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Spectral asymptotics for
generalized Schrödinger operators

Tan Duc Do
∗ and Le Xuan Truong

Abstract. Let d ∈ {3, 4, 5, . . .}. Consider L = − 1

w
div(A∇u) + µ over its maximal domain

in L2

w(R
d). Under certain conditions on the weight w, the coefficient matrix A and the positive

Radon measure µ we obtain upper and lower bounds on N(λ, L)—the number of eigenvalues of L

that are at most λ ≥ 1. Furthermore we show that the eigenfunctions of L corresponding to those

eigenvalues are exponentially decaying. In the course of proofs, we develop generalized Poincaré

and weighted Young convolution inequalities as the main tools for the analysis.

Yleistettyjen Schrödingerin operaattoreiden spektrin asymptoottiset ominaisuudet

Tiivistelmä. Olkoon d ∈ {3, 4, 5, . . .}. Valitaan operaattorille L = − 1

w
div(A∇u) + µ sen

suurin mahdollinen määrittelyalue avaruudessa L2

w
(Rd). Kun teemme tiettyjä oletuksia painosta

w, kerroinmatriisista A ja positiivisesta Radonin mitasta µ, saamme ylä- ja alarajoja suureelle

N(λ, L), joka on operaattorin L niiden ominaisarvojen lukumäärä, joiden suuruus on korkeintaan

λ ≥ 1. Lisäksi osoitamme, että näihin ominaisarvoihin liittyvät ominaisfunktiot ovat eksponenti-

aalisesti vaimenevia. Todistuksen aikana kehitämme Poincarén epäyhtälön ja painotetun Youngin

konvoluutioepäyhtälön yleistyksiä, jotka toimivat analyysimme päätyökaluina.

1. Introduction

Shen in [She96] obtained a lower bound and an upper bound on N(λ,H)—the
number of eigenvalues of H that is less than or equal to λ > 0, where H denotes
the Schrödinger operator with magnetic field. The estimate is in the spirit of the
classical phase-space volume estimate due to Cwickel–Lieb–Rosenbljum (cf. [Sim79,
Theorem 9.3]). Moreover, in the same paper Shen also proved an exponential decay
of the eigenfunctions of H . These results are then extended to various settings,
namely, a weighted setting in [KS00], a Dunkl–Schrödinger operator in [Hej21], a
higher-order Schrödinger operator in [ZT22], magnetic Schrödinger operators with
singular potentials and irregular magnetic fields in [Pog21] and Schrödinger operators
with potentials satisfying a Kato and doubling condition in [BFS23]. As a whole
these together facilitate the existing literature on the behaviors of eigenvalues and
eigenfunctions of Schrödinger operators which are certainly of great interest. For
more information, the readers may refer to [She96, KS00, Hej21, ZT22, Pog21, BFS23,
Fef83, Gur86, Iwa86, Mat91, Sim83, Sol86, Tac90] and references therein.

In this paper we generalize the results in [KS00]. Particularly, we consider de-
generate Schrödinger operators with potentials being non-doubling Radon measures
in a weighted setting. Our consideration here can be thought of as a local version
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of [BDT20]. Note that the idea of those non-doubling measure potentials in a non-
weighted setting were first discussed in [She99].

The main difficulties are to develop corresponding tools in our weighted set-
ting (with the presence of Radon measures). Specifically, we require a generalized
Poincaré inequality (Proposition 2.4 below) and a weighted Young convolution in-
equality (Lemma 4.2 below). These are achieved by invoking the trace inequalities
investigated by Sawyer et al.

The precise formulation of our problem is as follows. Let d ∈ {3, 4, 5, . . .}. Con-
sider

L = − 1

w
div(A(x)∇u) + µ

in L2
w(R

d). Here w, A and µ are defined as follows.

Conditions on w:

(W1) w ∈ A1, i.e., there exists a constant C > 0 such that
ˆ

B

w(x) dx ≤ C |B| ess inf
B

w

for all balls B ⊂ R
d.

(W2) w ∈ RDβ for some β > 2, i.e., there exists a constant C > 0 such that

w(B(x, tr)) ≥ C tβ w(B(x, r))

for all t > 1.

Remark 1.1. It is well-known that (W1) implies the following doubling property
(cf. [Gra09, Proposition 9.1.5]).

(D) w ∈ Dα for some α > 2, i.e., there exists a constant C > 0 such that

w(B(x, tr)) ≤ C tα w(B(x, r))

for all t > 1.

We will make use of this property frequently later.

Condition on A = (Aij)1≤i,j≤d:

(A1) The coefficient matrix A is symmetric with measurable entries. Furthermore
there exists a constant Λ ≥ 1 such that

(1) Λ−1w(x) |ξ|2 ≤ A(x)ξ · ξ ≤ Λw(x) |ξ|2

for a.e. x ∈ R
d and for all ξ ∈ R

d.

Conditions on µ: Set dν = w dµ.

(M1) There exist constants C0 > 0 and δ > 0 such that

r2

w(B(x, r))
ν(B(x, r)) ≤ C0

( r

R

)δ R2

w(B(x,R))
ν(B(x,R))

for all x ∈ R
d and 0 < r < R ≤ 1.

Assume further that

(δ ∧ 2) + β − d > 1,

where δ ∧ 2 := min{δ, 2}.
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(M2) There exists a constant C1 > 0 such that

ν(B(x, 2r)) ≤ C1

(

ν(B(x, r)) +
w(B(x, r))

r2

)

for all x ∈ R
d and 0 < r ≤ 1.

For convenience later we will assume further that C0 > 1 and C1 > 2α, where α is as
in (D).

Remark 1.2. Conditions (M1) and (M2) can be considered as local versions of
[BDT20, (4) and (5)] respectively. Specifically, [BDT20, (4) and (5)] requires that µ
is a positive Radon measure satisfying the following conditions:

(i) There exist constants C0 > 0 and δ > 0 such that

r2

w(B(x, r))
ν(B(x, r)) ≤ C0

( r

R

)δ R2

w(B(x,R))
ν(B(x,R))

for all x ∈ R
d and R > r > 0.

(ii) There exists a constant C1 > 0 such that

ν(B(x, 2r)) ≤ C1

(

ν(B(x, r)) +
w(B(x, r))

r2

)

for all x ∈ R
d and r > 0.

The operator L can be described precisely via form method. See Subsection 2.2
below.

To formulate our main results the following notion plays a fundamental role. It
is convenient to denote

dν1 = dν + C1w dx,

where as before dν = w dµ and C1 is given by (M2). For all x ∈ R
d define

(2) ρw(x, ν1) :=
1

mw(x, ν1)
:= sup

{

r > 0:
r2

w(B(x, r))
ν1(B(x, r)) < C1

}

which is called the critical function.
For each λ > 0 denote N(λ, L) to be the number of eigenvalues of L which are

less than or equal to λ. Our first main result is as follows.

Theorem 1.3. Suppose (W1), (W2) and (A1) hold. Let µ be a positive Radon
measure on R

d which satisfies (M1) and (M2). Suppose further that there exist
constants d1 and d2 such that

(3) 0 < d1 ≤ w(B(x, 1)) ≤ d2 <∞
for all x ∈ R

d. Then there exist constants c, C, κ1, κ2 > 0 such that

c λβ/2w(Σ1) ≤ N(λ, L) ≤ C λα/2w(Σ2)

for all λ ≥ 1, where

Σj := {x ∈ R
d : mw(x, ν1) ≤ κj

√
λ}, j ∈ {1, 2}

and α, β are given in (D) and (W2).

As a consequence of Theorem 1.3, we obtain a characterization on the discreteness
of the spectrum of L. Also see [She96, Corollary 0.11].
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Corollary 1.4. Adopt the assumptions and notation in Theorem 1.3. Then L
has a discrete spectrum if and only if

(4) lim
|x|→∞

mw(x, ν1) = ∞.

In particular, if (4) does not hold then L does not have a compact resolvent.

