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Oversampling and Donoho–Logan
type theorems in model spaces

Anton Baranov, Philippe Jaming,

Karim Kellay and Michael Speckbacher

Abstract. The aim of this paper is to extend two results from the Paley–Wiener setting to more

general model spaces. The first one is an analogue of the oversampling Shannon sampling formula.

The second one is a version of the Donoho–Logan Large Sieve Theorem which is a quantitative

estimate of the embedding of the Paley–Wiener space into an L2(R, µ) space.

Yliotanta ja malliavaruuksien Donohon–Loganin tyyppiset lauseet

Tiivistelmä. Tämän työn tavoite on laajentaa kahta Paleyn–Wienerin asetelman tulosta ylei-

sempiin malliavaruuksiin. Ensimmäinen tulos on yliotantaa koskevan Shannonin otoskaavan vastine.

Toinen tulos on muunnelma Donohon–Loganin suuren seulan lauseesta, joka antaa arvion Paleyn–

Wienerin avaruuden avaruuteen L2(R, µ) upotuksen suuruudesta.

1. Introduction

The aim of this paper is to extend two classical results on the Paley–Wiener
space to more general model spaces. The first result is the sampling theorem, or
more precisely the oversampling formula that improves the convergence in Shannon
sampling. The second result is the Donoho–Logan Large Sieve Principle which can
be seen as one of the first results on sparsity in signal processing. In the context of
complex analysis, this is a result on Carleson measures for the Paley–Wiener space.

Let us now be more precise. Recall that the Paley–Wiener space is the subspace
of L2 signals that are band-limited to [−c, c]. It is a very common space used to
model signal encountered in natural sciences. If we normalize the Fourier transform
through

f̂(ξ) =

ˆ

R

f(t)e−itξ dt,

the Paley–Wiener space PW p
c (R), c > 0, 1 ≤ p <∞, is defined as

PW p
c (R) =

{
f ∈ Lp(R) : supp f̂ ⊂ [−c, c]

}
,

where, for p > 2, f̂ is understood in the distributional sense. Two well known
properties of the Paley–Wiener spaces are that they consist of entire functions and
that every function f ∈ PW 2

c (R) can be reconstructed from samples {f(πk/b)}k∈Z
via the Kotelnikov–Nyquist–Shannon Formula

(1.1) f(x) =
∑

k∈Z
f
(
k
π

b

) 1

2b
γ̂
(
x− k

π

b

)
,
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where b ≥ c and γ is any even function supported in [−b, b] with γ(ξ) = 1 for
ξ ∈ [−c, c]. Taking b ≥ c and γ = 1[−b,b] we get the classical Shannon Formula

(1.2) f(x) =
∑

k∈Z
f
(
k
π

b

)
sinc

(
b
(
x− k

π

b

))
,

where sinc t = sin t/t. However, when b > c one can do better by taking γ smooth
in which case γ̂ decreases faster than the sinc function. Most authors take γ to be
C∞ so that, for every N , |γ̂

(
x− k π

b

)
| = O(k−N) when k → ±∞ and this estimate

is even uniform when x stays in a compact set. As a consequence (1.1) converges
much better than (1.2), a fact that is well known in signal processing. The drawback
of this is that, to the best of our knowledge, there is no example of a function γ as
above for which γ̂ is explicitly known.

One way to overcome this is to give up on arbitrarily fast decay and to fix N .
One then fixes a parameter a > 0, and takes ψ(1) = ψ = 1

2a
1[−a,a] and ψ(k+1) =

ψ(k) ∗ ψ. Then ψ(N) is supported in [−Na,Na] and
´

R
ψ(N) = 1. It follows that

γ = ψ(N) ∗ 1[−c−Na,c+Na] is even, supported in [−b, b] with b = c + Na and that
γ(ξ) =

´

R
ψ(N) = 1 for ξ ∈ [−c, c]. Computing γ̂, we get

(1.3) f(x) = 2(c+Na)
∑

k∈Z
f
(
k
π

b

)[
sinc

(
a
(
x− k

π

b

))]N
sinc

(
(c+Na)

(
x− k

π

b

))
.

The second result we are dealing with in this paper is the Donoho–Logan Large
Sieve theorem. The analytic large sieve principle is a classical inequality for trigono-
metric polynomials which finds many applications in analytic number theory (see,
e.g., [19] and references therein). It was extended from trigonometric polynomials to
their near cousins the band-limited functions by Donoho and Logan [12] in the early
90s (after earlier work by Boas [8]), applying it to reconstruction of missing data in
signal processing.

For I an interval, we denote by |I| the length of I. When µ is a positive σ-finite
measure and δ > 0, we write

(1.4) Dµ(δ) = sup

{
µ(I)

|I| : I closed interval, |I| = δ

}
= sup

x∈R

µ([x, x+ δ])

δ
.

Donoho and Logan proved the following:

Theorem 1.1. (Donoho–Logan) Let c, δ > 0 and µ be a positive σ-finite mea-

sure. Then for every f ∈ PW 2
c (R),

(1.5)
ˆ

R

|f(x)|2 dµ(x) ≤
(
1 +

cδ

π

)
Dµ(δ)

ˆ

R

|f(x)|2 dx.

