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Abstract. We study the Carathéodory metric on some generalized Teichmüller spaces. Our

paper is especially inspired by the papers by Earle (1974) and Miyachi (2006). Earle (1974) showed

that the Carathéodory metric is complete on any Teichmüller space. Miyachi (2006) extended this

result for asymptotic Teichmüller spaces. We study the completeness of the Carathéodory metric

on product Teichmüller spaces and on the Teichmüller space of a closed set in the Riemann sphere.

Eräiden yleistettyjen Teichmüllerin avaruuksien Carathéodoryn metriikka

Tiivistelmä. Tutkimme eräiden yleistettyjen Teichmüllerin avaruuksien Carathéodoryn met-

riikkaa. Tarkasteluamme inspiroivat erityisesti Earlen (1974) ja Miyachin (2006) työt. Earle (1974)

osoitti, että jokaisen Teichmüllerin avaruuden Carathéodoryn metriikka on täydellinen. Miyachi

(2006) yleisti tämän tuloksen asymptoottisiin Teichmüllerin avaruuksiin. Me tutkimme Teichmülle-

rin tuloavaruuksien ja Riemannin pallon suljetun joukon Teichmüllerin tuloavaruuden Carathéodo-

ryn metriikan täydellisyyttä.

1. Introduction

The study of Kobayashi and Carathéodory metrics on Teichmüller spaces is an
important topic. An important theorem of Royden states that the Teichmüller and
Kobayashi metrics coincide for finite dimensional Teichmüller spaces; see [25]. Roy-
den’s theorem was extended to all Teichmüller spaces by Gardiner; see [7, Chapter 14].
Subsequently, using holomorphic motions, an easy proof was given in the paper [5].

The question of Carathéodory metric on Teichmüller spaces was studied in the
important paper [1]. In that paper, using Bers embedding, Earle showed that the
Carathéodory metric is complete on Teichmüller spaces. In that same paper, Earle
asked the question whether the Carathéodory metric coincides with the Teichmüller
metric on Teichmüller spaces. In the fundamental paper [19], Marković proved that
for any closed surface of genus g ≥ 2, the answer is negative.

In the paper [23], Miyachi extended Earle’s result to asymptotic Teichmüller
spaces. Some other important papers on Kobayashi and Carathéodory metrics and
their relationship with Teichmüller theory are [15, 16, 17, 25, 27]. Other comprehen-
sive papers on Schwarz’s lemma and Kobayashi and Carathéodory pseudometrics are
[4, 9].
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Our present paper is particularly inspired by the techniques used in the papers
[1, 23]. We prove that, for a large class of Teichmüller spaces, that is, the prod-

uct Teichmüller space, and the Teichmüller space of a closed set in the sphere, the
Carathéodory metric is complete. These Teichmüller spaces were first studied by
Lieb in his Cornell University doctoral dissertation (see [18]). Subsequently, they
have been extensively studied and used in several papers. They have an intimate re-
lationship with holomorphic motions, tame quasiconformal motions, and with some
problems in geometric function theory. For applications to holomorphic motions, see
the papers [20, 21, 22], and also the expository paper [11]. For applications to some
problems in geometric function theory, see the paper [6]. For applications to contin-
uous motions and geometric function theory, see the paper [12]. A recent application
to tame quasiconformal motions is the paper [13].

Our paper is arranged as follows. In §2, we state the two main theorems of
our paper. In §3, we summarize the definitions and some important properties of
Kobayashi and Carathéodory metrics on complex manifolds. In §4, we give the
precise definition of product Teichmüller spaces and note some properties that will
be useful in our paper. In §5, we prove the first main theorem of our paper. The
crucial step is Theorem 1 (in §5), where we prove an estimate for Carathéodory and
Kobayashi metrics on Teichmüller spaces. In §6, we define the Teichmüller space of a
closed set in the Riemann sphere, and note some properties that are relevant to our
paper. In §7, we prove the second main theorem of our paper.

Acknowledgement. We thank the referee for his/her careful reading of the paper
and for his/her helpful comments.

2. Statements of the main theorems

Throughout this paper, we will use C for the complex plane, Ĉ = C ∪ {∞} for
the Riemann sphere, and ∆ = {z ∈ C : |z| < 1} for the open unit disk.

