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The range set of zero for harmonic mappings of
the unit disk with sectorial boundary normalization

Dariusz Partyka and Józef Zaja̧c

Abstract. Given a family F of all complex-valued functions in a domain Ω ⊂ Ĉ, the authors
introduce the range set RSF (A) of a set A ⊂ Ω under the class in question, i.e. the set of all w ∈ C
such that w ∈ F (A) for a certain F ∈ F . Let T1, T2, T3 be closed arcs contained in the unit circle
T of the same length 2π/3 and covering T. The paper deals with the range set RSF ({0}), where
F is the class of all complex-valued harmonic functions F of the unit disk D into itself satisfying
the following sectorial condition: For each k ∈ {1, 2, 3} and for almost every z ∈ Tk the radial limit
F ∗(z) of the function F at the point z belongs to the angular sector determined by the convex hull
spanned by the origin and arc Tk. In 2014 the authors proved that for any F ∈ F ,

|F (z)| ≤ 4

3
− 2

π
arctan

( √
3

1 + 2|z|

)
, z ∈ D,

by which |F (0)| ≤ 2/3. This implies that RSF ({0}) is a subset of the closed disk of radius 2/3 and
centred at the origin. In the paper the range set RSF ({0}) is precisely determined.

Nollan kuvautuminen yksikkökiekon lohkottain
reunanormitetuissa harmonisissa kuvauksissa

Tiivistelmä. Kirjoittajat määrittelevät alueen Ω ⊂ Ĉ annettua kompleksiarvoisten funktioi-
den perhettä F ja osajoukkoa A ⊂ Ω vastaavan kuvautumisjoukon RSF (A) kaikkien niiden pisteiden
w ∈ C joukkona, joilla pätee w ∈ F (A) jollakin F ∈ F . Olkoot T1, T2, T3 yksikköympyrän T sul-
jettuja kaaria, joilla on sama pituus 2π/3 ja jotka peittävät ympyrän T. Tämä tutkimus käsittelee
kuvautumisjoukkoa RSF ({0}), kun F on sellaisten yksikkökiekon D itselleen kuvaavien komplek-
siarvoisten harmonisten funktioiden F luokka, jotka toteuttavat seuraavan lohkoehdon: jokaisella
k ∈ {1, 2, 3} ja melkein kaikilla z ∈ Tk kuuluu funktion F säteittäinen raja-arvo F ∗(z) pisteessä z
origon ja kaaren Tk konveksin verhon määrittelemään lohkoon. Vuonna 2014 kirjoittajat todistivat,
että kaikilla F ∈ F pätee

|F (z)| ≤ 4

3
− 2

π
arctan

( √
3

1 + 2|z|

)
, z ∈ D,

joten erityisesti |F (0)| ≤ 2/3. Tästä seuraa, että RSF ({0}) sisältyy origokeskiseen 2/3-säteiseen
suljettuun kiekkoon. Tässä työssä kuvatumisjoukko RSF ({0}) määritetään tarkasti.

Introduction

Throughout the paper we assume that all topological notions and operations are
considered in the extended complex plane (Ĉ, ρc), where ρc is the chord-arc metric
in Ĉ := C ∪ {∞}. Furthermore, we will use the notations cl(A) and fr(A) for the
closure and boundary of a set A ⊂ Ĉ, respectively. By Har(Ω) we denote the class
of all complex-valued harmonic functions in a domain Ω ⊂ C, i.e., the class of all
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complex-valued and twice continuously differentiable functions F in Ω satisfying the
Laplace equation

∂2

∂x2
F (z) +

∂2

∂y2
F (z) = 0, z = x+ iy ∈ Ω.

Let D̄(a, r) := {z ∈ C : |z − a| ≤ r} and T(a, r) := {z ∈ C : |z − a| = r} for a ∈ C
and r ∈ (0; +∞). In particular T := T(0, 1) is the unit circle. For any family F of
maps from Ω to C and a set A ⊂ Ω we denote by RSF(A) the range set of A for the
class F , i.e., the set of all w ∈ C such that w ∈ F (A) for a certain F ∈ F . That is

RSF(A) =
⋃
F∈F

F (A).

For example, if K ∈ [1; +∞) and F is the family of all K-quasiconformal mappings
of the unit disk D := {z ∈ C : |z| < 1} into itself and keeping the origin fixed, then

RSF({z}) = D̄(0,ΦK(|z|)), z ∈ D,

where ΦK is the Hersch–Pfluger distortion function; cf. [6], [7, Sec. II, §3] and [9,
Sec. I.2]. Notice that here RSF({z}) depends on the module |z| only, because the
family F is invariant under rotations. Otherwise, the study of the range set RSF({z})
is influenced by directional properties of F , and thereby more difficult in general. For
example, if F is the family of all holomorphic functions of D into itself and sending
zero to a given point a ∈ D, then by the classical Schwarz inequality

RSF({z}) = ϕ−1
(
D̄(0, |z|)

)
, z ∈ D,

where ϕ is a conformal mapping of D onto itself such that ϕ(a) = 0. One can expect
that a number of such problems involving holomorphic functions in the complex plane
can be solved by using Schwarz type inequalities, as they have been widely described
in [3]. It is worth noting that, in general, the range set RSF({z}) provides more
detailed information about F (z), for F ∈ F and z ∈ D, than the Schwarz.

Let conv(A) stand for the convex hull of a set A ⊂ C. In particular, for any
a, b ∈ C, conv({a, b}) is the line segment joining a and b. Given a function F : D→ Ĉ
we denote by F ∗∗(z) the radial cluster set of F at a point z ∈ T, i.e.,

(0.1) F ∗∗(z) :=
⋂

r∈(0;1)

cl
(
F (conv({rz, z}) \ {z})

)
, z ∈ T.

