of Rafi–Lenhzen [12]. Let C
denote the class of (possibly asymmetric) Finsler metrics on Tg such that for every
point S in Tg and every tangent vector µ at that point, there is a C2 geodesic starting
at S and tangent to µ at time zero. C includes every Riemanian metric, notably the
Weil–Petersson metric, but also the Teichmüller metric and the Thurston metric.
Rafi–Lenhzen build an explicit foliation and a Teichmüller ray that has pieces along
which the slope of the extremal length function decreases. In contrast, we show that
convexity fails at an infinitesimal level.

Theorem 1.1. For all g ≥ 2 and m ∈ C, there exists a measured foliation F on
Σg with real analytic extremal length function and a geodesic t 7→ St for m with the
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property that

d2

dt2
|t=0ELF(St) < 0.

In particular, ELF is not convex with respect to m.

As noted in [15], it follows from the main result of [15] that with respect to every
Riemannian metric on Tg, the energy functional for harmonic maps associated with a
Fuchsian representation can be non-convex. By the paper [26], the same result holds
for (non-Fuchsian) Hitchin representations. We prove Theorem 1.1 by interpreting
extremal length as an energy. Drawing from recent work on minimal surfaces (see
[14, 15, 16, 17, 26]), we establish a link between non-convexity of extremal length
and instability of minimal surfaces in Rn.

One of the main takeaways of the proof is that a destabilizing variation of an
equivariant minimal surface in Rn produces a foliation (or even a number of foliations)
whose extremal length can be lowered to second order. And although it’s probably
difficult in practice, if one has the explicit minimal surface data, then one could
compute quantities associated with the extremal length (see Remark 3.13).

It would require some care, but one could try to use minimal surfaces to construct
a foliation and a geodesic (for some metric) such that, in restriction to the geodesic,
the extremal length has a local maximum at time zero. This would imply that the
extremal length is not convexoidal for the metric. In fact, it is conjectured in [2] that
the extremal length systole attains a local maximum at the regular octahedron punc-
tured at its vertices, which would imply that Voronoï’s criterion fails for the extremal
length systole, and moreover that extremal length is not convexoidal for any metric
in C (see [1, Definition 1.4 and Proposition 1.5] for definitions and justification).

Finally, let us remark that a number of questions remain open related to convexity
in Teichmüller geometry. It is not known if the Teichmüller metric convex hull of 3
points in Tg can be all of Tg. While sufficiently small Teichmüller balls are always
convex (the analogous fact holds for any Finsler metric), it is unclear if sets of the
form {S ∈ Tg : ELF(S) < α}, referred to as horoballs in [3], are convex for α small.
Our proof of Theorem 1.1 suggests a new way to probe the convexity question for
such horoballs.

Acknowledgements. I’d like to thank Kasra Rafi and Maxime Fortier Bourque
for discussion on this topic. I’d also like to thank the anonymous referee for catching
some minor errors and sharing helpful comments. I am funded by the FNR grant
O20/14766753, Convex Surfaces in Hyperbolic Geometry.

2. Preliminaries

2.1. Measured foliations. Let S be the set of non-trivial homotopy classes of
simple closed curves on Σg, and RS the product space with the weak topology. Any
γ ∈ S determines a point in R

S through the intersection number,

(1) γ 7→ (i(γ, α))α∈S .

A weighted multicurve is a formal positive linear combination of classes in S. We
extend the intersection number to the space of weighted multicurves WS by

i

(

n
∑

j=1

ajγj,

m
∑

k=1

bkαk

)

=

n
∑

j=1

m
∑

k=1

ajbki(γj , αk),
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which as above yields an embedding from WS into R
S via the same map (1). To

us, the space of measured foliations MF is the closure of WS in RS . Note that the
intersection number extends continuously to MF [6].

Alternatively, a measured foliation F is a singular foliation on Σg, the singularities
being k-prongs, k ≥ 3, equipped with a transverse measure: an absolutely continuous
measure defined on arcs transverse to the foliation and which is invariant under leaf-
preserving isotopy. Two measured foliations are measure equivalent if they differ
by a leaf-preserving isotopy and Whitehead moves. See [6, Exposé 5] for the precise
definitions. The intersection function is defined on simple closed curves by integration
against the transverse measure.