Moreover, for every f ∈ PW 1
c (R),

(1.6)
ˆ

R

|f(x)| dµ(x) ≤ Dµ(δ)

sinc

(
cδ

2

)
ˆ

R

|f(x)| dx.

This theorem is one of the founding results of the use of sparsity constraints in
signal recovery problems and has led to considerable research in the decades following
it. However, until recently, it seems that this result did not get the attention it
deserves in other mathematical communities. For instance, in complex analysis, the
Donoho–Logan Large Sieve theorem provides a quantitative estimate of the fact that
a positive measure is a Carleson measure of the Paley–Wiener space, that is, a bound
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on the norm of the injection PW 2
c (R) →֒ L2(µ). Note that a first estimate of this

type was given by Lin [18]. Recently, Husain and Littmann extended the result for
p = 1 to higher dimensions [16].

This inadvertence may be due to the fact that the strategy of proof has some
rigidities that are difficult to overcome. Indeed, the proof relies heavily on the in-
terplay between convolution and the Fourier transform, and on a construction by
Selberg (based on a previous construction by Beurling) of an entire function ma-
jorizing the sign function, see [19, 24]. Despite its rigidity, this strategy of proof has
recently been extended to more general setting, see, e.g., [1, 2, 17]. Our first aim
in this paper is to provide two new proof strategies, one based on the oversampling
formula, the second on Bernstein’s inequality. In particular, those proofs rely on real
variable techniques only. The price to be paid is that the numerical constants we
obtain are slightly worse. The proofs however offer more flexibility so that they apply
in larger settings.

To illustrate this, we will extend the oversampling formula and the large sieve
inequality to the setting of model spaces on the upper half-plane, an important family
of spaces of holomorphic functions which contains the Paley–Wiener space PW 2

c (R).
Let us now describe this family. First, let H2 be the Hardy space on the upper
half-plane C+ := {z ∈ C : Im z > 0}.

H2 :=

{
f ∈ Hol(C+) : sup

y>0

ˆ

R

|f(x+ iy)|2dx <∞
}
.

Note that we may identify H2 = {f ∈ L2(R) : supp f̂ ⊂ [0,+∞)}. Let Θ be an
inner function in C+, that is, a bounded analytic function on C+ with unimodular
boundary values almost everywhere on R. The corresponding model space is defined
by

K2
Θ := H2 ∩ (ΘH2)⊥.

As a fundamental example, if Θc(z) = exp(icz) for some c > 0, then

K2
Θ2c

= {f ∈ L2(R) : supp f̂ ⊂ [0, 2c]} = {Θcf : f ∈ PW 2
c (R)}

or, equivalently,

PW 2
c (R) = {e−iczf : f ∈ K2

Θ2c
}.

Moreover, one can define Kp
Θ model spaces in Hp, 1 ≤ p ≤ +∞, so as to also cover

the PW p
c spaces, see Section 5. In the context of model spaces, an analogue of Shan-

non’s sampling formula was established by de Branges [9] in the case of meromorphic
inner functions and later by Clark [10] in the general case, see (3.5). However, the
oversampling formula for model spaces seems to be unknown. Previously, oversam-
pling results were obtained in [22, 23] for specific model spaces (or closely related de
Branges spaces) associated with certain differential operators.

We start by establishing an oversampling formula for a class of model spaces.
Once this is done, we propose a first proof of Donoho and Logan’s theorem for model
spaces associated with inner functions with bounded derivative, an interesting class
of model spaces that share many properties with the Paley–Wiener spaces (see, e.g.,
[13, 21]).

Theorem 1.2. Let Θ be an inner function such that Θ′ ∈ L∞(R), and µ be a

σ-finite Borel measure on R. For δ > 0, Dµ(δ) defined in (1.4) and 1 ≤ p < +∞
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there exists Cp > 0 such that for every f ∈ Kp
Θ

(1.7)
ˆ

R

|f(x)|p dµ(x) ≤ Cp (1 + ‖Θ′‖∞δ)pDµ(δ)

ˆ

R

|f(x)|p dx.

The proof relying on oversampling gives this result for p = 2 and a rather bad
constant C but gives the right behavior with respect to δ and ‖Θ′‖∞. We thus give
a second proof, based on Bernstein’s inequality which allows to obtain the constant
Cp = 1, falling only short of Donoho and Logan’s result in the case of the Paley–
Wiener space. The particular constants are discussed in more detail in Remark 5.4.
We think that both proofs are interesting due to the fact that they only rely on real
analytic arguments and are rather flexible. Finally, we end this article with a version
of Theorem 1.2 that applies to a different class of inner functions (not necessarily
meromorphic), the so-called one-component inner functions, but requires a modi-
fication in the definition of Dµ(δ), see Theorem 6.1. This provides a quantitative
converse version of the Logvinenko–Sereda Theorem for model spaces established in
[15].

The rest of this paper is organized as follows: Section 2 is devoted to a technical
lemma. In Section 3, we introduce the necessary background on model spaces and
prove the oversampling formula. In Section 4 we give an extension of the large sieve
inequality to model spaces using the oversampling techniques. The approach based
on Bernstein type inequalities is considered in Section 5, while in Section 6 a certain
analog of the large sieve is given for a class of model spaces generated by the so-called
one-component inner functions.

2. Preliminary lemma

Let Ξ be a continuous function on R such that

(2.1) |Ξ(x)| ≤ min(1, |x|−1).

