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Exceptional projections of sets exhibiting
almost dimension conservation

Ryan E.G. Bushling

Abstract. We establish a packing dimension estimate on the exceptional sets of orthogonal

projections of sets satisfying an almost dimension conservation law. In particular, the main result

applies to homogeneous sets and to certain graph-directed sets. Connections are drawn to results of

Rams and Orponen.

Melkein ulottuvuutensa säilyttävien joukkojen poikkeukselliset projektiot

Tiivistelmä. Jos annettu joukko melkein säilyttää ulottuvuutensa, kun siitä otetaan kohtisuo-

ria projektioita, saadaan arvio poikkeuksellisten projektioiden kokoelman pakkausulottuvuudelle.

Päätulos kattaa erityisesti homogeeniset joukot ja eräät verkkosuunnistetut joukot. Tällä on yhteyk-

siä Ramsin ja Orposen tuloksiin.

1. Introduction

Let Gr(n, k) be the Grassmannian of k-planes in Rn equipped with the invariant
measure γn,k induced by the action of the orthogonal group. That is, if θn is the Haar
measure on O(n) and V ∈ Gr(n, k), then

γn,k(A) := θn
(

{T ∈ O(n) : T (V ) ∈ A}
)

,

where the definition does not depend on the specific choice of V . For each V ∈
Gr(n, k), we denote by πV : Rn → V the orthogonal projection of Rn onto V and write
AV := πV (A) for A ⊆ Rn. The following result of Marstrand, Kaufman, Mattila,
and Falconer is essentially the most general bound on the Hausdorff dimension of
exceptional sets of orthogonal projections; however, see also [2] for other results of
this sort.

Theorem 1.1. (Marstrand’s Projection Theorem) Let A ⊆ Rn be analytic.

(a) If s ≤ dimA ≤ k, then

dim {V ∈ Gr(n, k) : dimAV < s} ≤ k(n− k)− (k − s).

(b) If s ≤ k < dimA, then

dim {V ∈ Gr(n, k) : dimAV < s} ≤ k(n− k)− (dimA− s).

1.1. A theorem of Rams. Theorem 1.1 of Rams [9] implies a result in a
similar vein that bounds the packing dimension of the exceptional set, but only when
the set under consideration is highly regular and k = n − 1. His theorem concerns
parametrized families of conformal iterated function systems (IFS), but we state
it here more narrowly for parametrized families of similarities. The terminology
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involved is heavy, so we refer the reader to §1 and Definition 4.4 of [9] and the
Appendix of this paper for additional background.

Theorem 1.2. (Rams [9]) Let V ⊂ Rk be a bounded open set, and for each

t ∈ V , let
(

fi( · ; t)
)N

i=1
be a family of self-similar IFS on Rk with limit set Kt.

Assume that each fi is smooth in all k variables and k parameters, and denote by
σ(t) the solution to Hutchinson’s equation

N
∑

i=1

ai(t)
σ(t) = 0,

where ai(t) ∈ (0, 1) is the similarity ratio of fi( · ; t). If
(

fi( · ; t)
)N

i=1
satisfies the

transversality condition (4.8), then

dimP {u ∈ V : dimKu ≤ s} ≤ s ∀ 0 ≤ s < min

{

k, sup
t∈V

σ(t)

}

.

We adapt our previous notation and let ρe : R
n → Rn−1 denote the orthogonal

projection onto the hyperplane orthogonal to the vector e ∈ S
n−1. Henceforth, “IFS”

without qualification refers to a self-similar IFS.
Suppose K ⊂ Rn is the limit set of an IFS (gi)

N
i=1 that satisfies the strong separa-

tion condition (SSC), and for each e ∈ Sn−1, let fi( · ; e) := ρe◦gi◦ρ−1
e : Rn−1 → Rn−1.

Then each collection (fi( · ; e))Ni=1 is an IFS in R
n−1 with limit set Ke := ρe(K). There-

fore, (fi( · ; e))Ni=1 is a transverse, smoothly parametrized (n− 1)-parameter family of
IFS on Rn−1, so the problem of determining the exceptional set of projections for K
is equivalent to determining the exceptional set of the IFS (fi( · ; e))Ni=1.

This setup allows for an application of Rams’ theorem to obtain the following.

Proposition 1.3. Let K ⊂ Rn be the limit set of a self-similar IFS containing
no rotations or reflections and satisfying the SSC. Then

dimP {e ∈ S
n−1 : dimKe ≤ s} ≤ s ∀ 0 ≤ s < dimK.

Our main result subsumes this as a special case; nevertheless, we include its proof
in the Appendix to shed light on the relationship between his work and our own, and
to give a sense of just how strong the transversality condition in Theorem 1.2 is.

1.2. Orponen’s packing dimension bound on exceptional sets. For planar
sets, Orponen’s result in [7] allows us to forgo any separation conditions in the case
that K is self-similar, or to instead assume that K is homogeneous (see §2.2).

Proposition 1.4. (Orponen [7]) Let K ⊂ R2 be homogeneous or self-similar.
Then

dimP {e ∈ S
1 : dimKe ≤ s} ≤ s ∀ 0 ≤ s < dimK.