We state the main theorems of this paper. For each i in the index set I, let
Xi be a hyperbolic Riemann surface. Let X be the disjoint union

∐
i∈I Xi, and let

Teich(X) denote its product Teichmüller space; the precise definition is given in §4.2.

Theorem A. The Carathéodory metric on Teich(X) is complete.

Let E be a closed subset of Ĉ that contains the points 0, 1, and ∞. Let T (E)
denote its Teichmüller space; see §6.1 for the precise definition.

Theorem B. The Carathéodory metric on T (E) is complete.

3. Kobayashi and Carathéodory metrics

In this section, we summarize the definitions and some basic properties of the
Kobayashi and Carathéodory pseudometrics. Let ρ denote the Poincaré metric on
∆. We have:

ρ(z1, z2) = tanh−1
∣∣∣ z1 − z2

1− z̄1z2

∣∣∣.

3.1. Kobayashi pseudometric. Let M be a complex manifold. The Kobayashi

pseudometric KM is defined as follows: Given two points p, q ∈M , we choose points
p = p0, p1, · · ·, pk−1, pk = q of M , points a1, · · ·, ak, b1, · · ·, bk of ∆, and holomorphic
maps f1, · · ·, fk of ∆ into M such that fi(ai) = pi−1 and fi(bi) = pi for i = 1, · · ·, k.
For each choice of points and maps thus made, consider the number

ρ(a1, b1) + · · ·+ ρ(ak, bk).
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Then, KM(p, q) is the infimum of the numbers obtained in this manner for all possible
choices.

We note some important properties of KM . For proofs, we refer to [14, Chapter 4,
Section 1].

Proposition 1. Let M and N be two complex manifolds and let f : M → N be

a holomorphic map. Then

KM(p, q) ≥ KN(f(p), f(q)) for p, q ∈M.

Corollary 1. Every biholomorphic map f : M → N is an isometry; which

means:

KM(p, q) = KN(f(p), f(q)) for p, q ∈M.

Proposition 2. For the open unit disk ∆, K∆ coincides with the Poincaré metric

ρ.

The following fact is stated in [9, §3]. For the sake of completeness, we include a
proof here.

Proposition 3. Let Br(a) be the open ball of radius r and center a in a complex

Banach space X. Then

KBr(a)(a, x) = tanh−1

(
‖x− a‖

r

)

for all x in Br(a).

Proof. Let x ∈ Br(a). We may assume that x 6= a. Define a holomorphic map
f : ∆ → Br(a) as follows:

f(t) = a+
rt(x− a)

‖x− a‖
.

Note that

f

(
‖x− a‖

r

)
= x.

By Proposition 1, we have

KBr(a)

(
f(0), f

(
‖x− a‖

r

))
≤ K∆

(
0,

‖x− a‖

r

)

which gives

(3.1) KBr(a)(a, x) ≤ tanh−1

(
‖x− a‖

r

)
.

Next, by Hahn–Banach theorem there exists a linear functional ℓ ∈ X∗ with ‖ℓ‖ = 1
and ℓ(x− a) = ‖x− a‖. Define a holomorphic map g : Br(a) → ∆ given by

g(y) =
ℓ(y − a)

r
.

Again, by Proposition 1, we have

K∆(g(x), g(a)) ≤ KBr(a)(x, a).

It immediately follows that

(3.2) KBr(a)(a, x) ≥ tanh−1

(
‖x− a‖

r

)
.

Combining inequalities (3.1) and (3.2) we get the required result. �
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3.2. Carathéodory pseudometric. Let M be a complex manifold. The
Carathéodory pseudometric CM is defined as follows:

CM(p, q) = sup
f

ρ(f(p), f(q)) for p, q ∈M,

where the supremum is taken with respect to the family of holomorphic maps f : M →
∆.

We note some important properties of CM . For proofs, we refer to [14, Chapter 4,
Section 2].

Proposition 4. Let M and N be two complex manifolds and let f : M → N be

a holomorphic map. Then

CM(p, q) ≥ CN(f(p), f(q)) for p, q ∈M.

Corollary 2. Every biholomorphic map f : M → N is an isometry; which

means:

CM(p, q) = CN(f(p), f(q)) for p, q ∈M.