As an example, one can take Ξ(x) = sinc x := sinx
x

.

Lemma 2.1. Let Ξ be a function satisfying the bound (2.1). Let a, b ∈ R,

α, δ > 0 and µ be a σ-finite Borel measure on R. Then we have

(1)
ˆ

R

Ξ(x− a)2Ξ(x− b)2 dx ≤ 8π

4 + (a− b)2
,

(2)
ˆ

R

Ξ(x − a)2Ξ(x − b)2 dµ(x) ≤ 8π
C2

δ

δ

supx∈R µ([x, x+ δ])

4 + (b− a)2
, with Cδ = max(4,

1 + 9δ2).

Proof. The first estimate follows immediately from the simple estimate

|Ξ(x)|2 ≤ min(1, |x|−2) ≤ 2

1 + x2
,

and the computation of the integral
ˆ

R

dt

(1 + (t− a)2)(1 + (t− b)2)
=

2π

4 + (a− b)2
,

via the residue formula.
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Next, for ℓ ∈ Z, let Iℓ = [ℓδ, (ℓ+ 1)δ), we have
ˆ

R

Ξ(x− a)2Ξ(x− b)2 dµ(x) =
∑

ℓ∈Z

ˆ

Iℓ

Ξ(x− a)2Ξ(x− b)2 dµ(x)

≤ sup
ℓ∈Z

µ(Iℓ) ·
∑

ℓ∈Z

4

(1 + d(a, Iℓ)2)(1 + d(b, Iℓ)2)

=
4

δ
sup
ℓ∈Z

µ(Iℓ) ·
∑

ℓ∈Z

ˆ

Iℓ

dx(
1 + d(a, Iℓ)2

)(
1 + d(b, Iℓ)2

) .

Now, let x ∈ Iℓ. If a ≤ (ℓ− 2)δ then x− a ≥ 2δ so that

d(a, Iℓ) = ℓδ − a = (ℓ+ 1)δ − a− δ ≥ x− a− δ ≥ x− a

2
,

thus
1

1 + d(a, Iℓ)2
≤ 4

1 + (x− a)2
.

The same holds if a ≥ (ℓ+ 3)δ. Finally, if (ℓ− 2)δ ≤ a ≤ (ℓ+ 3)δ, x− a ≤ 3δ thus

1

1 + d(a, Iℓ)2
≤ 1 ≤ 1 + 9δ2

1 + (x− a)2
.

It follows that
ˆ

R

Ξ(x− a)2Ξ(x− b)2 dµ(x) ≤ 4

δ
C2

δ sup
ℓ∈Z

µ(Iℓ) ·
ˆ

R

dx
(1 + (x− a)2)(1 + (x− b)2)

≤ 8π
C2

δ

δ

supx∈R µ
(
[x, x+ δ]

)

4 + (b− a)2
,

with Cδ = max(4, 1 + 9δ2). �

Applying Lemma 2.1(2) to the dilated measure µα(A) = µ(A/α), α > 0 we get

(2.2)
ˆ

R

Ξ(αx− a)2Ξ(αx− b)2 dµ(x) ≤ 8π
C2

δ

δ

supx∈R µ([x, x+ δ/α])

4 + (b− a)2
,

with Cδ = max(4, 1 + 9δ2).
A slightly more evolved version of the lemma is easily available: for m ≥ 2 and

δ > 0 there is a constant Cm,δ such that

(2.3)
ˆ

R

Ξ(x− a)2mΞ(x− b)2m dµ(x) ≤ Cm,δ(
1 + (b− a)2

)m sup
x∈R

µ([x, x+ δ])

δ
.

This follows from the easily established inequality
ˆ

R

|Ξ(x− a)|2m|Ξ(x− b)|2m dx ≤
√
π22m+1Γ(m− 1/2)

Γ(m)

1(
1 + (b− a)2

)m .

3. Oversampling and the Large Sieve in model spaces

3.1. Background on model spaces. The Hardy space on the upper half-plane
C+ := {z ∈ C : Im z > 0}, H2 = H2(C+) contains all holomorphic functions on C+

for which

sup
y>0

ˆ

R

|f(x+ iy)|2 dx <∞.



172 Anton Baranov, Philippe Jaming, Karim Kellay and Michael Speckbacher

Every function f ∈ H2 has an almost everywhere defined “vertical” boundary function
f(x) := limy→0 f(x+iy), and f ∈ L2(R) which may be used to define an inner product
on H2

〈f, g〉 :=
ˆ

R

f(x)g(x) dx.

We say that an analytic function Θ on C+ is inner if |Θ| ≤ 1 on C+ and if the almost
everywhere defined boundary function Θ(x), x ∈ R, has modulus one. If Θ is an
inner function, then the corresponding model space is defined by

(3.1) K2
Θ := H2 ⊖ΘH2 = (ΘH2)⊥.

Recall that the reproducing kernel for functions K2
Θ is defined by

(3.2) kΘz (w) =
i

2π

1−Θ(z)Θ(w)

w − z
, z, w ∈ C

+.

For every f ∈ K2
Θ,

f(z) = 〈f, kΘz 〉,
and

kΘz (z) = ‖kΘz ‖2 =
1− |Θ(z)|2
4πIm z

.