This result generalizes nicely to higher dimensions in the homogeneous case, but
the self-similar case is far more delicate: there is a dichotomy between planar self-
similar sets containing dense rotations in the orthogonal group and those that do
not, whereas no such dichotomy exists in dimension n ≥ 3. Peres and Shmerkin
[8] showed that the exceptional set is empty for self-similar sets in R2 with dense
rotations, leaving only the case of non-dense rotations—a case that readily reduces
to the case of homogeneous sets.
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The key to Proposition 1.4 is that linear maps are “dimension conserving” for
homogeneous sets, and the equality of Hausdorff and upper box dimension of ho-
mogeneous sets allows one to utilize this principle in a discrete setting. Our main
purposes are to generalize Proposition 1.4 to higher dimensions and to weaken the
dimension conservation principle to “almost dimension conservation” (cf. §2.3).

Theorem 1.5. Let A ⊂ Rn be a bounded set with dimA = dimBA. If there
exists a set F ⊆ Gr(n, k) with t := dimP F such that πV is almost dimension
conserving for A for all V ∈ Gr(n, k) \ F , then

(1.1) dimP {V ∈ Gr(n, k) : dimAV ≤ s} ≤ max
(

k(n− k)− (k − s), t
)

for all 0 ≤ s < dimA.

For examples of sets exhibiting almost dimension conservation but (to the au-
thor’s knowledge) not necessarily with dimension conserving projections in the sense
of Furstenberg, see [3] and [4].

As a corollary to Theorem 1.5, we obtain the following analogue of Proposi-
tion 1.4.

Corollary 1.6. Let K ⊂ R
n be either a homogeneous set or a graph-directed

set with one of the following two properties: either (1) its transformation group is
finite or (2) the action of the transformation group on Gr(n, k) has a dense orbit.
Then

(1.2) dimP {V ∈ Gr(n, k) : dimKV ≤ s} ≤ k(n− k)− (k − s) ∀ 0 ≤ s < dimK.

Proof. In both cases, dimK = dimBK. If K is homogeneous, then every linear
map (in particular, every orthogonal projection) is (classically) dimension conserving
for K by Furstenberg’s Theorem 2.3. Likewise, if K is a graph-directed set with
finite transformation group, then every linear map is almost dimension conserving
by Farkas’ Theorem 2.5. Lastly, if K is graph-directed and has a dense orbit in the
Grassmannian, then [4] Theorem 1.15 implies that the exceptional set of projections
is empty. �

If one replaces almost dimension conservation with bona fide dimension conser-
vation in Theorem 1.5, one can still conclude Corollary 1.6 using [4] Theorem 1.3,
which implies that graph-directed sets with finite transformation groups are well-
approximated from within by homogeneous sets. However, the theorem is stated as
is in the interests of generality and future examples of almost dimension conservation.

Our proof of Theorem 1.5 is similar to Orponen’s proof of Proposition 1.4. Philo-
sophically, dimension conservation affords us partial knowledge of why the dimension
of a set may have dropped upon projection onto a subspace: the dimension of the
fibers accounts for a “substantial portion” of the dimension lost—the dimension did
not simply “vanish”—and this information enables us to deduce what is happening
upstairs in Rn from what we see downstairs in Rk. While one might hope to prove a
still broader restatement of Theorem 1.5, [7] Theorem 1.1 shows that (1.2) does not
hold in general even for compact sets K ⊂ R2. Consequently, any strengthening of
Theorem 1.5 will require some mechanism taking the role of dimension conservation.

Kaufman’s approach to Theorem 1.1(a) relies on potential theory, and our proof
of Theorem 1.5 can be understood as a discretization thereof. Theorem 1.1(b) begs
the following improvement to Theorem 1.5; however, as Theorem 1.1(b) is not known
to be provable without use of the Fourier transform, it is probable that any modifica-
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tion of our proof leading to such an extension will also need to emulate the role played
by the Fourier transform.

Conjecture. Under the hypotheses of Theorem 1.5, if dimA > k, then

dimP {V ∈ Gr(n, k) : dimAV < s} ≤ max
(

k(n− k)− (dimA− s), t
)

for all k < s < dimA.

1.3. Outline. In §2, we lay down some preliminaries on Hausdorff and packing
dimensions, followed by the requisite background on dimension conservation, almost
dimension conservation, homogeneous sets, and graph-directed sets. A lemma on the
sizes of discrete sets of points in Gr(n, k) follows in §3, and this is used in §4 in the
proof of Theorem 1.5. Finally, the proof of Proposition 1.3 applying Rams’ Theorem
1.2 to orthogonal projections of self-similar sets appears in the Appendix.

2. Definitions and notation

Throughout this paper, the relation a . b denotes non-strict inequality up to
a positive multiplicative constant and the relation a ∼ b indicates that both a . b

and b . a. For clarity, the parameters on which the implicit constant depends will
sometimes be written as subscripts or stated explicitly.

2.1. Measures and dimensions. Since we will be working in both Euclidean
space and the Grassmannian Gr(n, k)—a metric space with metric d(V,W ) := ‖πV −
πW‖—the following discussion is framed in a metric space context. However, little is
lost by taking the metric space to be an open subset of Rn.

Let (X, d) be a separable metric space and 2X its power set, and let |F | be the
diameter of a set F ∈ 2X . The Carathéodory construction yields a family of functions
Hs

δ : 2
X → [0,∞], δ ∈ [0,∞], defined by

Hs
δ(A) := inf

{

∞
∑

i=1

|Fi|s : Fi ∈ 2X , |Fi| ≤ δ, A ⊆
∞
⋃

i=1

Fi

}

.

