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On a result of Bao-Qin Li concerning
Dirichlet series and shared values

Xiao-Yan Fan, Xiao-Min Li
∗ and Hong-Xun Yi

Abstract. Li (2011) proved that if two L-functions L1 and L2 in the extended Selberg class

S♯ satisfy the same functional equation with a(1) = 1 and L−1
1 (cj) = L−1

2 (cj) with j ∈ {1, 2}

for two distinct finite complex numbers c1 and c2, then L1 = L2. Later on, Gonek–Haan–Ki

(2014) proved that if two L-functions L1 and L2 in the extended Selberg class S♯ have the positive

degrees and L−1
1 (c) = L−1

2 (c) for a finite non-zero complex number c, then L1 = L2. This implies

that if two L-functions L1 and L2 in the extended Selberg class S♯ have the positive degrees and

L−1
1 (cj) = L−1

2 (cj) with j ∈ {1, 2} for two distinct finite complex numbers c1 and c2, then L1 = L2.

In this paper, we prove that if two L-functions L1 and L2 in the extended Selberg class S♯ have the

zero degrees and satisfy L−1
1 (cj) = L−1

2 (cj) with j ∈ {1, 2} for two distinct finite complex numbers

c1 and c2, and if a1(1) = a2(1) or limr→+∞

T (r,L2)
T (r,L1)

= 1, then L1 = L2. The main results obtained

in this paper improve Theorem 1 from Li (2011) when the L-functions in the extended Selberg class

S♯ have the zero degrees. Some examples are provided to show that the results obtained in this

paper, in a sense, are best possible.

Dirichlet’n sarjoja ja jaettuja arvoja koskevasta Bao-Qin Lin tuloksesta

Tiivistelmä. Olkoot L1 ja L2 kaksi laajennettuun Selbergin luokkaan S♯ kuuluvaa L-funktiota

ja c1 sekä c2 kaksi erillistä äärellistä kompleksilukua. Li (2011) todisti, että L1 = L2, jos L1 ja

L2 toteuttavat saman funktionaaliyhtälön, jossa a(1) = 1 ja L−1
1 (cj) = L−1

2 (cj) molemmilla j ∈

{1, 2}. Myöhemmin Gonek, Haan ja Ki (2014) osoittivat, että L1 = L2, jos L-funktioilla L1 ja

L2 on positiivinen aste ja L−1
1 (c) = L−1

2 (c) äärellisellä nollasta poikkeavalla kompleksiluvulla c.

Tästä seuraa, että L1 = L2, jos L-funktioilla L1 ja L2 on positiivinen aste ja L−1
1 (cj) = L−1

2 (cj)

molemmilla j ∈ {1, 2}. Tässä työssä osoitamme, että L1 = L2, jos L-funktioilla L1 ja L2 on aste

nolla ja L−1
1 (cj) = L−1

2 (cj) molemmilla j ∈ {1, 2}, sekä lisäksi a1(1) = a2(1) tai limr→+∞

T (r,L2)
T (r,L1)

=

1. Päätuloksemme parantavat Lin (2011) lausetta 1, kun L-funktioiden aste on nolla. Näytämme

esimerkein, että nämä tulokset ovat tietyssä mielessä parhaita mahdollisia.

1. Introduction and main results

L-functions are Dirichlet series with the Riemann zeta function ζ(s) = Σ∞
n=1

1
ns as

the prototype, which are important objects in number theory and have been studied
extensively (cf. [15]). Throughout the paper, an L-function always means a Dirichlet
series L(s) =

∑∞
n=1 a(n)n

−s of a complex variable s = σ+ it, satisfying the following
axioms (cf. [15, p. 111]):

(i) Ramanujan hypothesis: a(n) ≪ nε for every ε > 0.
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(ii) Analytic continuation: There is a non-negative integer k such that (s−1)kL(s)
is an entire function of finite order.

(iii) Functional equation: L satisfies a functional equation of type ΛL(s) =

ωΛL(1− s), where ΛL(s) = L(s)Qs
∏K

j=1 Γ(λjs + νj) with positive real num-

bers Q, λj and complex numbers νj , ω with Re(νj) ≥ 0 and |ω| = 1.

The degree d of an L-function L is defined to be d = 2
∑K

j=1 λj, where K, λj are

the numbers in the axiom (iii).
The Selberg class S of L-functions is the set of all Dirichlet series L(s) =

∑∞
n=1 a(n)n

−s of a complex variable s = σ + it with a(1) = 1, satisfying the above
axioms (i)-(iii) and the following axiom (iv) (cf. [13, 15]):

(iv) Euler product hypothesis: L(s) =
∏

p exp
(

∑∞
k=1

b(pk)
pks

)

with suitable coeffi-

cients b(pk) satisfying b(pk) ≪ pkθ for some θ < 1/2, where the product is
taken over all prime numbers p.

Throughout this paper, all L-functions are assumed to be the L-functions from
the extended Selberg class S♯ of those L-functions that are not identically vanishing
and only satisfy the axioms (i)–(iii) above. The notion of the extended Selberg class
S♯ was originally introduced by Kaczorowski–Perelli [6].

In recent years, value distribution of L-functions has been studied extensively,
which can be found, for example in Steuding [15]. Value distribution of L-functions
concerns the distribution of zeros of an L-function L and, more generally, the c-points
of L, that is to say, the roots of the equation L(s) = c, or the points in the pre-image
L−1(c) = {s ∈ C : L(s) = c}, where and in what follows, s denotes the complex
variables in the complex plane C and c denotes a value in the extended complex plane
C ∪ {∞}. L-functions can be analytically continued as meromorphic functions in C.
Two meromorphic functions f and g in the complex plane are said to share a value
c ∈ C∪{∞} IM (ignoring multiplicities) if f−1(c) = g−1(c) as two sets in C. Moreover,
f and g are said to share a value c CM (counting multiplicities) if they share the value
c IM and if each common root of the equations f(s) = c and g(s) = c has the same
multiplicities. In terms of shared values, two non-constant meromorphic functions in
the complex plane must be identically equal if they share five distinct values from the
extended complex plane IM, and one must be a Möbius transformation of the other
one if they share four values from the extended complex plane CM. The numbers “five”
and “four” are the best possible, as shown by Nevanlinna (cf. [3, 11, 17]), which are
famous theorems due to Nevanlinna and often referred to as Nevanlinna’s uniqueness
theorems. For a non-constant meromorphic function f , we denote by ρ(f) the order
of growth of f , its definition can be found in [8, 18, 17]. For convenience, we give its
detailed definition as follows:

Definition 1.1. For a non-constant meromorphic function f , the order of f ,
denoted as ρ(f), is defined as

ρ(f) = lim sup
r→∞

logT (r, f)

logr
.

