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Horofunction compactifications of
symmetric cones under Finsler distances

Bas Lemmens

Abstract. In this paper we consider symmetric cones equipped with invariant Finsler dis-

tances, namely the Thompson distance and the Hilbert distance. We give a complete characterisa-

tion of the horofunctions of the symmetric cone A◦

+ under the Thompson distance and establish a

correspondence between the horofunction compactification of A◦

+ and the horofunction compacti-

fication of the normed space in the tangent bundle. More precisely, we show that the exponential

map extends as a homeomorphism between the horofunction compactification of the normed space

in the tangent bundle, which is a JB-algebra, and the horofunction compactification of A◦

+. Ana-

logues results are established for the Hilbert distance on the projective symmetric cone PA◦

+. The

analysis yields a concrete description of the horofunction compactifications of these spaces in terms

of the facial structure of the closed unit ball of the dual norm of the norm in the tangent space.

Finslerin etäisyyksillä varustettujen symmetristen kartioiden

rajafunktiokompaktisoinnit

Tiivistelmä. Tässä työssä tarkastelemme symmetrisiä kartioita, jotka on varustettu invarian-

teilla Finslerin etäisyyksillä, nimittäin Thompsonin etäisyydellä ja Hilbertin etäisyydellä. Kuvai-

lemme täydellisesti Thompsonin etäisyydellä varustetun symmetrisen kartion A◦

+ rajafunktiot ja

esitämme vastaavuuden kartion A◦

+ rajafunktiokompaktisoinnin ja tangenttikimpun normiavaruu-

den rajafunktiokompaktisoinnin välillä. Tarkemmin sanottuna osoitamme, että eksponenttikuvaus

voidaan jatkaa homeomorfismiksi näiden rajafunktiokompaktisointien välille, joista jälkimmäisenä

mainittu on JB-algebra. Vastaavia tuloksia saadaan Hilbertin etäisyydellä varustetulle projektii-

viselle symmetriselle kartiolle PA◦

+. Tämän analyysin kautta näiden avaruuksien rajafunktiokom-

paktisoinnit voidaan konkreettisesti kuvailla tangenttiavaruuden normia vastaavan duaalinormin

suljetun yksikköpallon pintarakenteen avulla.

1. Introduction

A basic concept in metric geometry is the horofunction compactification of an
unbounded metric space (M, d). It uses a modified version of the Kuratowski em-
bedding, ι : M → C(M, b), to embed the metric space M into the space C(M, b) of
real-valued continuous functions on M that vanish at a fixed basepoint b ∈M and is
given by ι(y)(·) = d(·, y)−d(b, y). By equipping C(M, b) with the topology of uniform

convergence on compact sets, the closure of {ι(y) : y ∈ M}, denoted M
h
, is compact.

The origins of this idea go back to Gromov [5] and is called the horofunction (or
metric) compactification, and the elements in the boundary are called horofunctions.
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The construction does not depend in an essential way on the basepoint, as different
basepoints yield compact spaces that are homeomorphic to each other.

On the horofunction boundary ∂M
h
= M

h
\M there is an equivalence relation,

where h ≃ h′ if

sup
x∈M

|h(x)− h′(x)| <∞.

The objective of this paper is to identify the horofunction compactification of
finite dimensional symmetric cones under certain invariant Finsler metrics and pro-
vide a detailed description of its global topology and the geometry of the equivalence

classes in ∂M
h
.

Symmetric cones can be used to realise various classes of (Riemannian) symmetric
spaces of non-compact type. Recall [13] that the interior, A◦

+, of a cone A+ in a finite
dimensional real vector space A is called a symmetric cone if

(1) there exists an inner-product (· | ·) on A such that A+ is self-dual, i.e.,

A+ = A∗
+ = {y ∈ A : (y | x) ≥ 0 for all x ∈ A+}.

(2) A◦
+ is homogeneous, i.e., the automorphism group G(A+) = {g ∈ GL(A) :

g(A+) = A+} acts transitively on A◦
+.

A symmetric cone can be equipped with an G(A+)-invariant Riemannian met-
ric that turns it into a symmetric space, see [13, Section I.4]. They also support
G(A+)-invariant Finsler metrics, which turn them into Finsler symmetric spaces.
In particular, every symmetric cone can be identified as the interior of the cone of
squares in a finite dimensional formally real Jordan algebra A by the Koecher-Vinberg
theorem [13]. The formally real Jordan algebra A with unit u can be equipped with
the spectral norm:

‖x‖u = inf{µ > 0: − µu ≤ x ≤ µu} = max{|λ| : λ ∈ σ(x)},

where x ≤ y if y−x ∈ A+, and σ(x) is the spectrum of x. In this way A becomes a JB-
algebra [3]. One can use the spectral norm to put an G(A+)-invariant Finsler metric
F on the tangent bundle TA◦

+ by letting F (x, w) = ‖Ux−1/2w‖u, where Uz : A → A
is the quadratic representation of z. The Finsler distance between x and y in A◦

+ is
the infimum of lengths,

L(γ) =

ˆ 1

0

F (γ(t), γ′(t)) dt,

over all piecewise C1-smooth paths γ : [0, 1] → A◦
+ with γ(0) = x and γ(1) = y. In

fact, this distance is known [33, 36] to coincide with the Thompson distance dT on
A◦

+, and can be expressed as

dT (x, y) = max{|µ| : µ ∈ σ(logUy−1/2x)} = ‖ logUx−1/2y‖u for all x, y ∈ A◦
+.

It should be noted that in this setting F does not satisfy the smoothness and strong
convexity conditions commonly used in the theory of Riemann–Finsler manifolds [6],
and the metric space (A◦

+, dT ) is not uniquely geodesic.
In this setting the Riemannian symmetries Sx : A

◦
+ → A◦

+, which are given by
Sx(y) = Uxy

−1, are global dT -isometries (see [31]) that make A◦
+ a Finsler symmetric

space. Moreover, the automorphism group G(A+) = {T ∈ GL(A) : T (A+) = A+} is
a subgroup of the isometry group of (A◦

+, dT ).
A prime example is the symmetric cone of n×n strictly positive definite Hermitian

matrices Πn(C), which can be identified with the symmetric space GLn(C)/Un by
letting GLn(C) act on Πn(C) by a 7→ mam∗ for m ∈ GLn(C). In this case the
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Jordan product is given by a • b = (ab + ba)/2, the unit u is the identity matrix,
and the quadratic representation of a is given by Ua : b 7→ aba. So, the Finsler
metric in the tangent space at a satisfies F (a,m) = ‖a−1/2ma−1/2‖u = max{|λ| : λ ∈
σ(a−1/2ma−1/2)}, and the Thompson distance is given by

dT (a, b) = ‖ log a−1/2ba−1/2‖u = max{|λ| : λ ∈ σ(log a−1/2ba−1/2)}.

We will exploit the Jordan algebra structure of symmetric cones A◦
+ (which will be

recalled in Section 2) to give an explicit description of the horofunctions of (A◦
+, dT )

and identify the equivalence classes of ≃ in the horofunction boundary in Section 3.
We shall see that for these spaces each horofunction is a Busemann point, i.e., the
limit of an almost geodesic. The tangent space at the unit u ∈ A◦

+ with its Finsler
metric is the finite dimensional JB-algebra (A, ‖ · ‖u). In [30, Section 4] the horo-
function compactification of (A, ‖ · ‖u) was determined and it was shown that there

exists a homeomorphism from A
h

onto to the closed unit ball in the dual space of
(A, ‖ · ‖u) that maps each equivalence class in the horofunction boundary onto the
relative interior of a boundary face of the dual unit ball. In addition, we show in
Section 4 that the (Riemannian) exponential map expu : A→ A◦

+ extends as a home-
omorphism between the horofunction compactifications of (A, ‖ · ‖u) and (A◦

+, dT )
preserving the equivalence relation. As a consequence we obtain a concrete realisa-
tion of the horofunction compactification of (A◦

+, dT ) as the closed unit ball in the
dual space of (A, ‖ · ‖u), where the equivalence classes in the horofunction boundary
correspond to the relative open boundary faces of the dual unit ball.

Various symmetric spaces with a projective structure, such as SLn(R)/SOn and
SLn(C)/SUn, can also be studied using symmetric cones and the theory of Jordan
algebras. For this reason we analyse projective symmetric cones PA◦

+ = A◦
+/R>0, so

x ∼ λx for x ∈ A◦
+ and λ > 0. We can identify this space with the set of points x in

A◦
+ with det x = 1, that is,

PA◦
+ = {x ∈ A◦

+ : det x = 1}.

In this case the group of projective automorphisms PG(A+) = {g ∈ PGL(A) : g(PA+)
= PA+} acts transitively on PA◦

+. For example, the space PΠn(C) corresponds to
the symmetric space SLn(C)/SUn.

The tangent space at the unit u ∈ PA◦
+ is given by TuPA

◦
+ = {w ∈ A : trw = 0},

as (Dw det)(x) = (det x)tr(Ux−1/2w) for x ∈ A◦
+, see [13, p. 53]. For simplicity, we shall

write Tx to denote the tangent space at x ∈ PA◦
+, hence we have that Tx = Ux1/2(Tu).

There is a natural PG(A+)-invariant Finsler metric H on the tangent bundle.
For the unit u ∈ PA◦

+ and w ∈ Tu, let

H(u, w) = inf{λ : w ≤ λu} − sup{λ : λu ≤ w} = maxσ(w)−min σ(w) = diam σ(w).

Note that H(u, ·) is a norm on Tu, which is called the variation norm and will be
denoted by | · |u. For x ∈ PA◦

+ and w ∈ Tx, let H(x, w) = |Ux−1/2w|u.
In this case the Finsler distance dH on PA◦

+ coincides with the Hilbert distance
on PA◦

+, see [36] or [30, Proposition 5.3], and satisfies

dH(x, y) = max σ(logUx−1/2y)−min σ(logUx−1/2y) = diam σ(logUx−1/2y)

for all x, y ∈ PA◦
+. For example, for the space PΠn(C) we have that dH(a, b) =

diam σ(log b−1/2ba−1/2).
The space PA◦

+ is a Finsler symmetric space, where the symmetry Sx : y 7→ Uxy
−1

for y ∈ PA◦
+, is a global dH-isometry, see [31]. Note that Sx maps PA◦

+ into itself,
as detUxy

−1 = (det x)2(det y)−1, see [13, Proposition III.4.2].
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The horofunctions of (PA◦
+, dH) were determined in [28] and it was shown in [30,

Section 5] that there exists a homeomorphism from the horofunction compactification
of (PA◦

+, dH) onto the closed unit ball in the dual space of (Tu, | · |u) that maps each
equivalence class in the horofunction boundary onto a boundary face of the dual
ball. In Sections 5 and 6 we will give a explicit description of the horofunctions of
the normed space (Tu, | · |u), which will allow us to show that the exponential map
expu : Tu 7→ PA◦

+ extends as a homeomorphism preserving the equivalence classes
in the horofunction boundary. As result we obtain a correspondence between the
horofunction compactifications of (PA◦

+, dH) and (Tu, | · |u), and find that each one
has an explicit realisation as the closed dual unit ball of (Tu, | · |u).