The function Hs
∞, called the s-dimensional Hausdorff content on X, will be of par-

ticular importance below. The resulting Carathéodory measure

Hs(A) := lim
δ→0

Hs
δ(A) = sup

δ>0
Hs

δ(A)

is called the s-dimensional Hausdorff measure on X. For each A ⊆ X, there is
a unique s ∈ [0,∞] (in fact, s ∈ [0, n] when X is a smooth n-manifold) with the
following property: for all r < s < t, we have

0 = Ht(A) ≤ Hs(A) ≤ Hr(A) = ∞,

or, equivalently,

s = sup
{

t ∈ [0,∞) : Ht(A) > 0
}

= inf
{

r ∈ [0,∞) : Hr(A) = 0
}

.

We write dimA := s and call this number the Hausdorff dimension of A.
Perhaps the most useful nontrivial property of Hausdorff dimension that we use is

the following, as it entails that Hausdorff content is sufficient to determine Hausdorff
dimension.

Proposition 2.1. Let A ⊆ X. Then Hs(A) > 0 if and only if Hs
∞(A) > 0.



Exceptional projections of sets exhibiting almost dimension conservation 69

Hausdorff measure—hence, Hausdorff dimension—is defined in terms of covers
by arbitrary sets of diameter at most δ. However, one can still recover information
about Hausdorff dimension using a smaller family of covers, namely, covers by balls

with radius equal to δ. For each bounded set A ⊆ X and each δ > 0, let

(2.1) N(A, δ) := min

{

k ∈ Z+ : ∃ xi ∈ X s.t. A ⊆
k
⋃

i=1

B(xi, δ)

}

,

where (for definiteness) we take the balls to be closed. We define the upper box

dimension of a set in X, also called its upper Minkowski dimension, by

(2.2)

dimBA := sup

{

t ∈ [0,∞) : lim sup
δ↓0

N(A, δ)δt > 0

}

= inf

{

r ∈ [0,∞) : lim sup
δ↓0

N(A, δ)δr = 0

}

.

Comparing the admissible covers of A in the definitions of Hausdorff and upper box
dimensions yields the inequality

dimA ≤ dimB A.

We will frequently deal with sets A for which equality holds.
We now turn to packing dimension. It is perhaps more natural to define this in

terms of packing measure, but, to streamline the exposition, we present an alternative
characterization—the only one we will use in the sequel. The packing dimension of
any subset A ⊆ X is given by

dimP A := inf

{

sup
i∈Z+

dimBAi : A =
∞
⋃

i=1

Ai, |Ai| < ∞
}

.

An important feature of packing dimension that upper box dimension lacks is count-

able stability :

dimP

∞
⋃

i=1

Ai = sup
i∈Z+

dimP Ai.

2.2. Dimension conservation and homogeneous sets. As a prelude to the
introduction of “almost dimension conservation”, we discuss the relevant terminology
from Furstenberg’s paper [5].

A Lipschitz function f : Rn → Rm is said to be dimension conserving (or DC )
for a set A ⊆ Rn if there exists ∆ ≥ 0 such that

∆+ dim
{

y ∈ f(A) : dim(A ∩ f−1(y)) ≥ ∆
}

≥ dimA,

where dim∅ := −∞. Heuristically, f is DC for A if the dimension of its fibers over A
is “complementary” to the dimension of f(A): it is a sort of “rank-nullity condition”.
The pathological Example 7.8 of [1] shows that even the projection of a product set
onto the coordinate axes may radically fail to be DC for that set.

The Hausdorff metric on the class K of nonempty compacta in Rn is defined by

ρ(H,K) := inf {ε ≥ 0: H ⊆ Kε and K ⊆ Hε},
H,K ∈ K, where Aε is the closed ε-neighborhood of A. With the Hausdorff metric,
K is a complete metric space.

We now define the archetypal class of compacta in the study of dimension conser-
vation. Scaling and translating a set does not affect the dimension of the projection
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of a set in any direction, so we assume without loss of generality that K ⊆ [0, 1]n. A
closed set K ′ ⊂ [0, 1]n is called a miniset of K if there exists an expanding homothety
ϕ(x) = rx + b (|r| ≥ 1) such that K ′ ⊆ ϕ(K). A closed set K ′′ ⊆ [0, 1]n is called a
microset of K if there exists a sequence (K ′

i)
∞
i=1 of minisets of K converging to K ′′

in the Hausdorff metric: ρ(K ′
i, K

′′) → 0. Finally, K is said to be homogeneous if all
its microsets are minisets; that is, the class of minisets of K is a closed in K.

Loosely, K is homogeneous if it looks the same at all scales: even if the minisets
K ′

i must be contained in larger and larger expansions of K as i → ∞ (meaning they
resemble smaller and smaller subsets of K), there still exists a scale on which the
limiting set K ′′ coincides with a subset of K at that scale.

Appreciation for the definition of “dimension conserving” will be important for
understanding the sequel. On the other hand, the technical definition of a homo-
geneous set is not strictly necessary, as the only two properties we require are the
following (cf. [5] p. 407 and Theorem 6.2).

Proposition 2.2. If K is homogeneous, then dimK = dimBK.