Define

(5) d(x, y) = inf
γ

ˆ 1

0

mw(γ(t), ν1) |γ′(t)| dt

for each x, y ∈ R
d, where γ : [0, 1] −→ R

d is absolutely continuous with γ(0) = x and
γ(1) = y. This is an instance of the Agmon metric defined in [Agm82, (4.8) on p. 55].
It has been employed in establishing the exponential decay of the eigenfunctions
of second-order elliptic operators, also known as the Agmon’s type estimates. See
[Agm82, Chapters 4 and 5]. A motivation for the Agmon metric and the Agmon-type
estimates is available in [Ste21, Subsection 1.2].

Next for all λ > 0 set

Eλ := {x ∈ R
d : mw(x, ν1) ≤

√
λ}

and

dλ(x) := inf{d(x, y) : y ∈ Eλ}
for all x ∈ R

d.
The exponentially decaying property of eigenfunctions of L is stated as follows.

The result is in the spirit of [Agm82, Theorems 5.2 and 5.3].

Theorem 1.5. Suppose (W1), (W2) and (A1) hold. Let µ be a positive Radon
measure on R

d which satisfies (M1) and (M2). Assume further that A consists of
W 1,1

loc (R
d)-entries and there exists a constant Ξ > 0 such that

(A2) |(∇A)(x) ξ · ξ| ≤ Ξw(x) |ξ|2
for a.e. x ∈ R

d and for all ξ ∈ R
d, where (∇A)ij := ∂iAij for all i, j ∈ {1, . . . , d}. Let

u be an eigenfunction of L whose corresponding eigenvalue is λ ≥ 1. Then for all
sufficiently small ǫ > 0 there exist constants C,Cǫ > 0 such that

|u(x)| ≤ Cǫ λ
α/4 e−ǫ dCλ(x) ‖u‖L2

w(Rd)

for all x ∈ R
d.

We prove Theorem 1.3 and Corollary 1.4 in Section 3. Theorem 1.5 is proved in
Section 4. Before that, we collect essential background on the critical function (2)
and the distance function (5) in Section 2.

Notation. Throughout the paper the following set of notation is used without
mentioning. Set N = {0, 1, 2, 3, . . .} and N

∗ = {1, 2, 3, . . .}. Given an index j ∈ N

and a ball B = B(x, r), we let 2jB = B(x, 2jr), U0(B) = B and Uj(B) = 2jB \2j−1B
if j ≥ 1. For all a, b ∈ R, a ∧ b = min{a, b} and a ∨ b = max{a, b}. For all ball
B ⊂ R

d we write w(B) :=
´

B
w. The constants C and c are always assumed to be

positive and independent of the main parameters whose values change from line to
line. For any two functions f and g, we write f . g and f ∼ g to mean f ≤ Cg and
cg ≤ f ≤ Cg respectively. Given an index p ∈ [1,∞), the conjugate index of p is
denoted by p′. We write L2(Rd) to mean the space of square-integrable function with
respect to the Lebesgue measure. In a weighted setting of Lebesgue spaces we will
use the notation L2

w(R
d) = L2(Rd, dw), where dw := w dx and dx is the Lebesgue
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measure on R
d. In case of a measure µ other than the Lebesgue measure being used,

the corresponding notation will be L2(Rd, dµ) and L2
w(R

d, dµ).

Throughout assumptions. In the whole paper we always assume (W1), (W2)
and (A1) hold. Also µ is a positive Radon measure on R

d which satisfies (M1) and
(M2).

2. Preliminaries

This section collects basic facts about the critical functions and some estimates
on the distance functions.

2.1. Critical functions. This section presents crucial properties of critical
functions as well as the generalized Poincaré and Fefferman–Phong inequalities.

Recall that we set
dν1 = dν + C1 dw,

where dν = w dµ and C1 is given by (M2). For this measure ν1, the estimates (M1)
and (M2) read as follows.

(M1’) There exist constants C0 > 0 and δ > 0 such that

r2

w(B(x, r))
ν1(B(x, r)) ≤ C0

( r

R

)δ∧2 R2

w(B(x,R))
ν1(B(x,R))

for all x ∈ R
d and 0 < r < R ≤ 1.

(M2’) There exists a constant C1 > 0 such that

ν1(B(x, 2r)) ≤ C1

(

ν1(B(x, r)) +
w(B(x, r))

r2

)

for all x ∈ R
d and 0 < r ≤ 1.

The constants C0 and C1 in (M1’) and (M2’) are exactly the same as those in
(M1) and (M2), keeping in mind that we chose C0 > 1 and C1 > 2α previously.

Proposition 2.1. The following properties hold for the critical function.

(i) ρw(x, ν1) ∈ (0, 1] for all x ∈ R
d.

(ii) For all x ∈ R
d, one has

(2β−2 − 1)
w(B(x, r))

r2
≤ ν1(B(x, r)) ≤ C1

w(B(x, r))

r2
,

where r = ρw(x, ν1).
(iii) ρw(x, ν1) ∼ ρw(y, ν1) if |x− y| < ρw(x, ν1).
(iv) There exists a constant k0 > 0 such that

mw(y, ν1)
(

1 + |x− y|mw(y, ν1)
)k0/(k0+1)

. mw(x, ν1)

. mw(y, ν1)
(

1 + |x− y|mw(y, ν1)
)k0

for all |x− y| ≤ 1.

Proof. Let x, y ∈ R
d.

(i) It follows from (M1’) that

lim
r→0

r2

w(B(x, r))
ν1(B(x, r)) = 0.

Also ρw(x, ν1) ≤ ρw(x, C1) = 1. These imply ρw(x, ν1) ∈ (0, 1].



708 Tan Duc Do and Le Xuan Truong

In the remaining part of the proof set r = ρw(x, ν1) and R = ρw(y, ν1). By (i) we
know that r, R ∈ (0, 1].

(ii) By definition we have

ν1(B(x, r)) = lim
t→r−

ν1(B(x, t)) ≤ C1
w(B(x, r))

r2
.

Also

2β−2C1
w(B(x, r))

r2
≤ C1

w(B(x, 2r))

4r2
≤ ν1(B(x, 2r))

= ν(B(x, 2r)) + C1w(B(x, 2r))

≤ C1

(

ν(B(x, r)) +
w(B(x, r))

r2

)

+ 2αC1w(B(x, r)),

where we used (W2) in the first step, the definition of ρw in the second step as well
as (M2) and (D) in the last step. Note that we chose C1 > 2α, whence

ν1(B(x, r)) ≥ (2β−2 − 1)
w(B(x, r))

r2
.

(iii) Suppose that |x − y| < r. Then B(y, r) ⊂ B(x, 2r) and B(x, r) ⊂ B(y, 2r).
Using (M2’) and (ii) we obtain

(6) ν1(B(x, 2r)) ≤ C1

[

ν1(B(x, r)) +
w(B(x, r))

r2

]

≤ 2C1
w(B(x, r))

r2
.

Consequently it follows from (M1’) that

(tr)2

w(B(y, tr))
ν1(B(y, tr)) . tδ∧2

r2

w(B(y, r))
ν1(B(y, r))

. tδ∧2
r2

w(B(x, r))
ν1(B(x, 2r))

. tδ∧2 < C1,

where t is chosen to be sufficiently small. Therefore R ≥ tr by definition, where we
recall that R = ρw(y, ν1). Note that this in turn implies |x − y| . R. By swapping
the roles of x and y in the above argument, we then obtain R . r.

(iv) Suppose |x− y| ≤ 1. The case |x− y| < R is clear from (iii). So we assume
that |x− y| ≥ R. Let j ∈ N

∗ be such that 2j−1R ≤ |x− y| < 2jR. Then

B(y, R) ⊂ B(x, 2|x−y|), B(x,R) ⊂ B(y, 2|x−y|) and B(y, |x−y|) ⊂ B(y, 2jR).