The results in this paper are motivated by work of Kapovich and Leeb [25]
and subsequent works by, Ji and Schilling [23, 24], Haettel, Schilling, Walsh and
Wienhard [20], Schilling [39], and the author and Power [30]. In [25, Question 6.18]
the question was raised if the horofunction compactification of a finite dimensional
normed space is naturally homeomorphic to the closed unit ball of the dual normed
space. Our results show that this is the case for the normed spaces (Tu, | · |u). More
generally, it is interesting to understand when there exists a homeomorphism between
the horofunction compactification of a Finsler symmetric space and the closed unit
ball of the dual norm of the norm in the tangent space, where the equivalence classes
of ≃ are mapped onto the relative interiors of the boundary faces of the dual ball.
It is also interesting to determine when there exists a homeomorphism between the
horofunction compactification of a Finsler symmetric space and the horofunction
compactification of the normed space in the tangent bundle at the basepoint, which
preserves the relation ≃. The results in this paper show that both questions have a
positive answer for the Finsler symmetric spaces considered here.

Compactifications of symmetric spaces is a rich subject, which has been studied
extensively, see for instance [7, 17]. In recent years Finsler structures have been
used to study Satake compactifications of symmetric spaces. In particular, Haettel,
Schilling, Walsh and Wienhard [20], see also [39], showed that each generalised Satake
compactification can be realised as a horofunction compactification with respect to an
invariant polyhedral Finsler metric on the flats. Kapovich and Leeb [25] realised the
maximal Satake compactification of a symmetric space of non-compact type as the
horofunction compactification with respect to an invariant Finsler metric. Friedland
and Freitas [15] showed that the horofunction compactification of the Siegel upper
half plane of rank n under the Finsler 1-metric agrees with the bounded symmetric
domain compactification, which is a minimal Satake compactification. Greenfield and
Ji [16] used invariant Finsler distances to study compactifications of the Teichmüller
spaces of flat tori. In particular, they study the horofunction compactification of
SLn(R)/SOn under the Thompson distance, which they refer to as the generalised
Hilbert metric. For the Satake and Martin compactifications of symmetric spaces Ji
[22] showed that they are homeomorphic to the closed unit ball in the tangent space,
see also [27].

As the Hilbert and Thompson distances are important invariant Finsler distances
on the symmetric spaces consider here, it would be interesting to know if their ho-
rofunction compactifications realise a generalised Satake compactification, and if so,
to identify the representation associated to the Satake compactification. At the end
of the paper we make a few brief remarks about this problem, but it remains open.

Explicit descriptions of the horofunction compactification of Finsler metric spaces
exist only in a limited number of settings. In the case of normed spaces there are
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results for classical ℓp-spaces due to Gutièrrez [18, 19], see also [14]. For normed
spaces with a polyhedral unit ball, the horofunction compactification was determined
in [9, 23, 26], and it was shown in [23, 24] that it is homeomorphic to the closed dual
unit ball and related to projective toric varieties. In [39, Chapter 3] Schilling showed
that the horofunction compactification is homeomorphic to the closed dual unit ball
for various other classes of normed spaces including l1-sums of certain normed spaces.
The unit ball of the normed space (Tu, | · |u) is not polyhedral nor strictly convex,
and not covered by any of the results in these works. The Busemann points in the
horofunction compactification of general normed spaces were studied by Walsh in
[40, 43].

Friedland and Freitas [14] determined the horofunction compactification for Fins-
ler p-metrics on GLn(C)/Un for 1 ≤ p < ∞. The case p = ∞ on GLn(C)/Un corre-
sponds to the Thompson distance on the symmetric cone Πn(C), and is an example
of the spaces discussed here. For the Thompson distance and the Hilbert distance
on general finite dimensional cones the Busemann points were investigated by Walsh
in [41, 42], see also [10]. For symmetric spaces the horofunction compactification
with respect to the Riemannian distance is homeomorphic to the Euclidean ball, see
[11]. In fact, for CAT(0) spaces it is known that the horofunction compactifications
coincides with the visual boundary, see [4, 8].

2. Preliminaries

To fix the terminology and notation we recall the basic concepts and results
concerning the horofunction compactification, the Hilbert and Thompson distances
on cones, and the theory of symmetric cones.

2.1. Horofunction compactifications. Let (M, d) be a metric space. Fix
a basepoint b ∈ M , and let Lip1(M, b) denote the set of all functions f : M →
R with f(b) = 0 and f Lipschitz-1, so |f(x) − f(y)| ≤ d(x, y) for all x, y ∈ M .
On Lip1(M, b) the topology of pointwise convergence coincides with the topology
of uniform convergence on compact sets, see [35, Section 46]. Moreover, with this
topology Lip1(M, b) is compact. To see this we consider Lip1(M, b) as a subset of the
space of all real-valued functions on M , denoted RM and equipped with the pointwise
convergence topology. Then it not hard to show that the complement of Lip1(M, b)
is open in RM , so Lip1(M, b) is closed. Furthermore, for each f ∈ Lip1(M, b) and
each x ∈M we have that

|f(x)| = |f(x)− f(b)| ≤ d(x, b),

hence f(x) ∈ [−d(x, b), d(x, b)] for all x ∈M . As
∏

x∈M [−d(x, b), d(x, b)] is a compact
subset of RM by Tychonoff’s theorem, we find that Lip1(M, b) is compact.

For y ∈M define the real-valued function,

(2.1) hy(z) = d(z, y)− d(b, y) with z ∈M .

Then hy(b) = 0 and |hy(z) − hy(w)| = |d(z, y) − d(w, y)| ≤ d(z, w), hence hy ∈
Lip1(M, b) for all y ∈ M . Using the fact that Lip1(M, b) is compact, one defines
the horofunction compactification of (M, d) to be the closure of {hy : y ∈ M} in

Lip1(M, b), which we denote by M
h
. Its elements are called metric functionals,

and the boundary ∂M
h
= M

h
\ {hy : y ∈ M} is called the horofunction boundary.

The metric functionals in ∂M
h

are called horofunctions. The construction does not
depend in an essential way on the basepoint b ∈ M , Indeed, if we change b to b′,
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then the horofunction compactifications are homeomorphic via the mapping h(·) 7→
h(·)− h(b′).

If (M, d) is separable, then the topology of pointwise convergence on Lip1(M, b)
is metrisable, and in that case each horofunction is the limit of a sequence (xn) in M .
If (M, d) is geodesic and proper; i.e., closed balls are compact, then the embedding

ι : y ∈ M 7→ hy ∈ Lip1(M, b) is a homeomorphism from M onto ι(M), and M
h

is a
compactification in the usual topological sense. Recall that a map γ from a (possibly
unbounded) interval I ⊆ R into a metric space (M, d) is called a geodesic path if

d(γ(s), γ(t)) = |s− t| for all s, t ∈ I.

The image, γ(I), is called a geodesic, and a metric space (M, d) is said to be geodesic
if for each x, y ∈ M there exists a geodesic path γ : [a, b] → M connecting x and y,
i.e, γ(a) = x and γ(b) = y.

The following well-known fact will be useful in the sequel, see [38, Theorem 4.7].

Lemma 2.1. If (M, d) is a proper geodesic metric space, then h ∈ ∂M
h

if and
only if there exists a sequence (xn) in M with d(b, xn) → ∞ such that (hxn) converges

to h ∈M
h

as n→ ∞.

A path γ : T →M , where T ⊆ [0,∞) is unbounded (possibly discrete) and 0 ∈ T ,
is called an almost geodesic if for all ε > 0 there exists an s0 ≥ 0 such that

|d(γ(t), γ(s)) + d(γ(s), γ(0))− t| < ε for all s, t ∈ T with t ≥ s ≥ s0.

The notion of an almost geodesic goes back to Rieffel [38] and was further developed
by Walsh and co-workers in [1, 32, 43]. In particular, every almost geodesic yields a
horofunction for a proper geodesic metric space [38, Lemma 4.5].

Lemma 2.2. Let (M, d) be a proper geodesic metric space. If γ is an almost
geodesic in M , then

h(z) = lim
t→∞

d(z, γ(t))− d(b, γ(t))

exists for all z ∈M and h ∈ ∂M
h
.

A horofunction h in a proper geodesic metric space (M, d), is called a Busemann
point if it is the limit of an almost geodesic γ in M , and we denote the collection of
all Busemann points by BM . It should be noted that in general not all horofunctions
need to be Busemann points.

Suppose that h and h′ are horofunctions of a proper geodesic metric space (M, d).

Let Wh be the collection of neighbourhoods of h in M
h
. The detour cost is defined

by
H(h, h′) = sup

W∈Wh

(inf{d(b, y) + h′(y) : y ∈M and hy ∈ W}) ,

and the detour distance is given by

δ(h, h′) = H(h, h′) +H(h′, h).

We note that H(h, h′) ≥ 0 and could be ∞.
It is known, see for instance [32, Lemma 3.1], that if γ : T → M is an almost

geodesic converging to a horofunction h, then

(2.2) H(h, h′) = lim
t→∞

d(b, γ(t)) + h′(γ(t))

for all horofunctions h′. It is also known, that on the set of Busemann points BM
the detour distance is a metric, where points can be at infinite distance from each
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other, see e.g. [32, Proposition 3.2]. The detour distance yields a partition of BM
into equivalence classes, called parts, where h and h′ are equivalent if δ(h, h′) <∞.

The restriction of the equivalence classes of ≃ in the horofunction boundary ∂M
h

to the set of Busemann points BM coincides with the partition of BM into parts, as

sup
x∈M

(h′(x)− h(x)) = H(h, h′)

for all h, h′ ∈ BM , see [42, Proposition 4.5].

2.2. Cones and the Hilbert and Thompson distances. Let A be a real
vector space. Throughout the paper we will assume that A is finite dimensional. A
cone A+ in A is a convex subset such that λA+ ⊆ A+ for all λ ≥ 0 and A+ ∩−A+ =
{0}. A cone A+ induces a partial ordering ≤ on A by x ≤ y if y− x ∈ A+. We write
x < y if x ≤ y and x 6= y. The cone A+ is said to be Archimedean if for each x ∈ A
and y ∈ A+ with nx ≤ y for all n ≥ 1, we have that x ≤ 0. A point u ∈ A+ is called
an order-unit if for each x ∈ A there exists λ ≥ 0 such that −λu ≤ x ≤ λu. The
triple (A,A+, u), where A+ is an Archimedean cone and u is an order-unit, is called
an order-unit space, see [2, Chapter 1]. An order-unit space can be equipped with
the order-unit norm,

‖x‖u = inf{λ ≥ 0: − λu ≤ x ≤ λu}.

So for each x ∈ A we have that −‖x‖uu ≤ x ≤ ‖x‖uu. Moreover, the cone A+ is
closed with respect to the order-unit norm, see [2, Proposition 1.14]. The interior of
A+ will be denoted by A◦

+, and is nonempty, as u ∈ A◦
+. Indeed, for each y ∈ A+

with ‖y‖u ≤ 1 we have that u+ y ∈ A+.
Given x ∈ A and y ∈ A+, we say that y dominates x if there exist α, β ∈ R such

that αy ≤ x ≤ βy. In that case, we let

M(x/y) = inf{β ∈ R : x ≤ βy} and m(x/y) = sup{α ∈ R : αy ≤ x}.