Proposition 5. For the open unit disk ∆, C∆ coincides with the Poincaré met-

ric ρ.

Proposition 6. IfM andM ′ are complex manifolds with complete Carathéodory

metric, so is M ×M ′.

Proposition 7. Let Br(a) be the open ball of radius r and center a in a complex

Banach space X. Then

CBr(a)(a, x) = tanh−1

(
‖x− a‖

r

)

for all x in Br(a).

See [1, Lemma 2]. The proof is similar to the proof of Proposition 3.

Corollary 3. The Carathéodory metric induces the standard topology on Br(a).

See [1, Corollary of Lemma 2].

4. Some properties of product Teichmüller spaces

We study some basic properties of product Teichmüller spaces. The details are
given in [6, Sections 7.1 to 7.8]. For standard facts on classical Teichmüller spaces,
the reader is referred to the standard references [2, 3, 7, 8, 10, 24].

4.1. Some complex Banach spaces. Let I be an index set. For full generality,
in this section we will assume that I is uncountable. For each i in the index set I,
let Xi be a hyperbolic Riemann surface. Let X be the disjoint union

∐
i∈I Xi. We

introduce the following important Banach spaces:
By definition, a Beltrami form on X is a tensor µ whose restriction to each Xi is

a bounded measurable Beltrami form µi on Xi with L∞ norm less than some finite
constant independent of i in I. We define

‖µ‖ = sup{‖µi‖∞ : i ∈ I}.

We denote the Banach space of Beltrami forms on X by Belt(X) and we denote the
open unit ball of Belt(X) by M(X). The basepoint of M(X) is its center 0.
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Let π : ∆ → R be a holomorphic universal covering of the hyperbolic Riemann
surface R. Every holomorphic quadratic differential ψ on R lifts to a holomorphic

quadratic differential ψ̃(z) dz2 on ∆. We say that ψ is bounded if its Nehari norm

‖ψ‖N = sup{‖ψ̃(z)‖(1− |z|2)2 : z ∈ ∆}

is finite.
For each i in I let X∗

i be the conjugate Riemann surface of Xi, and let X∗ be the
disjoint union of the X∗

i . Let ψ be a holomorphic quadratic differential on X∗. We
say that ψ is bounded if its restriction ψi to X∗

i is a bounded holomorphic quadratic
differential for each i and its Nehari norm

‖ψ‖N = sup{‖ψi‖N : i ∈ I}

is finite. We denote the complex Banach space of bounded holomorphic quadratic
differentials on X∗ by B(X∗).

4.2. Product Teichmüller space. For each i ∈ I, let Teich(Xi) be the Teich-
müller space of the Riemann surface Xi, let 0i be the basepoint of Teich(Xi) and
let di be the Teichmüller metric on Teich(Xi). By definition, the Teichmüller space
Teich(X) is the set of functions t on I such that t(i) is in Teich(Xi) for each i and
the set of numbers {di(0i, t(i)) : i ∈ I} is bounded. As usual, we shall write ti for
t(i). The basepoint of Teich(X) is the function t such that ti = 0i for each i; we shall
denote it by 0X .

The Teichmüller metric on Teich(X) is defined by

dT (s, t) = sup{di(si, ti) : i ∈ I},

for s and t in Teich(X). Since each metric di is complete, the metric dT on Teich(X)
is also complete.

Lemma 1. The Teichmüller metric on Teich(X) is the same as its Kobayashi

metric.

See [6, Proposition 7.28].

For each i ∈ I, let Φi be the usual projection of M(Xi) onto Teich(Xi); see,
for example, [2, 3, 10, 24] for standard facts on the classical Teichmüller spaces.
By definition di(0i, ti) = inf{ρ(0, ‖µi‖) : µi ∈ M(Xi) and Φi(µi) = ti} for each t ∈
Teich(X), so if µ ∈ M(X) then di(0i,Φ(µi)) ≤ ρ(0, ‖µ‖) for all i. We can therefore
define the standard projection Φ: M(X) → Teich(X) by the formula

Φ(µ)i = Φi(µi), µ ∈M(X) and i ∈ I.

It is easy to see that the map Φ is surjective.