Consequently, it follows from (M2’) that

ν1(B(y, 2|x− y|)) < C1

[

ν1(B(y, |x− y|)) + w(B(y, |x− y|))
|x− y|2

]

≤ C1

[

ν1(B(y, 2jR)) +
w(B(y, 2jR))

(2j−1R)2

]

.

We estimate the two terms on the right-hand side as follows. First using the doubling
property of w we obtain

w(B(y, 2jR))

(2j−1R)2
≤ 2j α

w(B(y, R))

(2j−1R)2
= 4× 2j (α−2) w(B(y, R))

R2
.
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Secondly, an iterating application of (M2’) gives

ν1(B(y, 2jR)) ≤ C1 ν1(B(y, 2j−1R)) + C1
w(B(y, 2j−1R))

(2j−1R)2

≤ C2
1 ν1(B(y, 2j−2R)) + C2

1

w(B(y, 2j−2R))

(2j−2R)2
+ C1 2

(j−1) (α−2) w(B(y, R))

R2

≤ . . .

≤ Cj
1 ν1(B(y, R)) +

(

Cj
1 + Cj−1

1 2α−2 + . . .+ C1 2
(j−1) (α−2)

) w(B(y, R))

R2

≤ 2Cj+1
1

w(B(y, R))

R2
+
(

Cj
1 + Cj−1

1 2α−2 + . . .+ C1 2
(j−1) (α−2)

) w(B(y, R))

R2
,

where we used (6) in the last step. Consequently, we may infer that

(7) ν1(B(y, 2|x− y|)) ≤ 4C2
1

(

C1 + 2α−2
)j w(B(y, R))

R2
.

Next using (M1’) we have

(tR)2

w(B(x, tR))
ν1(B(x, tR)) ≤ C0 t

δ∧2 R2

w(B(x,R))
ν1(B(x,R))

≤ C0 t
δ∧2
(

2|x− y|
R

)α
R2

w(B(x, 2|x− y|)) ν1(B(y, 2|x− y|))

< C0 t
δ∧2 2(j+1)α R2

w(B(x, 2|x− y|)) ν1(B(y, 2|x− y|))

≤ C0 t
δ∧2 2(j+1)α R2

w(B(y, R))

(

4C2
1

(

C1 + 2α−2
)j w(B(y, R))

R2

)

< 22αC0C
2
1

(

2αC1 + 22α−2
)j
tδ∧2 < C1,

where we used (7) in the fourth step and then chose

t =





1

22αC0C
2
1

[

1 + (2αC1 + 22α−2)j
]





1/(δ∧2)

in the last step. So the definition of ρw gives r ≥ tR or equivalently

mw(x, ν1) ≤
mw(y, ν1)

t
∼ mw(y, ν1)

[

1 +
(

2αC1 + 22α−2
)j
]1/(δ∧2)

≤ mw(y, ν1) (1 + 2j)k0

∼ mw(y, ν1)
(

1 + |x− y|mw(y, ν1)
)k0
,(8)

where

k0 :=
[

1 ∨ log2
(

2αC1 + 22α−2
)]1/(δ∧2)

.

For the remaining inequality, using (8) we obtain that

1 + |x− y|mw(x, ν1) .
(

1 + |x− y|mw(y, ν1)
)k0+1

.

With this in mind we apply (8) once more to obtain

mw(y, ν1) & mw(x, ν1)
(

1 + |x− y|mw(x, ν1)
)−k0/(k0+1)

.

The proof is complete. �
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The next covering result is immediate from Lemma 2.1, cf. [She96, Proposi-
tion 2.1], [KS00, Lemma 10] and also [BDT20, Lemma 2.4].

Lemma 2.2. There exist a sequence (xj)j∈N ⊂ R
d and a family of functions

(ψj)j∈N such that the following hold.

(i)
⋃

j∈NB(xj , ρj) = R
d, where ρj = ρ(xj , ν1) for all j ∈ N.

(ii) For all τ ≥ 1 there exist constants C, ζ0 > 0 such that

∑

j∈N
1B(xj ,τρj) ≤ C τ ζ0 .

(iii) suppψj ⊂ B(xj , ρj) and 0 ≤ ψj ≤ 1.
(iv) |∇ψj(x)| . 1/ρj for all x, y ∈ R

d.
(v)

∑

j∈N ψj = 1.

Our next step is to derive the so-called Fefferman–Phong inequalities. To this
end, we first prove some preliminary results.

Lemma 2.3. The following statements hold.

(i) There exists a constant C > 0 such that

ˆ

B(x,R)

1

|x− y|d−1
dν1(y) ≤ C

R

|B(x,R)| ν1(B)

for all balls B = B(x,R) ⊂ R
d with R ∈ (0, 1].

(ii) There exists a constant C > 0 such that

ˆ

B(x,R)

1

|x− y|d−1
dy ≤ C R

for all balls B = B(x,R) ⊂ R
d.

Proof. Statement (ii) is a special case of (i). Therefore, we prove (i) only.
Using (M1’) and the reverse doubling property of w we obtain

r2 ν1(B(x, r)) ≤ C0

( r

R

)δ∧2
R2 w(B(x, r))

w(B(x,R))
ν1(B(x,R))

. C0

( r

R

)δ∧2
R2
( r

R

)β

ν1(B(x,R))

or equivalently

(9)
r2

|B(x, r)| ν1(B(x, r)) . C0

( r

R

)δ′ R2

|B(x,R)| ν1(B(x,R))

for all x ∈ R
d and 0 < r < R ≤ 1, where

δ′ := (δ ∧ 2) + β − d > 1

by the assumption (M1).
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Therefore, we infer from (M1’) and (M2’) that
ˆ

B(x,R)

1

|x− y|d−1
dν1(y) =

∑

j∈−N

ˆ

Sj(B)

1

|x− y|d−1
dν1(y)

≤
∑

j∈−N

1

(2j−1R)d−1
ν1(2

j B) = 2d−1
∑

j∈−N

2j R
∣

∣2j B
∣

∣

ν1(2
j B)

≤ 2d−1C0
R

|B| ν1(B)
∑

j∈−N

2j (δ
′−1) ≤ C

R

|B| ν1(B)

since δ′ > 1. �

The next result is a Poincaré-type inequality adapted to the measures dw and dν1
in this paper, which can be considered as a weighted version of [She99, Lemma 0.14].

Proposition 2.4. There exists a constant C > 0 such that
ˆ

B

ˆ

B

|u(x)− u(y)|2 dw(x) dν1(y) ≤ C r2B ν1(B)

ˆ

B

|∇u(x)|2 dw(x)

for all balls B = B(xB, rB) with rB ≤ 1 and u ∈ C1(B).

Proof. For ease of technicality, we prove the statement with balls replaced by
cubes. The new statement reads as follows: There exists a constant C > 0 such that

ˆ

Q

ˆ

Q

|u(x)− u(y)|2 dw(x) dν1(y) ≤ C r2Q ν1(Q)

ˆ

Q

|∇u(x)|2 dw(x)

for all cubes Q = Q(xQ, rQ) ⊂ B(xQ, 1) and u ∈ C1(Q). Here we employ the notation
Q(xQ, rQ) to mean a closed cube centered at xQ whose side length is rQ.

Let Q = Q(xQ, rQ) ⊂ B(xQ, 1) be a cube and u ∈ C1(Q). We have
ˆ

Q

ˆ

Q

|u(x)− u(y)|2 dw(x) dν1(y)

≤
ˆ

Q

ˆ

Q

|u(x)− uQ,0|2 dw(x) dν1(y) +
ˆ

Q

ˆ

Q

|u(y)− uQ,0|2 dw(x) dν1(y)

= ν1(Q)

ˆ

Q

|u(x)− uQ,0|2 dw(x) + w(Q)

ˆ

Q

|u(y)− uQ,0|2 dν1(y)

=: I + II,

where

uQ,0 :=
1

|Q|

ˆ

Q

u(x) dx.