Let S be a Riemann surface structure on Σg. The vertical (resp. horizontal)
foliation of a holomorphic quadratic differential φ on S is the singular foliation whose
leaves are the integral curves of the line field on S\φ−1(0) on which φ is a negative
(resp. positive) real number. The singularities are indeed prongs at the zeros, with a
zero of order k corresponding to a prong with k + 2 segments. Both foliations come
with transverse measures determined by |Re

√
φ| and |Im

√
φ| respectively. In this

paper, we will always use the vertical foliation.
The Hubbard–Masur theorem asserts that on the given Riemann surface S, every

measured foliation F is measure equivalent to one arising from the construction above
[8]. We refer to the corresponding differential φ as the Hubbard–Masur differential.

2.2. Extremal length (and its regularity). Let S be a Riemann surface
structure on Σg, and A ⊂ S a doubly connected domain, conformally equivalent to
an annulus {z ∈ C : 1 < |z| < R}. The modulus of A is the quantity

Mod(A) =
1

2π
logR.

Definition 2.1. The extremal length of a homotopically non-trivial simple closed
curve γ with respect to S is

EL(S, γ) = inf
A

1

Mod(A)
,

where the infimum is taken over all doubly connected domains A homotopic to γ.

Given a weighted multicurve γ =
∑n

j=1
ajγj, let A be the set of conformally

embedded unions of annuli A =
⋃n

i=1
Ai ⊂ S, with Ai homotopic to γi. We define

EL(S, γ) = inf
A∈A

n
∑

j=1

a2j
Mod(Ai)

(compare with [9, Definition 3.4, Proposition 3.7]). Kerckhoff showed that the map
EL(S, ·) extends continuously to all measured foliations, defining a map EL(S, ·) :
MF → (0,∞) [10].

Fix a measured foliation F on Σg. We define the extremal length function on
Teichmüller space, ELF : Tg → (0,∞), by

ELF(S) = EL(S,F).

In terms of the Hubbard–Masur differential φ, the extremal length is the L1 norm:

ELF(S) =

ˆ

S

|φ|.

Recall that the tangent space of Tg at a surface S identifies with the vector space of
harmonic Beltrami forms on S. By direct computation, ELF is C1, and the derivative
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is given by

d(ELF)S(µ) = −4Re

ˆ

φµ.

From our understanding, it is unknown if ELF is C2, and we’ll have to address this
point in the main proof. Royden’s computation in [25, Lemma 1] seems relevant to
this problem, and the papers [22] and [23] suggest that it is at most C2. Around
a point in Tg where all zeros of the Hubbard–Masur differential are simple, ELF is
real analytic (see [18]). This condition is generic, and guaranteed when F has only
3-pronged singularities and no saddle connections. We do not pursue the general
regularity question in the current paper.

2.3. Harmonic maps. We plan to interpret extremal length in terms of har-
monic maps to R-trees. As above, let S be a Riemann surface structure on Σg and
ν a smooth metric that is conformal with respect to the complex structure. Let
(M, d) be a complete and non-positively curved (NPC) length space equipped with
an action ρ : π1(Σg) → Isom(M, d). Let S̃ be the universal cover and h : S̃ → (M, d)
a ρ-equivariant and Lipschitz map. Korevaar–Schoen [11, Theorem 2.3.2] associate
a locally L1 measurable metric g = g(h), defined on pairs of Lipschitz vector fields.
If h is a C1 map to a smooth Riemannian manifold (M,σ), and the distance d is
induced by a Riemannian metric σ, then g(h) is represented by the pullback metric
h∗σ. Since ρ is acting by isometries, the tensor g(h) descends to S. Henceforth we
consider it a function on S. The energy density is the locally L1 function

e(h) =
1

2
traceνg(h).

The total energy is

E(S, h) =
ˆ

S

e(h) dA,

where dA is the area form of ν. The measurable 2-form e(h)dA does not depend on
the choice of compatible metric ν, but only on the complex structure.

Definition 2.2. h is harmonic if it is a critical point for the energy h 7→ E(S, h).
Let gij(h) be the components of g(h) in a holomorphic local coordinate z =

x1 + ix2. The Hopf differential of h is the measurable tensor on S given in the local
coordinate by

(2) φ(h)(z) =
1

4
(g11(h)(z)− g22(h)(z)− 2ig12(h)(z)) dz

2.