Definition 1. For each i ∈ I let Bi : M(Xi) → B(X∗

i ) be the classical Bers
projection (see [2, 3, 10, 24]). The generalized Bers projection B : M(X) → B(X∗)
is defined by the formula B(µ)i = Bi(µi), i in I and µ in M(X).

Definition 2. For each i ∈ I, let αi : B(X∗

i ) → L∞(Xi) be the classical Ahlfors–
Weill map (see [1, 2, 8, 10, 24]). The generalized Ahlfors–Weill map α : B(X∗) →
Belt(X) is defined by the formula α(ψ)i = αi(ψi), i in I and ψ in B(X∗).

Proposition 8. The generalized Bers projection B : M(X) → B(X∗) is a holo-

morphic split submersion with the following properties:

(i) B(0) = 0 and ‖B(µ)‖N ≤ 6 for all µ in M(X);
(ii) for all µ and ν in M(X), B(µ) = B(ν) if and only if Φ(µ) = Φ(ν);
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(iii) if ψ ∈ B(X∗) and ‖ψ‖B(X∗) < 2, then B(α(ψ)) = ψ.

Statements (i), (ii), and (iii) follow immediately from the corresponding state-
ments in the classical case (see [2, 3, 8, 10, 24]). The fact that B is a holomorphic
split submersion is proved in [6, Proposition 7.3].

Corollary 4. There is a unique complex Banach manifold structure on Teich(X)
that has the following properties:

(i) the map Φ: M(X) → Teich(X) is a holomorphic split submersion;

(ii) the map B̂ : Teich(X) → B(M(X)) such that B̂ ◦ Φ = B is biholomorphic,

(iii) if t ∈ Teich(X) and ‖B̂(t)‖B(X∗) < 2, then Φ(α(B̂(t))) = t.

See [6, Corollary 7.4].

Definition 3. The biholomorphic map B̂ is called the generalized Bers embedding

of Teich(X) in B(X∗).

Definition 4. The generalized Ahlfors–Weill section of B is the restriction of the
map α to the set of ψ in B(X∗) with ‖ψ‖B(X∗) < 2.

4.3. Changing the basepoint. For each i ∈ I, let hi be a K-quasiconformal
mapping of Xi onto a hyperbolic Riemann surface Yi, with K independent of i. Let
Y =

∐
Yi be the disjoint union. Each hi induces a biholomorphic map h∗i of Teich(Xi)

onto Teich(Yi).

Proposition 9. There is a unique biholomorphic map h of Teich(X) onto

Teich(Y ) such that h∗(t)i = h∗i (ti) for all t in Teich(X) and i in I. Furthermore, if µ

is the point in M(X) such that µi is the Beltrami coefficient of hi, then h∗ maps the

point Φ(µ) in Teich(X) to the basepoint 0Y of Teich(Y ); here Φ: M(X) → Teich(X)
is the standard projection.

For a proof, see [6, Proposition 7.9].

Remark 1. For any µ inM(X) and any i in I there are a Riemann surface Yi and
a quasiconformal mapping of Xi onto Yi whose Beltrami coefficient is µi. Therefore
each point Φ(µ) in Teich(X) can be mapped to the basepoint of some Teich(Y ) by
some biholomorphic map h∗.

5. Proof of Theorem A

For each i in the index set I, let Xi be a hyperbolic Riemann surface. Let X be
the disjoint union

∐
i∈I Xi. Let Teich(X) be the product Teichmüller space discussed

in §4. Let CT and KT respectively denote the Carathéodory and Kobayashi metrics
on Teich(X).

Let 0 denote the origin of the complex Banach space B(X∗) in §4.1. To simplify
notations, let B2(0) denote the ball of radius 2 centered at the origin in B(X∗), and let
B6(0) denote the ball of radius 6 centered at the origin in B(X∗). Let CB6(0) denote
the Carathéodory metric on B6(0), and let KB2(0) denote the Kobayashi metric on
B2(0).

Theorem 1. tanhCT (x, y) ≤ tanhKT (x, y) ≤ 3 tanhCT (x, y) for all x, y in

Teich(X).