Theorem 2.3. (Furstenberg [5]) If K ⊂ Rn is homogeneous and f : Rn → Rm

is linear, then f is DC for K.

In particular, Theorem 2.3 implies that every projection map is DC for K.

2.3. Almost dimension conservation and graph-directed sets. There is
a natural weakening of the notion of dimension conservation due to [4]. We call a
Lipschitz function f : Rn → Rm almost dimension conserving for a set A ⊆ Rn if
there exists ∆ ≥ 0 such that, for every ε > 0,

(2.3) ∆+ dim
{

y ∈ f(A) : dim(A ∩ f−1(y)) ≥ ∆− ε
}

≥ dimA,

where dim∅ := −∞ as before. See also [3] for the more restrictive concept of weak

dimension conservation. In §4, A is fixed and we let ∆′(V ) denote the set of all ∆ ≥ 0
such that (2.3) holds with f = πV .

The primary motivation for working with almost dimension conservation is its
applicability to a wider class of sets, the most notable of which we describe as follows.
Let (E ,V) be a directed graph with vertices 1, . . . , N , where edges starting and ending
at the same point are allowed. For all i, j ∈ V, let Ei,j be the set of all edges from
i to j and E ℓ

i,j the set of all paths of length ℓ from i to j. We assume that (E ,V) is

transitive (or strongly connected), i.e., that for all i, j ∈ V, at least one of the E ℓ
i,j is

nonempty. Given a family (ge)e∈E of contracting similarities, there exists a unique
tuple (K1, . . . , KN) of compacta with the invariance property

Ki =
N
⋃

j=1

⋃

e∈Ei,j

ge(Kj)

for each i. The system (ge)e∈E is called a graph-directed IFS, the tuple (K1, . . . , KN)
is called its attractor, and each Ki is called a graph-directed set. Finally, if we write
ge(x) = aeTe(x) + be, where ae ∈ (0, 1) are the similarity ratios, Te ∈ O(n) are
orthogonal transformations, and be ∈ Rn are translation vectors, then the group
Ti ≤ O(n) generated by the set {Te1 ◦ · · · ◦ Teℓ ∈ O(n) : (e1, . . . , eℓ) ∈ E ℓ

i,i, ℓ ∈ Z+}
is called the transformation group of Ki. Of particular importance are the case that
Ti is finite and the case that some (hence, every) orbit in Gr(n, k) under the action
of Ti is dense. What happens between these two extremes, while interesting, is not
well-understood (see [10] §7.2).
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Analogous to Proposition 2.2 and Theorem 2.3 are the following. They are the
only properties of graph-directed sets important for our purposes.

Proposition 2.4. If K is a graph-directed set, then dimK = dimBK.

Theorem 2.5. (Farkas [4]) Let (K1, . . . , Kℓ) be the attractor of a graph-directed
IFS in Rn. If i ∈ {1, . . . , ℓ} is any vertex such that the transformation group of Ki

is finite and if f : Rn → Rm is linear, then f is almost DC for Ki.

Thus, under the hypotheses of Theorem 2.5, every projection map is almost DC
for Ki.

3. Counting points on Gr(n, k)

We will have occasion to ask, given two points x, y ∈ Rn and a δ-separated
set E ⊂ Gr(n, k), for how many V ∈ E we have ‖πV (x) − πV (y)‖ ≤ cδ, where
c > 0 is given. The following lemma—a discrete version of a key step in the proof of
Marstrand’s projection theorem—addresses this question in greater generality.

Lemma 3.1. Let x ∈ Rn \ {0} and δ1, δ2 ∈ (0, 1] and let E ⊂ Gr(n, k) be
δ2-separated. Then

card
{

V ∈ E : ‖πV (x)‖ ≤ δ1
}

.n,k δk1 δ
−k(n−k)
2 ‖x‖−k.

Proof. Since the invariant measure γn,k and the k(n− k)-dimensional Hausdorff
measure Hk(n−k) are both uniformly distributed measures on Gr(n, k), they are equal
up to a constant. Consequently, rk(n−k) . γn,k(B(V, r)) for all V ∈ Gr(n, k) and
r ∈ (0, 1], and it follows from the separation hypothesis on E that

δ
k(n−k)
2 card

{

V ∈ E : ‖πV (x)‖ ≤ δ1
}

. γn,k
({

V ∈ Gr(n, k) : ‖πV (x)‖ ≤ δ1
})

.

Lemma 3.11 of [6] states that

γn,k
({

V ∈ Gr(n, k) : ‖πV (x)‖ ≤ δ1
})

.n,k δ
k
1 ‖x‖−k,

and combining this inequality with the previous gives

δ
k(n−k)
2 card

{

V ∈ E : ‖πV (x)‖ ≤ δ1
}

. δk1 ‖x‖−k.

Dividing through by δ
k(n−k)
2 yields the desired inequality. �

The question at the start of this section is answered by replacing x with x−y and
applying the linearity of πV . Curiously, the proof of Theorem 1.5 (and, in particular,
of Lemma 4.2) does not seem to benefit from the full generality of Lemma 3.1:
discretizing in the Grassmannian and in Euclidean space at the same scale (i.e.,
letting δ1 ∼ δ2) does not seem to affect the strength of the conclusion.