Notice that always F ∗∗(z) 6= ∅, because Ĉ is a compact set. Our main result reads
as follows.

Theorem 0.1. Let F be the class of all harmonic mappings F : D→ D satisfying
the following sectorial boundary normalization condition

(0.2) F ∗∗(z) ⊂ Dk := conv(Tk ∪ {0}) for a.e. z ∈ Tk and k ∈ {1, 2, 3},

which is determined by the arcs Tk := {eit : t ∈ [2π(k − 1)/3; 2πk/3]}, k ∈ {1, 2, 3}.
Then

(0.3) RSF({0}) = conv

(
5⋃

k=0

T
(

1

3
eπik/3,

1

3

))
=
{
reiθ : θ ∈ [0; 2π), r ∈ [0; ρ(θ)]

}
,
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where ρ : R→ R is a function uniquely determined by the conditions:

ρ(θ) =
2

3
cos θ, θ ∈ [−π/12;π/12],(0.4)

ρ(θ) =
2

3

(
cos π

12

)2
sin
(
π
3

+ θ
) , θ ∈ [π/12;π/4],(0.5)

ρ(θ) = ρ
(
θ +

π

3

)
, θ ∈ R.(0.6)

From now on we always assume that F is the class defined in Theorem 0.1. In
[8] the authors proved that for every F ∈ F ,

(0.7) |F (z)| ≤ 4

3
− 2

π
arctan

( √
3

1 + 2|z|

)
=

2

π
arctan

(√
3

1 + |z|
1− |z|

)
, z ∈ D,

and the estimation is sharp; cf. [8, Cor. 1.2, Rem. 1.5]. In particular,

|F (0)| ≤ 2/3, F ∈ F .

The Schwarz type inequalities relevant to (0.7) for a more general case of harmonic
functions were studied in [4]. All extremal functions giving the equality in (0.7) are
described by [8, Cor. 2.4] which implies that

(0.8) D̄(0, 2/3) 6= RSF({0}) ⊂ D̄(0, 2/3).

Thus the equality (0.3) considerably improves the above statement. Using the func-
tion ρ we can draw the boundary of RSF({0}), as shown by the bold curve in the
resulting image; cf. Fig. 1 where e0 := 1, e1 := e2πi/3 and e2 := e4πi/3.

e02/3

i

2i/3

••

•

•
•e1

•e2

Figure 1. The boundary of the range set RSF ({0}).

In Remark 2.4 we discuss extremal functions in the class F , which recover the
boundary of RSF({0}). The proof of Theorem 0.1 is based on two technical lemmas
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(Lemma 2.2 and Lemma 2.3) as well as a few auxiliary results dealing with the class
F , gathered in Section 1.

While looking for a technical interpretation of the obtained result, we introduced
it to several engineers working at the PANS Academy in Chełm, Poland. One of
them, Piotr Różański, performed the following experiment. It involved establishing
two cross-sections perpendicular to axis of a round rectilinear pipe equipped with
three symmetrically placed internal guides to stabilize the air flow. The stabilization
corresponds to the boundary normalization concept described in Theorem 0.1. Smoky
air was blown through the center of the first disk along the axis of the pipe and its
image was observed in the second cross-section disk. With an appropriately selected
blowing speed and cross-section distance, an image resembling the shape of the set
RSF({0}) was obtained. The shape of its edge was interpreted as an isobaric curve
of pressure distribution on the second cross-section disk. This gave rise to the idea
of building a pipe with the cross-section described in Theorem 0.1, equipped with
three symmetrically placed guides; see Fig. 2.

Figure 2. The pipe with the cross-section determined by the range set RSF ({0}).

Its production and tests of some air flow parameters, carried out in PANS lab-
oratories in Chełm, confirmed the validity of the idea. Flow resistance, noise and
vibrations of the stream gas were essentially reduced. The overall improvement of
the gas flow in such a pipe has been estimated at over 10% compared to the standard
round pipe. Further research is underway to adapt this idea to the flow of gases in a
curved segments of the pipe. Tests will be performed (experimental and theoretical)
on the optimization of the guide heights and the supersonic flows of the gas stream.
Work is underway to use the idea to improve the efficiency of jet engines, especially
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those with tunnel systems drives – fighter planes. The extremal pipe shape concept
described above is the subject of patents no. 239213 and no. 240855 issued by the
Patent Office of the Republic of Poland.

The authors would like to thank Piotr Różański for conducting the experiments.
He is also the co-author of the patents mentioned above. We would like to thank the
reviewer for his substantive comments, and in particular for his suggestion to include
comments on technical applications.

1. Auxiliary results

In this section we collect a number of results involving the class F which will
be useful later on. We start with the following simple but useful remark. Given a
function F : D→ Ĉ we define the function

(1.1) T 3 z 7→ F ∗(z) :=

{
lim
r→1

F (rz), if the limit exists;

0, otherwise.

From the formula (0.1) we see that for all F : D→ Ĉ, z ∈ T and w ∈ Ĉ, w ∈ F ∗∗(z)
if and only if there exists a sequence N 3 n 7→ rn ∈ [0; 1) such that rn → 1 and
F (rnz)→ w as n→ +∞. Therefore

(1.2) F ∗∗(z) = {F ∗(z)} for every z ∈ T such that the limit in (1.1) exists.