Proof. Step 1. Let x = 0; to simplify notations, we use 0 for the basepoint of
Teich(X).
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We know that

CT (0, t) ≤ KT (0, t) for all t ∈ Teich(X)

and so we have tanhCT (0, t) ≤ tanhKT (0, t) for all t in Teich(X).
By the generalized Bers embedding discussed in Proposition 8 and Corollary 4,

we know that B2(0) ⊂ Teich(X) ⊂ B6(0). Hence we have CT (0, t) ≥ CB6(0)(0, t) and
therefore,

CT (0, t) ≥ tanh−1 ‖t‖

6
for all t ∈ Teich(X).

It follows that

(5.1) 6 tanhCT (0, t) ≥ ‖t‖

for all t ∈ Teich(X).
We also have KT (0, t) ≤ KB2(0)(0, t) which implies that

KT (0, t) ≤ tanh−1 ‖t‖

2
if ‖t‖ < 2.

It follows that

2 tanhKT (0, t) ≤ ‖t‖ if ‖t‖ < 2.

This is also true if ‖t‖ > 2. It follows that

(5.2) 2 tanhKT (0, t) ≤ ‖t‖

for all t ∈ Teich(X).
Combining (5.1) and (5.2), we get

2 tanhKT (0, t) ≤ ‖t‖ ≤ 6 tanhCT (0, t)

for all t ∈ Teich(X); hence,

tanhKT (0, t) ≤ 3 tanhCT (0, t)

for all t ∈ Teich(X).

Step 2. Let x, y be any points in Teich(X). By Remark 1, there exists a
biholomorphic map h∗ on Teich(X) onto some Teichmüller space Teich(Y ) such that
h∗ maps the point x in Teich(X) to the basepoint 0Y of Teich(Y ). Let h∗(y) = t ∈
Teich(Y ).

By Step 1, we have

tanhCT (0Y , t) ≤ tanhKT (0Y , t) ≤ 3 tanhCT (0Y , t) for all t ∈ Teich(Y ),

where CT denotes the Carathéodory metric on Teich(Y ) andKT denotes the Kobayashi
metric on Teich(Y ).

Since h∗ is biholomorphic, the Kobayashi and Carathéodory metrics on Teich(X)
and Teich(Y ) respectively, are preserved. It follows that

tanhCT (x, y) ≤ tanhKT (x, y) ≤ 3 tanhCT (x, y)

for all x, y in Teich(X). �

Proof of Theorem A. Let {tn} be a Cauchy sequence in Teich(X), with respect
to the Carathéodory metric CT .

Let ǫ > 0 be given. Choose

ǫ̂ = tanh−1

(
1

3
tanh ǫ

)
.



804 Xinlong Dong and Sudeb Mitra

Then, for this ǫ̂ > 0, there exists a positive integer N such that for all m,n > N , we
have CT (tm, tn) < ǫ̂. Hence, 3 tanhCT (tm, tn) < 3 tanh ǫ̂ for all m,n > N . It follows
from Theorem 1 that

tanhKT (tm, tn) < 3 tanh ǫ̂ = 3
(1
3
tanh ǫ

)
= tanh ǫ

for all m,n > N .
Therefore, KT (tm, tn) < ǫ for all m,n > N . Hence, {tn} is a Cauchy sequence

with respect to KT . By Lemma 1, it follows that {tn} is a Cauchy sequence with
respect to the Teichmüller metric dT . Since dT is complete, tn → t in Teich(X),
and by Lemma 1 again, tn → t in Teich(X) with respect to KT , and so, we have
KT (tn, t) → 0.

Let ǫ̃ > 0 be given. There exists a natural number Ñ > 0 such that KT (tn, t) < ǫ̃

for all n > Ñ . Hence, tanhKT (tn, t) < tanh ǫ̃ for all n > Ñ . It follows by Theorem 1

that tanhCT (tn, t) < tanh ǫ̃ for all n > Ñ . Therefore, CT (tn, t) < ǫ̃ for all n > Ñ . It
follows that tn → t in Teich(X) with respect to CT . Hence, the Carathéodory metric
on Teich(X) is complete. �

Remark 2. Let S be a hyperbolic Riemann surface, and let Teich(S) denote
its usual Teichmüller space. In [1], Earle proved that the Carathéodory metric on
Teich(S) is complete. Our method gives an alternative proof of Earle’s theorem; in
particular the estimate on the right-hand side of Theorem 1 is explicit.