We note that for each x ∈ A we have that ‖x‖u = max{M(x/u),M(−x/u)}.
Note that if w ∈ A◦

+, then there exists δ > 0 such that w− δu ≥ 0. Thus, u ≤ δ−1w,
which implies that w is also an order-unit. So, if w ∈ A◦

+, then w dominates each
x ∈ A. In that case we define

|x|w =M(x/w)−m(x/w) for x ∈ A.

It can be shown that | · |w is a semi-norm on A, see [29, Lemma A.1.1], and |x|w = 0
if and only if x = λw for some λ ∈ R. So, | · |w is a genuine norm on the quotient
space A/Rw. Furthermore,

(2.3) |x+ λw|w = |x|w for all λ ∈ R and x ∈ V .

The domination relation yields an equivalence relation on A+ by x ∼ y if y
dominates x and x dominates y. So, x ∼ y if and only if there exist 0 < α ≤ β such
that αy ≤ x ≤ βy. The equivalence classes are called parts of A+. The parts of a
cone in a finite dimensional order-unit space correspond to the relative interiors of
its faces, see [29, Lemma 1.2.2]. (Please note that parts of the cone are not related
to parts of the set of Busemann points defined earlier.)

The Thompson distance on A+ is defined as follows:

dT (x, y) = max{logM(x/y), logM(y/x)}

for all x ∼ y with y 6= 0, dT (0, 0) = 0, and dT (x, y) = ∞ otherwise. The Thompson
distance is a metric on each part of A+, see [29, Chapter 2]. In particular, it is a
metric on A◦

+.
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Likewise, the Hilbert distance on A+ is given by,

dH(x, y) = logM(x/y) + logM(y/x)

for all x ∼ y with y 6= 0, dH(0, 0) = 0, and dH(x, y) = ∞ otherwise. We note that
dH(λx, µy) = dH(x, y) for all x, y ∈ A+ and λ, µ > 0, hence dH is not a metric on
each part. It is, however, a metric on the parts of PA+, so in particular on PA◦

+, see
[29, Proposition 2.1.1].

In the sequel the following fact will be useful. The function (x, y) 7→ M(x/y) is
continuous on A+ ×A◦

+, see [28, Lemma 2.2].

2.3. Formally real Jordan algebras. A nice summary of the link between
finite dimensional formally real Jordan algebras and Riemannian symmetric spaces
can be found in [34, Chapter 0]. We will now recall the basic Jordan theoretic
concepts required for the paper and mostly follow the terminology in [13].

By the Koecher–Vinberg theorem [13] there is a one-to-one correspondence be-
tween the symmetric cones and the interiors of the cones of squares in finite dimen-
sional formally real Jordan algebras (with unit). Recall that a real Jordan algebra is
a real vector space A with a commutative bilinear product (x, y) ∈ A×A 7→ x•y ∈ A
satisfying the Jordan identity, x2 • (x • y) = x • (x2 • y). A Jordan algebra A is said
to be formally real if x2 + y2 = 0 implies x = 0 and y = 0.

The interior A◦
+ of the cone A+ = {x2 : x ∈ A} is a symmetric cone, and satisfies

A◦
+ = {x2 : x ∈ A invertible}, see for instance [13, Proposition III.2.2].

Throughout we will denote the unit in the Jordan algebra by u. As u ∈ A◦
+, it

is an order-unit for A+ = {x2 : x ∈ A}. We will consider the formally real Jordan
algebras A as order-unit spaces (A,A+, u), where A+ is the cone of squares and u is
the unit, and equip it with the order-unit norm. These normed spaces are precisely
the finite dimensional JB-algebras, see [3, Theorem 1.11].

In the sequel the rank of the Jordan algebra A will be denoted by r. In a finite
dimensional formally real Jordan algebra A each x ∈ A has a spectrum, σ(x) = {λ ∈
R : λu− x is not invertible}.

Recall that p ∈ A is an idempotent if p2 = p. If, in addition, p is non-zero
and cannot be written as the sum of two non-zero idempotents, then it is said to
be a primitive idempotent. The set of all primitive idempotent is denoted J1(A)
and is known to be a compact set [21]. Two idempotents p and q are said to be
orthogonal if p • q = 0, which is equivalent to (p|q) = 0. According to the spectral
theorem [13, Theorem III.1.2], each x has a spectral decomposition, x =

∑r
i=1 λipi,

where each pi is a primitive idempotent, the λi’s are the eigenvalues of x (including
multiplicities), and p1, . . . , pr is a Jordan frame, i.e., the pi’s are mutually orthogonal
and p1 + · · · + pr = u. So, σ(x) = {λ1, . . . , λr}. We write trx =

∑r
i=1 λi and

det x =
∏r

i=1 λi.

Remark 2.3. Given x ∈ A with spectral decomposition x =
∑r

i=1 λipi, the
eigenvalues λi are unique, but the primitive idempotents pi in the spectral need not
be. If, however, we collect terms with equal non-zero eigenvalue in the sum and write
x =

∑r
i=1 µici, where µ1 > µ2 > . . . > µs are non-zero and the ci’s are (not necessarily

minimal) pairwise orthogonal idempotents, then the µi’s and ci’s are unique, see [13,
Theorem III.1.1]. We call this decomposition of x the unique spectral decomposition.
In the sequel we will use the following observation several times. Suppose that x ∈ A
has a spectral decomposition x =

∑r
i=1 λipi with λ1 > . . . > λs > 0 = λs+1 =

. . . = λr for some s ≤ r, and y ∈ A has a spectral decomposition y =
∑r

i=1 γiqi with
γ1 > . . . > γt > 0 = γt+1 = . . . = γr for some t ≤ r. Now if x = y, we know that s = t
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and λi = γi for all i. Moreover, by considering the unique spectral decompositions
of x and y we see that p1 + · · ·+ ps = q1 + · · ·+ qs.

The spectral decomposition gives rise to a functional calculus. Indeed, every
real function f : S → R induces a map on those x ∈ A with σ(x) ⊆ S by f(x) =
∑r

i=1 f(λi)pi. In particular, each invertible element in A has spectrum in R \ {0},
so the function t 7→ t−1 induces inversion x−1 =

∑r
i=1 λ

−1
i pi. We see that A◦

+ is
equal to the set of the elements x ∈ A with σ(x) ⊆ (0,∞). Furthermore, the
exponential function induces a map on A by ex =

∑r
i=1 e

λipi, which maps A onto A◦
+.

It is well-known [34, p. 18] that the exponential map coincides with the Riemannian
exponential map expu : A→ A◦

+, i.e.,

(2.4) expu(x) = ex for all x ∈ A.

We write Λ(x) = M(x/u). Note that if x has spectral decomposition x =
∑r

i=1 λipi, then λu− x =
∑r

i=1(λ− λi)pi ≥ 0 if and only if λ ≥ λi for all i, hence

Λ(x) = max{λ : λ ∈ σ(x)}.

This implies that

‖x‖u = max{Λ(x),Λ(−x)} = max{|λ| : λ ∈ σ(x)} for all x ∈ A.

We also note that Λ(x+µu) = Λ(x)+µ for all x ∈ A and µ ∈ R. Moreover, if x ≤ y,
then Λ(x) ≤ Λ(y).

For x ∈ A we denote the quadratic representation by Ux : A → A, which is the
linear map, Uxy = 2x • (x • y)− x2 • y. If x ∈ A is invertible, then Ux is invertible
and Ux(A+) = A+, see [13, Proposition III.2.2].

Given a Jordan frame p1, . . . , pr in A and I ⊆ {1, . . . , r} nonempty, we write
pI =

∑

i∈I pi and we let A(pI) = UpI (A). Recall [13, Theorem IV.1.1] that A(pI) is
the Peirce 1-space of the idempotent pI , i.e, A(pI) = {x ∈ A : pI • x = x}, which is
a subalgebra. Given z ∈ A(pI), we write ΛA(pI)(z) to denote the maximal eigenvalue
of z in the Jordan subalgebra A(pI) with unit pI . So ΛA(pI)(z) = inf{λ : z ≤ λpI}.

3. Thompson distance horofunctions

Let A◦
+ be a symmetric cone. For x, y ∈ A◦

+ we have that x ≤ λy if and only if
Uy−1/2x ≤ λu. Therefore logM(x/y) = logmaxσ(Uy−1/2x) = maxσ(logUy−1/2x). We
also have that

inf{λ > 0: y ≤ λx} = (sup{µ > 0: µy ≤ x})−1 = (sup{µ > 0: µu ≤ Uy−1/2x})−1

= (min σ(Uy−1/2x))−1,

so that logM(y/x) = log(min σ(Uy−1/2x))−1 = −min σ(logUy−1/2x). So the Thomp-
son distance satisfies

dT (x, y) = max{maxσ(logUy−1/2x),−min σ(logUy−1/2x)} = ‖ logUy−1/2x‖u.

The symmetry at x ∈ A◦
+ is given by Sx(y) = Uxy

−1 for y ∈ A◦
+. It can be shown

that

(3.1) M(x−1/y−1) =M(y/x) for x, y ∈ A◦
+,

see [31, p. 1518]. Thus, for each x ∈ A◦
+ the symmetry Sx : A

◦
+ → A◦

+ is a dT -isometry.
The following observation will be useful when determining the Thompson distance

horofunctions for symmetric cones.
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Lemma 3.1. Let p1, . . . , pk be orthogonal primitive idempotents in a finite di-
mensional formally real Jordan algebra A. The restriction of expu : (A, ‖ · ‖u) →
(A◦

+, dT ), given by (2.4), to Span({p1, . . . , pk}) is an isometry. Moreover, if x, w ∈
Span({p1, . . . , pk}) with ‖w‖u = 1 and γ(t) = tw+x for t ∈ R, then ψ : t 7→ expu(γ(t))
is a geodesic in (A◦

+, dT ).

Proof. For y, z ∈ Span({p1, . . . , pk}) we have that

dT (expu(y), expu(z)) = dT (e
y, ez) = ‖ logUe−z/2ey‖u = ‖ log ey−z‖u = ‖y − z‖u.

The second assertion now easily follows, as dT (expu(γ(t)), expu(γ(s))) = ‖(t−s)w‖u =
|t− s| for all s, t ∈ R. �

We now give a complete description of the Thompson distance horofunctions on
symmetric cones.

Theorem 3.2. If A◦
+ is a symmetric cone, then the horofunctions of (A◦

+, dT )
are all the functions of the form

(3.2) h(x) = max{logM(y/x), logM(z/x−1)} for x ∈ A◦
+,

where y, z ∈ A+ with y•z = 0 and max{‖y‖u, ‖z‖u} = 1. Here we use the convention
that if y or z is 0, then the corresponding term is omitted from the maximum.
Moreover, each horofunction is a Busemann point.

Proof. We first show that each horofunction is of the from (3.2). Let (yn) ∈ A◦
+

be such that hyn → h where h is a horofunction. By Lemma 2.1 we know that
dT (yn, u) → ∞. Let rn = edT (yn,u) and zn = (yn)

−1 for all n. Then yn ≤ rnu and
zn ≤ rnu. Set ŷn = yn/rn and ẑn = zn/rn. By taking a subsequence we may assume
that ŷn → y and ẑn → z, as ‖ŷn‖u, ‖ẑn‖u ≤ 1 for all n and A is finite dimensional.
As ŷn • ẑn = u/r2n → 0, we conclude that y • z = 0.