Each inner function can be factored as

Θ(z) = eiτΘc(z)BΛ(z)Sµ(z), z ∈ C
+,

where τ is a real constant, Θc(z) = eicz, c ≥ 0,

BΛ(z) =
∏

λ∈Λ
eiαλ

z − λ

z − λ
,

is the Blaschke product with zeros λ ∈ Λ ⊂ C+, repeated according to multiplicity,
satisfying the Blaschke condition

(3.3)
∑

λ∈Λ

Imλ

1 + |λ|2 <∞,

and αλ ∈ R,

Sµ(z) = exp

(
i

ˆ

R

(
1

x− z
− t

x2 + 1

)
dµ(x)

)
,

where µ is a singular measure with respect to the Lebesgue measure such that
ˆ

R

dµ(x)
1 + x2

<∞.

The spectrum of Θ is the closed set

(3.4) ρ(Θ) :=
{
ζ ∈ C+ ∪∞ : lim inf

z→ζ

z∈C+

|Θ(z)| = 0
}
.

Note that Θ, along with every function in K2
Θ, has an analytic extension across any

interval of R \ ρ(Θ).
By the Ahern–Clark theorem [3], kΘx ∈ K2

Θ, x ∈ R, if and only if the modulus of
the angular derivative of Θ is finite. This means that

|Θ′(x)| = a+ 2
∑

λ∈Λ

Imλ

|x− λ|2 +

ˆ

R

dµ(t)
(t− x)2

<∞.
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For any α ∈ C , |α| = 1 the function (α + Θ)/(α − Θ) has a positive real part in
the upper-half plane, and hence, by the Herglotz–Riesz representation theorem, there
exist cα > 0 and a non-negative measure σα

Θ, called the Clark measure, such that

Re
α +Θ(z)

α−Θ(z)
= cαIm z +

Im z

π

ˆ

R

dσα
Θ(x)

|x− z|2 , z ∈ C
+.

The Clark measure σα
Θ is carried by the set {x ∈ R : limy→0+ Θ(x+ iy) = α}.

It follows from Clark [10] that if cα = 0 and σα
Θ is purely atomic, that is

σα
Θ =

∑
anδxn

,

where δx denotes the Dirac measure at the point x, then the system {kΘxn
} is an

orthogonal basis in K2
Θ. In particular, one has

(3.5) f(z) =
∑

n∈Z
f(xn)

kΘxn
(z)

‖kΘxn
‖2 , f ∈ K2

Θ,

and

(3.6) ‖f‖2 =
∑

n∈Z

|f(xn)|2
‖kΘxn

‖2 .

We end this section with a discussion of a special class of inner functions which will
be considered throughout the paper (with exception of Section 6). A meromorphic

inner function on C
+ is an inner function on C

+ with a meromorphic continuation
to C. Any meromorphic inner function Θ can be represented as

Θ = ΘcBΛ,

where c ≥ 0 and BΛ is the Blaschke product associated with the zeroes Λ = {λn} of
Θ which satisfy |λn| → ∞ as well as the Blaschke condition (3.3). All elements of the
corresponding model space K2

Θ are also meromorphic in C, and there is a canonical
isomorphism of such model spaces with de Branges’ Hilbert spaces of entire functions
[9].

By the Riesz–Smirnov factorization there exists an increasing, real analytic func-
tion ϕ : R → R such that

Θ(x) = exp(iϕ(x)).

In that case |Θ′| = ϕ′ and

(3.7) ‖kΘx ‖2 =
ϕ′(x)

2π
.

Then, by the Cauchy–Schwarz inequality one has

(3.8) |kΘx (t)| = |〈kΘx , kΘt 〉| ≤
√
ϕ′(x)ϕ′(t)

2π
, x, t ∈ R.

In the case of meromorphic inner functions the Clark measure construction be-
comes much more transparent. In this setting such measures were introduced by de
Branges (see, e.g., [9]) long before the work of Clark. For model spaces associated
with meromorphic inner functions orthogonal bases of reproducing kernels can be
constructed as follows. For γ ∈ [0, 2π) define the set of points {xn}n∈Z by

(3.9) ϕ(xn) = γ + 2πn, n ∈ Z.

(Note that the points xn may not exist for all n ∈ Z.) Then the family of normalized
reproducing kernels {kΘxn

/‖kΘxn
‖}n∈Z, with the points {xn}n∈Z ∈ R given by (3.9),
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forms an orthonormal basis for K2
Θ for each γ ∈ [0, 2π), except, maybe, one (in the

case that Θ− eiγ ∈ L2(R)).
In what follows we will consider the class of inner functions such that Θ′ ∈

H∞(C+). This condition implies that Θ is meromorphic and is equivalent to |Θ′| =
ϕ′ ∈ L∞(R). It was noticed already in [13] that the model spaces K2

Θ with Θ′ ∈
L∞(R) have many properties analogous to the properties of the Paley–Wiener spaces
PW 2

c (R).

3.2. Enlarging model spaces and oversampling. We need the following
classical result [21]. However, for the sake of completeness, we give the complete
proof here.

Lemma 3.1. Let Θ be an inner function, let Θ1 = eiτ1Θc1BΛ1 , and Θ2 =
eiτ2Θc2BΛ2 where Λ1,Λ2 ⊂ C+, i = 1, 2, are two Blaschke sequences. Then

(1) K2
Θ1

⊆ K2
Θ2

if and only if c1 ≤ c2 and Λ1 ⊆ Λ2.