Throughout this paper, by meromorphic functions we will always mean mero-
morphic functions in the complex plane. We adopt the standard notations of the
Nevanlinna theory of meromorphic functions as explained in [3, 8, 18, 17]. Let f
be a non-constant meromorphic function, let k be a positive integer, and let a be a
complex value in the extended complex plane. Next we denote by N(k(r, 1/(f − a)
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the counting function of those a-points of the non-constant meromorphic function
f in |z| < r, where each point in N(k(r, 1/(h − a)) is counted according to its mul-
tiplicity, and each point in N(k(r, 1/(f − a)) is of multiplicity ≥ k. We denote by
Nk)(r, 1/(f − a) the counting function of those a-points of the non-constant mero-
morphic function f in |z| < r, where each point in Nk)(r, 1/(f − a)) is counted
according to its multiplicity, and each point in Nk)(r, 1/(f − a)) is of multiplic-

ity ≤ k. We denote by N (k(r, 1/(f − a)) and Nk)(r, 1/(f − a) the reduced forms
of N(k(r, 1/(f − a)) and Nk)(r, 1/(f − a) respectively. Here N(k(r, 1/(f − ∞)),

Nk)(r, 1/(f −∞)), N (k(r, 1/(f −∞)), Nk)(r, 1/(f − ∞)) mean N(k(r, f), Nk)(r, f),

N (k(r, f), Nk)(r, f) respectively.
This paper concerns the question of how an L-function is uniquely determined in

terms of the pre-images of complex values in the extended complex plane. We refer
the reader to the monograph [15] for a detailed discussion on the topic and related
works. Concerning the extended Selberg class S♯, we recall the following two results
due to Steuding [15], which actually holds without the Euler product hypothesis:

Theorem 1.2. [15, Theorem 7.11 (i)] Assume that two L-functions L1 and L2

satisfy the axioms (i)–(iii) with a(1) = 1. If L1 and L2 share a value c 6= ∞ CM,
then L1 = L2.

Theorem 1.3. [15, Theorem 7.11 (ii)] If two L-functions L1 and L2 in the ex-
tended Selberg class S♯ satisfy the same functional equation with a(1) = 1 and
L−1
1 (cj) = L−1

2 (cj) with j ∈ {1, 2} for two finite distinct complex numbers c1 and c2
such that

(1.1) lim inf
T→∞

Ñ c1
Lj
(T ) + Ñ c2

Lj
(T )

N c1
Lj
(T ) +N c2

Lj
(T )

>
1

2
+ ε

for some positive number ε with either j = 1 or j = 2, then L1 = L2. Here the
term N c

L(T ) denotes the number counted multiplicities of zeros of L(σ + it) − c in

the rectangle 0 ≤ σ ≤ 1, |t| ≤ T , and Ñ c
L(T ) denotes the number of zeros in the

rectangle but ignoring multiplicities.

Remark 1.4. In 2016, Hu–Li [5] pointed out that Theorem 1.2 is false when c =
1. A counter example was given by Hu–Li [5, Remark 4] as follows: let L1(s) = 1+ 2

4s

and L2(s) = 1 + 3
9s

. Then L1 and L2 trivially satisfy axioms (i) and (ii). Also, one
can check that L1 satisfies the functional equation

2sL(s) = 21−sL(1− s),

and L2 satisfies the functional equation

3sL(s) = 31−sL(1− s).

Thus, L1 and L2 also satisfy axiom (iii). It is clear that L1−1 and L2−1 do not have
any zeros and thus satisfy the assumptions of Theorem 1.2 with c = 1, but L1 6≡ L2.

In 2011, Li [9] proved the following result by removing the assumption (1.1) of
Theorem 1.3:

Theorem 1.5. [9, Theorem 1] If two L-functions L1 and L2 in the extended
Selberg class S♯ satisfy the same functional equation with a(1) = 1 and L−1

1 (cj) =
L−1
2 (cj) with j ∈ {1, 2} for two finite distinct complex numbers c1 and c2, then

L1 = L2.

Later on, Ki [7] proved the following result that improved Theorem 1.5:
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Theorem 1.6. [7, Theorem 1] If two L-functions L1 and L2 in the extended
Selberg class S♯ have the positive degrees and satisfy the same functional equation
with a(1) = 1 and L−1

1 (c) = L−1
2 (c) for a finite complex number c, then L1 = L2.

The conclusion need not hold for c = 0 or if the functional equation is of degree zero.

In 2014, Gonek–Haan–Ki [2] dispensed with the assumptions that L1 and L2

satisfy the same functional equation and that a1(1) = a2(1) in Theorem 1.6, and
proved the following result:

Theorem 1.7. [2, Theorem 1] If two L-functions L1 and L2 in the extended
Selberg class S♯ have the positive degrees and L−1

1 (c) = L−1
2 (c) for a finite non-zero

complex number c, then L1 = L2.

Remark 1.8. It was shown in [7, pp. 2489–2490] that Theorem 1.7 need not
hold if the L-functions L1 and L2 in Theorem 1.7 have the zero degrees. It was also
shown in [7, p. 2489] that Theorem 1.7 need not hold if c = 0 and the L-functions
L1 and L2 in Theorem 1.7 have the positive degrees.

By Theorem 1.7 we deduce the following result:

Theorem 1.9. If two L-functions L1 and L2 in the extended Selberg class S♯

have the positive degrees and L−1
1 (cj) = L−1

2 (cj) with j ∈ {1, 2} for two finite distinct
complex numbers c1 and c2, then L1 = L2.