Remark 1.1. For every function F : D→ C, F ∈ F if and only if F ∈ Har(D),
F (D) ⊂ D and F ∗(z) ∈ Dk for k ∈ {1, 2, 3} and almost every (a.e. in abbrev.)
z ∈ Tk. This follows directly from (1.2) and the classical result by Fatou that each
function F ∈ Har(D) with supz∈D |F (z)| < +∞ has the radial limit limr→1 F (rz) for
a.e. z ∈ T; cf. [1, Chap. 6] or [2, Cor. 1 in Sect. 1.2]. In particular, for every F ∈ F
the radial limit in (1.1) exists for a.e. z ∈ T.

Lemma 1.2. The set RSF({0}) is convex.

Proof. Fix w1, w2 ∈ RSF({0}) and λ1, λ2 ∈ [0; 1] such that λ1 + λ2 = 1. Then
w1 = F1(0) and w2 = F2(0) for some F1, F2 ∈ F . Hence F := λ1F1 + λ2F2 ∈ Har(D)
and F (D) ⊂ D. By Remark 1.1, the radial limits limr→1 F1(rz) and limr→1 F2(rz)
exist for a.e. z ∈ T and F ∗1 (z), F ∗2 (z) ∈ Dk for k ∈ {1, 2, 3} and a.e. z ∈ Tk. Since
each sector Dk is convex, F ∗(z) = λ1F

∗
1 (z) + λ2F

∗
2 (z) ∈ Dk for k ∈ {1, 2, 3} and a.e.

z ∈ Tk. Applying Remark 1.1 once again we have F ∈ F . Therefore
λ1w1 + λ2w2 = λ1F1(0) + λ2F2(0) = F (0) ∈ RSF({0}),

and so the set RSF({0}) is convex. �

Setting ek := e2πik/3 for k ∈ Z, we define S := {S0, S1, S2, S̄0, S̄1, S̄2}, where
(1.3) C 3 z 7→ Sk(z) := ekz, k ∈ Z,
as well as

(1.4) C 3 z 7→ S̄k(z) := e−kz, k ∈ Z.
Then

(1.5) S̄k(z) = Sk(z), k ∈ Z , z ∈ C.
Lemma 1.3. The structure (S; ◦) is a symmetry group of the class F , where ‘ ◦’

is the composition operation of mappings, i.e.,
(i) (S; ◦) is a group with two generators S1 and S̄0;
(ii) S(D) = D for S ∈ S;
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(iii) S ◦ F ◦ S−1 ∈ F for F ∈ F and S ∈ S.

Proof. The properties (i) and (ii) evidently follows from the formulas (1.3) and
(1.4). Fix F ∈ F and S ∈ S. By the properties (i) and (ii),

S ◦ F ◦ S−1(D) = S ◦ F (D) ⊂ S(D) = D.

Since F ∈ Har(D), we see that S ◦F ◦S−1 ∈ Har(D). By Remark 1.1, the radial limit
limr→1 F (rz) exists for a.e. z ∈ T and F ∗(z) ∈ Dk for k ∈ {1, 2, 3} and a.e. z ∈ Tk.
Hence for each k ∈ {1, 2, 3} and a.e. z ∈ Tk,

S ◦ F ◦ S−1(rz) = S(F (rS−1(z)))→ S(F ∗(S−1(z))) ∈ Dk as r → 1−,

and so (S ◦ F ◦ S−1)∗(z) ∈ Dk. Applying Remark 1.1 once again we deduce that
S ◦ F ◦ S−1 ∈ F , which proves the item (iii). �

Corollary 1.4. For every S ∈ S, S(RSF({0})) = RSF({0}).
Proof. Given S ∈ S we conclude from Lemma 1.3 that S ◦ F ◦ S−1 ∈ F for

F ∈ F . Hence

S(F (0)) = S ◦ F ◦ S−1(0) ∈ RSF({0}), F ∈ F ,

and consequently

(1.6) S
(
RSF({0})

)
⊂ RSF({0}), S ∈ S.

Since S−1 ∈ S, we deduce from (1.6) that S−1
(
RSF({0})

)
⊂ RSF({0}), and so

RSF({0}) ⊂ S
(
RSF({0})

)
. This together with (1.6) implies the desired equality. �

Given an integrable function f : T→ C we denote by P[f ](z) the Poisson integral
of f at z ∈ D, i.e.,

(1.7) P[f ](z) :=
1

2π

ˆ
T
f(u)

1− |z|2

|u− z|2
|du| = 1

2π

ˆ
T
f(u) Re

u+ z

u− z
|du|, z ∈ D.

Here and in the sequel integrable means integrable in the sense of Lebesgue. The
Poisson integral P[f ] is the unique solution to the Dirichlet problem for the unit
disk D provided the boundary function f is continuous; cf. e.g. [5, Thm. 2.11]. This
means that P[f ] is a harmonic function in D which has a continuous extension to
the closed disk cl(D) and its boundary limiting valued function is identical with f .
From Remark 1.1 we know that for every F ∈ F the radial limit in (1.1) exists for
a.e. z ∈ T. Using now the dominated convergence theorem we can show (see e.g. [4,
Sec. 2]) that

(1.8) F (z) = P[F ∗](z), F ∈ F , z ∈ D.
Lemma 1.5. The following equality holds

(1.9) RSF({0}) =

{
1

3
(z1 + z2 + z3) : {1, 2, 3} 3 n 7→ zn ∈ Dn

}
.