(2) K2
Θ ⊆ K2

ΘcBΛΘ
, where c ≥ 0 and Λ ⊂ C+ a Blaschke sequence.

(3) If 0 ≤ c1 ≤ c2, Λ1 ⊆ Λ2, and f ∈ K2
Θ, then Θc1BΛ1f ∈ K2

Θc2BΛ2
Θ.

Proof. Let Θ1,Θ2 be inner functions. It is known that K2
Θ1

⊆ K2
Θ2

if and only if
Θ2/Θ1 is an inner function. Hence, Θ2/Θ1 is inner if and only if

Θ2(z)

Θ1(z)
= ei(τ2−τ1)ei(c2−c1)z

BΛ2(z)

BΛ1(z)
= Θ(z),

for some Θ inner. If c2 ≥ c1 and Λ1 ⊂ Λ2, then BΛ2/BΛ1 = BΛ2\Λ1 is a Blaschke
product and Θ is therefore inner.

Now assume that Θ2/Θ1 is inner and that there exists λ∗ ∈ Λ1 that is not
contained in Λ2 (in the sense that for Λi = {λin}n∈N, i ∈ {1, 2}, there is no injection
ϕ : N → N that satisfies λ1n = λ2ϕ(n) for every n ∈ N), then #{n ∈ N : λ∗ = λ2n} <
#{n ∈ N : λ∗ = λ1n}, which creates a pole at λ∗ for Θ2/Θ1, as the singular inner
part is always nonzero, a contradiction to Θ2/Θ1 being inner. Then, as ei(c2−c1)z is
bounded on C+ if and only if c2 ≥ c1, the first assertion follows. It only remains to
show the last statement. By definition f ∈ K2

Θ if and only if f⊥Θg for every g ∈ H2.
Hence, as Θc1BΛ1 is an inner function we have

〈Θc1BΛ1f, Sc1BΛ1Θg〉 =
ˆ

R

Θc1(x)BΛ1(x)f(x)Θc1(x)BΛ1(x)Θ(x)g(x) dx

=

ˆ

R

f(x)Θ(x)g(x) dx = 0,

which shows Θc1BΛ1f ∈ K2
Θc1BΛ1

Θ. The result then follows from the first part of the
corollary as Θc2BΛ2Θ = (Θc2−c1BΛ2\Λ1)(Θc1BΛ1Θ). �

We are now ready to prove an oversampling theorem for model spaces.

Theorem 3.2. Let c > 0, and Θ be an inner function such that some Clark

measure for ΘcΘ is purely atomic and let {kΘcΘ
xn

}n∈Z be the corresponding basis of

K2
ΘcΘ. Then for every integer m ≥ 1 and for every f ∈ K2

Θ, the following sampling

formula holds:

(3.10) f(x) =
∑

n∈Z
f(xn)e

− ic(x−xn)
2

(
sinc

c(x− xn)

2m

)m kΘcΘ
xn

(x)

‖kΘcΘ
xn

‖2 , x ∈ R.

In particular, one can reconstruct f ∈ K2
Θ from its samples using an expansion with

respect to functions of arbitrary polynomial decay.
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Further,

(3.11) ‖f‖2 =
∑

n∈Z

|f(xn)|2
‖kΘcΘ

xn
‖2 , f ∈ K2

Θ.

Proof. If 0 ≤ ck ≤ c/m, k = 1, . . . , m, then 0 ≤
∑

k ck ≤ c, and Θ∑
k ckf ∈ K2

ΘcΘ

by Lemma 3.1. Hence, using the sampling formula (3.5) for K2
ΘcΘ

, one has

ei
∑

k ckzf(z) =
∑

n∈Z
f(xn)e

i
∑

k ckxn
kΘcΘ
xn

(z)

‖kΘcΘ
xn

‖2 , z ∈ C
+,

and (3.11) follows directly from (3.6). Further

f(z) =
(m
c

)m
ˆ c/m

0

. . .

ˆ c/m

0

f(z) dc1 · · ·dcm

=
(m
c

)m
ˆ c/m

0

. . .

ˆ c/m

0

∑

n∈Z
f(xn)e

−i
∑

k ck(z−xn)
kΘcΘ
xn

(z)

‖kΘcΘ
xn

‖2 dc1 · · ·dcm

=
∑

n∈Z
f(xn)

(
m

ic(z − xn)

)m (
1− e−

ic(z−xn)
m

)m kΘcΘ
xn

(z)

‖kΘcΘ
xn

‖2 .

Moreover, we find that for almost every x ∈ R,

f(x) =
∑

n∈Z
f(xn)e

− ic(x−xn)
2

(
m

ic(x− xn)

(
e

ic(x−xn)
2m − e−

ic(x−xn)
2m

))m kΘcΘ
xn

(x)

‖kΘcΘ
xn

‖2

=
∑

n∈Z
f(xn)e

− ic(x−xn)
2

(
sinc

c(x− xn)

2m

)m kΘcΘ
xn

(x)

‖kΘcΘ
xn

‖2 .

The oversampling formula is thus established. �

4. Proof of Theorem 1.2 based on oversampling

We now have everything in place to prove Theorem 1.2. Let Θ′ ∈ L∞(R). Then
(3.7) and (3.8) imply

(4.1)
|kΘx (t)|
‖kΘx ‖

≤
√

‖Θ′‖∞
2π

, x, t ∈ R.