In the Riemannian setting, (2) is

φ(h)(z) = h∗σ

(

∂

∂z
,
∂

∂z

)

(z) dz2.

When h is harmonic, even in the metric space setting, the Hopf differential is repre-
sented by a holomorphic quadratic differential.

Assume that ρ has the following property: for any Riemann surface S representing
a point in Tg, there is a unique ρ-equivariant harmonic map h : S̃ → (M, d). The
energy functional on Teichmüller space Eρ : Tg → [0,∞) is defined by

Eρ(S) = E(S, h).
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When Eρ is C1 and the associated harmonic map has Hopf differential φ, the deriv-
ative in the direction of a harmonic Beltrami form µ is

(3) d(Eρ)S(µ) = −4Re

ˆ

φµ.

See [28] for the proof in the metric space context.

2.4. R-trees dual to foliations.

Definition 2.3. An R-tree is a length space (T, d) such that any two points are
connected by a unique arc, and every arc is a geodesic, isometric to a segment in R.

Under this definition, R-trees need not be complete. However, every R-tree
isometrically embeds into its completion, which itself is an NPC R-tree [20, Theo-
rem II.1.9]. Going forward, we will implicitly embed all R-trees inside their comple-
tions and extend all isometries to the completions, in order to discuss equivariant
harmonic maps to R-trees.

We concern ourselves with a particular class of actions on R-trees, obtained as
follows. Let F be a measured foliation on S with Hubbard–Masur differential φ.
Lifting F to the universal cover S̃, we define an equivalence relation on S̃ by x ∼ y
if x and y lie on the same leaf. The quotient space S̃/ ∼ is denoted T . Pushing

the transverse measure down via the projection π : S̃ → T yields a distance function
d that turns (T, d) into an R-tree, with an induced action ρ : π1(Σg) → Isom(T, d).

Under this distance, the projection map π : S̃ → (T, d) is ρ-equivariant and harmonic,
and the Hopf differential is exactly φ/4 (see [29, Section 3]). Note that for generic
foliations, (T, d) is not complete [4, Lemma 9.5], so we are indeed using the completion
of (T, d).

The energy density of π can be described explicitly: at a point p ∈ S̃ on which
φ(p) 6= 0, π locally isometrically factors through a segment in R. In a small neigh-
bourhood around that point, g(h) is represented by the pullback metric of the locally
defined map to R. Therefore, it can be computed that

(4) e(π) = ν−1|φ|/2.
Similarly, this provides one way to compute φ(π) = φ/4. In view of (4), we will
always rescale the metric on T from (T, d) to (T, 2d). In this normalization, the total
energy is

(5) E(S, π) =
ˆ

S

|φ|.

Keeping ρ and varying the source Riemann surface, ρ-equivariant harmonic maps
always exist and are unique [30], and hence there is an energy functional Eρ. From
the formula (5), we deduce the following.

Proposition 2.4. Let F be a measured foliation with Hubbard–Masur differen-
tial φ, and ρ the action on the R-tree dual to F . As functions on Tg, Eρ = ELF .

Accordingly, the same discussion on regularity from Section 2.2 applies to Eρ.
From this point on, we will think about extremal length solely in terms of harmonic
maps to R-trees.

3. Non-convexity

Let m be a metric distance function on Tg in which (Tg, m) is a length space.
We say that a function F : Tg → R is convex with respect to m if for all geodesics
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c : [0, 1] → Tg, the function F ◦ c : [0, 1] → R is convex. If c is C2 and F is C2 around
the image of c, then F ◦c is convex if and only if the second derivative is non-negative
at all points.

After discussing metrics on Tg in Section 3.1, we recall constructions from [17]
relating variations of minimal surfaces in Rn to variations of minimal maps to prod-
ucts of R-trees. We will then use minimal surfaces in Rn to find a harmonic map to
an R-tree (or, a measured foliation) whose energy (extremal length) can be lowered
to second order.

3.1. Metrics on Tg. Recall the class of metrics C from the introduction.
Let’s briefly justify that the Teichmüller metric dT and the Thurston metric dTh are
contained in C. This may follow from a general theory of asymmetric Finsler metrics
with certain properties, but we couldn’t find a source and we prefer to be hands-on.