Next we estimate each term separately.

Term I: Recall from [FKS82, Lemma 1.4 and Theorem 1.2] that

(10) |u(x)− uQ,0| .
ˆ

Q

|∇u(z)|
|x− z|d−1

dz

for all x ∈ Q and
ˆ

Q

(
ˆ

Q

|∇u(z)|
|x− z|d−1

dz

)2

dw(x) . r2Q ‖∇u‖2L2
w(Q)

respectively.
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It follows that

I . ν1(Q)

ˆ

Q

(
ˆ

Q

|∇u(z)|
|x− z|d−1

dz

)2

dw(x) . ν1(Q) r
2
Q ‖∇u‖2L2

w(Q).

Term II: First observe that (9) holds if we replace a ball B(x, r) with a closed
cube Q(x, r) ⊂ B(x, 1) for each x ∈ R

d. That is,

(11)
r2

|Q(x, r)| ν1(Q(x, r)) ≤ C0

( r

R

)δ′ R2

|Q(x,R)| ν1(Q(x,R))

for all cubes Q(x, r) ⊂ Q(x,R) ⊂ B(x, 1) (cf. [She99, Proof of Lemma 2.24]).
Secondly, by virtue of [SWZ96, Theorem 1.3] (also cf. [VW95, Theorem A]) we

deduce the boundedness result
ˆ

Q

(
ˆ

Q

|f(z)|
|x− z|d−1

dz

)2

dζ(x) .

ˆ

Q

|f(x)|2 dx

for all f ∈ L2(Q), provided that the measure ζ satisfies

(12)

ˆ

A

(
ˆ

A

dζ(x)

|x− y|d−1

)2

dy . ζ(A)

and

(13)

ˆ

A

(
ˆ

A

dx

|x− y|d−1

)2

dζ(y) . |A|

for all cubes A ⊂ Q.
In view of (11) we may choose

dζ =
|2Q|

r2Q ν1(2Q)
dν1,

where we recall thatQ = Q(xQ, rQ). Then ζ satisfies (12) and (13) due to Lemma 2.3.
Explicitly we have

(14)

ˆ

Q

(
ˆ

Q

|f(z)|
|x− z|d−1

dz

)2

dν1(x) .
r2Q
|2Q| ν1(2Q)

ˆ

Q

|f(x)|2 dx

for all f ∈ L2(Q).
Consequently,

II . w(Q)

ˆ

Q

(
ˆ

Q

|∇u(z)|
|x− z|d−1

dz

)2

dν1(x) . w(Q)
r2Q
|2Q| ν1(2Q)

ˆ

Q

|∇u(x)|2 dx

. (ess inf
Q

w) r2Q ν1(2Q)

ˆ

Q

|∇u(x)|2 dx ≤ r2Q ν1(2Q)

ˆ

Q

|∇u(x)|2 dw(x),

where we used the assumption that w ∈ A1 in the third step.
Combining the estimates for I and II together, we arrive at the claim. �

Hereafter denote

W 1,2
w,loc(R

d) :=
{

u ∈ L2
w,loc(R

d) : ∂ju ∈ L2
w,loc(R

d) for all j ∈ {1, . . . , d}
}

.

The following estimates are often called Fefferman–Phong inequalities.

Proposition 2.5. Let u ∈ W 1,2
w,loc(R

d) be such that ∇u ∈ L2
w(R

d). Then the
following hold.
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(a) If u ∈ L2(Rd, dν1) then mw(·, ν1) u ∈ L2
w(R

d) and
ˆ

Rd

|u|2mw(·, ν1)2 dw .

ˆ

Rd

|∇u|2 dw +

ˆ

Rd

|u|2 dν1.

(b) If mw(·, ν1) u ∈ L2
w(R

d) then u ∈ L2(Rd, dν1) and
ˆ

Rd

|u|2 dν1 .
ˆ

Rd

|∇u|2 dw +

ˆ

Rd

|u|2mw(·, ν1)2 dw.

Proof. We prove (a) only. The proof for (b) is similar.
Let x0 ∈ R

d and r0 = ρw(x0, ν1). Set B = B(x0, r0). It is easy to verify
that Proposition 2.4 remains valid when balls are used in place of cubes in the
statement. Also by density (cf. [Tur00, Theorem 2.1.4]), Proposition 2.4 holds for all
u ∈ W 1,2

w (B). It follows that

ν1(B)

ˆ

B

|u(x)|2 dw(x) .
ˆ

B

ˆ

B

|u(x)− u(y)|2 dw(x) dν1(y) + w(B)

ˆ

B

|u(y)|2 dν1(y)

. r20 ν1(B)

ˆ

B

|∇u(x)|2 dw(x) + w(B)

ˆ

B

|u(x)|2 dν1(x)

. r20 ν1(B)

(
ˆ

B

|∇u(x)|2 dw(x) +
ˆ

B

|u(x)|2 dν1(x)
)

,

where we used Proposition 2.1(ii) in the last step. Hence

(15)
1

r20

ˆ

B

|u|2 dw .

ˆ

B

|∇u|2 dw +

ˆ

B

|u|2 dν1.

Equivalently,
ˆ

1

2
B

|u|2 dν1 .
ˆ

B

|∇u|2 dw +

ˆ

B

|u|2mw(·, ν1)2 dw,

as mw(x, ν1) ∼ 1/r0 for all x ∈ B by Proposition 2.1(iii).
Integrating both sides with respect to x0 on R

d, keeping in mind that for each
x ∈ B one has

ˆ

|x−x0|<ρw(x0,ν1)

dx0 ∼
ˆ

|x−x0|<ρw(x,ν1)

dx0 ∼ mw(x, ν1)
−d

and then applying Fubini’s theorem, we arrive at the conclusion. �

As a direct consequence of Proposition 2.5, we obtain the following.

Corollary 2.6. Let

(16) H :=
{

u ∈ W 1,2
w,loc(R

d) : ∇u ∈ L2
w(R

d) and mw(·, ν1) u ∈ L2
w(R

d)
}

be equipped with the norm

‖u‖2H =

ˆ

Rd

|∇u|2 dw +

ˆ

Rd

mw(·, ν1)2 |u|2 dw

and
H ′ :=

{

u ∈ W 1,2
w,loc(R

d) : ∇u ∈ L2
w(R

d) and u ∈ L2(Rd, dν1)
}

be equipped with the norm

‖u‖2H′ =

ˆ

Rd

|∇u|2 dw +

ˆ

Rd

|u|2 dν1.

Then H = H ′ with equivalent norms.
Moreover, H is a Hilbert space (with respect to the induced inner product).
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2.2. Form and its associated operator. Consider the quadratic form

a(u, v) =

ˆ

Rd

A∇u · ∇v dx+
ˆ

Rd

u v dν

on the domain

D(a) =
{

u ∈ W 1,2
w (Rd) : u ∈ L2(Rd, dν)

}

,

where dν = w dµ, the space H is given by (16) and

W 1,2
w (Rd) :=

{

u ∈ L2
w(R

d) : ∂ju ∈ L2
w(R

d) for all j ∈ {1, . . . , d}
}

.

We endow D(a) with the graph norm

‖u‖D(a) =
(

a(u, u) + (1 + C1) ‖u‖2L2
w(Rd)

)1/2

for all u ∈ D(a). It follows from (A1) and Corollary 2.6 that

(17) ‖u‖2D(a) ∼
ˆ

Rd

|∇u|2 dw +

ˆ

Rd

|u|2mw(·, ν1)2 dw +

ˆ

Rd

|u|2 dw

for all u ∈ D(a).
It is easy to see that a is positive and symmetric. In addition a is also densely

defined and closed. Specifically C∞
c (Rd) is a core for a. The details are presented in

[BDT20, Subsection 3.1].
Hence there exists a unique self-adjoint operator

Lu := − 1

w
div(A∇u) + µ u

on the domain

D(L) = {u ∈ D(a) : Lu ∈ L2
w(R

d)}
such that

a(u, v) = 〈Lu, v〉L2
w(Rd)

for all u ∈ D(L) and v ∈ D(a).