Based upon Theorem 1.9, one may ask, what can be said about the relationship
between two L-functions L1 and L2 of zero degree in the extended Selberg class S♯,
if L−1

1 (cj) = L−1
2 (cj) with j ∈ {1, 2} for two finite distinct complex numbers c1 and

c2? In this direction, we will prove the following results:

Theorem 1.10. If two L-functions L1 and L2 in the extended Selberg class S♯

have zero degrees and satisfy L−1
1 (cj) = L−1

2 (cj) with a1(1) = a2(1) and j ∈ {1, 2}
for two distinct finite complex numbers c1 and c2, then L1 = L2.

Theorem 1.11. Suppose that two L-functions L1 and L2 in the extended Selberg
class S♯ have zero degrees and satisfy L−1

1 (cj) = L−1
2 (cj) with j ∈ {1, 2} for two

distinct finite complex numbers c1 and c2. If the Nevanlinna’s characteristics of L1

and L2 satisfy limr→+∞
T (r,L2)
T (r,L1)

= 1, then L1 = L2.

Next we follow Steinmetz [14] to introduce the notion of the convex hull of a
subset of the complex plane C as follows: the convex hull of a subset W ⊂ C,
denoted as co(W ), is the intersection of all convex sets containing the set W . If
W contains only finitely many elements, then co(W ) is obtained as an intersection
of finitely many closed half-planes, and hence co(W ) is either a compact polygon
(with a non-empty interior) or a line segment. We denote the perimeter of co(W ) as
C(co(W )). If co(W ) is a line segment, then C(co(W )) equals to twice the length of
this line segment. Next we let f be defined as

(1.2) f(s) = H0(s) +H1(s)e
α1s

q

+H2(s)e
α2s

q

+ · · ·+Hm(s)e
αmsq ,

where and in what follows, m and q are positive integers, while Hj with 0 ≤ j ≤ m
is either an exponential polynomial of degree less than q or an ordinary polynomial
in s and Hj 6≡ 0 with 1 ≤ j ≤ m, and α1, α2, · · · , αm are m distinct finite non-
zero complex numbers. Throughout the rest of the paper, we fix the notations for
W = {α1, α2, · · · , αm} and W0 = {0, α1, α2, · · · , αm}.
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Remark 1.12. Theorem 1.5 can be improved by replacing with the assumption
“ limr→+∞

T (r,L2)
T (r,L1)

= 1” instead of the assumption “L1 and L2 satisfy the same func-

tional equation” in Theorem 1.5. This can be seen by the following discussion: first
of all, by the assumptions of Theorem 1.5, we know that L1 and L2 satisfy the same
functional equation with a(1) = 1. If the degree of L1 and L2 in Theorem 1.5 satisfy
dL1

= dL2
= d > 0, it follows by Steuding [15, p. 150, Theorem 7.9] that

T (r, L1) = T (r, L2) +O(r) =
d

π
r log r +O(r),

which implies that limr→+∞
T (r,L2)
T (r,L1)

= 1. This together with Theorem 1.11 reveals

the conclusion of Theorem 1.5. If the degree of L1 and L2 in Theorem 1.5 satisfy
dL1

= dL2
= d = 0, it follows by [6, Theorem 1 (ii)] that there exists some positive

integer qk with k ∈ {1, 2} and there exists some complex number ωk with |ωk| = 1
and k ∈ {1, 2} such that

(1.3) Lk(s) =
∑

n|qk

ak(n)

ns
, k ∈ {1, 2}.

We rewrite (1.3) into

Lk(s) = ak(1) +
∑

n≥2

n|qk

ak(n)

ns
=: ak(1) +

Nk
∑

j=1

ak(nk,j)

ns
k,j

= ak(1) +

Nk
∑

j=1

ak(nk,j)e
−s lognk,j

(1.4)

with k ∈ {1, 2}. Here nk,j with 1 ≤ j ≤ Nk, j ∈ Z and k ∈ {1, 2} is a positive integer
such that nk,j|qk and 2 ≤ nk,l < nk,l+1 with 1 ≤ l ≤ Nk − 1, l ∈ Z and k ∈ {1, 2}. By
(1.4) and Lemma 2.1 in Section 2 of this paper we have

(1.5) T (r, Lk) = C(co(W2,0))
r

2π
+O(log r) with k ∈ {1, 2}.

By the notion of the convex hull of a subset of the complex plane C we have

(1.6) C(co(Wk,0)) = 2 lognk,Nk
with k ∈ {1, 2},

where and in what follows,

Wk,0 = {0,− lognk,1,− lognk,2, · · · ,− log nk,Nk
} with k ∈ {1, 2}.

By substituting (1.6) into (1.5) we have

(1.7) T (r, Lk) =
lognk,Nk

π
r +O(log r) with k ∈ {1, 2}.

By the assumption of Theorem 1.5 we suppose that Lk with k ∈ {1, 2} satisfies the
functional equation with a(1) = 1 in the axiom (iii) of the definition of the L-function.
Then,

(1.8) ΛLk
(s) = ωΛLk

(1− s) with k ∈ {1, 2}.
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By (1.4) and (1.8) we have

lim
Re(s)→−∞

a2(n2,N2
)e−s logn2,N2

a1(n1,N1
)e−s logn1,N1

= lim
Re(s)→−∞

a2(1) +
∑N2

j=1 a2(n2,j)e
−s logn2,j

a1(1) +
∑N1

j=1 a1(n1,j)e−s logn1,j

= lim
Re(s)→−∞

L2(s)

L1(s)
= lim

Re(s)→−∞

L2(1− s)

L1(1− s)
= lim

Re(s)→−∞

(

L2(1− s)

L1(1− s)

)

=
a2(1)

a1(1)
= 1,

which implies that log n2,N2
= logn1,N1

. Combining this with (1.7), we have

T (r, L1) = T (r, L2) +O(log r) =
logn1,N1

π
r +O(log r),

which implies that limr→+∞
T (r,L2)
T (r,L1)

= 1. This together with Theorem 1.11 reveals the

conclusion of Theorem 1.5.

2. Preliminaries

In this section, we will introduce some important results that are used to prove
the main results. First of all, we recall the following results due to Heittokangas–Wen
[4]:

Lemma 2.1. [4, Theorem 3.1] Let f be an exponential polynomial in the nor-
malized form (1.2), where we suppose that ρ(Hj) ≤ q− p with 0 ≤ j ≤ m and j ∈ Z

for some positive integer p such that 1 ≤ p ≤ q. Then

T (r, f) = C(co(W0))
rq

2π
+O(rq−p + log r).