Also note that as ‖yn‖u = M(yn/u) and ‖zn‖u = M(zn/u) = M(u/yn), we get
that

rn = edT (yn,u) = max{M(yn/u),M(u/yn)} = max{‖yn‖u, ‖zn‖u},

so that max{‖y‖u, ‖z‖u} = max{‖ŷn‖u, ‖ẑn‖u} = 1. Using (3.1) we find for x ∈ A◦
+

that

h(x) = lim
n→∞

max{logM(yn/x), logM(x/yn)} − log rn

= lim
n→∞

max{log(r−1
n M(yn/x)), log(r

−1
n M(zn/x

−1))}

= lim
n→∞

max{logM(ŷn/x), logM(ẑn/x
−1)}.

Note that if wn, v ∈ A◦
+ with wn → 0, then M(wn/v) → M(0/v) = 0 by the

continuity of the M function [28, Lemma 2.2]. As h(x) ≥ −dT (x, u) for all x ∈ A◦
+,

we deduce from the previous equality that h(x) = max{logM(y/x), logM(z/x−1)},
where if y = 0 or z = 0, the corresponding term is omitted from the maximum.

To show that each function of the form (3.2) is a horofunction, let y, z ∈ A+

with max{‖y‖u, ‖z‖u} = 1 and y • z = 0. We will discuss the case where y and z are
both non-zero. The other cases can be shown in the same fashion and are left to the
reader.

Using the spectral decomposition we can write

y =
∑

i∈I

e−αipi and z =
∑

j∈J

e−αjpj ,
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where min{αk : k ∈ I ∪ J} = 0, and the pk’s are mutually orthogonal primitive
idempotents. Set pI =

∑

i∈I pI and pJ =
∑

j∈J pj . So pI • pJ = 0, and hence

orthogonal idempotents in A. Let v = −
∑

i∈I αipi +
∑

j∈J αjpj and w = pI − pJ .

Note that w ∈ Span({pk : k ∈ I ∪ J}). For t > 0 let γ(t) = tw + v.
From Lemma 3.1 we know that ψ : t 7→ expu(γ(t)) is a geodesic in A◦

+, and for
all t > 0 sufficiently large we have that

dT (ψ(t), u) = ‖ log etw+v‖u = ‖tw + v‖u = max{|t− αk| : k ∈ I ∪ J} = t,

as min{αk : k ∈ I ∪ J} = 0. Moreover, ψ(t)−1 = e−(tw+v).
Thus,

lim
t→∞

e−tψ(t) = lim
t→∞

∑

i∈I

e−αipi +
∑

j∈J

e−2t+αjpj + e−t(u− pI − pJ) = y

and

lim
t→∞

e−tψ(t)−1 = lim
t→∞

∑

i∈I

e−2t+αipi +
∑

j∈J

e−αjpj + e−t(u− pI − pJ) = z.

Now using (3.1) we deduce for each x ∈ A◦
+ that

lim
t→∞

dT (x, ψ(t))− dT (ψ(t), u) = lim
t→∞

max{logM(ψ(t)/x), logM(x/ψ(t))} − t

= lim
t→∞

max{logM(e−tψ(t)/x), logM(e−tψ(t)−1/x−1)}

= max{logM(y/x), logM(z/x)},

as v ∈ A+ 7→M(v/w) is continuous for all w ∈ A◦
+ by [28, Lemma 2.2]. We conclude

that the function of the form (3.2) is a horofunction. In fact, it is a Busemann point,
as t 7→ ψ(t) is a geodesic. �

In the case of Πn(C) we get that the horofunctions are the functions h : Πn(C) →
R of the form:

h(x) = max{logmaxσ(x−1/2ax−1/2), logmaxσ(x1/2bx1/2)},

where a and b are positive semi-definite, with max{maxσ(a),maxσ(b)} = 1 and
1/2(ab+ ba) = 0.

Remark 3.3. We see from the proof of Theorem 3.2 that each horofunction of
(A◦

+, dT ) is obtained as the limit of a geodesic in the span of a Jordan frame. In
fact, if h is a horofunction given by h(x) = max{logM(y/x), logM(z/x−1)}, where
y =

∑

i∈I e
−αipi, z =

∑

j∈J e
−αjpj, then ψ : t 7→ expu(γ(t)), with

γ(t) = t

(

∑

i∈I

pi −
∑

j∈J

pj

)

−
∑

i∈I

αipi +
∑

j∈J

αjpj

for t > 0, is a geodesic A◦
+ converging to h. The subspace Span({pk : k ∈ I∪J})∩A◦

+

is a totally geodesic flat subspace (with respect to the Riemannian metric). The fact
that each horofunction of (A◦

+, dT ) arises as a limit of a sequence in such a subspace
is in agreement with [20, Lemma 4.4].

As all horofunctions are Busemann points, the equivalence classes of ≃ coincide
with the parts. In the remainder of this section we identify the parts and the detour
distance.

The following observation will be useful. If (Vi, Ci, ui), i = 1, 2, are order-unit
spaces, then the product space V1 ⊕ V2 is an order unit space with cone C1 ×C2 and
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order unit u = (u1, u2). Moreover, for x = (x1, x2), y = (y1, y2) ∈ C1 × C2 we have
that

M(x/y) = max{M(x1/y1),M(x2/y2)}.

Indeed, if x ≤ λy, then λy−x ∈ C1×C2, and hence λy1−x1 ∈ C1 and λy2−x2 ∈ C2.
So λ ≥ max{M(x1/y1),M(x2/y2)}. On the hand, if x1 ≤ µy1 and x2 ≤ µy2, then
µy − x ∈ C1 × C2, so that µ ≥M(x/y).

Theorem 3.4. Suppose that h and h′ are horofunctions in A◦
+

h
, which by The-

orem 3.2 can be given by

h(x) = max{logM(y/x), logM(z/x−1)} and

h′(x) = max{logM(y′/x), logM(z′/x−1)} for x ∈ A◦
+,

where y, z, y′, z′ ∈ A+ with y • z = 0, y′ • z′ = 0, and max{‖y‖u, ‖z‖u} = 1 =
max{‖y′‖u, ‖z

′‖u}. Let y =
∑

i∈I e
−αipi, z =

∑

j∈J e
−αjpj, and set pI =

∑

i∈I pi if

y 6= 0, and pJ =
∑

j∈J pj if z 6= 0. Then h and h′ are in the same part if and only if
y ∼ y′ and z ∼ z′. Moreover, in that case,

δ(h, h′) = dH((y, z), (y
′, z′)), where (y, z), (y′, z′) ∈ UpI (A)⊕ UpJ (A)

and dH is the Hilbert distance on the product cone UpI (A)+ ×UpJ (A)+. Here, if y or
z is 0, we omit the corresponding term in the sum UpI (A)⊕ UpJ (A).

Proof. We use (2.2) to determine the detour cost H(h, h′). Note that as ‖y‖u = 1
or ‖z‖u = 1, we have that min{αk : k ∈ I ∪J} = 0. Let v = −

∑

i∈I αipi+
∑

j∈J αjpj
and w = pI − pJ , so w ∈ Span({pk : k ∈ I ∪ J}). For t > 0 let γ(t) = tw + v. From
Lemma 3.1 we know that ψ : t 7→ expu(γ(t)) is a geodesic in A◦

+, and for all t > 0
sufficiently large we have that

dT (ψ(t), u) = ‖ log etw+v‖u = ‖tw + v‖u = max{|t− αk| : k ∈ I ∪ J} = t,

as min{αk : k ∈ I ∪ J} = 0. Moreover, ψ(t)−1 = e−(tw+v) and hψ(t) → h by Re-
mark 3.3.

As e−tψ(t) =
∑

i∈I e
−αipi +

∑

j∈J e
−2t+αjpj + e−t(u − pI − pJ), we have that

e−tψ(t) → y and

e−tψ(t) ≤ e−sψ(s) for all 0 ≤ s ≤ t.

Likewise, e−tψ(t)−1 → z and e−tψ(t)−1 ≤ e−sψ(s)−1 for all 0 ≤ s ≤ t.
It follows from [30, Lemma 5.3] that if y dominates y′ and z dominates z′, then

H(h, h′) = lim
t→∞

dT (ψ(t), u) + h′(ψ(t))

= lim
t→∞

t +max{logM(y′/ψ(t)), logM(z′/ψ(t)−1)}

= lim
t→∞

max{logM(y′/e−tψ(t)), logM(z′/e−tψ(t)−1)}

= max{logM(y′/y), logM(z′/z)},

and otherwise, H(h, h′) = ∞. Here, if y′ = 0 or z′ = 0, the corresponding term is
omitted from the maximum.

Interchanging the roles of h and h′ gives

δ(h, h′) = max{logM(y′/y), logM(z′/z)}+max{logM(y/y′), logM(z/z′)}

= dH((y, z), (y
′, z′))

if y ∼ y′ and z ∼ z′, and δ(h, h′) = ∞ otherwise. �
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4. Extension of the exponential map exp
u
A → A

◦

+

To define the extension of the exponential map we need to recall the description

of the horofunctions in A
h

from [30, Theorem 4.2]. It was shown there that the

horofunctions in A
h

are precisely the functions g : A→ R of the form,

(4.1) g(v) = max

{

ΛA(pI)(−UpIv −
∑

i∈I

αipi),ΛA(pJ)(UpJv −
∑

j∈J

αjpj)

}

,

where p1, . . . , pr ∈ A is a Jordan frame, I, J ⊆ {1, . . . , r} are disjoint and I ∪ J is
nonempty, pI =

∑

i∈I pi, pJ =
∑

j∈J pj , and α ∈ RI∪J with min{αk : k ∈ I ∪ J} = 0.
Here the convention is that if I or J is empty, the corresponding term in the maximum
is omitted.

Definition 4.1. The exponential map expu : A
h
→ A◦

+
h

is defined by, expu(v) =

ev for v ∈ A, and for g ∈ ∂A
h

given by (4.1) we let expu(g) = h, where

(4.2) h(x) = max{logM(y/x), logM(z/x−1)} for x ∈ A◦
+,

with y =
∑

i∈I e
−αipi and z =

∑

j∈J e
−αjpj .

Note that y, z ∈ A+, with max{‖y‖u, ‖z‖u} = 1, as min{αk : k ∈ I ∪ J} = 0, and
y • z = 0. So, expu(g) is a horofunction by Theorem 3.2. Moreover, the extension is
well defined. To show this we use the following observation.

Lemma 4.2. Suppose x, y ∈ A have spectral decompositions x =
∑

i∈I αipi and
y =

∑

j∈J βjqj. If
∑

i∈I pi =
∑

j∈J qj and x = y, then
∑

i∈I e
−αipi =

∑

j∈J e
−βjqj.