Proof. Given a sequence {1, 2, 3} 3 n 7→ zn ∈ Dn we define the function

(1.10) D 3 z 7→ F (z) :=
3∑

n=1

zn P[χTn ](z),

where χA stands for the characteristic function of a set A ⊂ T, i.e. χA(z) := 1 for
z ∈ A and χA(z) := 0 for z ∈ T \ A. Then F ∈ Har(D) and F (D) ⊂ cl(D), because
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for each z ∈ D,

|F (z)| ≤
3∑

n=1

|zn| · |P[χTn ](z)| ≤
3∑

n=1

P[χTn ](z) = P[χT](z) = 1.

By the classical Fatou theorem for Poisson integrals of integrable functions (cf. [1,
Thm. 6.39]) we know that for all k ∈ {1, 2, 3} and z ∈ Tk \ {ek−1, ek},

F ∗(z) =
3∑

n=1

zn P[χTn ]∗(z) = zk P[χTk ]∗(z) = zk ∈ Dk.

By (1.10), |F (0)| = 1
3
|z1 + z2 + z3| < 1, and so we can appeal to modulus maximum

principle for harmonic mappings (see e.g. [1, Cor. 1.11]) to show that F (D) ⊂ D.
Thus in view of Remark 1.1, F ∈ F . Therefore

1

3
(z1 + z2 + z3) =

1

2π

3∑
n=1

zn|Tn|1 =
3∑

n=1

zn P[χTn ](0) = F (0) ∈ RSF({0}),

which implies the following inclusion

(1.11)
{1

3
(z1 + z2 + z3) : {1, 2, 3} 3 n 7→ zn ∈ Dn

}
⊂ RSF({0}).

Conversely, let F ∈ F be fixed. By (1.8), we have

F (0) = P[F ∗](0) = P
[ 3∑
n=1

F ∗ · χTn
]
(0) =

3∑
n=1

P[F ∗ · χTn ](0).

Since for each k ∈ {1, 2, 3}, F ∗(z) ∈ Dk for a.e. z ∈ Tk and Dk is a closed and convex
set, we conclude from the integral mean value theorem for complex-valued functions
that there exists a sequence {1, 2, 3} 3 n 7→ zn ∈ Dn such that

P[F ∗ · χTn ](0) = zn P[χTn ](0) = zn ·
1

2π
|Tn|1 =

1

3
· zn, n ∈ {1, 2, 3}.

Therefore F (0) = 1
3
(z1 + z2 + z3), which yields

(1.12) RSF({0}) ⊂
{

1

3
(z1 + z2 + z3) : {1, 2, 3} 3 n 7→ zn ∈ Dn

}
.

Both inclusions (1.11) and (1.12) imply the equality (1.9), which is the desired con-
clusion. �

2. The main results

The aim of this section is to determine the set RSF({0}). To this end we need
some additional auxiliary informations. We start with the following simple but useful
observation. Given θ ∈ R we set `θ := {reiθ : r ∈ [0; +∞)}, i.e., `θ is the ray starting
from the origin and passing through eiθ.

Remark 2.1. Given θ ∈ R and a sequence {1, 2, 3} 3 k 7→ zk ∈ Dk assume that
z1 + z2 + z3 ∈ `θ. Since each set Dk is bounded,

(2.1) tk := sup({t ∈ R : zk + teiθ ∈ Dk}) ∈ [0; +∞), k ∈ {1, 2, 3}.
Hence z′k := zk + tke

iθ ∈ fr(Dk) for k ∈ {1, 2, 3}, and consequently,

z′1 + z′2 + z′3 = z1 + z2 + z3 + (t1 + t2 + t3)e
iθ = (|z1 + z2 + z3|+ t1 + t2 + t3)e

iθ.
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Therefore

(2.2) z′1 + z′2 + z′3 ∈ `θ and |z′1 + z′2 + z′3| ≥ |z1 + z2 + z3|

as well as

Re
[
(z′1 + z′2 + z′3)e

−iθ] = |z′1 + z′2 + z′3|,(2.3)

Im
[
(z′1 + z′2 + z′3)e

−iθ] = 0.(2.4)

Lemma 2.2. For every θ ∈ [0; π/12],

(2.5) RSF({0}) ∩ `θ ⊂
{

2r cos θ

3
eiθ : r ∈ [0; 1]

}
.

Proof. Given θ ∈ [0; π/12] fix z ∈ RSF({0}) ∩ `θ. By Lemma 1.5, there exists a
sequence {1, 2, 3} 3 k 7→ zk ∈ Dk such that z = 1

3
(z1+z2+z3). Hence z1+z2+z3 ∈ `θ,

and the sequence {1, 2, 3} 3 k 7→ z′k ∈ fr(Dk) constructed in Remark 2.1 satisfies the
conditions (2.2), (2.3) and (2.4). We will show that

(2.6) |z′1 + z′2 + z′3| ≤ 2 cos θ.

By (2.1) we have

(2.7) z′1 ∈ T1, z′2 ∈ conv({0, e1}) ∪ conv({0, e2}), z′3 ∈ T3 ∪ conv({0, e0}).

Then z′1 = eiα for a certain α ∈ [0; 2π/3]. The following four cases may occur.

Case I, where z′2 ∈ conv({0, e1}) and z′3 ∈ T3. Then z′2 = te2πi/3 and z′3 = eiβ for
some t ∈ [0; 1] and β ∈ [−π/2; 0]. If α > 2θ, then by (2.3),

|z′1 + z′2 + z′3| ≤ cos(α− θ) + cos(β − θ) < cos(2θ − θ) + cos(θ − β) ≤ 2 cos θ,

which yields (2.6). Let α ≤ 2θ. By (2.4),

t = −sin(α− θ) + sin(β − θ)
sin
(
2π
3
− θ
) ≥ t0 :=

− sin(α− θ) + sin θ

sin
(
2π
3
− θ
) ≥ 0,

which together with (2.3) gives

|z′1 + z′2 + z′3| = cos(α− θ) + cos(β − θ) + t cos

(
2π

3
− θ
)

≤ cos(α− θ) + t0 cos

(
2π

3
− θ
)

+ cos θ.