2.3. Distance function. Recall that for each x, y ∈ R
d we define

d(x, y) = inf
γ

ˆ 1

0

mw(γ(t), ν1) |γ′(t)| dt,

where γ : [0, 1] −→ R
d is absolutely continuous with γ(0) = x and γ(1) = y.

In this section, we collect certain properties of the distance function d(·, ·) to be
used in the proofs of the main theorems. With Subsection 2.1 in mind, these readily
follow from the arguments performed in [She96] and [She99]. For the sake of clarity,
we specify the detailed references in the proof of each statement.

For each λ > 0 set

dλ(x) = inf{d(x, y) : y ∈ Eλ},
where

Eλ = {x ∈ R
d : mw(x, ν1) ≤

√
λ}.

Lemma 2.7. One has the following.

(i) There exists a constant C > 0 such that

d(x, y) ≤ C
(

1 + |x− y|mw(x, ν1)
)k0

for all x, y ∈ R
d.
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(ii) There exists a constant C > 0 such that

d(x, y) ≥ C
(

1 + |x− y|mw(x, ν1)
)1/(k0+1)

for all |x− y| ≥ 2ρw(x, ν1).

Here k0 is taken from Proposition 2.1(iv).

Proof. This follows from [She99, Proof of Theorem 3.11 and Remark 3.21] with
obvious modifications. �

Lemma 2.8. There exist constants k1 > 0 and C > 0 such that

mw(y, ν1) ≤ C mw(x, ν1)
(

1 + d(x, y)
)k1

for all x, y ∈ R
d.

Proof. Note that our mw(·, ν1) acquires all the properties as those in [She96,
Lemma 1.5]. Hence the claim follows by analogous arguments used in [She96, Lem-
ma 4.18]. �

Let {xj}j∈N and {ψj}j∈N be as in Lemma 2.2. In what follows set

φλ(x) =
∑

j∈N
dλ(xj)ψj(x).

Note that 0 ≤ φλ ∈ C∞(Rd). Furthermore φλ also approximates dλ as given in the
next lemma.

Lemma 2.9. For all y ∈ R
d there exists a constant C > 0 such that

|φλ(x)− dλ(x)| ≤ C

and

|∂ξφλ(x)| ≤ C mw(x, ν1)
|ξ|

for all x ∈ R
d and ξ ∈ N

d such that |ξ| ≤ 2.

Proof. This follows from [She96, Lemma 4.6] with obvious modifications. �

Next we regularize φλ. Let F ∈ C∞(0,∞) be such that F (t) = t if t ∈ (0, 1/2),
F (t) = 0 if t ≥ 2 and 0 ≤ F (t) ≤ t for all t ≥ 0. For all j ∈ N and x ∈ R

d set

(18) φλ,j(x) = j F

(

φλ(x)

j

)

.

Note that 0 ≤ φλ,j ∈ C∞(Rd) ∩ L∞(Rd).
The following properties are clear from the construction of {φλ,j}j∈N.

Lemma 2.10. The sequence {φλ,j}j∈N satisfies

(i) φλ,j(x) ≤ φλ(x),
(ii) limj→∞ φλ,j(x, y) = φλ(x) and
(iii) |Dξφλ,j(x, y)| . mw(x, ν1)

|ξ|

for all x ∈ R
d and ξ ∈ N

d such that |ξ| ≤ 2.

3. Eigenvalue asymptotics

This section is devoted to the proofs of Theorem 1.3 and Corollary 1.4. To begin
with, recall the Poincaré’s inequality from [FKS82, Theorem 1.5].



716 Tan Duc Do and Le Xuan Truong

Lemma 3.1. Let B ⊂ R
d be a ball with radius r > 0. Then there exists a

constant C > 0 such that
ˆ

B

|u− uB|2 dw ≤ C r2
ˆ

B

|∇u|2 dw

for all u ∈ C1(B), where uB := 1
w(B)

´

B
u dw.

Proof of Theorem 1.3. The proof outline follows the arguments used in [She96]
closely.

Let λ ≥ 1. We divide the proof into two steps.

Step 1 : We derive the lower bound of N(λ, L). Let

Eλ := {x ∈ R
d : mw(x, ν1) ≤

√
λ}.

Let {Qj}j∈N be a sequence of closed cubes which tessellate R
d in the manner that

their sides are parallel to the coordinate axes and the side lengths are identically
1/
√
λ . Moreover, the interiors Q̊j’s of these cubes are required to be disjoint.
Let κ be the number of such cubes whose intersection with Eλ is non-empty.

Without loss of generality we may assume that those cubes are Qj := Qj(xj , 1/
√
λ)

with j ∈ {1, . . . , κ}. Then

w(Eλ) =
κ
∑

j=1

w(Eλ ∩Qj) ≤
κ
∑

j=1

w(Qj) . d2 κλ
−β/2,

where the last step follows from

w(Q(x, 1/
√
λ)) . λ−β/2w(Q(x, 1))

due to (RH) and w(Q(x, 1)) ≤ d2 for all x ∈ R
d by assumption.

Next we will show that there exists a constant κ-dimensional subspace M of
L2
w(R

d) with the property that there exists a constant C2 > 0 such that

(19)

ˆ

Rd

A∇u · ∇u dx+
ˆ

Rd

u2 dν ≤ C2λ

ˆ

Rd

u2 dw

for all u ∈M .
We note that this estimate together with the min-max principle immediately

imply

N(C2λ, L) ≥ κ &
1

d2
λβ/2 w(Eλ)

which is the required lower bound.
To this aim, let η ∈ C∞

c (Q̊(0, 1)) be such that η|Q(0,1/2) = 1. Set

ηj,λ(·) = λβ/4 η(
√
λ(x− xj)), j ∈ {1, . . . , κ}.

Define M to be the space spanned by {ηj,λ}κj=1. Since the interiors Q̊1, . . . , Q̊κ are

disjoint, M forms a κ-dimensional subspace of L2
w(R

d).
Next let j ∈ {1, . . . , κ} and set rj = ρw(xj , ν1). Denote

ξ = sup
x∈Rd

(

|∇η(x)|+ |η(x)|
)

.

Then
ˆ

Rd

A∇ηj,λ · ∇ηj,λ dx ≤ Λ ξ2 λ1+β/2w(Qj),

where we used (A1).
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Also
ˆ

Rd

η2j,λ dν ≤ ξ2 λβ/2 ν(Qj) = ξ2 λ1+β/2 w(Qj)
(1/

√
λ)2

w(Qj)
ν(Qj)

. ξ2 λ1+β/2 w(Qj)

(

1√
λ rj

)δ
r2j

w(Q(xj, rj))
ν(Q(xj , rj))

. ξ2 λ1+β/2 w(Qj),

where the last step follows from Proposition 2.1(ii) and the fact that 1/
√
λ . rj due

to Qj ∩ Eλ 6= ∅.
Consequently

ˆ

Rd

A∇ηj,λ · ∇ηj,λ dx+
ˆ

Rd

η2j,λ dν . ξ2 λ1+β/2w(Qj).

On the other hand
ˆ

Rd

η2j,λ dw ≥
ˆ

1

2
Qj

η2j,λ dw = λβ/2w
(1

2
Qj

)

.

Now we use the doubling property of w to obtain (19).

Step 2 : We derive the upper bound of N(λ, L).
Again using the min-max principle it suffices to construct a subspaceM of L2

w(R
d)

with the following properties: There exist constants C3, C4, C5 > 0 such that

(20) dimM ≤ C3 λ
α/2 w(Eλ)

and

(21)

ˆ

Rd

|∇u|2 dw +

ˆ

Rd

u2 dν ≥ C4 λ

ˆ

Rd

u dw

for all u ∈M⊥ and λ ≥ C5, where M⊥ denotes the subspace perpendicular to M .
Fix u ∈ H , where H is given by (16). Let (ρj)j∈N and (ψj)j∈N be as in Lemma 2.2.