Proof. Let pI =
∑

i∈I pi and qJ =
∑

j∈J qj , so pI = qJ . Since
∑

i∈I αipi =
∑

j∈J βjqj , we have that (u−pI)+
∑

i∈I e
−αipi = e−x = e−y = (u− qJ)+

∑

j∈J e
−βjqj

by the functional calculus, hence
∑

i∈I e
−αipi =

∑

j∈J e
−βjqj . �

Now to see that the extension is well-defined assume that g in (4.1) is represented
differently as

g(v) = max

{

ΛA(qI′)(−UqI′v −
∑

i∈I′

βiqi),ΛA(qJ′)(UqJ′
v −

∑

j∈J ′

βjqj)

}

,

It follows from [30, Theorem 4.3] and the fact that δ(g, g) = 0 that pI = qI′ , pJ = qJ ′ ,
and

∑

i∈I

αipi +
∑

j∈J

αjpj =
∑

i∈I′

βiqi +
∑

j∈J ′

βjqj ,

as min{αm : m ∈ I ∪ J} = 0 = min{βm : m ∈ I ′ ∪ J ′}. So,

∑

i∈I

αipi = UpI

(

∑

i∈I

αipi +
∑

j∈J

αjpj

)

= UqI′

(

∑

i∈I′

βiqi +
∑

j∈J ′

βjqj

)

=
∑

i∈I′

βiqi

and

∑

j∈J

αjpj = UpJ

(

∑

j∈J

αipi +
∑

j∈J

αjpj

)

= UqJ′

(

∑

i∈I′

βiqi +
∑

j∈J ′

βjqj

)

=
∑

j∈J ′

βjqj .

Using Lemma 4.2 we conclude that
∑

i∈I e
−αipi =

∑

i∈I′ e
−βiqi and

∑

j∈J e
−αjpj =

∑

j∈J ′ e−βjqj, and hence the extension is well defined.
We will establish the following result.



742 Bas Lemmens

Theorem 4.3. Let A◦
+ be a symmetric cone in a finite dimensional formally real

Jordan algebra A. The map expu : A
h
→ A◦

+

h
is a homeomorphism which maps each

part in the horofunction boundary of A onto a part of the horofunction boundary of
A◦

+.

Before we prove this theorem we give some preliminary results.

Lemma 4.4. The map expu : A
h
→ A◦

+
h

is a bijection, which maps A onto A◦
+,

and ∂A
h

onto ∂A◦
+

h
.

Proof. Clearly expu is a bijection from A onto A◦
+. Moreover, it follows from

Theorem 3.2 and [30, Theorem 4.2] that expu maps ∂A
h

onto ∂A◦
+. To show that

the extension is injective on ∂A
h

suppose that h = expu(g) = expu(g
′) = h′, where g

is as in (4.1) and

(4.3) g′(v) = max

{

ΛA(qI ′)(−UqI′v −
∑

i∈I′

βiqi),ΛA(qJ′)(UqJ′
v −

∑

j∈J ′

βjqj)

}

,

where q1, . . . , qr ∈ A is a Jordan frame, I ′, J ′ ⊆ {1, . . . , r} are disjoint and I ′ ∪ J ′ is
nonempty, and β ∈ RI∪J with min{βk : k ∈ I ′ ∪ J ′} = 0.

By definition of the extension, we have that

h(x) = max{logM(y/x), logM(z/x−1)},

with
y =

∑

i∈I

e−αipi and z =
∑

j∈J

e−αjpj,

and
h′(x) = max{logM(y′/x), logM(z′/x−1)},

with
y′ =

∑

i∈I′

e−βiqi and z′ =
∑

j∈J ′

e−βjqj .

As h = h′ we know that δ(h, h′) = 0, and hence y = y′ and z = z′ by Theorem 3.4.
Now using Remark 2.3 we find that pI = qI′ and pJ = qJ ′. Moreover, −

∑

i∈I αipi =
log(y+u−pI) = log(y′+u−qI′) = −

∑

i∈I′ βiqi and −
∑

j∈J αjpj = log(z+u−pJ) =
log(z′ + u − qJ ′) = −

∑

j∈J ′ βjqj using the functional calculus. This implies that
g = g′, and hence expu is injective, which completes the proof. �

Clearly expu is continuous on A. To establish the continuity on all of A
h

we prove
two lemmas.

Lemma 4.5. If (wn) in A converges to g ∈ ∂A
h
, then (expu(wn)) converges to

expu(g).

Proof. To prove the statement we show that each subsequence of (expu(wn)) has a
convergent subsequence with limit expu(g). So let (expu(wnk

)) be a subsequence and
let g be given by (4.1), so that h = expu(g) is given by (4.2). As g is a horofunction, we
know by Lemma 2.1 that ‖wnk

‖u → ∞. For k ≥ 1 write rnk
= ‖wnk

‖u and let wnk
=

∑r
i=1 λi,nk

qi,nk
be the spectral decomposition of wnk

. After taking a subsequence,
may assume that

(1) There exists s ∈ {1, . . . , r} such that rnk
= |λs,nk

| for all k ≥ 1.
(2) There exist I+ ⊆ {1, . . . , r} such that for each k ≥ 1 we have λi,nk

> 0 if
and only if i ∈ I+.
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(3) qi,nk
→ qi for all i ∈ {1, . . . , r}.

The third property follows from the fact that the set of primitive idempotents is
compact, see [21].

Now let βi,nk
= rnk

− λi,nk
for all i ∈ I+ and βi,nk

= rnk
+ λi,nk

for all i 6∈ I+.
So βi,nk

≥ 0 for all i, and βs,nk
= 0 for all k. By taking a further subsequence we

may also assume that βi,nk
→ βi ∈ [0,∞] for all i. Let I ′ = {i ∈ I+ : βi < ∞} and

J ′ = {j 6∈ I+ : βj < ∞}. Note that s ∈ I ′ ∪ J ′ and hence the union is nonempty.
Moreover, I ′ and J ′ are disjoint. It now follows from [30, Lemma 4.7] that gwnk

→ g′,
where

g′(v) = max

{

ΛA(qI′)(−UqI′v −
∑

i∈I′

βiqi),ΛA(qJ′)(UqJ′
v −

∑

j∈J ′

βjqj)

}

,

with qI′ =
∑

i∈I′ qi and qJ ′ =
∑

j∈J ′ qj.

As (wn) converges to g, we find that g = g′, and hence δ(g, g′) = 0. It now follows
from [30, Theorem 4.3] that pI = qI′, pJ = qJ ′, and

∑

i∈I

αipi +
∑

j∈J

αjpj =
∑

i∈I′

βiqi +
∑

j∈J ′

βjqj ,

as mini∈I∪J αi = 0 = mini∈I′∪J ′ βi. This implies that

∑

i∈I

αipi = UpI

(

∑

i∈I

αipi +
∑

j∈J

αjpj

)

= UqI′

(

∑

i∈I′

βiqi +
∑

j∈J ′

βjqj

)

=
∑

i∈I′

βiqi.

Likewise, we have
∑

j∈J αjpj =
∑

j∈J ′ βjqj . From Lemma 4.2 we now deduce that

y =
∑

i∈I e
−αipi =

∑

i∈I′ e
−βiqi and z =

∑

j∈J e
−αjpj =

∑

j∈j′ e
−βjqj .

Note that

lim
k→∞

e−rnk expu(wnk
) = lim

k→∞

r
∑

i=1

e−(rnk
−λi,nk

)qi,nk
=
∑

i∈I′

e−βiqi = y

and

lim
k→∞

e−rnk expu(−wnk
) = lim

k→∞

r
∑

i=1

e−(rnk
+λi,nk

)qi,nk
=
∑

j∈J ′

e−βjqj = z.

It now follows from the continuity of the M function, see [28, Lemma 2.2], that

lim
k→∞

hexpu(wnk
)(x) = lim

k→∞
dT (x, expu(wnk

))− dT (u, expu(wnk
))

= lim
k→∞

max{logM(expu(wnk
)/x), logM(expu(−wnk

)/x−1)} − log ernk

= lim
k→∞

max{logM(e−rnk expu(wnk
)/x), logM(e−rnk expu(−wnk

)/x−1)}

= max{logM(y/x), logM(z/x−1)},

which shows that (expu(wnk
)) converges to h = expu(g), and hence the proof is

complete. �

Next we show continuity of expu in the horofunction boundary.

Lemma 4.6. If (gn) in ∂A
h

converges to a horofunction g, then (expu(gn)) con-
verges to expu(g).
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Proof. Let (gn) be a sequence in ∂A
h

converging to g, where g is given by (4.1).
So expu(g) = h, where is h given by (4.2). To show the lemma, we prove that each
subsequence of (expu(gn)) has a convergent subsequence with limit h. Let (expu(gnk

))
be a subsequence. By [30, Theorem 4.2] we can write for k ≥ 1,

gnk
(v) = max

{

ΛA(qIk,k)(−UqIk,k
v −

∑

i∈Ik

βi,kqi,k),ΛA(qJk,k)(UqJk,k
v −

∑

j∈Jk

βj,kqj,k)

}

,

where the qi,k and qj,k are orthogonal primitive idempotents, Ik, Jk ⊆ {1, . . . , r} are
disjoint with Ik ∪ Jk nonempty, min{βm,k : m ∈ Ik ∪ Jk} = 0, qIk,k =

∑

i∈Ik
qi,k and

qJk,k =
∑

j∈Jk
qj,k.

The approach will be similar to the one taken in the proof of the previous lemma.
After taking subsequences we may assume that:

(1) There exist I0, J0 ⊆ {1, . . . , r} such that I0 = Ik and J0 = Jk for all k.
(2) There exists s ∈ I0 ∪ J0 such that βs,k = 0 for all k.
(3) βm,k → βm ∈ [0,∞] and qm,k → qm for all m ∈ I0 ∪ J0.

Now let I ′ = {i ∈ I0 : βi <∞} and J ′ = {j ∈ J0 : βj <∞}, and note that s ∈ I ′∪J ′.
Next we show that

(4.4) lim
k→∞

gnk
(v) = max

{

ΛA(qI′)(−UqI′v −
∑

i∈I′

βiqi),ΛA(qJ′)(UqJ′
v −

∑

j∈J ′

βjqj)

}

where the term is omitted if the corresponding set I ′ or J ′ is empty. Here qI′ =
∑

i∈I′ qi and qJ ′ =
∑

j∈J ′ qj.

First let us assume that I0 6= ∅ and I ′ = ∅. Note that

−UqI0,kv ≤ ‖v‖uUqI0,ku = ‖v‖uqI0,k,

as −v ≤ ‖v‖uu and UqI0,k(A+) ⊆ A+. It follows that

−UqI0,kv −
∑

i∈I0

βi,kqi,k ≤
∑

i∈I0

(‖v‖u − βi,k)qi,k,

so that

ΛA(qI0,k)

(

−UqI0,kv −
∑

i∈I0

βi,kqi,k

)

≤ ΛA(qI0,k)

(

∑

i∈I0

(‖v‖u − βi,k)qi,k

)

≤ max
i∈I0

(‖v‖u − βi,k).

The right-hand side diverges to −∞ as k → ∞, since I ′ is empty. We also know that

for each horofunction ḡ in A
h

we have that ḡ(v) ≥ −‖v‖u. So, if I0 6= ∅ and I ′ = ∅,
then s ∈ J ′ and for each v ∈ A we have that

gnk
(v) = ΛA(qJ0,k)

(

UqJ0,kv −
∑

j∈J0

βj,kqj,k

)

for all k large. In the same way we get that if J0 6= ∅ and J ′ = ∅, then

gnk
(v) = ΛA(qI0,k)

(

−UqI0,kv −
∑

i∈I0

βi,kqi,k

)

for all k large.
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On the other hand, if I ′ 6= ∅, then by [30, Lemma 4.7] we know that

ΛA(qI0,k)

(

−UqI0,kv −
∑

i∈I0

βi,kqi,k

)

→ ΛA(qI′)

(

−UqI′v −
∑

i∈I′

βiqi

)

,

and, similarly, if J ′ 6= ∅, we have

ΛA(qJ0,k)

(

UqJ0,kv −
∑

j∈J0

βj,kqj,k

)

→ ΛA(qJ′)

(

UqJ′
v −

∑

j∈J ′

βjqj

)

.