Lemma 2.2. [4, Theorem 3.2] Let f be an exponential polynomial in the nor-
malized form (1.2), where we suppose that ρ(Hj) ≤ q− p with 0 ≤ j ≤ m and j ∈ Z

for some positive integer p such that 1 ≤ p ≤ q. Then, one of the following cases can
occur:

(i) If H0 = 0, then

N

(

r,
1

f

)

= C(co(W ))
rq

2π
+O

(

rq−p + log r
)

.

(ii) If H0 6≡ 0, then

m

(

r,
1

f

)

= O
(

rq−p + log r
)

and N

(

r,
1

f

)

= C(co(W0))
rq

2π
+O

(

rq−p + log r
)

.

We also need the following result that was proved by Ritt [12]:

Lemma 2.3. [12, p. 681, Ritt’s theorem] Assume that g and h are exponential
sums of the forms g(s) =

∑m
j=1 aje

µjs and h(s) =
∑n

k=1 bke
νks, where aj ∈ C \ {0}

with 1 ≤ j ≤ m and j ∈ Z, and bk ∈ C \ {0} with 1 ≤ k ≤ n and j ∈ Z are non-zero
constants, while µ1, µ2, · · · , µm are m distinct finite complex constants, and ν1, ν2,
· · · , νn are n distinct finite complex constants. If g/h is an entire function, then there
exist p distinct finite complex constants γ1, γ2, · · · , γp such that

g(s)

h(s)
=

p
∑

l=1

cle
γls,

where c1, c2, · · · , cp are complex constants such that
∑p

l=1 |cp| > 0.
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Remark 2.4. Under the assumptions of Lemma 2.3, if γl with 1 ≤ l ≤ p and
l ∈ Z in the conclusion of Lemma 2.3 satisfies γl = 0 with 1 ≤ l ≤ p and l ∈ Z, then
g/h reduces to a finite non-zero constant.

The following result is due to Markushevich [10]:

Lemma 2.5. [10] Let Q(z) = anz
n + an−1z

n−1 + · · · + a1z + a0, where n is a
positive integer and an = |an|e

iθn with |an| > 0 and θn ∈ [0, 2π). For any given
positive number ε satisfying 0 < ε < π

4n
, we consider the following 2n angles:

Sj : −
θn
n

+ (2j − 1)
π

2n
+ ε < θ < −

θn
n

+ (2j + 1)
π

2n
− ε,

where j is an integer satisfying 0 ≤ j ≤ 2n− 1. Then there exists a positive number
R = R(ε) such that for |z| = r > R, Re(Q(z)) > |an|(1− ε)rn sin(nε) if z ∈ Sj where
j is even, while Re(Q(z)) < −|an|(1− ε)rn sin(nε) if z ∈ Sj where j is odd.

The following result is due to Yang–Yi [17]:

Lemma 2.6. [17, Theorem 1.62] Let f1, f2, · · · , fn be non-constant meromorphic
functions, and let fn+1 6≡ 0 be a meromorphic function such that

∑n+1
j=1 fj = 1.

Suppose that there exists a subset I ⊆ R+ with linear measure mes I = ∞ such that

n+1
∑

k=1

N

(

r,
1

fk

)

+ n
n+1
∑

k=1

k 6=j

N(r, fk) < (µ+ o(1))T (r, fj), j = 1, 2, · · · , n,

as r ∈ I and r → ∞, where µ is a real number satisfying 0 ≤ µ < 1. Then fn+1 = 1.

3. Proof of Theorem 1.11

Suppose that L1 6≡ L2. By the assumption of Theorem 1.11 we have

(3.1) d1 = d2 = 0,

where and in what follows, dk denotes the degree of the L-function Lk with k ∈ {1, 2}.
Then, it follows by (3.1) and [6, Theorem 1 (ii)] that there exists some positive integer
qk with k ∈ {1, 2} and there exists some complex number ωk with |ωk| = 1 and
k ∈ {1, 2} such that (1.3) holds. We rewrite (1.3) into (1.4) with k ∈ {1, 2}. Here
nk,j with 1 ≤ j ≤ Nk, j ∈ Z and k ∈ {1, 2} is a positive integer such that nk,j|qk
and 2 ≤ nk,l < nk,l+1 with 1 ≤ l ≤ Nk − 1, l ∈ Z and k ∈ {1, 2}. Next, in the same
manner as in Remark 1.12, we deduce by (1.4) and Lemma 2.1 that (1.5)–(1.7) hold.

By (1.7) and the assumption limr→+∞
T (r,L2)
T (r,L1)

= 1 we deduce

(3.2) n1,N1
= n2,N2

.

Since c1 and c2 are two distinct finite values, we can see that one of c1 and c2, say
c2, satisfies

(3.3) a2(1)− c2 6= 0.
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By (3.3), Lemma 2.1 and Lemma 2.2 (ii) with p = q = 1 we deduce

T (r, L2) = N

(

r,
1

L2 − c2

)

+O(log r)

= N











r,
1

a2(1)− c2 +
N2
∑

j=1

a2(n2,j)e−s logn2,j











+O(log r)

= C(co(W2,0))
r

2π
+O(log r).

(3.4)

By the notion of the convex hull of a subset of the complex plane C we have

(3.5) C(co(Wk,0)) = 2 lognk,Nk
with k ∈ {1, 2},

where and in what follows,

Wk,0 = {0,− lognk,1,− lognk,2, · · · ,− log nk,Nk
} with k ∈ {1, 2}.

By (3.2) and (3.5) we have

(3.6) C(co(W1,0)) = 2 logn1,N1
= 2 logn2,N2

= C(co(W2,0)).