4. Proof of Theorem 1.5

Theorem 1.5 will follow readily from the following two lemmas. The first is
essentially true by definition, but it quantitatively formalizes the idea that, if K is
homogeneous and the dimension of KV is small, then the dimensions of the fibers of
πV over K must be large.
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Lemma 4.1. Let A ⊆ R
n. If there exists a set F ⊂ Gr(n, k) with t := dimP F

such that πV is almost DC for A for all V ∈ Gr(n, k) \ F , then

dimP

{

V ∈ Gr(n, k) : dimAV ≤ s
}

≤ max
(

t, dimP

{

V ∈ Gr(n, k) \ F : ∆ + s ≥ dimA ∀∆ ∈ ∆′(V )
}

)

.

for all s ≥ 0.

Proof. Let V ∈ Gr(n, k) \F be such that dimAV ≤ s and let ∆ ∈ ∆′(V ). Then,
by the definition of almost dimension conservation,

∆+ dim
{

y ∈ AV : dim
(

A ∩ π−1
V (y)

)

≥ ∆− ε
}

≥ dimA

for every ε > 0. It follows from the monotonicity of dimension that

∆+ s ≥ ∆+ dimAV ≥ dimA.

This proves the inclusion
{

V ∈ Gr(n, k) \ F : dimAV ≤s
}

⊆
{

V ∈ Gr(n, k) \ F : ∆ + s≥dimA ∀∆ ∈ ∆′(V )
}

,

whence

dimP

{

V ∈ Gr(n, k) : dimAV ≤ s
}

≤ max
(

dimP F, dimP

{

V ∈ Gr(n, k) \ F : dimAV ≤ s
}

)

≤ max
(

t, dimP

{

V ∈ Gr(n, k) \ F : ∆ + s ≥ dimA ∀∆ ∈ ∆′(V )
}

)

. �

Lemma 4.2. Let A ⊂ Rn be a bounded set with γ := dimA = dimBA, and
denote

Es :=
{

V ∈ Gr(n, k) : ∃∆ ∈ ∆′(V ) s.t. ∆+ s ≥ γ
}

.

Then

(4.1) dimP Es ≤ k(n− k)− (k − s) ∀0 ≤ s < γ.

As the proof of this lemma is much more involved, we first show how it (almost
immediately) implies Theorem 1.5.

Proof of Theorem 1.5. Let A ⊂ Rn be a bounded set with γ := dimA = dimBA

whose orthogonal projections πV are almost DC for V ∈ Gr(n, k) outside a set F of
packing dimension t. Then A satisfies the hypotheses of Lemmas 4.1 and 4.2, whence

dimP

{

V ∈ Gr(n, k) : dimAV ≤ s
}

≤ max
(

t, dimP

{

V ∈ Gr(n, k) \ F : ∆ ≥ γ − s ∀∆ ∈ ∆′(V )
}

)

≤ max
(

t, dimP

{

V ∈ Gr(n, k) : ∃∆ ∈ ∆′(V ) s.t. ∆ ≥ γ − s
}

)

≤ max
(

t, k(n− k)− (k − s)
)

. �

We conclude by proving Lemma 4.2, wherein the dimension conservation hypoth-
esis and the geometry of the Grassmannian come into play.

Proof of Lemma 4.2. The s = 0 case follows from the s > 0 case by letting s ↓ 0,
so we assume that s > 0.

Step 1. We begin by reducing the lemma to the following claim: that

(4.2) dimB Es,ε ≤ k(n− k)− (k − s) + 3ε
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for all sufficiently small ε > 0, where

Es,ε :=
{

V ∈ Gr(n, k) : ∃∆ ≥ γ − s s.t.

Hγ−∆−ε
∞

({

y ∈ R
k : H∆−ε

∞

(

A ∩ π−1
V (y)

)

> ε
})

> ε
}

.

To prove the validity of this reduction, suppose that ∆ ≥ γ− s for some ∆ ∈ ∆′(V ).
(In particular, πV is almost DC for A.) Then, for every ε > 0,

dim
{

y ∈ R
k : dim

(

A ∩ π−1
V (y)

)

≥ ∆− ε
2

}

> γ −∆− ε.

Consequently, if 0 < ε < γ − s ≤ ∆, the set on the left-hand side of this inequality
has infinite (γ − ∆ − ε)-dimensional Hausdorff measure and, in particular, positive
(γ −∆− ε)-dimensional Hausdorff content:

Hγ−∆−ε
∞

({

y ∈ R
k : dim

(

A ∩ π−1
V (y)

)

≥ ∆− ε
2

})

> 0.

Similarly, dim
(

A ∩ π−1
V (y)

)

≥ ∆− ε
2

implies H∆−ε
∞

(

A ∩ π−1
V (y)

)

> 0, so

Hγ−∆−ε
∞

({

y ∈ R
k : H∆−ε

∞

(

A ∩ π−1
V (y)

)

> 0
})

> 0.

Writing

{

y ∈ R
k : H∆−ε

∞

(

A ∩ π−1
V (y)

)

> 0
}

=

∞
⋃

m=1

{

y ∈ R
k : H∆−ε

∞

(

A ∩ π−1
V (y)

)

> m−1
}

,

we can by Proposition 2.1 find m ∈ Z+ such that

Hγ−∆−ε
∞

({

y ∈ R
k : H∆−ε

∞

(

A ∩ π−1
V (y)

)

> m−1
})

> 0.