Definition 3.1. The Teichmüller metric is defined by dT (S, S
′) = infg logK(g),

where K(g) is the maximum quasiconformal dilatation of a quasiconformal map
g : S → S ′.

Recall that at a Riemann surface S, TSTg identifies with the space of harmonic
Beltrami forms on S. If µ is any such Beltrami form, away from the finite zero set of
µ we can locally choose a coordinate z = x+ iy in which µ = dz/dz. The Teichmüller
mapping in the direction of µ at scale K is defined in such a coordinate by

(6) fµ,K(x, y) = K1/2x+K−1/2y.

We define fµ,K globally by doing (6) over the local patches, and extending to all of
S by continuity. The Teichmüller ray K 7→ fµ,K is a geodesic for dT tangent to µ at
K = 0.

Definition 3.2. The Thurston metric is defined by dTh(S, S
′) = infg logLip(g),

where Lip(g) is the Lipschitz constant of a Lipschitz map g taking S to S ′.

We couldn’t find a clean statement in the literature about the existence of
Thurston geodesics in a given tangent direction. The result can probably be es-
tablished through the constructions of Thurston’s original paper [27], but one cannot
use Thurston’s stretch lines from [27] directly: by [27, Theorem 10.5], the set of
directions in the unit tangent bundle of Tg which are tangent to stretch lines have
Hausdorff dimension 0. We’ll instead cite the recent work of Pan and Wolf [21].

For any Riemann surface S and projective measured lamination on S, Pan and
Wolf construct a “harmonic stretch line”, which is a Thurston geodesic that in some
sense solves an energy-minimization problem. Every unit tangent vector to Tg at S
is tangent to a harmonic stretch line [21, Remark 1.12]. Moreover, harmonic stretch
lines are special examples of “piecewise harmonic stretch lines”, which are, as stated
in Theorem 1.7 of [21], real analytic paths in Teichmüller space.

3.2. Harmonic functions. Let S be a Riemann surface structure on Σg and
φ a holomorphic quadratic differential. Let (T, 2d) be the dual R-tree with action ρ

and harmonic projection map π : S̃ → (T, 2d). Assume that φ is the square of an
abelian differential α. The cohomology class of the harmonic 1-form Reα determines
a representation χ : π1(Σg) → (R,+), and integrating from a basepoint p ∈ S̃ yields
a χ-equivariant harmonic function

h : S̃ → R, fi(z) =

ˆ z

p

Reα.
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We can compute directly that φ(h) = φ and that for any choice of conformal metric
on S, e(h) = e(π). Geometrically, h is related to π through the folding map p,
which is a map p : (T, d) → R satisfying h = p ◦ π and restricting to an isometry
on geodesic segments of (T, d) (see [16, Section 4]). For any Riemann surface, χ-
equivariant harmonic functions exist, but they are unique only up to translations
of Rn. Nevertheless, the energy density is independent of the choice of harmonic
function, and it is possible to choose the harmonic functions locally to vary real
analytically with the choice of Riemann surface (see [5, Section 5]). Thus, as in
Section 2.3, we may define a (real analytic) energy functional Eχ on Tg.

In general, there is a degree 2 branched covering τ : C → S in which φ lifts to
a square φ̃ = α2, disconnected if φ is already a square, and which has the universal
property that any other branched cover on which φ lifts to a square must factor
through τ . We can repeat the above construction on C, obtaining an equivariant
harmonic map to an R-tree π′ : C̃ → (T ′, 2d′) that folds onto an equivariant harmonic

function h from C̃ to R. C comes with a holomorphic involution that negates α. The
involution leaves the energy densities of π′ and f invariant, so that they descend all
the way to S, where they agree with that of the map to the original R-tree.

3.3. Minimal maps. Classically, a minimal map to a Riemannian manifold
is a harmonic and conformal immersion. An immersion is conformal precisely when
the Hopf differential vanishes identically. For an NPC space (M, d), we make the
following definition.

Definition 3.3. h : S̃ → (M, d) is minimal if it is harmonic and φ(h) = 0.

In the presence of a C1 energy functional Eρ, by (3), S is minimal if and only if S
is a critical point of Eρ. For equivariant maps to Rn, minimal maps are also critical
points of the area functional

f 7→ A(f) =

ˆ

Σg

dAf ,

where dAf is the area form of the pullback of the Euclidean metric by f . We record
the following consequence of the definitions. Let (X, d) be a product of NPC spaces
(Mi, di).