Since

cos(α− θ) + t0 cos

(
2π

3
− θ
)

= cos(α− θ) +
sin θ − sin(α− θ)

sin
(
2π
3
− θ
) cos

(
2π

3
− θ
)

=
sin
(
2π
3
− α

)
+ sin θ cos

(
2π
3
− θ
)

sin
(
2π
3
− θ
)

≤
sin
(
2π
3
− 2θ

)
+ sin θ cos

(
2π
3
− θ
)

sin
(
2π
3
− θ
)

=
sin
(
2π
3
− θ
)

cos θ

sin
(
2π
3
− θ
) = cos θ,

we obtain the inequality (2.6).
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Case II, where z′2 ∈ conv({0, e2}) and z′3 ∈ T3. Then z′2 = te4πi/3 and z′3 = eiβ for
some β ∈ [−π/2; 0] and t ∈ [0; 1]. If 2θ > α, then

Im
[
(z′1 + z′2 + z′3)e

−iθ] = sin(α− θ) + sin(β − θ) + t sin

(
4π

3
− θ
)
< 0,

which contradicts (2.4). Thus 2θ ≤ α, and by (2.3),

|z′1 + z′2 + z′3| = cos(α− θ) + cos(β − θ) + t cos

(
4π

3
− θ
)
≤ 2 cos θ,

which yields the inequality (2.6).

Case III, where z′2 ∈ conv({0, e2}) and z′3 ∈ conv({0, e0}). Then z′2 = te4πi/3 and
z′3 = s for some t, s ∈ [0; 1]. From (2.3) it follows that

(2.8) |z′1 + z′2 + z′3| = cos(α− θ) + s cos θ + t cos

(
4π

3
− θ
)
.

Hence the inequality (2.6) holds, provided α > 2θ or θ = 0. Otherwise α ≤ 2θ and
θ > 0. By (2.4),

0 = Im
[
(z′1 + z′2 + z′3)e

−iθ] = sin(α− θ)− s sin θ + t sin

(
4π

3
− θ
)
,

from which sin(α− θ)− s sin θ ≥ 0. Hence and by (2.8),

|z′1 + z′2 + z′3| ≤ cos(α− θ) + s cos θ ≤ cos(α− θ) +
sin(α− θ)

sin θ
cos θ

=
sin θ cos(α− θ) + sin(α− θ) cos θ

sin θ
=

sinα

sin θ
≤ sin(2θ)

sin θ
= 2 cos θ.

Thus the inequality (2.6) holds.

Case IV, where z′2 ∈ conv({0, e1}) and z′3 ∈ conv({0, e0}). Then z′2 = te2πi/3 and
z′3 = s for some t, s ∈ [0; 1]. From (2.3) it follows that

(2.9) |z′1 + z′2 + z′3| = cos(α− θ) + s cos θ + t cos

(
2π

3
− θ
)
.

Hence the inequality (2.6) holds, provided α > 2θ. Otherwise α ≤ 2θ. By (2.4),

0 = Im
[
(z′1 + z′2 + z′3)e

−iθ] = sin(α− θ)− s sin θ + t sin

(
2π

3
− θ
)
.

Since s ≤ 1, we conclude from (2.9) that

|z′1 + z′2 + z′3| = cos(α− θ) + s cos θ +
s sin θ − sin(α− θ)

sin
(
2π
3
− θ
) cos

(2π

3
− θ
)

=
sin
(
2π
3
− α

)
+ s sin 2π

3

sin
(
2π
3
− θ
) ≤

sin
(
2π
3
− α

)
+ sin 2π

3

sin
(
2π
3
− θ
)

≤
sin
(
2π
3
− 2θ

)
+ sin 2π

3

sin
(
2π
3
− θ
) =

2 sin
(
2π
3
− θ
)

cos θ

sin
(
2π
3
− θ
) = 2 cos θ.

Thus the inequality (2.6) holds. Summing up, the inequality (2.6) holds in each of
the possible cases I–IV. Using now (2.2) and (2.6) we see that |z| ≤ 2

3
cos θ. Since

z ∈ `θ, we have z ∈
{

2
3
r cos θ eiθ : r ∈ [0; 1]

}
, which leads to the inclusion (2.5). �
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Lemma 2.3. For every θ ∈ [π; 13π/12],

(2.10) RSF({0}) ∩ `θ ⊂
{
−2r cos θ

3
eiθ : r ∈ [0; 1]

}
.

Proof. Given θ ∈ [π; 13π/12] fix z ∈ RSF({0})∩`θ. By Lemma 1.5, there exists a
sequence {1, 2, 3} 3 k 7→ zk ∈ Dk such that z = 1

3
(z1+z2+z3). Hence z1+z2+z3 ∈ `θ,

and the sequence {1, 2, 3} 3 k 7→ z′k ∈ fr(Dk) constructed in Remark 2.1 satisfies the
conditions (2.2), (2.3) and (2.4). We will show that

(2.11) |z′1 + z′2 + z′3| ≤ 2 cos θ̃,

where θ̃ := θ − π. By (2.1) we have

(2.12) z′1 ∈ conv({0, e1}) ∪ conv({0, e0}), z′2 ∈ T2, z′3 ∈ T3 ∪ conv({0, e2}).
Then z′2 = −eiα for a certain α ∈ [−π/3;π/3]. The following four cases may occur.