The left-hand side is decreasing in ε and increasing in m, so we may adjust these
parameters accordingly so that m−1 = ε for simplicity. Indeed, for ε > 0 sufficiently
small, we will have

Hγ−∆−ε
∞

({

y ∈ R
k : H∆−ε

∞

(

A ∩ π−1
V (y)

)

> ε
})

> ε,

from which we conclude that V ∈ Es,ε. In particular, we can write

Es ⊆
∞
⋃

m=N

Es,m−1

for any N ∈ Z+. It then follows from our definition of packing dimension that (4.2)
implies (4.1), so we set out to prove (4.2).

Step 2. Let 0 < ε < γ − s. We discretize the problem and define a family
of relations, indexed by V ∈ Gr(n, k), that relate distant points x, y ∈ A whose
projections πV (x), πV (y) are close.

Let γ′ > γ, d := (γ − s− ε)−1, and

δ < η :=
εd

n1/22d+2 (2n−k + 1)d
.

(The significance of this requirement on δ will become apparent later.) By the
definition of upper box dimension, there exists a finite subset A′ ⊆ A such that
cardA′ . δ−γ′

and

A ⊆
⋃

x∈A′

B(x, δ).
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For each V ∈ Gr(n, k), let TV be the family of δ-fat (n− k)-planes of the following
form:

π−1
V

(

k
∏

i=1

[

jiδ, (ji + 1)δ
)

)

⊂ R
n,

j1, . . . , jk ∈ Z. (For succinctness, we will call these “fat planes” or “elements of TV .”)

These are half-open neighborhoods of fibers of πV over points of the lattice
(

Z+ 1
2

)k
δ,

and their disjoint union is all of Rn. We define relations ∽V on Rn by

(4.3)
x ∽V y ⇐⇒ ‖x− y‖ > 2η =

εd

2d+1(2n−k + 1)d
and ∃T ∈ TV s.t.

B(x, δ) ∩ T 6= ∅ and B(y, δ) ∩ T 6= ∅.

This states that ∽V relates points of Rn that are not too close to each other, but that
nevertheless belong to the same fat plane, adjacent fat planes, or fat planes with a
common neighboring fat plane. In particular, although the points are fairly distant
from each other, their projections onto V are quite close.

Step 3. Let E ′ ⊆ Es,ε be any δ-separated subset and define the energy of E ′ by

(4.4) E :=
∑

V ∈E′

card
{

(x, y) ∈ (A′)2 : x ∽V y
}

.

We use this energy to bound cardE ′ and, in turn, dimB Es,ε.
To obtain an upper bound, note that, given x, y ∈ A′, the number of k-planes

V ∈ E ′ such that x ∽V y is . δ−k(n−k)+k‖x− y‖−k by Lemma 3.1. Hence, for a fixed
x ∈ A′, the bound cardA′ .n,γ δ−γ′

and the trivial estimate η−k ∼ε,n,k 1 give
∑

V ∈E′

card
{

y ∈ A′ : x ∽V y
}

=
∑

y∈A′

card
{

V ∈ E ′ : x ∽V y
}

. δ−k(n−k)+k



 max
y∈A′,V ∈E′:

x∽V y

‖x− y‖−k



 cardA′

≤ δ−k(n−k)+k(2η)−kδ−γ′ ∼ δ−k(n−k)+k−γ′

,

where the implicit constants depend on n, k, γ, s, and ε, but not γ′ or δ. Summing
over all x ∈ A′ gives

E . δ−k(n−k)+k−γ′

cardA′ . δ−k(n−k)+k−2γ′

.

To place a lower bound on E , we estimate the individual terms in the sum (4.4). Let
V ∈ E ′ ⊆ Es,ε and ∆ ∈ ∆′(V ). Unwinding the definition of Es,ε, we see that there
exist j & δ∆−γ+ε fat planes Ti ∈ TV and points yi ∈ πV (Ti), i = 1, . . . , j, with the
following property: if Wi := π−1

V (yi) denotes the (n − k)-plane contained in Ti that
“passes through” yi, then

(4.5) H∆−ε
∞ (A ∩Wi) > ε.

To count the number of relations x ∽V y that hold on A′, we checkerboard each fat
plane Ti ∈ TV with boxes or “checkerboard squares”

R = Ti ∩ π−1
V ⊥

(

n−k
∏

ℓ=1

[

4iℓη, 4(iℓ + 1)η
)

)

,
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i1, . . . , in−k ∈ Z (see Figure 1). Recalling that we chose δ < η, we see that

|R| =
(

n−k
∑

ℓ=1

(4η)2 +
n
∑

ℓ=n−k+1

δ2

)1/2

<

(

n
∑

ℓ=1

(4η)2

)1/2

= n1/2 · 4η =
εd

2d (2n−k + 1)d

and, consequently, that

(4.6) H∆−ε
∞ (R) ≤ |R|∆−ε <

ε

2(2n−k + 1)
,

per our choice of d. It then follows from (4.5) and (4.6) that, for any choice of squares
R1, . . . , R2n−k+1,

H∆−ε
∞



(A ∩Wi) \
2n−k+1
⋃

ℓ=1

Rℓ



 >
ε

2
,

so any cover of (A ∩Wi) \R by δ-balls contains & δε−∆ balls.

TiRℓ

4η
4η

δ

Figure 1. A “checkerboard square” Rℓ in the fat plane Ti in the case (n, k) = (3, 1).