By (1.4), the second fundamental theorem and the assumption that L1 and L2

share c1 and c2 IM, we deduce

T (r, L2) ≤ N

(

r,
1

L2 − c1

)

+N

(

r,
1

L2 − c2

)

−N0

(

r,
1

L′
2

)

+O(log r)

= N

(

r,
1

L2 − c1

)

+N

(

r,
1

L2 − c2

)

−N0

(

r,
1

L′
2

)

+O(log r)

≤ N

(

r,
1

L1 − L2

)

−N0

(

r,
1

L′
2

)

+O(log r)(3.7)

≤ N

(

r,
1

L1 − L2

)

−N0

(

r,
1

L′
2

)

+O(log r)

= N

(

r,
1

a1(1)− a2(1) +
∑N1

j=1 a1(n1,j)e−s logn1,j −
∑N2

j=1 a2(n2,j)e−s logn2,j

)

−N0

(

r,
1

L′
2

)

+O(log r),

where and in what follows, N0

(

r, 1
L′
2

)

denotes the counting function of those zeros of

L′
2 in the open disc |s| < r, that are neither zeros of L2 − c1 nor zeros of L2 − c2.

By (3.6), Lemma 2.2 and the notion of the convex hull of a subset of the complex
plane C we deduce

N

(

r,
1

a1(1)− a2(1) +
∑N1

j=1 a1(n1,j)e−s logn1,j −
∑N2

j=1 a2(n2,j)e−s logn2,j

)

+O(log r)

≤ max {C(co(W1,0)), C(co(W2,0))}
r

2π
+O(log r)(3.8)

= C(co(W2,0))
r

2π
+O(log r).
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By (3.4), (3.7) and (3.8) we have

C(co(W2,0))
r

2π
+O(log r)

= N

(

r,
1

a2(1)− c2 +
∑N2

j=1 a2(n2,j)e−s logn2,j

)

+O(log r)

= N

(

r,
1

L2 − c2

)

+O(log r) = T (r, L2) +O(log r)

≤ N

(

r,
1

L2 − c1

)

+N

(

r,
1

L2 − c2

)

−N

(

r,
1

L′
2

)

+O(log r)

= N

(

r,
1

L2 − c1

)

+N

(

r,
1

L2 − c2

)

−N

(

r,
1

L′
2

)

+O(log r)

= N

(

r,
1

L2 − c1

)

+N

(

r,
1

L2 − c2

)

−N0

(

r,
1

L′
2

)

+O(log r)(3.9)

= N

(

r,
1

L2 − c1

)

+N

(

r,
1

L2 − c2

)

−N0

(

r,
1

L′
2

)

+O(log r)

≤ N

(

r,
1

L1 − L2

)

−N0

(

r,
1

L′
2

)

+O(log r)

≤ N

(

r,
1

L1 − L2

)

−N0

(

r,
1

L′
2

)

+O(log r)

= N

(

r,
1

a1(1)− a2(1) +
∑N1

j=1 a1(n1,j)e−s logn1,j −
∑N2

j=1 a2(n2,j)e−s logn2,j

)

−N0

(

r,
1

L′
2

)

+O(log r)

≤ N

(

r,
1

a1(1)− a2(1) +
∑N1

j=1 a1(n1,j)e−s logn1,j −
∑N2

j=1 a2(n2,j)e−s logn2,j

)

+O(log r) ≤ C(co(W2,0)
r

2π
+O(log r).

By (3.9) we obtain that all the inequalities in (3.9) are equalities that are equal
to C(co(W2,0)

r
2π

+ O(log r). Combining this with the assumption that L1 and L2

share c1 and c2 IM, we deduce

(3.10) N0

(

r,
1

L′
2

)

+N(2

(

r,
1

L1 − L2

)

= O(log r),

T (r, L2) = N

(

r,
1

a1(1)− a2(1) +
∑N1

j=1 a1(n1,j)e−s logn1,j −
∑N2

j=1 a2(n2,j)e−s logn2,j

)

+O(log r)

= N

(

r,
1

L1 − L2

)

+O(log r) = N1)

(

r,
1

L1 − L2

)

+O(log r)(3.11)

= N

(

r,
1

L1 − L2

)

+O(log r) = C(co(W2,0))
r

2π
+O(log r),
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T (r, L2) = N

(

r,
1

L1 − c1

)

+N

(

r,
1

L1 − c2

)

+O(log r)

= N

(

r,
1

L2 − c1

)

+N

(

r,
1

L2 − c2

)

+O(log r)

= C(co(W2,0))
r

2π
+O(log r)

(3.12)

and

T (r, L2) = N

(

r,
1

L2 − c1

)

+N

(

r,
1

L2 − c2

)

−N

(

r,
1

L′
2

)

+O(log r)

= N

(

r,
1

L2 − c2

)

+O(log r) = C(co(W2,0))
r

2π
+O(log r).

(3.13)

By (3.2), (3.11), Lemma 2.2 and the notion of the convex hull of a subset of the
complex plane C we deduce

(3.14) a1(1)− a2(1) 6= 0

and

(3.15) a1(n1,N1
)− a2(n2,N2

) 6= 0 with n1,N1
= n2,N2

.

On the other hand, by (3.10)–(3.12) we deduce

(3.16) N

(

r,
(L2 − c1)(L2 − c2)

L′
2(L1 − L2)

)

= O(log r).

By the assumption that L1 and L2 share c1 and c2 IM, we deduce that
L′
2
(L1−L2)

(L2−c1)(L2−c2)

is an entire function. Combining this with (1.4), Lemma 2.3 and Remark 2.4, we
deduce that there exist p2 distinct finite complex constants γ2,1, γ2,2, · · · , γ2,p2 such
that

(3.17)
L′
2(s)(L1(s)− L2(s))

(L2(s)− c1)(L2(s)− c2)
=

p2
∑

l=1

c2,le
γ2,ls for each s ∈ C,

where c2,1, c2,2, · · · , c2,p2 are complex constants such that
∑p2

l=1 |c2,l| > 0. By (3.16),
(3.17) and Lemma 2.2 we deduce that p2 = 1 and

∑p2
l=1 c2,le

γ2,ls reduces to c2,1e
γ2,1s.

Therefore, (3.17) can be rewritten into

(3.18)
L′
2(s)(L1(s)− L2(s))

(L2(s)− c1)(L2(s)− c2)
= c2,1e

γ2,1s for each s ∈ C.

Next we prove that c2,1e
γ2,1s reduces to some finite non-zero constant c̃2, and (3.18)

can be rewritten into

(3.19)
L′
2(s)(L1(s)− L2(s))

(L2(s)− c1)(L2(s)− c2)
= c̃2 identically for each s ∈ C.