Set Bj = B(xj , ρj) for each j ∈ N.
Then

∑

j∈N

(

ˆ

Bj

|∇(uψj)|2 dw +

ˆ

Bj

(uψj)
2 dν1 +

ˆ

Bj

(uψj)
2 dw

)

.
∑

j∈N

(

ˆ

Bj

|∇u|2 ψ2
j dw +

ˆ

Bj

u2
1

ρ2j
dw +

ˆ

Bj

(uψj)
2 dν1 +

ˆ

Bj

(uψj)
2 dw

)

.

ˆ

Rd

|∇u|2 ψ2
j dw +

ˆ

Rd

u2
1

ρ2j
dw +

ˆ

Rd

(uψj)
2 dν1 +

ˆ

Rd

(uψj)
2 dw

.

ˆ

Rd

|∇u|2 ψ2
j dw +

ˆ

Rd

(uψj)
2 dν1 +

ˆ

Rd

(uψj)
2 dw

.

ˆ

Rd

|∇u|2 ψ2
j dw +

ˆ

Rd

(uψj)
2 dν +

ˆ

Rd

(uψj)
2 dw(22)

for each j ∈ N, where we used Propositions 2.2(iv,ii) and 2.5(a) in the first, second and
third steps respectively. Here and in what follows we recall that dν1 := dν + C1 dw.

Now we consider two cases.
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Case 1 : Let j ∈ N be such that Bj ∩ EC
λ 6= ∅. Then

sup
x∈Bj

mw(x, ν1) ≥
√
λ

by the definition of Eλ, whence we also have

inf
x∈Bj

mw(x, ν1) ≥
√
λ

due to Proposition 2.1(iii). As a consequence,
ˆ

Bj

|∇(uψj)|2 dw +

ˆ

Bj

(uψj)
2 dν1 +

ˆ

Bj

(uψj)
2 dw &

ˆ

Bj

mw(x, ν1)
2 (uψj)

2 dw

& λ

ˆ

Bj

(uψj)
2 dw,

where we used Proposition 2.5(a) in the first step.

Case 2 : Let j ∈ N be such that Bj ⊂ Eλ. Let Sj = Q(xj , 2ρj) be the closed cube
centered at xj with sidelength 2ρj whose sides are parallel to the coordinate axes.
Then Bj ⊂ Sj . Now divide Sj into nj sub-cubes {Sk

j }
nj

k=1 with sidelength comparable

to 1/
√
λ and pairwise disjoint interiors S̊k

j ’s.
Next define M to be the subspace spanned by F := {ψi 1S̊k

i
: Bi ⊂ Eλ} and

choose u ∈M⊥, i.e.
ˆ

Rd

u f dw = 0

for all f ∈ F .
We have

λ

ˆ

Bj

(uψj)
2 dw = λ

nj
∑

k=1

ˆ

Sk
j

(uψj)
2 dw . λ

nj
∑

k=1

1

λ

ˆ

Sk
j

|∇(uψj)|2 dw =

ˆ

Bj

|∇(uψj)|2 dw

≤
ˆ

Bj

|∇(uψj)|2 dw +

ˆ

Bj

(uψj)
2 dν1 +

ˆ

Bj

(uψj)
2 dw,

where we used Lemma 3.1 in the second step.
By summing over j ∈ N and referring to (22) together with Proposition 2.2(ii)

we conclude that (21) always holds in either case.
It remains to show (20). To this end we note that

w(Bj) & nj w(S
k
j ) ≥ nj (1/

√
λ)αw(Q(xj , 1)) ≥ d1 nj λ

−α/2,

where we used (D) in the second step and (3) in the third step.
As a result we obtain

dimM .
∑

Bj⊂Eλ

λα/2w(Bj) . λα/2 w(Eλ).

This finishes our proof. �

We end this section with the proof of Corollary 1.4.

Proof of Corollary 1.4. Recall the sets Σ1 and Σ2 given in Theorem 1.3. In
what follows, we signify the dependence of these two sets on the parameter λ > 0 by
writing

Σj = Σλ
j , j ∈ {1, 2}.
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(⇐=) Suppose (4) holds. Then

w(Σλ
2) <∞

for all λ > 0. In view of Theorem 1.3,

N(λ, L) <∞.

This implies L has a discrete spectrum.
(=⇒) Suppose (4) does not hold. That is,

lim
|x|→∞

mw(x, ν1) 6= ∞.

Then there exist a sequence {xk}k∈N and a constant M > 1 such that











lim
k→∞

|xk| = ∞,

|xk − xl| ≥ 1 for all k 6= l,

mw(xk, ν1) < M for all k ∈ N.

Using Proposition 2.1(iii), we deduce that

⋃

k∈N
B
(

xk,
1

M

)

⊂ Σc0M
1

for some constant c0 > 0 independent of {xk}k∈N. Note that our choice of {xk}k∈N
guarantees that the balls B(xk,

1
M
) are disjoint. Moreover, the condition (3) and the

doubling property (D) give

w
(

B
(

xk,
1

M

))

≥ CM−α w(B(xk, 1)) > CM−α d1

for all k ∈ N and for some constant C > 0 independent of k. Hence

w(Σc0M
1 ) = ∞.

As such L does not have a discrete spectrum due to Theorem 1.3. �

4. Exponential decay of eigenfunctions

In this section we show the exponential decay of certain eigenfunctions of L,
which is the content of Theorem 1.5.

We need the following Caccioppoli-type inequality.

Lemma 4.1. Let λ > 0 and u ∈ D(L) be such that Lu = λ u. Then there exists
a constant C > 0 such that

ˆ

B

|∇u|2 dw ≤ C

(

1

R2

ˆ

2B

|u|2 dw + λ

ˆ

2B

|u|2 dw
)

for all balls B = B(x,R).

Proof. Let η ∈ C∞
c (B) be such that

η ≥ 0, η|σB = 1 and |∇η| ≤ 1

(1− σ)R
.
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Using η2u as a test function, we have

Λ−1

ˆ

σB

η2 |∇u|2 dw +

ˆ

σB

η2 u2 dν ≤
ˆ

B

η2A∇u · ∇u dw +

ˆ

B

η2 u2 dν

= −2

ˆ

B

η uA∇u · ∇η dw + λ

ˆ

B

η2 u2 dw

≤ 2Λ

ˆ

B

η∇u · u∇η dw + λ

ˆ

B

u2 dw

≤ ǫ

ˆ

B

η2 |∇u|2 dw +
Λ2

ǫ

ˆ

B

u2 |∇η|2 dw + λ

ˆ

B

u2 dw

≤ ǫ

ˆ

B

η2 |∇u|2 dw +
Λ2

ǫ (1− σ)2R2

ˆ

B

u2 dw + λ

ˆ

B

u2 dw

for all ǫ > 0.
Choosing a sufficiently small ǫ in the above inequality justifies our claim. �

The following result can be considered as a weighted Young convolution inequal-
ity.

Lemma 4.2. Let p, q, s ∈ (1,∞) be such that

1

q
=

1

s
+

1

p
− 1 and (α− 2) s < α.

Then there exists a constant C > 0 such that

(23)

(
ˆ

B

(
ˆ

B

|x− y|2
w(B(x, |x− y|)) |u(y)| dw(y)

)q

dw(x)

)1/q

≤ C
R2

w(B)1/s′
‖u‖Lp

w(B)

for all balls B ⊂ R
d and u ∈ Lp

w(B), where s′ denotes the conjugate index of s.

Proof. We can rewrite (23) into the form

(24)

(
ˆ

B

(
ˆ

B

|x− y|2
w(B(x, |x− y|)) |u(y)| dw(y)

)q

dζ(x)

)1/q

≤ C ‖u‖Lp
w(B),

where

dζ =

(

w(B)s−1

r2sB

)q/s

dw =

(

w(B)1/s
′

r2B

)q

dw

for all balls B ⊂ R
d and u ∈ Lp

w(B). For ease of technicality, we will prove (24) with
balls replaced by cubes.