Proposition 3.4. h : S̃ → (X, d) is harmonic if and only if every component
map hi : S̃ → (Mi, di) is harmonic. Moreover, φ(h) =

∑n
i=1

φ(hi).

Let φ1, . . . , φn be holomorphic quadratic differentials on S and let (M, d) be
the product of the dual R-trees, with product action ρ and product of projec-
tion maps π = (π1, . . . , πn) : S̃ → (M, d). The energy functional Eρ is the sum
of the component energy functionals. Similar to the previous subsection, there
is a degree 2n branched covering τ : C → S on which each φi lifts to a square,
with the analogous universal property, and which comes with n commuting holo-
morphic involutions that each negate a 1-form. There is a product representation
χ = (χ1, . . . , χn) : π1(C) → (Rn,+) with energy functional Eχ and equivariant har-

monic function h = (h1, . . . , hn) : C̃ → Rn. Proposition 3.4 gives the observation
below.

Proposition 3.5. h is minimal if and only if π is minimal if and only if
n
∑

i=1

φi = 0.
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Let us thus assume the φi’s sum to zero. The main input toward Theorem 1.1
is Proposition 3.6 below, which is used to turn variations of h into variations of π.
We will need to restrict to a class of variations. Set Varτ (h) to be the space of C∞

functions ḣ : C̃ → R
n that are invariant under π1(C) and the lifts to C̃ of the n

holomorphic involutions. Of course, such ḣ is equivalent to a function on S.

Proposition 3.6. [17, Propositions 4.4, 4.6, and 5.1] Let ḣ ∈ Varτ (h). For every
ǫ > 0, there exists a C∞ path of Riemann surfaces t 7→ Ct and C∞ paths of C∞ maps
t 7→ f t

i : C → Ct starting at the identity such that

(7)
d2

dt2
|t=0

n
∑

i=1

Eχi
(Ct, hi ◦ (f̃ t

i )
−1) ≤ d2

dt2
|t=0A(ht) + ǫ,

where f̃ t
i is the lift to C̃. The Riemann surfaces Ct descend through the branched

cover τ to Riemann surface structures St on S. Similarly, the f t
i ’s descend to f t

i : S →
St.

Very briefly: without perturbing the area too much, one can modify ḣ to be zero
in a neighbourhood of the zeros of the φi’s. There is a canonical way to pull such a
variation back to n vector fields on the surface C̃, which then generate flows t 7→ f t

i .
With respect to the conformal structure of the image of ht = (h1 ◦ (f t

1
)−1, . . . , hn ◦

(f t
n)

−1), which we label Ct, the energy of ht is equal to its area. By invariance

properties of ḣ, everything can be chosen to descend to Σg. Such a self-maps variation
gives a variation of π,

(8) πt = (π1 ◦ (f t
1
)−1, . . . , πn ◦ (f t

n)
−1).

If f̃ t
i also denotes the lift to S̃, then we can see by the local isometric factoring

described in Section 2.4, or the folding map of Section 3.2,

(9) e(πi ◦ (f̃ t
i )

−1) = e(hi ◦ (f̃ t
i )

−1)

(note that both densities descend to S, which is where the equation (9) is defined).
Finally, we will want destabilizing variations.

Definition 3.7. h is τ -unstable if there exists ḣ ∈ Varτ (h) such that

d2

dt2
|t=0A(h+ tḣ) < 0.

For all g ≥ 3 and n ≥ 3, we can take C = S: one can find abelian differentials on
S whose squares sum to 0 that give an unstable minimal map. One way to produce
such a map is to lift an unstable minimal surface in the 3-torus to the universal covers.
For g = 2, it turns out that any equivariant minimal surface is stable. However, we
proved

Theorem 3.8. [17, Section 5.3] There exists a Riemann surface S of genus 2
with φ1, . . . , φn, n ≥ 3, summing to 0 and which give a non-trivial branched cover
τ : C → S and a τ -unstable minimal map h : C̃ → R

n.

3.4. Proof of Theorem 1.1. Resuming the setup from Section 3.3, assume
that h is destabilized by some ḣ ∈ Varτ (h). Choose ǫ > 0 small enough so that

d2

dt2
|t=0A(h+ tḣ) + ǫ < 0.