Note that if I0 = ∅, then s ∈ J ′. Likewise, if J0 = ∅, then s ∈ I ′. It follows that in
each of the cases (4.4) holds.

Let g′ : A→ R be given by

g′(v) = max

{

ΛA(qI′)

(

−UqI′v −
∑

i∈I′

βiqi

)

,ΛA(qJ′)

(

UqJ′
v −

∑

j∈J ′

βjqj

)}

.

Then by [30, Theorem 4.2] we know that g′ ∈ ∂A
h
. As gn → g, we find that g = g′

and hence δ(g, g′) = 0.
It now follows from [30, Theorem 4.3] that pI = qI′, pJ = qJ ′, and

∑

i∈I

αipi +
∑

j∈J

αjpj =
∑

i∈I′

βiqi +
∑

j∈J ′

βjqj ,

as min{αm : m ∈ I ∪ J} = 0 = min{βm : m ∈ I ′ ∪ J ′}. This implies that

∑

i∈I

αipi = UpI

(

∑

i∈I

αipi +
∑

j∈J

αjpj

)

= Uqi′

(

∑

i∈I′

βiqi +
∑

j∈J ′

βjqj

)

=
∑

i∈I′

βiqi

and

∑

j∈J

αjpj = UpJ

(

∑

j∈J

αipi +
∑

j∈J

αjpj

)

= UqJ′

(

∑

i∈I′

βiqi +
∑

j∈J ′

βjqj

)

=
∑

j∈J ′

βjqj .

Using Lemma 4.2 we conclude that
∑

i∈I

e−αipi =
∑

i∈I′

e−βiqi and
∑

j∈J

e−αjpj =
∑

j∈J ′

e−βjqj ,

So, if we let ȳk =
∑

i∈I0
e−βi,kqi,k and z̄k =

∑

j∈J0
e−βj,kqj,k, then

lim
k→∞

ȳk =
∑

i∈I′

e−βiqi = y and lim
k→∞

z̄k =
∑

j∈J ′

e−βjqj = z.

Using the continuity of the M function [28, Lemma 2.2] we now get that

lim
k→∞

expu(gnk
)(x) = lim

k→∞
max{logM(ȳk/x), logM(z̄k/x

−1)}

= max{logM(y/x), logM(z/x−1)} = h(x),

which completes the proof. �

To complete the proof Theorem 4.3 the following concepts are useful. For x, z ∈ A
we let [x, z] = {y ∈ A : x ≤ y ≤ z}, which is called an order-interval. Given y ∈ A+

we let

face(y) = {x ∈ A+ : x ≤ λy for some λ ≥ 0}.
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Note that y ∼ y′ if and only if face(y) = face(y′). In a Euclidean Jordan algebra A
every idempotent p satisfies

face(p) ∩ [0, u] = [0, p],

by [3, Lemma 1.39].
Let us now prove Theorem 4.3.

Proof of Theorem 4.3. It follows from Lemma 4.4, 4.5, and 4.6 that expu : A
h
→

A◦
+

h
is a continuous bijection between the compact spaces A

h
and A◦

+

h
. As A◦

+

h
is

Hausdorff, we conclude that expu is a homeomorphism. We know from Theorem 3.4

that if h and h′ are horofunctions in A◦
+

h
, where

h(x) = max{logM(y/x), logM(z/x−1)} and

h′(x) = max{logM(y′/x), logM(z′/x−1)} for x ∈ A◦
+,

then h and h′ are in the same part if and only if y ∼ y′ and z ∼ z′. Consider the
spectral decompositions: y =

∑

i∈I e
−αipi, y

′ =
∑

i∈I′ e
−βiqi, z =

∑

j∈J e
−αjpj , and

z′ =
∑

j∈j′ e
−βjqj. If y ∼ y′, then pI ∼ qI′ , where pI =

∑

i∈I pi and qI′ =
∑

i∈I′ qi.

Note that pI ∼ qI′ implies face(pI) = face(qI′). As face(pI) ∩ [0, u] = [0, pI ] by [3,
Lemma 1.39], we get that pI = qI′ . So y ∼ y′ implies that pI = qI′. Conversely, if
pI = qI′, then y ∼ pI ∼ qI′ ∼ y′. Thus, y ∼ y′ if and only if pI = qI′. Likewise, z ∼ z′

if and only if pJ = qJ ′. Now using [30, Theorem 4.3], we conclude that expu maps
parts onto parts. �

Remark 4.7. It was shown in [30, Section 4] that there exists a homeomorphism
from the horofunction compactification of (A, ‖ · ‖u) onto the closed unit ball in the
dual space of (A, ‖ · ‖u), which maps each part of the horofunction boundary onto a
relative open boundary face of the ball. The dual space (A∗, ‖ · ‖∗u) is a base-norm
space, see [2, Theorem 1.19]. That is to say, it is an ordered normed vector space
with cone A∗

+ = {ϕ ∈ A∗ : ϕ(x) ≥ 0 for all x ∈ A+}, A
∗
+ − A∗

+ = A∗, and the unit
ball of the norm is given by

B∗
1 = conv(S(A) ∪ −S(A)),

where S(A) = {ϕ ∈ A∗
+ : ϕ(u) = 1} is the state space of A.

If we identify the finite dimensional formally real Jordan algebra A with A∗ using
the inner-product (x|y) = tr(x • y), we get that A∗

+ = A+, as A◦
+ is a symmetric

cone (see [13, Proposition III.4.1]) and S(A) = {w ∈ A+ : (u|w) = 1}. It was
shown in [12, Theorem 4.4] that the (closed) boundary faces of the dual ball B∗

1 =
conv(S(A) ∪ −S(A)) ⊂ A are precisely the sets of the form,

(4.5) Fp,q = conv((Up(A) ∩ S(A)) ∪ (Uq(A) ∩ −S(A))),

where p and q are orthogonal idempotents in A.

5. Variation norm horofunctions

Let A be a finite dimensional formally real Jordan algebra and Tu = {w ∈
A : trw = 0}, which is the tangent space of PA◦

+ = {x ∈ A◦
+ : det x = 1} at the unit

u. Consider the variation norm,

|w|u =M(w/u)−m(w/u) = diam σ(w)

on Tu. In this section we determine the horofunction compactification of the normed
space (Tu, | · |u).
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We start by giving the general form of the horofunctions.

Proposition 5.1. If g : Tu → R is a horofunction of Tu
h
, then there exist a

Jordan frame p1, . . . , pr ∈ A, I, J ⊆ {1, . . . , r} disjoint and nonempty, and α ∈ RI∪J

with mini∈I αi = 0 = minj∈J αj such that

(5.1) g(v) = ΛA(pI)

(

−UpIv −
∑

i∈I

αipi

)

+ ΛA(pJ )

(

UpJv −
∑

j∈J

αjpj

)

for v ∈ Tu, where pI =
∑

i∈I pi and pJ =
∑

j∈J pj .

Proof. Suppose that (wn) in Tu is such that gwn → g ∈ ∂Tu
h
. Then by Lemma 2.1

we know that |wn|u = diam σ(wn) = Λ(wn)+Λ(−wn) → ∞. Let zn = wn−
1
2
(Λ(wn)−

Λ(−wn))u ∈ A. Note that for each v ∈ A we have that |v−wn|u = |v− zn|u by (2.3).
Moreover, by construction, Λ(zn) =

1
2
(Λ(wn) + Λ(−wn)) = Λ(−zn). Let rn = Λ(zn).

Using the spectral decomposition we write zn =
∑r

i=1 µi,npi,n. After taking sub-
sequences we may assume:

(1) There exists I+ ⊆ {1, . . . , r} such that for each n ≥ 1 we have that µi,n > 0
if and only if i ∈ I+.

(2) pi,n → pi for all i ∈ {1, . . . , r}.

For i ∈ I+ let αi,n = rn − µi,n, and set αi,n = rn + µi,n for i 6∈ I+. So, αi,n ≥ 0 for
all i. Taking a further subsequence we may assume that αi,n → αi ∈ [0,∞] for all i.
Let I = {i ∈ I+ : αi <∞} and J = {j 6∈ I+ : αj <∞}.

As Λ(zn) = Λ(−zn) = rn, we know that

min
i∈I+

αi,n = 0 = min
j 6∈I+

αj,n,

and hence I and J are both nonempty.
It now follows from [30, Lemma 4.7] that

Λ(−v + zn − rnu) → ΛA(pI)

(

−UpIv −
∑

i∈I

αipi

)

and

Λ(v − zn − rnu) → ΛA(pJ )

(

UpJv −
∑

j∈J

αjpj

)

.

Thus,

lim
n→∞

gwn(v) = lim
n→∞

|v − wn|u − |wn|u = lim
n→∞

|v − zn|u − |zn|u

= lim
n→∞

Λ(−v + zn) + Λ(v − zn)− 2rn

= lim
n→∞

Λ(−v + zn − rnu) + Λ(v − zn − rnu)

= ΛA(pI)

(

−UpIv −
∑

i∈I

αipi

)

+ ΛA(pJ )

(

UpJv −
∑

j∈J

αjpj

)

for all v ∈ Tu, which completes the proof. �

The next proposition shows that each function of the form (5.1) is indeed a

horofunction. In fact, we shall see that it is a Busemann point in ∂Tu
h
.
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Proposition 5.2. Let p1, . . . , pr ∈ A be a Jordan frame, I, J ⊆ {1, . . . , r} dis-
joint and nonempty, and α ∈ RI∪J be such that mini∈I αi = 0 = minj∈J αj . If

(5.2) ζ =
∑

i∈I

−αipi +
∑

j∈J

αjpj and ω = pI − pJ ,

then for ξt = tω + ζ − 1
r
tr(tω + ζ)u ∈ Tu with t > 0 we have that gξt → g, where g is

given by (5.1), and hence g is a Busemann point.

Proof. For t > 0, ωt = tω + ζ ∈ A, and note that Λ(ωt) = Λ(−ωt) = t for all
t > 0 large. Then by [30, Lemma 4.7] we get that

lim
t→∞

Λ(−v + ωt − tu) = lim
t→∞

Λ

(

−v −
∑

i∈I

αipi +
∑

j∈J

(−2t+ αj)pj +
∑

k 6∈I∪J

−tpk

)

= ΛA(pI)

(

−UpIv −
∑

i∈I

αipi

)

.

Likewise,

lim
t→∞

Λ(v − ωt − tu) = ΛA(pJ)

(

UpJv −
∑

j∈J

αjpj

)

.