Next we prove (3.19): suppose that (3.19) is not valid. Then it follows by (3.18) that
γ2,1 6= 0. Therefore, we have

(3.20) γ2,1 = |γ2,1|e
iθ2,1 ,

where θ2,1 ∈ [0, 2π). For any given positive number ε satisfying 0 < ε < π
4
, we

consider the following two angles:

(3.21) S2,j : − θ2,1 + (2j − 1)
π

2
+ ε < θ < −θ2,1 + (2j + 1)

π

2
− ε,
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where j = 0, 1. Then, by (3.20), (3.21) and Lemma 2.5 we can see that there exists a
positive number R = R(ε) depending only upon ε such that for |s| = r > R, we have

Re(γ2,1s) > |γ2,1|(1− ε)r sin ε, if

s ∈ S2,0 =:
{

s : − θ2,1 −
π

2
+ ε < arg s < −θ2,1 +

π

2
− ε
}

,
(3.22)

while

Re(γ2,1s) < −|γ2,1|(1− ε)r sin ε, if

s ∈ S2,1 =:

{

s : − θ2,1 +
π

2
+ ε < arg s < −θ2,1 +

3π

2
− ε

}

.
(3.23)

By (1.4) with k = 2 we deduce

(3.24) L′
2(s) = −

N2
∑

j=1

a2(n2,j) logn2,j

ns
2,j

,

By (1.4) and (3.24) we deduce

L′
2(s)(L1(s)− L2(s))

(L2(s)− c1)(L2(s)− c2)

= −

(

∑N2

j=1
a2(n2,j) logn2,j

ns
2,j

)(

a1(1)− a2(1) +
∑N1

j=1
a1(n1,j)

ns
1,j

−
∑N2

j=1
a2(n2,j )

ns
2,j

)

(

a2(1)− c1 +
∑N2

j=1
a2(n2,j)

ns
2,j

)(

a2(1)− c2 +
∑N2

j=1
a2(n2,j)

ns
2,j

)

(3.25)

for each s ∈ C.
Suppose that S2,0∩{s : Re(s) > 0} is not an empty set. Then S2,0∩{s : Re(s) >

0} is a domain of an angle. Combining this with (3.22), we can see that there exist
two real numbers ϑ1, ϑ2 ∈

(

−θ2,1 −
π
2
+ ε,−θ2,1 +

π
2
− ε
)

satisfying ϑ1 < ϑ2 such that

{s : ϑ1 ≤ arg s ≤ ϑ2} ⊂ S2,0 ∩ {s : Re(s) > 0} and

Re(γ2,1s) > |γ2,1|(1− ε)r sin ε
(3.26)

for each s ∈ {s : ϑ1 ≤ arg s ≤ ϑ2}. Next we set

(3.27) S1 = {s : ϑ1 ≤ arg s ≤ ϑ2}.

By (3.3), (3.14), (3.15), (3.18), (3.26), (3.27) we deduce

+∞ = lim
|s|→+∞

s∈S1

|c2,1|e
|γ2,1|(1−ε)r sin ε ≤ lim

|s|→+∞

s∈S1

|c2,1||e
Re(γ2,1s) = lim

|s|→+∞

s∈S1

|c2,1| |e
γ2,1s|

= lim
|s|→+∞

s∈S1

∣

∣

∣

∣

L′
2(s)(L1(s)− L2(s))

(L2(s)− c1)(L2(s)− c2)

∣

∣

∣

∣

=







|a1(1)− a2(1)| logn2,1

|a2(1)− c2|
, when a2(1)− c1 = 0,

0, when a2(1)− c1 6= 0.

This is a contradiction.
Suppose that S2,0∩{s : Re(s) > 0} is an empty set. Then S2,1∩{s : Re(s) > 0} is

not an empty set such that S2,1∩{s : Re(s) > 0} is a domain of an angle. Combining
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this with (3.23), we can see that there exist two real numbers ϑ3, ϑ4 ∈ (−θ2,1 +
π
2
+

ε,−θ2,1 +
3π
2
− ε) satisfying ϑ3 < ϑ4 such that

{s : ϑ3 ≤ arg s ≤ ϑ4} ⊂ S2,1 ∩ {s : Re(s) > 0} and

Re(γ2,1s) < −|c2,1|(1− ε)r sin ε
(3.28)

for each θ ∈ [ϑ3, ϑ4]. Next we set

(3.29) S2 = {s : ϑ3 ≤ arg s ≤ ϑ4}.

Suppose that a2(1)− c1 = 0. By (3.3), (3.14), (3.25), (3.28) and (3.29) we have

0 <
|a1(1)− a2(1)| logn2,1

|a2(1)− c2|
= lim

|s|→+∞

s∈S2

∣

∣

∣

∣

L′
2(s)(L1(s)− L2(s))

(L2(s)− c1)(L2(s)− c2)

∣

∣

∣

∣

= lim
|s|→+∞

s∈S2

|c2,1| |e
γ2,1s| = lim

|s|→+∞

s∈S2

|c2,1|e
Re(γ2,1s) ≤ lim

|s|→+∞

s∈S2

|c2,1|e
−|γ2,1|(1−ε)r sin ε = 0,

which is a contradiction. Therefore, we have

(3.30) a2(1)− c1 6= 0.

By (3.3), (3.13), (3.30), Lemma 2.1, Lemma 2.2 (ii) and (1.4) for k = 2, we deduce

T (r, L2) = N

(

r,
1

L2 − c1

)

+O(log r) = N

(

r,
1

L2 − c2

)

+O(log r)(3.31)

= C(co(W2,0))
r

2π
+O(log r)

and

(3.32) N

(

r,
1

L′
2

)

= C(co(W2))
r

2π
+O(log r),

where and in what follows,

Wk = {− log nk,1,− log nk,2, · · · ,− lognk,Nk
} and k ∈ {1, 2}.

By (3.13), (3.31) and (3.32) we deduce

C(co(W2,0))
r

2π
= C(co(W2))

r

2π
+O(log r),

and so we have C(co(W2,0)) = C(co(W2)). Combining this with (3.31) and (1.4) for
k = 2, we deduce a2(1) − c1 = a2(1) − c2 = 0. Therefore, we have c1 = c2. This is
impossible. The formula (3.19) is thus completely proved.