Applying Proposition 3.6, defining πt as in (8) and using (9), we arrive at the follow-
ing.
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Proposition 3.9. There exist C∞ paths of C∞ maps to Riemann surfaces t 7→
f t
i : S → St starting at the identity such that

(10)
d2

dt2
|t=0

n
∑

i=1

E(St, πi ◦ (f t
i )

−1) ≤ 2−n d2

dt2
|t=0A(h+ tḣ) + ǫ < 0.

All recorded examples of τ -unstable maps, in particular examples from The-
orem 3.8, come from differentials with even order zeros. Recalling our regularity
concerns from Section 2.2, we need the Proposition below. Say that a holomor-
phic quadratic differential φ is generic if it has only simple zeros. Generic quadratic
differentials on S form an open and dense subset.

Proposition 3.10. For all g ≥ 2, n ≥ 3, we can choose generic holomorphic
quadratic differentials φi that give maps to R-trees πi, and C∞ paths t 7→ f t

i : S → St

starting at the identity such that (10) holds:

d2

dt2
|t=0

n
∑

i=1

E(St, πi ◦ (f t
i )

−1) < 0.

Morally, we’re using that instability in the sense of (10) is an open property. To
formalize the argument, we borrow a formula from Reich–Strebel.

Proposition 3.11. [24, Equation 1.1] and [17, Proposition 3.1] Let π : S̃ →
(T, 2d) be any equivariant map to an R-tree with Hopf differential φ and let f : S → S ′

be any quasiconformal map to another Riemann surface S ′ with lift f̃ to S̃ and
Beltrami form µ.

(11) E(S, π ◦ f̃−1)−E(S, π) = −4Re

ˆ

S

φ · µ

1− |µ|2 dx dy+4

ˆ

S

|φi| ·
|µ|2

1− |µ|2 dx dy.

Proof of Proposition 3.10. Begin with the data φi, f
t
i from Proposition 3.9. The

φi’s may not be generic, but we know that (10) holds. Let µt
i be the Beltrami form

of f t
i , and αi the C∞ (1,−1)-form and βi the C∞ function on S described by

αi(z) =
d2

dt2

∣

∣

∣

∣

t=0

µt
i(z)

1− |µt
i(z)|2

, βi(z) =
d2

dt2

∣

∣

∣

∣

t=0

|µt
i(z)|2

1− |µt
i(z)|2

.

By the formula (11),

d2

dt2

∣

∣

∣

∣

t=0

n
∑

i=1

E(St, πi ◦ (f t
i )

−1) =
d2

dt2

∣

∣

∣

∣

t=0

n
∑

i=1

(

E(St, πi ◦ (f t
i )

−1)− E(S, πi)
)

=
d2

dt2

∣

∣

∣

∣

t=0

4

n
∑

i=1

(

−Re

ˆ

S

φi ·
µt
i

1− |µt
i|2

dx dy +

ˆ

S

|φi| ·
|µt

i|2
1− |µt

i|2
dx dy

)

.

Taking the derivative into the integral,

(12) 0 >
d2

dt2

∣

∣

∣

∣

t=0

n
∑

i=1

E(St, πi ◦ (f t
i )

−1) = 4Re
n
∑

i=1

(

−
ˆ

S

φi · αi +

ˆ

S

|φi| · βi dA

)

.

We perturb φ1, . . . , φn−1 ever so slightly to be generic, and then redefine

φn := −φ1 − · · · − φn−1,

which is, of course, very close to the original φn. If φn is not generic, then we perturb
it to be. By openness, if our perturbation of φn is sufficiently small, then if we redefine
φn−1 so that the sum of the φi’s is again zero, φn−1 will still be generic. Since αi

and βi are uniformly bounded, it is clear from the right hand side of (12) that if the
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perturbations are small enough, then both sides of (12) remain negative. So, we can
take these new φi’s to be our holomorphic quadratic differentials, and keep the same
Riemann surfaces St and paths of C∞ maps t 7→ f t

i : S → St. �

Proof of Theorem 1.1. We find an R-tree such that energy can be decreased to
second order. We will then invoke Proposition 2.4 to say that the same happens for
the extremal length of the associated foliation.