Let kΘcΘ
z ∈ K2

ΘcΘ be the reproducing kernel functions in K2
ΘcΘ. Denote by {xn}n∈Z ⊂

R the sequence associated in (3.9) with ΘcΘ, that is,

cxn + ϕ(xn) = γ + 2πn, γ ∈ [0, 2π), n ∈ Z.

For c > 0 to be chosen later, set α = c
4

and Ξ(x) = sinc(x). First, from Theo-
rem 3.2 (applied to m = 2) Fubini’s theorem, and the bound (4.1) we get
ˆ

R

|f(x)|2 dµ(x) =
ˆ

R

∣∣∣∣∣
∑

n∈Z
f(xn)e

− ic(x−xn)
2

(
sinc

c(x− xn)

4

)2 kΘcΘ
xn

(x)

‖kΘcΘ
xn

‖2

∣∣∣∣∣

2

dµ(x)

≤
ˆ

R

∑

n,k∈Z

|f(xn)f(xk)|
‖kΘcΘ

xn
‖‖kΘcΘ

xk
‖
∣∣Ξ
(
α(x− xn)

)
Ξ
(
α(x− xk)

)∣∣2 |k
ΘcΘ
xn

(x)kΘcΘ
xk

(x)|
‖kΘcΘ

xn
‖‖kΘcΘ

xk
‖ dµ(x)

≤ c + ‖Θ′‖∞
2π

∑

n,k∈Z

|f(xn)f(xk)|
‖kΘcΘ

xn
‖‖kΘcΘ

xk
‖

ˆ

R

Ξ
(
α(x− xn)

)2
Ξ
(
α(x− xk)

)2
dµ(x).
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Applying the estimate (2.2) with ηα (instead of δ), η to be chosen, we get

(4.2)
ˆ

R

|f(x)|2dµ(x) ≤ 4
C2

ηα

ηα
(c+ ‖Θ′‖∞)

∑

n,k∈Z

|f(xn)f(xk)|
‖kΘcΘ

xn
‖‖kΘcΘ

xk
‖
supx∈R µ([x, x+ η])

4 + α2(xn − xk)2

with Cηα = max(4, 1 + 9η2α2). We will choose η ≤ δ with ηα ≤ 1/
√
3, i.e., η ≤ 4√

3c
,

so that Cηα = 4. Now, by (4.1),

2π|n− k| = |cxn + ϕ(xn)− cxk − ϕ(xk)|
≤ (c+ ‖ϕ′‖∞)|xn − xk| = (c+ ‖Θ′‖∞)|xn − xk|.

Set u = (uk)k with uk =
|f(xk)|
‖kΘcΘ

xk
‖ so that ‖u‖2ℓ2(Z) = ‖f‖2 with (3.11). Moreover, we set

λ =
π2α2

(c+ ‖Θ′‖∞)2
=

(
πc

4(c+ ‖Θ′‖∞)

)2

,

v = (vk)k with vk =
1

1+λk2
and notice that

‖v‖ℓ1(Z) = 1 + 2
∑

k≥1

1

1 + λk2
≤ 1 + 2

ˆ ∞

0

dx
1 + λx2

= 1 +
π√
λ
= 1 +

4(c+ ‖Θ′‖∞)

c
.

Then
∑

n,k∈Z

|f(xn)f(xk)|
‖kΘcΘ

xn
‖‖kΘcΘ

xk
‖

1

4 + α2(xn − xk)2
≤ 1

4

∑

n∈Z
un

∑

k∈Z

uk
1 + λ(n− k)2

=
1

4
〈u, u ∗ v〉 ≤ 1

4
‖u‖2ℓ2(Z)‖v‖ℓ1(Z).

All in one, we get
ˆ

R

|f(x)|2dµ(x) ≤ 16

ηα
M(η)

(
c + ‖Θ′‖∞

)(
1 + 4

c+ ‖Θ′‖∞
c

)
‖f‖2,

where M(η) := supx∈R µ([x, x+η]). It remains to choose c, η. To do so, we distinguish
two cases.

Case 1. If ‖Θ′‖∞ ≥ 4√
3δ

, we take c = ‖Θ′‖∞ and η = 4√
3c

≤ δ thus ηα = 1√
3
.

Then
ˆ

R

|f(x)|2dµ(x) ≤ 288
√
3M(η)‖Θ′‖∞‖f‖2 ≤ 500

(1
δ
+ ‖Θ′‖∞

)
M(δ) ‖f‖2.