Thus, for v ∈ Tu we have that

lim
t→∞

gξt(v) = lim
t→∞

|v − ξt|u − |ξt|u = lim
t→∞

|v − ωt|u − |ωt|u

= lim
t→∞

Λ(−v + ξt) + Λ(v − ξt)− 2t

= lim
t→∞

Λ(−v + ξt − tu) + Λ(v − ξt − tu)

= ΛA(pI)

(

−UpIv −
∑

i∈I

αipi

)

+ ΛA(pJ)

(

UpJv −
∑

j∈J

αjpj

)

,

which shows that gξt → g. As t 7→ ξt is a straight-line geodesic, we find that g is
Busemann point. �

By combining Propositions 5.1 and 5.2 we get the following description of the

horofunctions in Tu
h
.

Theorem 5.3. The horofunctions of Tu
h

are precisely the functions g : Tu → R
of the form (5.1), and each horofunction is a Busemann point.

It follows that the equivalence classes of ≃ on ∂Tu
h
= BTu coincides with the

parts. Thus, to understand the geometry of the equivalence classes we can analyse

the parts of ∂Tu
h
.

Proposition 5.4. Let g, g′ ∈ ∂Tu
h

be two horofunctions, where g is given by
(5.1) and

(5.3) g′(v) = ΛA(qI′ )

(

−UqI′v −
∑

i∈I′

βiqi

)

+ΛA(qJ′)

(

UqJ′
v −

∑

j∈J ′

βjqj

)

for v ∈ Tu.

If pI = qI′ and pJ = qJ ′ , then g and g′ are in the same part and

δ(g, g′) =
(

ΛA(pI)(aI − bI′) + ΛA(pI)(bI′ − aI)
)

+
(

ΛA(pJ )(aJ − bJ ′) + ΛA(pJ)(bJ ′ − aJ)
)

,

where aI =
∑

i∈I αipi, aJ =
∑

j∈J αjpj, bI′ =
∑

i∈I′ βiqi and bJ ′ =
∑

j∈J ′ βjqj.
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Proof. Let ζ , ω and ξt be as in Proposition 5.2. Then for all t > 0 large we have
that

|ξt|u + g′(ξt) = |ξt|u + ΛA(qI′)(−UqI′ ξt − bI′) + ΛA(qJ′)(UqJ′
ξt − bJ ′)

= 2t+ ΛA(pI)(−UpIξt − bI′) + ΛA(pJ )(UpJ ξt − bJ ′)

= ΛA(pI)(tpI − UpIξt − bI′) + ΛA(pJ)(tpJ + UpJξt − bJ ′)

= ΛA(pI)(
1
r
tr(tω + ζ)pI + aI − bI′) + ΛA(pJ )(−

1
r
tr(tω + ζ)pJ + aJ − bJ ′)

= ΛA(pI)(aI − bI′) + ΛA(pJ )(aJ − bJ ′).

From (2.2) and Proposition 5.2, we conclude that H(g, g′) = ΛA(pI)(aI − bI′) +
ΛA(pJ)(aJ − bJ ′). Interchanging the roles of g and g′ gives H(g′, g) = ΛA(pJ )(aJ −
bJ ′) + ΛA(pJ)(bJ ′ − aJ), which completes the proof. �

The condition in Proposition 5.4 characterises the parts in the horofunction
boundary as the next proposition shows.

Proposition 5.5. If g and g′ are horofunctions in Tu
h

given by (5.1) and (5.3),
respectively, then g and g′ are in the same part if and only if pI = qI′ and pJ = qJ ′ .

Proof. By Proposition 5.4 it remains to show that δ(g, g′) = ∞ if pI 6= qI′ or
pJ 6= qJ ′. Suppose that pI 6= qI′. Then pI � qI′ or qI′ � pI . Suppose that pI � qI′ .
Let ζ , ω and ξt be as in Proposition 5.2. We will show that H(g, g′) = ∞ in this
case.

For all t > 0 large we have that

|ξt|u + g′(ξt) = |ξt|u + ΛA(qI′)(−UqI′ ξt − bI′) + ΛA(qJ′)(UqJ′
ξt − bJ ′)

= 2t+ ΛA(qI′)(−UqI′ ξt − bI′) + ΛA(qJ′)(UpJ ξt − bJ ′)

= ΛA(qI′)(tqI′ − UqI′ ξt − bI′) + ΛA(qJ′)(tqJ ′ + UqJ′
ξt − bJ ′)

= ΛA(qI′)(tqI′ − UqI′ (tω + ζ)− bI′) + ΛA(qJ′)(tqJ ′ + UqJ′
(tω + ζ)− bJ ′).

Note that tω + ζ ≤ tpI for all t > 0 large. So, UqI′ (tω + ζ) ≤ tUqI′pI for all t > 0
large. This implies that

ΛA(qI′)(tqI′ − UqI′ (tω + ζ)− bI′) ≥ ΛA(qI′)(t(qI′ − UqI′pI)− bI′) → ∞

as t→ ∞, since qI′ − UqI′pI > 0 by [30, Lemma 4.12].
Also note that for all t > 0 large we have that tω + ζ ≥ −tpJ , and hence

UqJ′
(tω+ ζ) ≥ −tUqJ′

pJ . As UqJ′
pJ ≤ UqJ′

u = qJ ′ , we have t(qJ ′ −UqJ′
pJ) ≥ 0 for all

t > 0 large. It follows that

ΛA(qJ′)(tqJ ′ +UqJ′
(tω+ζ)−bJ ′) ≥ ΛA(qJ′)(t(qJ ′ −UqJ′

pJ)−bJ ′) ≥ ΛA(qJ′)(−bJ ′) > −∞

for all t > 0 large. Combining this inequality with the previous one and using (2.2),
we conclude that H(g, g′) = ∞.

For the other cases the result can be shown in the same way. �

6. Extension of the exponential map exp
u
: Tu → PA

◦

+

In this section we show that the exponential map extends as a homeomorphism
between the horofunction compactifications and preserves the geometry of the equiv-
alence classes, i.e., the parts. More specifically we show the following result.

Theorem 6.1. Let A◦
+ be a symmetric cone in a finite dimensional formally

real Jordan algebra A. The map expu : Tu
h
→ PA◦

+

h
is a homeomorphism which
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maps each part in the horofunction boundary of Tu onto a part of the horofunction
boundary of PA◦

+.

The proof of Theorem 6.1 follows the same steps as the one taken in the proof
of Theorem 4.3. To define the extension we recall the characterisation of the Hilbert
distance horofunctions of PA◦

+ from [30]. The horofunctions of (PA◦
+, dH) are all

Busemann points and precisely the functions h : PA◦
+ → R of the form

(6.1) h(x) = logM(y/x) + logM(z/x−1) for x ∈ PA◦
+,

where y, z ∈ ∂A+ are such that ‖y‖u = ‖z‖u = 1 and y •z = 0, see [30, Theorem 5.4].
In this case the extension of the exponential map is defined as follows.

Definition 6.2. The exponential map, expu : Tu
h
→ PA◦

+
h
, is defined by expu(v)

= ev for v ∈ Tu, and for g ∈ ∂Tu
h

given by (5.1) we let expu(g) = h, where h is given
by (6.1) with y =

∑

i∈I e
−αipi and z =

∑

j∈J e
−αjpj.

Note that the extension is well-defined. Indeed, if g given by (5.1) is represented
as

g(v) = ΛA(qI′)(−UqI′v −
∑

i∈I′

βiqi) + ΛA(qJ′)(UqJ′
v −

∑

j∈J ′

βjqj),

then, as δ(g, g) = 0, we get by Propositions 5.4 and 5.5 that pI = qI′, pJ = qJ ′ ,
∑

i∈I αipi =
∑

i∈I′ βiqi and
∑

j∈J αjpj =
∑

j∈J ′ βjqj . From Lemma 4.2 we deduce

that
∑

i∈I e
−αipi =

∑

i∈I′ e
−βiqi and

∑

j∈J e
−αjpj =

∑

j∈J ′ e−βjqj , and hence the
extension is well-defined.

We first show that expu : Tu
h
→ PA◦

+

h
is a bijection.

Lemma 6.3. expu : Tu
h
→ PA◦

+
h

is a bijection which maps Tu onto PA◦
+, and

∂Tu
h

onto ∂PA◦
+

h
.

Proof. As det expu(x) = etr x = 1 for x ∈ Tu, we see that expu is a bijection from
Tu onto PA◦

+. It follows from [30, Theorem 5.4] and Theorem 5.3 that expu maps

∂Tu
h

onto ∂PA◦
+

h
.

To complete the proof it remains to show that if g, g′ ∈ ∂Tu
h

with expu(g) =
expu(g

′), then g = g′. Let g and g′ be given by (5.1) and (5.3), respectively. By
definition of expu we have that expu(g) = h, where

h(x) = logM(y/x) + logM(z/x−1) for x ∈ PA◦
+,

with y =
∑

i∈I e
−αipi and z =

∑

j∈J e
−αjpj. Likewise, expu(g

′) = h′, where h′(x) =

logM(y′/x)+logM(z′/x−1) for x ∈ PA◦
+, with y′ =

∑

i∈I′ e
−βiqi and z =

∑

j∈J ′ e−βjqj .

As h = h′, we have that δ(h, h′) = 0, hence y = y′ and z = z′ by [30, Propo-
sition 5.6]. Now using Remark 2.3 we find that pI = qI′ and pJ = qJ ′. Fur-
thermore, −

∑

i∈I αipi = log(y + u − pI) = log(y′ + u − qI′) = −
∑

i∈I′ βiqi and
−
∑

j∈J αjpj = log(z + u− pJ) = log(z′ + u− qJ ′) = −
∑

j∈J ′ βjqj . This implies that
g = g′, which completes the proof. �

The proof of the continuity of the extension of expu is split up into two lemmas.

Lemma 6.4. If (wn) in Tu converges to g ∈ ∂Tu
h
, then (expu(wn)) converges to

expu(g).

Proof. Let (wn) be a sequence in Tu converging to g ∈ ∂Tu
h
, where g is given

by (5.1). To prove that (expu(wn)) converges to expu(g) = h, where h is given by
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(6.1), we show that each of its subsequences has a subsequence converging to h. So
let (expu(wk)) be a subsequence. As g is a horofunction, it follows from Lemma 2.1
that |wk|u → ∞. Set zk = wk −

1
2
(Λ(wk) − Λ(−wk))u and let rk = Λ(zk). So,

2rk = Λ(zk) + Λ(−zk) = |zk|u = |wk|u.
Using the spectral decomposition we write zk =

∑r
i=1 λi,kqi,k. By taking sube-

quences we may assume that there exists I+ ⊆ {1, . . . , r} such that for all k we have
that λi,k > 0 if and only if i ∈ I+. In addition, we may assume that qi,k → qi for
all i. Let βi,k = rk − λi,k ≥ 0 for i ∈ I+, and βi,k = rk + λi,k ≥ 0 for i 6∈ I+. By
taking further subsequences we may assume that βi,k → βi ∈ [0,∞] for all i. Let
I ′ = {i ∈ I+ : βi <∞} and J ′ = {j 6∈ I+ : βj <∞}.

Note that mini∈I′ βi = 0 = minj∈J ′ βj , as mini∈I+ βi,k = 0 = mini 6∈I+ βi,k for all k,
so I ′ and J ′ are both nonempty. It follows from [30, Lemma 4.7] and (2.3) that

lim
k→∞

gwk
(v) = lim

k→∞
|v − wk|u − |wk|u = lim

k→∞
|v − zk|u − 2rk

= lim
k→∞

Λ(−v + zk − rku) + Λ(v − zk − rku)

= ΛA(qI′)

(

−UqI′v −
∑

i∈I′

βiqi

)

+ ΛA(qJ′)

(

UqJ′
v −

∑

j∈J ′

βjqj

)

.