Let Q ⊂ R
d be a cube. In view of [SWZ96, Theorem 1.3] (also cf. [VW95,

Theorem A]), (24) follows if one has

(25)

(
ˆ

A

(
ˆ

A

|x− y|2
w(Q(x, |x− y|)) dw(y)

)q

dζ(x)

)1/q

. w(A)1/p

and

(26)

(

ˆ

A

(
ˆ

A

|x− y|2
w(Q(y, |x− y|)) dζ(y)

)p′

dw(x)

)1/p′

. ζ(A)1/q
′

for all cubes A ⊂ Q, where p′ and q′ are conjugate indices of p and q respectively.
Let A = Q(xA, rA) ⊂ Q be a sub-cube. Observe that for all x ∈ A there holds

A ⊂ B(xA, rA) ⊂ B(x, 2rA)
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and
ˆ

A

( |x− y|2
w(B(x, |x− y|))

)s

dw(y)

<

ˆ

B(xA,rA)

( |x− y|2
w(B(x, |x− y|))

)s

dw(y)

<

ˆ

B(x,2rA)

( |x− y|2
w(B(x, |x− y|))

)s

dw(y)

=
∑

j∈−N

ˆ

Sj(B(x,2rA))

( |x− y|2
w(B(x, |x− y|))

)s

dw(y)

≤
∑

j∈−N

(2j+1 rA)
2s

w(2j B(x, rA))s
w(2j+1B(x, rA)) .

∑

j∈−N

(2j+1 rA)
2s

w(2j B(x, rA))s−1

.
∑

j∈−N

(2j rA)
2s

2j α (s−1) w(B(x, rA))s−1
=

r2sA
w(B(x, rA))s−1

∑

j∈−N

2j [α−(α−2) s]

∼ r2sA
w(B(x, rA))s−1

≤ r2sA
w(A)s−1

,(27)

where we used the reverse doubling and doubling properties of w in the fifth and
sixth steps respectively.

Hence to verify (25) we note that

(
ˆ

A

(
ˆ

A

|x− y|2
w(Q(x, |x− y|)) dw(y)

)q

dζ(x)

)1/q

=
w(A)1/s

′

r2A

(
ˆ

A

(
ˆ

A

|x− y|2
w(Q(x, |x− y|)) dw(y)

)q

dw(x)

)1/q

≤ w(A)1/s
′

r2A
w(A)1/s

′

(

ˆ

A

(
ˆ

A

|x− y|2s
w(Q(x, |x− y|))s dw(y)

)q/s

dw(x)

)1/q

.
w(A)1/s

′

r2A
w(A)1/s

′ r2A
w(A)1/s′

w(A)1/q = w(A)1/p,

where we used (27) in the second-to-last step. That is, (25) is fulfilled.
Concerning (26) one has

(

ˆ

A

(
ˆ

A

|x− y|2
w(Q(y, |x− y|)) dζ(y)

)p′

dw(x)

)1/p′

=

(

w(A)1/s
′

r2A

)q
(

ˆ

A

(
ˆ

A

|x− y|2
w(Q(y, |x− y|)) dw(y)

)p′

dw(x)

)1/p′

.

(

w(A)1/s
′

r2A

)q
(

ˆ

A

(
ˆ

A

|x− y|2
w(Q(y, 2|x− y|)) dw(y)

)p′

dw(x)

)1/p′

≤
(

w(A)1/s
′

r2A

)q
(

ˆ

A

(
ˆ

A

|x− y|2
w(Q(x, |x− y|)) dw(y)

)p′

dw(x)

)1/p′
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≤
(

w(A)1/s
′

r2A

)q

w(A)1/s
′

(

ˆ

A

(
ˆ

A

|x− y|2s
w(Q(y, |x− y|))s dw(y)

)p′/s

dw(x)

)1/p′

.

(

w(A)1/s
′

r2A

)q

w(A)1/s
′ r2A
w(A)1/s′

w(A)1/p
′

= ζ(A)1/q
′

,

where we used (27) in the second-to-last step.
The proof is complete. �

Next we derive a sub-harmonic estimate for an eigenfunction of L.

Lemma 4.3. Let λ ≥ 1 and u ∈ D(L) be such that Lu = λ u. Then there exists
a constant C > 0 such that

u(x0) ≤ C

(

1

w(B)

ˆ

B

|u|2 dw
)1/2

for all balls B = B(x0, R) such that λR2 ≤ 1.

Proof. Let B = B(x0, R) be a ball such that λR2 ≤ 1. Let η ∈ C∞
c (1

2
B) satisfy

η ≤ 1, η| 1
4
B = 1, and |∇η| . 1

R
.

Then

|L0η| =
∣

∣

∣

∣

∣

1

w

d
∑

j=1

∂j

(

d
∑

k=1

Ajk ∂jη

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

w

d
∑

j=1

(

d
∑

k=1

[

(∂jAjk) ∂jη + Ajk ∂
2
j η
]

)∣

∣

∣

∣

∣

.
1

R
+

1

R2
.

1

R2
,

where we used the assumptions (A1), (A2) and the fact that R ≤ 1 in the last two
steps respectively.

Observe that

L(u η) = η Lu+− 2

w
A∇u · ∇η + uL0η = λ u η +− 2

w
A∇u · ∇η + uL0η.

It follows that

|(u η)(x)| =
∣

∣

(

L−1 L(u η)
)

(x)
∣

∣

≤
∣

∣

(

L−1
(

λ u η +− 2

w
A∇u · ∇η + uL0η

))

(x)
∣

∣

.

ˆ

Rd

|x− y|2
w(B(x, |x− y|))

(

λ |u η|+ 2Λ |∇u| |∇η|+ |uL0η|
)

dw(y),

where we used [BDT20, Theorem 1.1] and (A1) in the last step.
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Consequently, if we take x ∈ 1
8
B then

|u(x)| . λ

ˆ

1

2
B

|x− y|2
w(B(x, |x− y|)) |u(y)| dw(y)

+
2ΛR

w(B(x, R
8
))

ˆ

1

2
B

|∇u(y)| dw(y) + 1

w(B(x, R
8
))

ˆ

1

2
B

|u(y)| dw(y)

. λ

ˆ

1

2
B

|x− y|2
w(B(x, |x− y|)) |u(y)| dw(y)

+
R

w(B)

ˆ

1

2
B

|∇u(y)| dw(y) + 1

w(B)

ˆ

1

2
B

|u(y)| dw(y)

. λ

ˆ

1

2
B

|x− y|2
w(B(x, |x− y|)) |u(y)| dw(y) +

(

1

w(B)

ˆ

1

2
B

|u(y)|2 dw(y)
)1/2

,(28)

where we used the estimate

w(B(x,R)) . 8αw(B(x,
R

8
)) and

1

4
B ⊂ B(x,R)

in the second step as well as Lemma 4.1, the fact that λR2 ≤ 1 and Hölder’s inequality
in the third step.

At this stage, let p, q, s ∈ (1,∞) satisfy

(29)
1

q
=

1

s
+

1

p
− 1 and (α− 2) s < α.

Then we infer from (28) and Lemma 4.2 that

‖u‖Lq
w( 1

8
B) .

λR2

w(B)1/s′

(

ˆ

1

2
B

|u(y)|p dw(y)
)1/p

+ w(B)1/q

(

1

w(B)

ˆ

1

2
B

|u(y)|2 dw(y)
)1/2

.
1

w(B)1/s′

(

ˆ

1

2
B

|u(y)|p dw(y)
)1/p

+ w(B)1/q

(

1

w(B)

ˆ

1

2
B

|u(y)|2 dw(y)
)1/2

,

where s′ is the conjugate index of s and we used (27) together with λR2 ≤ 1 in the
last two steps respectively.