Remark 3. If the index set is finite, then Teich(X) is simply the (finite) cartesian
product of the Teichmüller spaces Teich(Xi). In this case, Theorem A follows from
the main theorem in Earle’s paper [1] and Proposition 6.

6. Teichmüller space of a closed set in the Riemann sphere

Recall that a homeomorphism of Ĉ is called normalized if it fixes the points
0, 1, and ∞. We use M(C) to denote the open unit ball of the complex Banach
space L∞(C). Each µ in M(C) is the Beltrami coefficient of a unique normalized

quasiconformal homeomorphism wµ of Ĉ onto itself. The basepoint of M(C) is the
zero function.

The Kobayashi metric KM(C) on M(C) is defined by

KM(C)(µ, ν) = tanh−1 ‖(µ− ν)(1 − µν)−1‖∞

for all µ, ν in M(C).

6.1. Teichmüller space of a closed set in the Riemann sphere. Let E be

a closed subset of Ĉ that contains the points 0, 1, and ∞.

Definition 5. Two normalized quasiconformal self-mappings f and g of Ĉ are
said to be E-equivalent if and only if f−1 ◦ g is isotopic to the identity rel E. The
Teichmüller space T (E) is the set of all E-equivalence classes of normalized quasi-

conformal self-mappings of Ĉ. The basepoint of T (E) is the E-equivalence class of
the identity map.

We can define the quotient map

PE : M(C) → T (E)

by setting PE(µ) equal to the E-equivalence class of wµ, written as [wµ]E. Clearly,
PE maps the basepoint of M(C) to the basepoint of T (E).
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The Teichmüller metric dT (E) on T (E) is given by

dT (E)(PE(µ), t) = inf{KM(C)(µ, ν) : ν ∈M(C) and PE(ν) = t}

for all µ in M(C) and t in T (E).
Since Ec is an open subset of C \ {0, 1}, each of its connected components is a

hyperbolic Riemann surface. We index these components Xi by a set I of positive
integers, and we form the product Teichmüller space of their disjoint union Ec; let
Teich(Ec) denote this product Teichmüller space. Let M(E) be the open unit ball
in L∞(E). Then, the product Teich(Ec)×M(E) is a complex Banach manifold.

For µ in L∞(C), let µ|Ec and µ|E be the restrictions of µ to Ec and E respectively.

We define the projection map P̃E from M(C) to Teich(Ec)×M(E) by the formula

(6.1) P̃E(µ) =
(
Φ(µ|Ec), µ|E

)

for all µ in M(C), where Φ: M(Ec) → Teich(Ec) is the standard projection.
We now state “Lieb’s isomorphism theorem”.

Theorem 2. For all µ and ν in M(C) we have PE(µ) = PE(ν) if and only

if P̃E(µ) = P̃E(ν). Consequently, there is a well defined bijection θ : T (E) →

Teich(Ec) ×M(E) such that θ ◦ PE = P̃E, and T (E) has a unique complex man-

ifold structure such that PE is a holomorphic split submersion and the map θ is

biholomorphic.

See [6, §7.10] for a complete proof.

Proposition 10. The Teichmüller and Kobayashi metrics on T (E) are equal.

See [6, Proposition 7.30].

7. Proof of Theorem B

By Theorem A, the Carathéodory metric on Teich(Ec) is complete, and it is well-
known that the Carathéodory metric on M(E) is complete. Therefore, by Propo-
sition 6, Teich(Ec) × M(E) is also complete. It follows by Theorem 2, that the
Carathéodory metric on T (E) is complete. �

Remark 4. If E is a finite set, then T (E) is naturally identified with the classical

Teichmüller space Teich(Ĉ \E). This easily follows from Theorem 2. A direct proof
is given in [20, Example 3.1]. Therefore, when E is finite, Theorem B is exactly the
main theorem in Earle’s paper [1].

Remark 5. If E = Ĉ, then T (E) is naturally identified with M(C). In this case,
the Carathéodory, Kobayashi, and Poincaré metrics coincide.

Remark 6. If the closed set E has zero area, thenM(E) contains only one point,
and Teich(Ec)×M(E) is isomorphic to Teich(Ec) and in that case, Theorem B is a
special case of Theorem A.
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