Our starting point is Theorem 3.8: we fix a τ -unstable minimal map from a
branched cover of a Riemann surface S of genus g. By Proposition 3.10, we can
adjust the Hopf differentials of the component maps to obtain generic quadratic
differentials φ1, . . . , φn that yield an action ρ = (ρ1, . . . , ρn) on a product of R-trees
and an equivariant minimal map π = (π1, . . . , πn), as well as paths of C∞ maps
t 7→ f t

1
, . . . , f t

n : S → St starting at the identity such that

(13)
d2

dt2

∣

∣

∣

∣

t=0

n
∑

i=1

E(St, πi ◦ (f t
i )

−1) < 0.

Since the φi’s are generic, their energy functionals on Tg are all real analytic. By the
definition of minimality and (3),

(14)
d

dt
|t=0Eρ(St) = 0 and

d

dt

∣

∣

∣

∣

t=0

n
∑

i=1

E(St, πi ◦ (f t
i )

−1) = 0.

Since harmonic maps minimize energy, for all t,

(15) Eρ(St) =
n
∑

i=1

Eρi(St) ≤
n
∑

i=1

E(St, πi ◦ (f t
i )

−1).

It follows from (13), (14), and (15) that

(16)
d2

dt2
|t=0Eρ(St) ≤

d2

dt2

∣

∣

∣

∣

t=0

n
∑

i=1

E(St, πi ◦ (f t
i )

−1) < 0.

By the first equation in (14), the left hand side of (16) does not depend on the specific
path in Teichmüller space, but only on the initial tangent vector µ. Thus, if we fix
a metric m in C, we can replace the path with the geodesic for m starting at S and
tangent to µ at time zero, say t 7→ S ′

t. Finally, since the energy splits into the energies
of the component maps, for (16) to hold along our path there must be at least one
component representation ρi such that

d2

dt2
|t=0Eρi(S

′

t) < 0.

If F is the measured foliation corresponding to ρi, then by Proposition 2.4,

d2

dt2
|t=0ELF(S

′

t) < 0.

This completes the proof. �

Remark 3.12. One could instead ask about convexity with respect to a con-
nection: a function is convex with respect to a connection if the restriction to every
geodesic for that connection is a convex function. This setting is considered in [1].
Our proof shows that extremal length is not convex for any connection that admits
C2 geodesics through every tangent vector of Tg.
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Remark 3.13. In principle, one can write down the tangent vectors explicitly.
One begins with a τ -unstable minimal surface and a destabilizing variation. For
example, one could work in genus 3, and take C = S and any non-planar equivariant
minimal map from S̃ → R3 with its destabilizing unit normal variation (see [17,
Section 5.3]). The proofs of Propositions 4.4, 4.6, and 5.1 in [17] explain how to build
the flows f t

1
, f t

2
, f t

3
. One can then try to compute the corresponding path t 7→ St and

take the derivative at time zero, although the computation may be involved.
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[1] Bavard, C.: Théorie de Voronŏı géométrique. Propriétés de finitude pour les familles de
réseaux et analogues. - Bull. Soc. Math. France 133:2, 2005, 205–257.

[2] Bourque, M.F., D. Martíŋnez-Granado, and F.V. Pallete: The extremal length sys-
tole of the Bolza surface. - Preprint, arXiv:2105.03871v2 [math.GT], 2021.

[3] Bourque, M.F., and K. Rafi: Non-convex balls in the Teichmüller metric. - J. Differential
Geom. 110:3, 2018, 379–412.

[4] De Rosa, L., and D. Martíŋnez-Granado: Dual spaces of geodesic currents. - Preprint,
arXiv:2211.05164 [math.GT], 2022.

[5] Eells, J., and L. Lemaire: Deformations of metrics and associated harmonic maps. - Proc.
Indian Acad. Sci. Math. Sci. 90:1, 1981, 33–45.

[6] Fathi, A., F. Laudenbach, and V. Poénaru: Thurston’s work on surfaces. - Math. Notes
48, Princeton Univ. Press, Princeton, NJ, 2012.

[7] Gardiner, F. P., and H. Masur: Extremal length geometry of Teichmüller space. - Complex
Variables Theory Appl. 16:2-3, 1991, 209–237.

[8] Hubbard, J., and H. Masur: Quadratic differentials and foliations. - Acta Math. 142:3-4,
1979, 221–274.