Case I, where z′1 ∈ conv({0, e1}) and z′3 ∈ conv({0, e2}). Then z′1 = te1 =
−te−πi/3 and z′3 = se2 = −seπi/3 for some s, t ∈ [0; 1]. From (2.3) and (2.4) it follows
that

(2.13) |z′1 + z′2 + z′3| = t cos
(
θ̃ +

π

3

)
+ s cos

(
θ̃ − π

3

)
+ cos(α− θ̃)

as well as

(2.14) − t sin
(
θ̃ +

π

3

)
+ s sin

(π
3
− θ̃
)

+ sin(α− θ̃) = 0.

If α > 2θ̃ or α < 0, then by (2.13) we have

|z′1+z′2+z′3| ≤ cos
(
θ̃ +

π

3

)
+cos

(
θ̃ − π

3

)
+cos(α− θ̃) < 2 cos θ̃ cos

π

3
+cos θ̃ = 2 cos θ̃,

which leads to (2.11). Otherwise, 0 ≤ α ≤ 2θ̃. Since s ≤ 1 and 2θ̃ ≤ π/6, we
conclude from (2.13) and (2.14) that

|z′1 + z′2 + z′3| = cos(α− θ̃) + s cos
(
θ̃ − π

3

)
+
s sin

(
π
3
− θ̃
)

+ sin(α− θ̃)
sin
(
θ̃ + π

3

) cos
(
θ̃ +

π

3

)
=

sin
(
α + π

3

)
+ s sin 2π

3

sin
(
θ̃ + π

3

) ≤
sin
(
α + π

3

)
+ sin 2π

3

sin
(
θ̃ + π

3

)
≤

sin
(
2θ̃ + π

3

)
+ sin π

3

sin
(
θ̃ + π

3

) = 2
sin
(
θ̃ + π

3

)
cos θ̃

sin
(
θ̃ + π

3

) = 2 cos θ̃.

Thus the inequality (2.11) holds.

Case II, where z′1 ∈ conv({0, e1}) and z′3 ∈ T3. Then z′1 = te1 = −te−πi/3 and
z′3 = −eiβ for some t ∈ [0; 1] and β ∈ [π/3; 7π/12]. From (2.3) and (2.4) it follows
that

(2.15) |z′1 + z′2 + z′3| = t cos
(
θ̃ +

π

3

)
+ cos(β − θ̃) + cos(α− θ̃)

as well as

(2.16) − t sin
(
θ̃ +

π

3

)
+ sin(β − θ̃) + sin(α− θ̃) = 0.

If α > 2θ̃ or α < 0, then by (2.15) we obtain

|z′1 + z′2 + z′3| ≤ cos
(
θ̃ +

π

3

)
+ cos

(π
3
− θ̃
)

+ cos(α− θ̃) = cos θ̃+ cos(α− θ̃) < 2 cos θ̃,
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which leads to (2.11). Otherwise, 0 ≤ α ≤ 2θ̃. Since π/3 ≤ β ≤ 7π/12 and 2θ̃ ≤ π/6,
we conclude from (2.15) and (2.16) that

|z′1 + z′2 + z′3| = cos(α− θ̃) + cos(β − θ̃) +
sin(β − θ̃) + sin(α− θ̃)

sin
(
θ̃ + π

3

) cos
(
θ̃ +

π

3

)
=

sin
(
α + π

3

)
+ sin

(
β + π

3

)
sin
(
θ̃ + π

3

) ≤
sin
(
α + π

3

)
+ sin 2π

3

sin
(
θ̃ + π

3

)
≤

sin
(
2θ̃ + π

3

)
+ sin π

3

sin
(
θ̃ + π

3

) = 2 cos θ̃.

This shows the inequality (2.11).

Case III, where z′1 ∈ conv({0, e0}) and z′3 ∈ conv({0, e2}). Then z′1 = te0 = t and
z′3 = se2 = −seπi/3 for some t, s ∈ [0; 1]. Since π

6
− θ̃

2
> θ̃, we deduce from (2.3) that

|z′1 + z′2 + z′3| = −t cos θ̃ + s cos
(π

3
− θ̃
)

+ cos(α− θ̃)

≤ cos
(π

3
− θ̃
)

+ 1 = 2

(
cos

(
π

6
− θ̃

2

))2

< 2 cos

(
π

6
− θ̃

2

)
< 2 cos θ̃,

and so the inequality (2.11) holds.

Case IV, where z′1 ∈ conv({0, e0}) and z′3 ∈ T3. Then z′1 = te0 = t and z′3 = −eiβ

for some t ∈ [0; 1] and β ∈ [π/3; 7π/12]. From (2.3) it follows that

|z′1 + z′2 + z′3| = −t cos θ̃ + cos(β − θ̃) + cos(α− θ̃)
≤ cos(β − θ̃) + cos(α− θ̃) ≤ cos(β − θ̃) + 1

≤ 1 + cos
(π

3
− θ̃
)
< 2 cos θ̃;

see the case III for the last inequality. This implies the inequality (2.11). Summing
up, the inequality (2.11) holds in each of the possible cases I–IV. Using now (2.2) and
(2.11) we see that |z| ≤ 2

3
cos θ̃. Since z ∈ `θ, we have z ∈

{
−2

3
r cos θ eiθ : r ∈ [0; 1]

}
,

which leads to the inclusion (2.10). �

Set C+ := {z ∈ C : Im z ≥ 0}, C− := {z ∈ C : Im z ≤ 0} and

(2.17) A :=
5⋃

k=0

T
(

1

3
eπik/3,

1

3

)
.