In view of (29) we can restate the last display as
(

1

w(B)

ˆ

1

8
B

|u|q dw
)1/q

.

(

1

w(B)

ˆ

1

2
B

|u|p dw
)1/p

+

(

1

w(B)

ˆ

B

|u|2 dw
)1/2

for all 2 ≤ p ≤ q ≤ ∞ with 1
q
− 1

p
> −2

d
. Hence by first fixing a sufficiently large p

such that 1
p
− 2

d
< 0 and then sending q −→ ∞, we arrive at the claim. �

Before proving Theorem 1.5, we require two more estimates involving the distance
function discussed in Subsection 2.3.
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Lemma 4.4. Let λ ≥ 1 and u ∈ D(L) be such that Lu = λ u. Then for all
sufficiently small ǫ > 0 there exists a constant C > 0 such that

‖eǫ dCλ u‖L2
w(Rd) ≤ C ‖u‖L2

w(Rd)

Proof. Let ǫ > 0 and T > 1 be constants which will be chosen later. Set
φ = φTλ,j, where φTλ,j is given by (18).

Direct calculation gives

L(u eǫφ) = eǫφ Lu− 2

w
A∇u · ∇eǫφ + uL0e

ǫφ = λ u eǫφ − 2

w
A∇u · ∇eǫφ + uL0e

ǫφ.

Also note that

|∇eǫφ| . ǫmw(·, ν1) eǫ φ and

|∆eǫφ| . ǫmw(·, ν1)2 eǫ φ,
where we used Lemma 2.10(iii). Consequently

|L0e
ǫφ| =

∣

∣

∣

∣

∣

1

w

d
∑

j=1

∂j

(

d
∑

k=1

Ajk ∂je
ǫφ

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

w

d
∑

j=1

(

d
∑

k=1

[

(∂jAjk) ∂je
ǫφ + Ajk ∂

2
j e

ǫφ
]

)∣

∣

∣

∣

∣

. ǫmw(·, ν1) eǫ φ + ǫmw(·, ν1)2 eǫ φ

≤ 2ǫmw(·, ν1)2 eǫ φ,
where we used the assumptions (A1), (A2) in the third step and the fact that
mw(·, ν1) ≥ 1 in the last step.

Next
∣

∣

∣

∣

ˆ

Rd

A∇u · ∇eǫφ u eǫφ dx
∣

∣

∣

∣

≤ Λ

ˆ

Rd

|∇u| |∇eǫφ| |u| eǫφ dw

= Λ

ˆ

Rd

|∇(u eǫφ)− u∇eǫφ| |∇eǫφ| |u| dw

≤ Λ

ˆ

Rd

|∇(u eǫφ)| |∇eǫφ| |u| dw+

ˆ

Rd

|u∇eǫφ|2 dw

≤ ǫ

ˆ

Rd

|∇(u eǫφ)|2 dw +

(

1 +
Λ2

4ǫ

)
ˆ

Rd

|u∇eǫφ|2 dw

. ǫ

ˆ

Rd

|∇(u eǫφ)|2 dw +

(

1 +
Λ2

4ǫ

)

ǫ2
ˆ

Rd

|mw(x, ν1) u e
ǫφ|2 dw.

With the above estimates in mind, we proceed as follows:

a(u eǫφ, u eǫφ) = 〈L(u eǫφ), u eǫφ〉L2
w(Rd)

= λ

ˆ

Rd

|u eǫφ|2 dw − 2

ˆ

Rd

A∇u · ∇eǫφ u eǫφ dx+
ˆ

Rd

u2 eǫφ L0e
ǫφ dw

≤ λ

ˆ

Rd

|u eǫφ|2 dw + ǫ

ˆ

Rd

|∇(u e2ǫφ)|2 dw + ǫ

ˆ

Rd

|mw(x, ν1) u e
ǫφ|2 dw.

On the other hand,

a(u eǫφ, u eǫφ) + C1

ˆ

Rd

|u eǫφ|2 dw ≥ Λ−1

ˆ

Rd

|∇(u eǫ φ)|2 dw +

ˆ

Rd

|u eǫφ|2 dν1

&

ˆ

Rd

|∇(u eǫφ)|2 +
ˆ

Rd

|mw(x, ν1) u e
ǫφ|2 dw,

where we used Proposition 2.5(a) in the second step.
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Hence by choosing ǫ sufficiently small and then combining the above two esti-
mates, we obtain

(30)

ˆ

Rd

|mw(x, ν1) u e
ǫφ|2 dw .

ˆ

Rd

|u eǫφ|2 dw.

Recall that φ(x) . 1 for all x ∈ ETλ. Therefore
ˆ

Rd

|u eǫφ|2 dw .

ˆ

ETλ

|u|2 dw +
1

Tλ

ˆ

EC
Tλ

|mw(x, ν1) u e
ǫφ|2 dw

.

ˆ

Rd

|u|2 dw +
1

T

ˆ

Rd

|u eǫφ|2 dw,

where the last step follows from (30).
Now we choose T large enough to derive

ˆ

Rd

|u eǫφ|2 dw .

ˆ

Rd

|u|2 dw.

Lastly Fatou’s lemma gives
ˆ

Rd

|u eǫdCλ|2 dw ≤ lim inf
j→∞

ˆ

Rd

|u eǫφ|2 dw .

ˆ

Rd

|u|2 dw.

This completes our proof. �

Lemma 4.5. Let λ ≥ 1 and u ∈ D(L) be such that Lu = λ u. Then for all
sufficiently small ǫ > 0 there exists a constant C > 0 such that

|u(x)| ≤ C
(

mw(x, ν1) ∨
√
λ
)α/2

e−ǫ dCλ(x) ‖u‖L2
w(Rd)

for all x ∈ R
d.

Proof. Let x ∈ R
d. We consider two cases.

Case 1 : Suppose x ∈ Eλ. We have

|dλ(y)− dλ(x)| ≤ d(x, y) . 1

for all y ∈ B(x,
√
λ). Therefore,

|u(x)| . λα/4
ˆ

B(x,
√
λ)

|u(y)|2 dw(y)

. λα/4 e−ǫ dλ(x)

ˆ

B(x,
√
λ)

|eǫ dλ(y)u(y)|2 dw(y)

. λα/4 e−ǫ dλ(x)‖u‖L2
w(Rd),

where we used Lemmas 4.3 and 4.4 in the first and third steps respectively.

Case 2 : Suppose x /∈ Eλ. Set

r = ρw(x, ν1) <
1√
λ
.

Then Lemma 4.3 gives

|u(x)| . r−α/2

(
ˆ

B(x,r)

|u(y)|2 dy
)1/2

= mw(x, ν1)
α/2

(
ˆ

B(x,r)

|u(y)|2 dy
)1/2

.

Now we proceed as in Step 1 to arrive at

|u(x)| . mw(x, ν1)
α/2 e−ǫ dλ(x)‖u‖L2

w(Rd).
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Combining the two cases together justifies our claim. �

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let ǫ be sufficiently small so that Lemma 4.5 holds. Let
C > 0 be as in Lemma 4.5. Let x ∈ R

d and y ∈ EC λ. Then Lemma 2.7(a) gives

mw(x, ν1) . mw(y, ν1)
(

1 + d(x, y)
)k0 ≤ C

√
λ
(

1 + d(x, y)
)k0
.

Let Cǫ > 0 be such that
(

1 + d(x, y)
)k0 ≤ C Cǫ e

ǫ
d
dCλ(x),

whence
mw(x, ν1) ≤ C Cǫ

√
λ e

ǫ
d
dCλ(x).

Next we apply Lemma 4.5 to obtain

|u(x)| . mw(x, ν1)
d/2 e−ǫ dCλ(x) ‖u‖L2

w(Rd) ≤ C Cǫ λ
d/4 e

−ǫ
2

dCλ(x) ‖u‖L2
w(Rd)

as required. �
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