Now, (4.5) and (4.6) also entail that there exist distinct R1, . . . , R2n−k+1 whose
intersections with A∩Wi each have positive (∆− ε)-dimensional Hausdorff content.
In particular,

(4.7) card
{

x ∈ A′ : B(x, δ) ∩ (A ∩Wi ∩Rp) 6= ∅
}

& δε−∆

for p = 1, . . . , 2n−k + 1 because {B(x, δ) : x ∈ A′} is a cover of A. Necessarily, at
least 2 of these squares Rp, Rq are mutually non-adjacent, so they are 4η-separated.
Therefore, if x, y ∈ A′ are such that

B(x, δ) ∩ (A ∩Wi ∩Rp) 6= ∅ and B(y, δ) ∩ (A ∩Wi ∩ Rq) 6= ∅,

then

‖x− y‖ > 4η − 2δ > 2η,

so that x ∽V y. In conjunction with (4.7), this yields the estimate

card
{

(x, y) ∈ (A′)2 : B(x, δ) ∩ (A ∩Wi ∩ Rp) 6= ∅,

B(y, δ) ∩ (A ∩Wi ∩Rq) 6= ∅, x ∽V y
}

& δ2(ε−∆).

No δ-ball intersects more than 3k fat planes in TV , so we may sum the previous over
all i ∈ {1, . . . , j} to get

card
{

(x, y) ∈ (A′)2 : x ∽V y
}

& j(δε−∆)2 & δ(∆−γ+ε)+2(ε−∆) ≥ δ3ε+s−2γ,
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where the final inequality follows from our original hypothesis that ∆ ≥ γ − s. This
is the desired lower bound on the individual summands in (4.4), and multiplying by
cardE ′ yields the desired bound on E itself:

E & δ3ε+s−2γ cardE ′.

Step 4. In combination with our upper bound δ−k(n−k)+k−2γ′

& E , this at last
provides a concrete upper bound on cardE ′ in terms of δ, namely,

cardE ′ . δ−k(n−k)+k−2γ′−(3ε+s−2γ) = δ−k(n−k)+(k−s)−3ε−2(γ′−γ).

Since γ′ > γ was arbitrary and does not appear in the implicit constant, the estimate
cardE ′ . δ−k(n−k)+(k−s)−3ε follows at once. This holds for every δ-separated subset
E ′ ⊆ Es,ε, so we conclude (4.2) and, in turn, (4.1). �

Appendix

This section details the proof of Proposition 1.3 from Theorem 1.2. We make
only minor modifications to the notation of [9], to which the reader is referred for
thorough definitions of the pertinent concepts. In summary:

• ρe : R
n → Rn−1 is the orthogonal projection onto (span e)⊥ ∼= Rn−1.

• Given N ∈ Z+, Σ := {1, . . . , N}N denotes our symbol space, and a typical el-
ement of Σ is written as ω = (ω1, ω2, . . .). We also denote ωm := (ω1, . . . , ωm).

• Given an IFS (gi)
N
i=1, Π: Σ → Rn−1 indicates the projection map

Π(ω) := lim
m→∞

gωm(0),

where gωm := gω1
◦ · · · ◦ gωm

. This limit always exists by the Cantor inter-

section theorem. When working with a parametrized family
(

fi( · ; t)
)N

i=1
, the

projections Πt are distinguished with a subscript t.

Lastly, we restate Definition 4.4 of [9]. A smoothly parametrized family
(

fi( · ; t)
)N

i=1
as above is said to be transverse (or to satisfy the transversality condition) if there
exists a constant L > 0 with the following property: for each parameter value u and
each pair ω, κ ∈ Σ with ω1 6= κ1,

(4.8) ‖Πu(ω)− Πu(κ)‖ < L implies
∣

∣

∣
detDt

(

Πt(ω)− Πt(κ)
)∣

∣

t=u

∣

∣

∣
> L.

Here, Dt denotes the total derivative with respect to t. Loosely, this definition states
that, whenever the points Πt(ω),Πt(κ) are close for some t = u, they do not remain
close for long as the parameter t changes. The condition ω1 6= κ1 suggests that Πt(ω)
and Πt(κ) “should” land in different regions of the attractor Kt for any value of t,
although these regions may overlap for values of t at which the IFS is degenerate.

Proof of Proposition 1.3. It suffices to work in local coordinates, so we let
V ⊂ Sn−1 be an open set whose closure V is diffeomorphic to a bounded subset
of Rn−1. These local coordinates also afford us a consistent identification of the tan-
gent hyperplanes to Sn−1 with Rn−1. Dispensing with these technicalities, we we
simply refer to our parameter space as Sn−1 and use the formula ρe(x) = x− (x · e)e
for the orthogonal projections.