Notice that S(A) = A for S ∈ S. Now we are in a position to prove our main result.

Proof of Theorem 0.1. We start with showing the following equality

(2.18) RSF({0}) = conv(A).

Fix θ ∈ R and r ∈ [0; 1]. If 0 ≤ θ ≤ π/3, then z1 := e2iθ ∈ D1, z2 := 0 ∈ D2,
z3 := 1 ∈ D3 and

1

3
(z1 + z2 + z3) =

1

3

(
1 + e2iθ

)
=

1

3
eiθ
(
e−iθ + eiθ

)
=

2 cos θ

3
eiθ.
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If π/3 ≤ θ ≤ π/2, then z1 := 1 ∈ D1, z2 := e2iθ ∈ D2, z3 := 0 ∈ D3 and, like above,
1

3
(z1 + z2 + z3) =

2 cos θ

3
eiθ.

Using now Lemma 1.5 we obtain the following inclusion

T
(

1

3
,
1

3

)
∩ C+ =

{
2 cos θ

3
eiθ : θ ∈ [0;π/2]

}
⊂ RSF({0}),

which in view of Corollary 1.4 implies

T
(

1

3
,
1

3

)
=

(
T
(

1

3
,
1

3

)
∩ C+

)
∪ S̄0

(
T
(

1

3
,
1

3

)
∩ C+

)
(2.19)

⊂ RSF({0}) ∪ S̄0

(
RSF({0})

)
= RSF({0}).

If π ≤ θ ≤ 7π
6
, then z1 := e1 ∈ D1, z2 := −e2iθ ∈ D2, z3 := e2 ∈ D3 and

1

3

(
z1 + z2 + z3

)
=

1

3

(
e1 + e1 − e2iθ

)
=

1

3

(
−1− e2iθ

)
= −2 cos θ

3
eiθ.

If 7π
6
≤ θ ≤ 3π

2
, then z1 := e1 ∈ D1, z2 := e2 ∈ D2, z3 := −e2iθ ∈ D3 and, as above,

1

3

(
z1 + z2 + z3

)
= −2 cos θ

3
eiθ.

Using Lemma 1.5 once again we obtain the following inclusion

T
(
−1

3
,
1

3

)
∩ C− =

{
−2 cos θ

3
eiθ : θ ∈ [π; 3π/2]

}
⊂ RSF({0}),

which in view of Corollary 1.4 leads to

T
(
−1

3
,
1

3

)
=

(
T
(
−1

3
,
1

3

)
∩ C−

)
∪ S̄0

(
T
(
−1

3
,
1

3

)
∩ C−

)
(2.20)

⊂ RSF({0}) ∪ S̄0 (RSF({0})) = RSF({0}).
Applying Corollary 1.4 we deduce from the inclusions (2.19) and (2.20) that

A =
5⋃

k=0

T
(

1

3
eπik/3,

1

3

)
=

2⋃
k=0

[
T
(

1

3
e2πik/3,

1

3

)
∪ T

(
−1

3
e2πik/3,

1

3

)]

=
2⋃

k=0

[
Sk

(
T
(

1

3
,
1

3

))
∪ Sk

(
T
(
−1

3
,
1

3

))]

⊂
2⋃

k=0

[Sk (RSF({0})) ∪ Sk (RSF({0}))] = RSF({0}).

By Lemma 1.2, the set RSF({0}) is convex. Therefore

(2.21) conv(A) ⊂ conv
(
RSF({0})

)
= RSF({0}).

It remains to show the opposite inclusion. Write A0 := A′0 ∪A′′0, where A′0 (resp. A′′0)
is the union of all rays `θ where θ ∈ [0;π/12] (resp. θ ∈ [π; 13π/12]). Since{

2 cos θ

3
eiθ : θ ∈ [−π/2;π/2]

}
= T

(
1

3
,
1

3

)
as well as {

−2 cos θ

3
eiθ : θ ∈ [π/2; 3π/2]

}
= T

(
−1

3
,
1

3

)
,
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we conclude from Lemmas 2.2 and 2.3 that

RSF({0}) ∩ A′0 ⊂ conv

(
T
(

1

3
,
1

3

))
and RSF({0}) ∩ A′′0 ⊂ conv

(
T
(
−1

3
,
1

3

))
.

Therefore
RSF({0}) ∩ A0 ⊂ conv(A).

Applying now Corollary 1.4 with S := S̄0 we obtain

RSF({0}) ∩ (A0 ∪ S̄0(A0)) = [RSF({0}) ∩ A0] ∪ [S̄0(RSF({0})) ∩ S̄0(A0)]

= [RSF({0}) ∩ A0] ∪ S̄0[RSF({0}) ∩ A0]

⊂ conv(A) ∪ S̄0(conv(A)) = conv(A).

Applying once again Corollary 1.4 with S ∈ {S1, S2} we see that

RSF({0}) ∩ Sk(A0 ∪ S̄0(A0)) = Sk(RSF({0})) ∩ Sk(A0 ∪ S̄0(A0))

= Sk
(
RSF({0}) ∩ (A0 ∪ S̄0(A0))

)
⊂ Sk(conv(A)) = conv(A), k ∈ {0, 1, 2}.

Thus

(2.22) RSF({0}) ∩
⋃
S∈S

S(A0) ⊂ conv(A).