Case 2. If ‖Θ′‖∞ ≤ 4√
3δ

, we take c = 4√
3δ

and η = 4√
3c

= δ so that
ˆ

R

|f(x)|2dµ(x) ≤ 576
(1
δ
+ ‖Θ′‖∞

)
M(δ) ‖f‖2,

as desired. �

Remark 4.1. In the proof, we have used the oversampling formula with m =
2. One may of course increase m and this would lead to slightly better numerical
constants, at the price of much higher technicality. This requires in particular to
replace Lemma 2.1 with (2.3). As the ultimate constants would anyway be worse
than those we find in the next section, we did not follow this path further.
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5. An L
p-version of Theorem 1.2 and Bernstein-type inequalities

The previous proof gives a rather large constant C in the inequality (1.7). We
present another proof that gives a better estimate; in particular, we have the constant
1 in front of 1

δ
, as in the classical Donoho–Logan Theorem. Also, this proof applies

to Lp analogs of the model spaces, the subspaces Kp
Θ of the Hardy space Hp, where

1 ≤ p <∞.
Recall that for 1 ≤ p ≤ ∞ the subspace Kp

Θ is defined as

Kp
Θ = Hp ∩ΘHp,

where Hp is understood as a closed subspace of Lp(R). This definition agrees with
the one given for K2

Θ earlier. The properties of the spaces Kp
Θ are very much similar

to the properties of K2
Θ. In particular, if Θ is a meromorphic inner function, then

all elements of Kp
Θ are meromorphic functions in C, while for Θ(z) = e2icz we have

Kp
Θ = eiczPW p

c (R), where PW p
c (R) is the space of all entire functions of exponential

type at most c whose restriction to R belongs to Lp(R).

Theorem 5.1. Let 1 ≤ p < ∞, Θ′ ∈ L∞(R), µ be a Borel measure on R, and

let δ > 0 and Dµ(δ) defined in (1.4). Then for any f ∈ Kp
Θ we have

(5.1) ‖f‖pLp(µ) ≤
(
1 + δ‖Θ′‖∞

)p
Dµ(δ)‖f‖pp.

The proof is based on a Bernstein-type inequality for model spaces Kp
Θ with

Θ′ ∈ L∞(R) which is due to Dyakonov [13, 14].

Theorem 5.2. (Dyakonov) If Θ′ ∈ L∞(R), 1 ≤ p ≤ ∞, and f ∈ Kp
Θ, then

‖f ′‖p ≤ ‖Θ′‖∞‖f‖p.
Dyakonov proved this inequality up to some constant C(p) on the right-hand

side. Here we present a very simple proof with the constant 1 which follows the
method from [6] and is based on the formula

(5.2) f ′(x) = 2πi

ˆ

R

f(t)
(
kΘt (x)

)2
dt, f ∈ Kp

Θ, x ∈ R.

Proof of Dyakonov’s theorem. For 1 < p < ∞, it follows from (5.2), (3.7) and
the Hölder inequality that

|f ′(x)|p ≤ 2π

ˆ

R

|f(t)|p|kΘx (t)|2 dt

(
2π

ˆ

|kΘx (t)|2 dt

)p/q

= 2π|Θ′(x)|p/q
ˆ

R

|f(t)|p|kΘx (t)|2 dt ≤ 2π‖Θ′‖p/q∞

ˆ

R

|f(t)|p|kΘx (t)|2 dt.

Since
´

R
|kΘx (t)|2dx = |Θ′(t)|/(2π), we get the result after integrating over x. The

cases p = 1 or p = ∞ follow trivially from (5.2). �

We will also need the following elementary lemma.

Lemma 5.3. Let f, f ′ ∈ Lp(R), 1 ≤ p <∞. Then for any tk ∈ [kδ, (k + 1)δ] =:
Ik, k ∈ Z, one has

(5.3)

(∑

k∈Z
|f(tk)|p

)1/p

≤ δ−1/p‖f‖p + δ1−1/p‖f ′‖p.
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Proof. From the triangle inequality,
(∑

k∈Z
|f(tk)|p

)1/p

=

(
1

δ

∑

k∈Z

ˆ

Ik

|f(tk)|p dt

)1/p

≤
(
1

δ

∑

k∈Z

ˆ

Ik

|f(t)|p dt

)1/p

+

(
1

δ

∑

k∈Z

ˆ

Ik

|f(t)− f(tk)|p dt

)1/p

.

Note that by Hölder’s inequality
ˆ

Ik

|f(tk)− f(t)|p dt =
ˆ

Ik

∣∣∣∣
ˆ tk

t

f ′(s) ds

∣∣∣∣
p

dt ≤ δp/q
ˆ

Ik

ˆ tk

t

|f ′(s)|p ds dt

≤ δp
ˆ

Ik

|f ′(s)|p ds.

Summing these estimates we obtain (5.3). �

Proof of Theorem 5.1. Put M(δ) = supx∈R µ
(
[x, x + δ)

)
≤ δDµ(δ). Let tk ∈ Ik

be such that |f(tk)| = supIk
|f |. Then

ˆ

R

|f(x)|p dµ(x) ≤
∑

k∈Z
µ
(
[kδ, (k + 1)δ)

)
· |f(tk)|p ≤M(δ)

(
δ−1/p‖f‖p + δ1−1/p‖f ′‖p

)p
.

It follows from Dyakonov’s theorem that
ˆ

R

|f(x)|p dµ(x) ≤ M(δ)

δ
(1 + δ‖Θ′‖∞)p‖f‖pp

as claimed. �

Remark 5.4. The dependence on the parameter δ and on ‖Θ′‖∞ in (5.1) is
sharp up to the numerical constant. Indeed, for the classical Paley–Wiener space
PW 2

c (R), our method (applied to PW 2
c (R) in place of K2

Θ with Θ(z) = e2icz) gives
only a factor (1 + 2δc), while the Donoho–Logan bound is 1 + cδ

π
.