Next, we use the lines from (3.2) to (3.19) and the assumption that L1 and L2

share c1 and c2 IM to deduce

(3.33)
L′
1(L1 − L2)

(L1 − c1)(L1 − c2)
= c̃1,

where c̃1 is some finite non-zero constant. By (3.19) and (3.33) we have

(3.34)
L′
1

(L1 − c1)(L1 − c2)
=

c̃L′
2

(L2 − c1)(L2 − c2)
,

where c̃ = c̃1/c̃2.
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Since L1 and L2 share c1 and c2 IM, we deduce by (3.11) and (3.12) that

T (r, L2) = N1)

(

r,
1

L1 − L2

)

+O(log r) =

2
∑

j=1

∞
∑

m=2

N (1,m) (r, cj , L1, L2)

+

2
∑

j=1

N (1,1) (r, cj, L1, L2) +

2
∑

j=1

∞
∑

m=2

N (m,1) (r, cj, L1, L2) +O(log r)(3.35)

= C(co(W2,0))
r

2π
+O(log r),

where and in what follows, N (1,m) (r, cj , L1, L2) with j ∈ {1, 2} denotes the reduced
counting function of those common zeros of L1 − cj and L2 − cj with j ∈ {1, 2} in
|s| < r, such that each such common zero of L1 − cj and L2 − cj with j ∈ {1, 2} is a

simple zero of L1−cj , and a zero of L2−cj of multiplicity m, and N (m,1) (r, cj, L1, L2)
with j ∈ {1, 2} denotes the reduced counting function of those common zeros of L1−cj
and L2−cj with j ∈ {1, 2} in |s| < r, such that each such common zero of L1−cj and
L2− cj with j ∈ {1, 2} is a simple zero of L2− cj , and a zero of L1− cj of multiplicity

m, while N (1,1) (r, cj , L1, L2) with j ∈ {1, 2} denotes the reduced counting function
of the common simple zeros of L1 − cj and L2 − cj in |s| < r. Based upon (3.35), we
consider the following three cases:

Case 1. Suppose that

(3.36) N (1,1)(r, c1, L1, L2) +N (1,1)(r, c2, L1, L2) 6= o(T (r, Lk)) with k ∈ {1, 2}.

By (3.36), without loss of generality we suppose that there exists some common
simple zero z0 ∈ C of L1 − c1 and L2 − c1. We substitute L1(z0) = L2(z0) = c1 into
(3.34), and then we deduce c̃ = 1. Therefore, (3.34) can be rewritten into

(3.37)
L′
1

(L1 − c1)(L1 − c2)
=

L′
2

(L2 − c1)(L2 − c2)
.

By (3.37) and the assumption that L1 and L2 share c1 and c2 IM we deduce that L1

and L2 share c1 and c2 CM. This together with (3.10) gives

(3.38) N(2

(

r,
1

Lk − c1

)

+N(2

(

r,
1

Lk − c2

)

≤ N(2

(

r,
1

L1 − L2

)

= O(log r)

with k ∈ {1, 2}. By (3.38) we can see that the first equality of (3.4) can be rewritten
into

T (r, L2) = N1)

(

r,
1

L2 − c2

)

+ O(log r) = C(co(W2,0))
r

2π
+O(log r).(3.39)

By (3.38) we also see that (3.12) can be rewritten into

T (r, L2) = N 1)

(

r,
1

L1 − c1

)

+N1)

(

r,
1

L1 − c2

)

+O(log r)

= N 1)

(

r,
1

L2 − c1

)

+N1)

(

r,
1

L2 − c2

)

+O(log r)

= C(co(W2,0))
r

2π
+O(log r).

(3.40)

By (3.38)–(3.40) and the assumption that L1 and L2 share c1 and c2 IM we deduce

(3.41) N

(

r,
1

Lk − c1

)

= O(log r) with k ∈ {1, 2}.
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Since L1 and L2 are transcendental entire functions satisfying (1.4), we have by (3.41)
that

(3.42) L1 = c1 + P1e
β1 and L2 = c1 + P2e

β2,

where P1 and P2 are polynomials such that Pk 6≡ 0 with k ∈ {1, 2}, and βk with k ∈
{1, 2} is a non-constant entire functions. Moreover, by (3.2), (3.42) and Definition 1.1
we deduce that βk with k ∈ {1, 2} is a non-constant polynomial of degree deg(βk) = 1
with k ∈ {1, 2}. Therefore

(3.43) βk(s) = Aks+Bk with k ∈ {1, 2},

where and in what follows, Ak and Bk with Ak 6= 0 and k ∈ {1, 2} are complex
constants.

By substituting (1.4) and (3.43) into (3.42) we have

ak(1) +

Nk
∑

j=1

ak(nk,j)e
−s lognk,j = c1 + Pk(s)e

Aks+Bk with k ∈ {1, 2}(3.44)

for each s ∈ C.

We rewrite (3.44) into

Nk
∑

j=1

ak(nk,j)e
−s lognk,j − Pk(s)e

Aks+Bk = c1 − ak(1) with k ∈ {1, 2}(3.45)

for each s ∈ C.

By (3.45) and Lemma 2.6 we deduce c1 = ak(1). Therefore, (3.45) can be rewritten
into

(3.46)

Nk
∑

j=1

ak(nk,j)e
−s lognk,j − Pk(s)e

Aks+Bk = 0 with k ∈ {1, 2} for each s ∈ C.

We rewrite (3.46) into

(3.47)

Nk
∑

j=1

ak(nk,j)

Pk(s)
e−(Ak+lognk,j)s−Bk = 1 with k ∈ {1, 2} for each s ∈ C.