Fix z ∈ RSF({0}). By Lemma 1.5 there exists a sequence {1, 2, 3} 3 k 7→ zk ∈ Dk

such that z = 1
3
(z1 + z2 + z3). Then

Im z =
1

3
(Im z1 + Im z2 + Im z3) ≤

1

3

(
1 +

√
3

2

)
=

2

3

(
cos

π

12

)2
,

because for each r ∈ [0; 1],

Im reit = r sin t ≤ sin
2π

3
=

√
3

2
, t ∈ [2π/3; 4π/3],

as well as
Im reit = r sin t ≤ 0, t ∈ [4π/3; 2π].

Therefore

(2.23) RSF({0}) ⊂ B :=

{
ζ ∈ C : Im ζ ≤ 2

3

(
cos

π

12

)2}
.

Let A1 be the union of all rays `θ where θ ∈ [5π/12; 7π/12]. Setting

(2.24) v1 :=
1

6
+

2i

3

(
cos

π

12

)2
and v2 := −1

6
+

2i

3

(
cos

π

12

)2
,

we see that

(2.25) B ∩ `5π/12 = conv({0, v1}) and B ∩ `7π/12 = conv({0, v2}).

Since v1 ∈ T
(
1
3
eπi/3, 1

3

)
⊂ A and v2 ∈ T

(
1
3
e2πi/3, 1

3

)
⊂ A, we conclude from (2.23) and

(2.25) that

RSF({0}) ∩ A1 ⊂ B ∩ A1 = conv({0, v1, v2}) ⊂ conv(A).

Applying now Corollary 1.4 we obtain

RSF({0}) ∩
⋃
S∈S

S(A1) =
⋃
S∈S

S
(
RSF({0}) ∩ A1

)
⊂
⋃
S∈S

S(conv(A)) = conv(A).
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This together with (2.22) leads to

RSF({0}) = RSF({0}) ∩ C

= RSF({0}) ∩

(⋃
S∈S

S(A0) ∪
⋃
S∈S

S(A1)

)

=

(
RSF({0}) ∩

⋃
S∈S

S(A0)

)
∪

(
RSF({0}) ∩

⋃
S∈S

S(A1)

)
⊂ conv(A).

Hence and by (2.21) we derive the equality (2.18), which together with (2.17) yields
the first equality in (0.3). Applying the equality (2.18) we can represent the set
RSF({0}) using polar coordinates as follows. After simple calculations we see that
for each θ ∈ [−π/12;π/12],

conv(A) ∩ `θ = conv

(
T
(

1

3
,
1

3

)
∩ `θ

)
=

{
z ∈ `θ : |z| ≤ 2

3
cos θ

}
.

Hence and by (0.4),

(2.26) conv(A) ∩ `θ =
{
z ∈ `θ : |z| ≤ ρ(θ)

}
, θ ∈ [−π/12;π/12].

It is easy to verify that for each θ ∈ [5π/12; 7π/12],

conv(A) ∩ `θ = conv({0, v1, v2}) ∩ `θ
where v1 and v2 are defined by (2.24). On the other hand

conv({0, v1, v2}) ∩ `θ =

{
z ∈ `θ : |z| ≤ Im v1

cos
(
π
2
− θ
)} =

{
z ∈ `θ : |z| ≤ 2

3

(
cos π

12

)2
sin θ

}
.

Thus taking into account (0.5) and (0.6) we obtain

(2.27) conv(A) ∩ `θ =
{
z ∈ `θ : |z| ≤ ρ(θ)

}
, θ ∈ [5π/12; 7π/12].

By the formula (2.17), the set A is invariant under the rotation by π/3 around the
origin, so the set conv(A) has this property. Combining this with (0.6) we deduce
from (2.26) and (2.27) that

conv(A) ∩ `θ =
{
z ∈ `θ : |z| ≤ ρ(θ)

}
, θ ∈ R.

This together with (2.17) leads to the second equality in (0.3), which completes the
proof. �

Remark 2.4. Taking into account the inclusions (2.5) and (2.10) and the equal-
ity (2.18) we can find extremal functions in F , which recover the boundary of
RSF({0}). The basic functions are of the following form

Fθ := e2iθ P[χT1 ] + P[χT3 ], θ ∈ [0; π/12];

Fθ := −e2iθ P[χT2 ] + e1 P[χT1 ] + e2 P[χT3 ], θ ∈ [π; 13π/12].

By the definition of the family F we see that

F0 :=
{
Fθ : θ ∈ [0; π/12] ∪ [π; 13π/12]

}
⊂ F .

Now, by Lemma 1.3 we obtain

F1 :=
{
S ◦ F ◦ S−1 : F ∈ F0, S ∈ S

}
⊂ F .
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By the proof of Lemma 1.2 and by Lemma 1.3,
F2 :=

{
λ(S̄1 ◦ F13π/12 ◦ S̄−11 ) + (1− λ)Fπ/12 : λ ∈ [0; 1]

}
⊂ F .

Using once again Lemma 1.3 we see that
F3 :=

{
S ◦ F ◦ S−1 : F ∈ F2, S ∈ S

}
⊂ F .

Finally the union F4 := F1 ∪ F3 ⊂ F determines the boundary of RSF({0}), i.e.,

fr
(
RSF({0}

)
=
⋃
F∈F4

F ({0}) = {F (0) : F ∈ F4}.

Notice also that the family F1 recovers the full set RSF({0}) by convex combinations.
More precisely, the following equality holds

RSF({0}) =
{
λF + (1− λ)G : F,G ∈ F1, λ ∈ [0; 1]

}
.
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