Step 1. Let (gi)
N
i=1 be an IFS on Rn with limit set K and satisfying the SSC. We

seek to produce a smooth family of IFS on Rn−1 to which we can apply Theorem 1.1
of [9].
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To this end, we define
(

fi( · ; e)
)N

i=1
by

fi(ξ; e) := (ρe ◦ gi)
(

ρ−1
e (ξ)

)

for each e ∈ Sn−1, where ρ−1
e (ξ) is any preimage of the point ξ ∈ Rn−1. This definition

is unambiguous because gi takes the form gi(x) = ax+ b for some a ∈ R and b ∈ Rn,
whence

(ρe ◦ gi)
(

ρ−1
e (ξ)

)

= ρe
(

aρ−1
e (ξ) + b

)

= aρe
(

ρ−1
e (ξ)

)

+ ρe(b) = aξ + ρe(b)

for any choice of ρ−1
e (ξ). This also shows that

(

fi( · ; e)
)N

i=1
is smooth in both x and

e, as ρe(b) = b− (b · e)e.
Step 2. We show that

(

fi( · ; e)
)N

i=1
is a transverse family. Let ω, κ ∈ Σ, where

ω1 6= κ1, and let fωm(ξ; e) denote the composite map

fω1
( · ; e) ◦ · · · ◦ fωm

( · ; e)

evaluated at ξ. Then

fωm(ξ; e) =
(

(ρe ◦ gω1
◦ ρ−1

e ) ◦ · · · ◦ (ρe ◦ gωm
◦ ρ−1

e )
)

(ξ)

=
(

ρe ◦ (gω1
◦ · · · ◦ gωm

) ◦ ρ−1
e

)

(ξ)

= (ρe ◦ gωm ◦ ρ−1
e )(ξ)

for any section ρ−1
e of ρe. Therefore, by the continuity of ρe,

fω(ξ; e) := lim
m→∞

fωm(ξ; e) = ρe

(

lim
m→∞

gωm

(

ρ−1
e (ξ)

)

)

= (ρe ◦ gω)
(

ρ−1
e (ξ)

)

.

In particular, we can take ρ−1
e (0) = 0, so

Πe(ω) = fω(0; e) = (ρe ◦ gω)(0) = ρe(Π(ω));

likewise for κ.
Denote z = (z1, . . . , zn) = Π(ω)− Π(κ), and suppose

(4.9) ‖ρu(z)‖ =
∥

∥ρu(Π(ω))− ρu(Π(κ))
∥

∥ = ‖Πu(ω)− Πu(κ)‖ <
c√
2

for some u ∈ Sn−1, where c ∈ (0, 1] is a constant such that dist(gi(K), gj(K)) > c for
all i 6= j. Such an c exists because (gi)

N
i=1 satisfies the SSC. Since Π(ω) ∈ gω1

(K),
Π(κ) ∈ gκ1

(K), and ω1 6= κ1, it follows that ‖z‖ > c—a fact we shall use shortly.
To show transversality, we must compute

detDe

(

ρe(z)
)∣

∣

e=u
.

The determinant is invariant under a linear change of coordinates, so we can rotate
our coordinate system so that u = en = (0, . . . , 0, 1). Consider h : e 7→ ρe(z) as a map
from Rn to Rn, i.e., by extending ρe(z) to take parameter values in Rn. Considered
as an n × n matrix, the jth column of the derivative Deh(e)|e=en is given by the
directional derivative

d

dr
ρen+rej(z)

∣

∣

r=0
=

d

dr

(

z − (z · (en + rej))(en + rej)
)∣

∣

r=0

= −zj(en + rej)− (zn + rzj)ej
∣

∣

r=0
= −zjen − znej,
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yielding

Deh(e)|e=en =









−zn · · · 0 0
...

. . .
...

...
0 · · · −zn 0

−z1 −z2 · · · −2zn









.

Since Deh(e)|e=en restricts to an automorphism of the tangent plane (span en)
⊥ ∼=

TenS
n−1, and since the standard coordinate frame (e1, . . . , en) is adapted to Sn−1 at

the north pole en, the matrix of this restricted linear map is obtained simply by
omitting the nth row and nth column of the matrix. That is, De

(

ρe(z)
)∣

∣

e=en
=

−znIn−1 and, consequently,

detDe

(

ρe(z)
)∣

∣

e=en
= det

(

−znIn−1

)

= (−zn)
n−1.

Now, since z = ρen(z) + znen, ‖ρen(z)‖2 < 2−1c2, and ‖z‖2 > c2, it must be that
|zn|2 = ‖znen‖2 > 2−1c2 and, in turn,

∥

∥

∥
De

(

ρe(z)
)∣

∣

e=en

∥

∥

∥
= ‖zn‖n−1 >

cn−1

2(n−1)/2
≥ c√

2
.

In view of Equation (4.9), we conclude that, whenever ω1 6= κ1,
∥

∥Πu(ω)− Πu(κ)
∥

∥ <
c√
2

implies
∣

∣

∣
detDe

(

Πe(ω)− Πe(κ)
)∣

∣

e=u

∣

∣

∣
=
∥

∥

∥
De

(

ρe(z)
)∣

∣

e=u

∥

∥

∥
>

c√
2
,

so
(

fi( · ; e)
)N

i=1
satisfies the transversality condition.

Step 3. We apply Theorem 1.2 to get

dimP {e ∈ S
n−1 : dimKe ≤ s} ≤ s ∀ 0 ≤ s < min

{

n− 1, sup
e∈Sn−1

σ(e)

}

.

If dimK ≥ n−1, then supe∈Sn−1 σ(e) = n−1 and the desired conclusion holds for all
0 ≤ s < dimK, the values of s in the interval (n− 1, dimK) giving a trivial bound.
If instead dimK < n− 1, then supe∈Sn−1 σ(e) = dimK, and again the bound on the
exceptional set holds for all 0 ≤ s < dimK. �
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