We consider the following two subcases:

Subcase 1.1. Suppose that Nk ≥ 2 with k ∈ {1, 2}. First of all, by the obtained
result that nk,j with 1 ≤ j ≤ Nk, j ∈ Z and k ∈ {1, 2} is a positive integer such that
nk,j|qk and 2 ≤ nk,l < nk,l+1 with 1 ≤ l ≤ Nk − 1, l ∈ Z and k ∈ {1, 2}, we deduce by
Lemma 2.6 that there exists one and only one term on the left hand side of (3.47),

say
ak(nk,1)

Pk(s)
e−s(Ak+lognk,1)s−Bk , is a constant, such that

ak(nk,1)

Pk(s)
e−(Ak+lognk,1)s−Bk = 1

and

(3.48)

Nk
∑

j=2

ak(nk,j)

Pk(s)
e−(Ak+lognk,j)s−Bk = 0 with k ∈ {1, 2} for each s ∈ C.
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By (3.48) we deduce that the positive integer Nk with k ∈ {1, 2} satisfies Nk ≥ 3
with k ∈ {1, 2}, such that

(3.49)

Nk
∑

j=3

ak(nk,j)

ak(nk,2)
e(log nk,2−lognk,j)s = −1 with k ∈ {1, 2} for each s ∈ C.

By (3.49), Lemma 2.6 and the obtained result Nk ≥ 3 we get a contradiction.

Subcase 1.2. Suppose that Nk = 1 with k ∈ {1, 2}. Then, (3.46) can be
rewritten into

(3.50) ak(nk,1)e
−s lognk,1 = Pk(s)e

Aks+Bk with k ∈ {1, 2} for each s ∈ C.

By substituting (3.43) and (3.50) into (3.42) we have

(3.51) L1(s) = c1 + a1(n1,1)e
−s logn1,1 and L2(s) = c1 + a2(n2,1)e

−s logn2,1

for each s ∈ C.
By (3.51) we deduce that each zero of L1−c2 and L2−c2 is simple zero. Combing

this with Lemma 2.1 and Lemma 2.2 (ii) with p = q = 1, and the assumption that
L1 and L2 share c2 IM we deduce

T (r, Lk) = N

(

r,
1

Lk − c2

)

+O(log r) = N

(

r,
1

Lk − c2

)

+O(log r)

=
lognk,1

π
r +O(log r) with k ∈ {1, 2}.

(3.52)

By (3.52) and the assumption that L1 and L2 share c2 IM, we have

T (r, L1) = T (r, L2) +O(log r) = N

(

r,
1

L1 − c2

)

+O(log r)

= N

(

r,
1

L2 − c2

)

+O(log r) =
logn1,1

π
r +O(log r) =

log n2,1

π
r +O(log r),

which implies that n1,1 = n2,1. Combining this with (3.51) and the assumption that
L1 and L2 share c2 IM, we deduce a1(n1,1) = a2(n2,1) and L1 = L2, which contradicts
the assumption L1 6≡ L2.

Case 2. Suppose that there exists some positive integer m ≥ 2 such that

(3.53) N (1,m) (r, c1, L1, L2) +N (1,m) (r, c2, L1, L2) 6= o(T (r, Lk)) with k ∈ {1, 2}.

By (3.53) we suppose, without loss of generality, that there exists some point z0 ∈ C

such that z0 is a simple zero of L1 − c1, and z0 is a zero of L2 − c1 of multiplicity
m. Then, by substituting L1(z0) = L2(z0) = c1 into (3.34) we deduce c̃ = 1/m.
Therefore, (3.34) can be rewritten into

(3.54)
mL′

1

(L1 − c1)(L1 − c2)
=

L′
2

(L2 − c1)(L2 − c2)
.

By (3.54) and the assumption that L1 and l2 share c1 and c2 IM we deduce that each
common zero z0 ∈ C of L1− cj and L2− cj with j ∈ {1, 2} is a simple zero of L1− cj
and a zero of L2 − cj of multiplicity m. Combining this with the supposition m ≥ 2
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and the second fundamental theorem, we have

T (r, L2) ≤ N

(

r,
1

L2 − c1

)

+N

(

r,
1

L2 − c2

)

+O(log r)

≤
1

2
N

(

r,
1

L2 − c1

)

+
1

2
N

(

r,
1

L2 − c2

)

+O(log r)

≤
1

2
T (r, L2) +

1

2
T (r, L2) +O(log r) ≤ T (r, L2) +O(log r),

(3.55)

which together with (1.4) and Lemma 2.1 gives

T (r, L2) = N

(

r,
1

L2 − c1

)

+O(log r) = N

(

r,
1

L2 − c2

)

+O(log r)

= N

(

r,
1

a2(1)− c1 +
∑N2

j=1 a2(n2,j)e−s logn2,j

)

+O(log r)(3.56)

= N

(

r,
1

a2(1)− c2 +
∑N2

j=1 a2(n2,j)e−s logn2,j

)

+O(log r)

= C(co(W2,0))
r

2π
+O(log r).

On the other hand, from (1.4) for k = 2, the first line of (3.55), the formula (3.56),
the above analysis and the supposition that m is a positive integer such that m ≥ 2,
we deduce

T (r, L2) ≤ N

(

r,
1

L2 − c1

)

+N

(

r,
1

L2 − c2

)

+O(log r) ≤ N

(

r,
1

L′
2

)

+O(log r)

= N

(

r,
1

∑N2

j=1 a2(n2,j)(log n2,j)e−s logn2,j

)

+O(log r)

= C(co(W2))
r

2π
+O(log r) ≤ C(co(W2,0))

r

2π
+O(log r).

This together with (3.56) implies that

C(co(W2,0))
r

2π
= C(co(W2))

r

2π
+O(log r),

and so we have W2,0 = W2 and a2(1) − c1 = a2(1) − c2 = 0. Therefore, we have
c1 = c2, which is impossible.

Case 3. Suppose that there exists some positive integer m ≥ 2 such that

(3.57) N (m,1) (r, c1, L1, L2) +N (m,1) (r, c2, L1, L2) 6= o(T (r, Lk)) with k ∈ {1, 2}.

Next, in the same manner as in Case 2 we deduce by (3.57) that a1(1) − c1 =
a1(1) − c2 = 0, and so c1 = c2, this is impossible. Theorem 1.11 is thus completely
proved.

4. Proof of Theorem 1.10

Using the lines before the formula (3.14) of the proof of Theorem 1.11, we get
(3.14), which contradicts the assumption a1(1) − a2(1) = 0 of Theorem 1.10. This
completes the proof of Theorem 1.10.
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