[9] Kahn, J., K.M. Pilgrim, and D.P. Thurston: Conformal surface embeddings and ex-
tremal length. - Groups Geom. Dyn. 16:2, 2022, 403–435.

[10] Kerckhoff, S. P.: The asymptotic geometry of Teichmüller space. - Topology 19:1, 1980,
23–41.

[11] Korevaar, N. J., and R.M. Schoen: Sobolev spaces and harmonic maps for metric space
targets. - Comm. Anal. Geom. 1:3-4, 1993, 561–659.

[12] Lenzhen, A., and K. Rafi: Length of a curve is quasi-convex along a Teichmüller geodesic.
- J. Differential Geom. 88:2, 2011, 267–295.

[13] Liu, L., and W. Su: Variation of extremal length functions on Teichmüller space. - Int. Math.
Res. Not. IMRN 2017:21, 2017, 6411–6443.

[14] Marković, V.: Uniqueness of minimal diffeomorphisms between surfaces. - Bull. Lond. Math.
Soc. 53:4, 2021, 1196–1204.

[15] Marković, V.: Non-uniqueness of minimal surfaces in a product of closed Riemann surfaces.
- Geom. Funct. Anal. 32:1, 2022, 31–52.

[16] Marković, V., and N. Sagman: Minimal surfaces and the new main inequality. - Preprint,
arXiv:2301.00249 [math.DG], 2022.

[17] Marković, V., N. Sagman, and P. Smillie: Unstable minimal surfaces in Rn and in products
of hyperbolic surfaces. - Preprint, arXiv:2206.02938 [math.DG], 2022.

[18] Masur, H.: The Teichmüller flow is Hamiltonian. - Proc. Amer. Math. Soc. 123:12, 1995,
3739–3747.

[19] Miyachi, H.: Extremal length functions are log-plurisubharmonic. - In: In the tradition of
Ahlfors–Bers VII, Contemp. Math. 696, 2017, 225–250.



702 Nathaniel Sagman

[20] Morgan, J.W., and P.B. Shalen: Degenerations of hyperbolic structures, II: Measured
laminations in 3-manifolds. - Ann. of Math. (2) 127:2, 1988, 403–456.

[21] Pan, H., and M. Wolf: Ray structures on Teichmüller space. - Preprint, arXiv:2206.01371v2
[math.GT], 2022.

[22] Rees, M.: Teichmüller distance for analytically finite surfaces is C2. - Proc. London Math.
Soc. (3) 85:3, 2002, 686–716.

[23] Rees, M.: Teichmüller distance is not C2+ǫ. - Proc. London Math. Soc. (3) 88:1, 2004, 114–134.

[24] Reich, E., and K. Strebel: On the Gerstenhaber–Rauch principle. - Israel J. Math. 57:1,
1987, 89–100.

[25] Royden, H. L.: Automorphisms and isometries of Teichmüller space. - In: Advances in the
Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), Ann. of Math. Stud. 66,
Princeton Univ. Press, Princeton, N.J., 1971, 369–383.

[26] Sagman, N., and P. Smillie: Unstable minimal surfaces in symmetric spaces of non-compact
type. - Preprint, 2022.

[27] Thurston, W.P.: Minimal stretch maps between hyperbolic surfaces. - Preprint,
arXiv:math/9801039 [math.GT], 1998.

[28] Wentworth, R.A.: Energy of harmonic maps and Gardiner’s formula. - In: In the tradition
of Ahlfors–Bers IV, Contemp. Math. 432, Amer. Math. Soc., Providence, RI, 2007, 221–229.

[29] Wolf, M.: Harmonic maps from surfaces to R-trees. - Math. Z. 218:4, 1995, 577–593.

[30] Wolf, M.: On realizing measured foliations via quadratic differentials of harmonic maps to
R-trees. - J. Anal. Math. 68, 1996, 107–120.

Received 13 April 2023 • Revision received 11 October 2023 • Accepted 12 October 2023

Published online 1 November 2023

Nathaniel Sagman

University of Luxembourg

2 Av. de l’Universite, 4365 Esch-sur-Alzette, Luxembourg

nathaniel.sagman@uni.lu


	1. Introduction
	2. Preliminaries
	3. Non-convexity
	References