If we denote the righthand side by g′(v), we find that g′ : Tu → R is a horofunction
by Proposition 5.2.

Since gwn → g, we conclude that g = g′, and hence δ(g, g′) = 0. It now
follows from Propositions 5.4 and 5.5 that pI = qI′ and pJ = qJ ′ . Moreover,
∑

i∈I αipi =
∑

i∈I′ βiqi and
∑

j∈J αjpj =
∑

j∈J ′ βjqj. So by Lemma 4.2 we get that

y =
∑

i∈I e
−αipi =

∑

i∈I′ e
−βiqi and z =

∑

j∈J e
−αjpj =

∑

j∈J ′ e−βjqj.
It follows that

e−rkexpu(zk) =
r
∑

i=1

e−(rk−λi,k)qi,k →
∑

i∈I′

βiqi = y

and

e−rkexpu(−zk) =
r
∑

i=1

e−(rk+λi,k)qi,k →
∑

j∈J ′

βjqj = z.

As expu(a+ λu) = eλexpu(a) for all a ∈ A and λ ∈ R, we have that

lim
k→∞

hexpu(wk)(x) = lim
k→∞

dH(x, expu(wk))− dH(u, expu(wk))

= lim
k→∞

dH(x, expu(zk))− dH(u, expu(zk))

= lim
k→∞

logM(expu(zk)/x) + logM(x/expu(zk))− diam σ(zk)

= lim
k→∞

logM(expu(zk)/x) + logM(expu(−zk)/x
−1)− 2rk

= lim
k→∞

logM(e−rkexpu(zk)/x) + logM(e−rkexpu(−zk)/x
−1)

= logM(y/x) + logM(z/x−1)

for all x ∈ PA◦
+ by continuity of the M functions, see [28, Lemma 2.2]. This shows

that (exp(wk)) in PA◦
+ converges h, and hence the proof is complete. �

Next we establish the continuity in the horofunction boundary.

Lemma 6.5. If (gn) in ∂Tu
h

converges to g ∈ ∂Tu
h
, then (expu(gn)) converges

to expu(g).



752 Bas Lemmens

Proof. Let (gn) be a sequence in ∂Tu
h

converging to g, where g is given by
(5.1). So expu(g) = h, where is h given by (6.1). We prove that each subsequence
of (expu(gn)) has a convergent subsequence with limit h. Let (expu(gnk

)) be a sub-
sequence. By Theorem 5.1 we can write for k ≥ 1,

gnk
(v) = ΛA(qIk,k)

(

−UqIk,k
v −

∑

i∈Ik

βi,kqi,k

)

+ ΛA(qJk,k)

(

UqJk,kv −
∑

j∈Jk

βj,kqj,k

)

,

where the qi,k and qj,k’s are orthogonal primitive idempotents, Ik, Jk ⊆ {1, . . . , r} are
nonempty and disjoint, and mini∈Ik βi,k = 0 = minj∈Jk βj,k.

After taking subsequences we may assume that

(1) There exist I0, J0 ⊆ {1, . . . , r} such that I0 = Ik and J0 = Jk for all k.
(2) There exist i0 ∈ I0 and j0 ∈ J0 such that βi0,k = 0 = βj0,k for all k.
(3) βm,k → βm ∈ [0,∞] and qm,k → qm for all m ∈ I0 ∪ J0.

Now let I ′ = {i ∈ I0 : βi < ∞} and J ′ = {j ∈ J0 : βj < ∞}. So I ′ and J ′ are
nonempty and mini∈I′ βi = 0 = minj∈J ′ βj .

As I ′ is nonempty, it follows from [30, Lemma 4.7] that

ΛA(qI0,k)

(

−UqI0,kv −
∑

i∈I0

βi,kqi,k

)

→ ΛA(qI′)

(

−UqI′v −
∑

i∈I′

βiqi

)

.

Likewise, as J ′ is nonempty, we know that

ΛA(qJ0,k)

(

UqJ0,kv −
∑

j∈J0

βj,kqj,k

)

→ ΛA(qJ′)

(

UqJ′
v −

∑

j∈J ′

βjqj

)

.

Thus,

lim
k→∞

gnk
(v) = ΛA(qI′)

(

−UqI′v −
∑

i∈I′

βiqi

)

+ ΛA(qJ′)

(

UqJ′
v −

∑

j∈J ′

βjqj

)

.

So, if we denote the righthand side by g′(v), then g′ : A → R is a horofunction
by Proposition 5.2. As gn → g, we find that g = g′ and hence δ(g, g′) = 0.

It now follows from Propositions 5.4 and 5.5 that pI = qI′ and pJ = qJ ′. Moreover,
∑

i∈I

αipi =
∑

i∈I′

βiqi and
∑

j∈J

αjpj =
∑

j∈J ′

βjqj ,

So by Lemma 4.2 we get that y =
∑

i∈I e
−αipi =

∑

i∈I′ e
−βiqi and z =

∑

j∈J e
−αjpj =

∑

j∈J ′ e−βjqj.

If we now let ȳk =
∑

i∈I0
e−βi,kqi,k and z̄k =

∑

j∈J0
e−βj,kqj,k, then

lim
k→∞

ȳk =
∑

i∈I′

e−βiqi = y and lim
k→∞

z̄k =
∑

j∈J ′

e−βjqj = z.

Therefore, by continuity of the M function [28, Lemma 2.2],

lim
k→∞

expu(gnk
)(x) = lim

k→∞
logM(ȳk/x) + logM(z̄k/x

−1)

= logM(y/x) + logM(z/x−1) = h(x),

which completes the proof. �

Collecting the results so far we can now easily proof Theorem 6.1.
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Proof of Theorem 6.1. It follows from Lemmas 6.3, 6.4 and 6.5 that expu : Tu
h
→

PA◦
+

h
is a continuous bijection. As Tu

h
is compact and PA◦

+

h
is Hausdorff, we

conclude that expu is a homeomorphism.

Suppose that g and g′ are horofunctions in the same part of Tu
h
, where g is

given by (5.1) and g′ is given by (5.3). It follows from Propositions 5.4 and 5.5 that
pI = qI′ and pJ = qJ ′ . By definition expu(g) = h, where h is given by (6.1) with
y =

∑

i∈I e
−αipi and z =

∑

j∈J e
−αjpj . Likewise, expu(g

′) = h′, where h′ is given by

h′(x) = logM(y′/x) + logM(z′/x−1), with y′ =
∑

i∈I′ e
−βiqi and z′ =

∑

j∈J ′ e−βjqj .
As pI = qI′ and pJ = qJ ′ , we have that y ∼ pI ∼ qI′ ∼ y′ and z ∼ pJ ∼ qJ ′ ∼ z′, and
hence h and h′ are in the same part by [30, Proposition 5.6].

Conversely, if h and h′ are in the same part, then y ∼ y′ and z ∼ z′ by [30,
Proposition 5.6], and hence pI ∼ qI′ and pJ ∼ qJ ′ . This implies that face(pI) =
face(qI′). As face(pI) ∩ [0, u] = [0, pI ] by [3, Lemma 1.39], we get that pI = qI′ .
Likewise we have that pJ = qJ ′. So, if h and h′ are in the same part, then g and g′

are in the same part. This completes the proof. �

Remark 6.6. The horofunction compactification is homeomorphic to the closed
unit ball of the dual space (Tu, | · |u)

∗. Indeed, it was shown in [30, Section 5] that
there exists a homeomorphism from the horofunction compactification of (PA◦

+, dH)
to the closed unit ball B∗

1 of the dual space (Tu, | · |u)
∗, which maps parts onto parts.

We know from [30, Section 5.3] that the dual space (Tu, | · |u)
∗ is given by (Tu,

1
2
‖·‖∗u),

where we use the inner-product (x|y) = tr(x • y) to identify T ∗
u with Tu. The unit

ball B∗
1 satisfies

B∗
1 = 2 conv(S(A) ∪ −S(A)) ∩ Tu,

where S(A) = {w ∈ A+ : (u|w) = 1} is the state space of A. Its (closed) boundary
faces are precisely the nonempty sets of the form,

Ap,q = 2 conv((Up(A) ∩ S(A) ∪ (Uq(A) ∩ −S(A))) ∩ Tu,

where p and q are orthogonal idempotents by [12, Theorem 4.4].

7. Final remarks

Symmetric cones A◦
+ and their projective cones PA◦

+ are examples of Riemann-
ian symmetric spaces X = G/K of non-compact type. The Finsler metrics of the
Thompson distance and the Hilbert distance are examples of invariant Finsler met-
rics, which have been chararcterised by Planche [37]. In [20] it was shown that each
generalised Satake compactification of a symmetric space X = G/K of non-compact
type can be realised as a horofunction compactification under an invariant Finsler
metric, whose restriction to a flat is a (possibly non-symmetric) norm with polyhe-
dral unit ball. In [20, Examples 5.3 and 5.7] the symmetric space SLn(C)/SUn is
considered for n = 3 and n = 4. This space corresponds to the projective sym-
metric cone PΠn(C) consisting of n × n positive definite Hermitian matrices with
determinant 1. If we consider the restriction of the unit ball of the Finsler metric
H(I, ·) = | · |I to the flat consisting of diagonal matrices in TI , then for n = 3 we get a
hexagon, and for n = 4 we get a rhombic dodecahedron. These unit balls correspond
to the invariant Finsler metrics in [20, Examples 5.3 and 5.7], where the generalised
Satake compactification is considered for the adjoint representation of SLn(C). So
for n = 3 and n = 4, the Hilbert distance on SLn(C)/SUn realises the generalised
Satake compactification with respect to the adjoint representation.
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Question 7.1. Does the horofunction compactification of SLn(C)/SUn with re-
spect to the Hilbert distance realise the generalised Satake compactification with
respect to the adjoint representation? In fact, one could ask if the same true for the
Hilbert metric on general projective symmetric cones PA◦

+?

For a symmetric cone A◦
+ a flat in the tangent space at u ∈ A◦

+ is given by
Span({p1, . . . , pr}), where p1, . . . , pr is a Jordan frame. The restriction to the flat of
the Finsler metric F for the Thompson distance is a polyhedral norm. In fact, if
w ∈ Span({p1, . . . , pr}) has spectral decomposition w =

∑r
i=1 δipi, then F (u, w) =

‖w‖u = maxi |δi|. So, the restriction of the unit ball of F to a flat is an r-dimensional
hypercube. It would be interesting to investigate the following question.

Question 7.2. Does the horofunction compactification of (A◦
+, dT ) realise a gen-

eralised Satake compactification of the symmetric space A◦
+, and if so, to which

representation does it correspond?

In view of the results in this paper it is also natural to investigate the following
problem for a general symmetric space X = G/K of non-compact type with an
invariant Finsler metric.

Question 7.3. Does the exponential map expu : TuX → X extend as a homeo-
morphism between the horofunction compactification of X under the Finsler distance
and the horofunction compactification of the tangent space TuX under the Finsler
norm, preserving the equivalence classes in the horofunction boundary?

Acknowledgement. The author wishes to thank the anonymous referees for their
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