If µ is given by dµ(x) = 1T (x)dx and one considers the Paley–Wiener spaces, it is
common to choose δ to be the reciprocal of the bandwidth 2c and write the estimates
in terms of the maximum Nyquist density

Dmax(T, c) := sup
x∈R

2c ·
∣∣T ∩ [x, x+ 1/(2c)]

∣∣.

Donoho and Logan’s results then read

‖f · 1T‖pp ≤ Cp ·Dmax(T, c) · ‖f‖pp,
for p = 1, 2, with constants C1 = sinc(1/4)−1 ≈ 1.0105 and C2 = (1+1/2π) ≈ 1.1592,
while our estimate (5.1) gives C1 = 2 and C2 = 4.

6. A Donoho–Logan theorem for one component inner functions

For general inner functions, even if we confine ourselves with meromorphic ones,
one cannot expect to obtain estimates of Donoho–Logan type considering intervals
of a fixed length. The reason is that the behaviour of inner functions on R can be
very irregular. On the other hand, for meromorphic inner functions with a sublinear
growth of the argument the assumption that the measure is uniformly bounded on
intervals of a fixed length can be too strong. It looks more natural then to consider
the intervals where the change of the argument of Θ is fixed, i.e., consider the intervals
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I = [a, b] such that ϕ(b) − ϕ(a) = δ, where ϕ is an increasing continuous argument
for Θ on R. There exists a class of inner functions for which such a generalization is
possible. These are the so-called one-component inner functions, that is, those inner
functions for which the sublevel set

Ω(Θ, ε) = {z ∈ C
+ : |Θ(z)| < ε}

is connected for some ε ∈ (0, 1). One-component inner functions were introduced
by Cohn [11] in connection to Carleson-type embeddings of model spaces and were
subsequently studied by many authors (see, e.g., [4, 5, 6, 7, 20]).

Several important properties of one-component inner functions were obtained by
Aleksandrov [4]. Recall that the spectrum ρ(Θ) of Θ (see (3.4)) is a closed set, and
if we write R \ ρ(Θ) = ∪nJn, where Jn are disjoint open intervals, then Θ admits
an analytic continuation through any Jn. Hence, Θ has an increasing C∞ branch of
the argument ϕ on each Jn. It is shown in [4] that ρ(Θ) has zero Lebesgue measure
and, if we additionally assume that ∞ ∈ ρ(Θ), the function 1

ϕ′
= 1

|Θ′| (defined as 0
on ρ(Θ)) is a Lipschitz function on R. Moreover, it is shown in [6] that in this case
for any ε ∈ (0, 1) there exist positive constants c1, c2 depending on ε only such that

(6.1) c1|Θ′(x)|−1 ≤ dist (x,Ω(Θ, ε)) ≤ c2|Θ′(x)|−1, x ∈ R.

Therefore, there exist A,B > 0 such that

(6.2) A ≤ ϕ′(s)

ϕ′(t)
≤ B, |ϕ(s)− ϕ(t)| ≤ 1.

These properties essentially characterize the class of one-component inner functions.
Also in [6] the following Bernstein type inequality was proved: if Θ is a one-

component inner function and 1 < p <∞, then

(6.3) ‖f ′/Θ′‖p ≤ C(Θ, p)‖f‖p, f ∈ Kp
Θ.

The next theorem applies to general one-component (not necessarily meromor-
phic) functions.

Theorem 6.1. Let Θ be a one-component inner function such that ∞ ∈ ρ(Θ),
1 < p < ∞. Let ϕ denote the branch of the argument of Θ which is an increasing

C∞ function on each subinterval of R \ ρ(Θ). For a Borel measure µ on R and δ > 0
put

DΘ
µ (δ) = sup

{
µ(I)

|I| : I = [a, b], ϕ(b)− ϕ(a) = δ

}
.

Then for any f ∈ Kp
Θ we have

(6.4)
ˆ

R

|f |p dµ ≤ DΘ
µ (δ)(1 + Cδ)p‖f‖pp,

where the constant C > 0 depends on Θ and p only.

Proof. The proof is analogous to the proof of Theorem 5.1. It follows from (6.1)
that ϕ is unbounded on any connected component of R \ ρ(Θ). Therefore, we can
write R \ ρ(Θ) = ∪kIk, where Ik = [ak, bk] are intervals with disjoint interiors such
that ϕ(bk) − ϕ(ak) = δ. Let D = DΘ

µ (δ). Any function f ∈ Kp
Θ admits an analytic

continuation through R \ ρ(Θ). Choose tk ∈ Ik such that |f(tk)| = maxIk |f |. Then
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we have

‖f‖Lp(µ) ≤
(∑

k

|f(tk)|pµ(Ik)
)1/p

≤ D1/p

(∑

k

ˆ

Ik

|f(tk)|p dt

)1/p

≤M1/p

(∑

k

ˆ

Ik

|f(t)|p dt

)1/p

+D1/p

(∑

k

ˆ

Ik

|f(t)− f(tk)|p dt

)1/p

.

Furthermore, if p′ is the dual index to p, 1
p
+ 1

p′
= 1, then

∑

k

ˆ

Ik

|f(t)− f(tk)|p dt =
∑

k

ˆ

Ik

∣∣∣∣
ˆ t

tk

f ′(s) ds

∣∣∣∣
p

dt

≤
∑

k

ˆ

Ik

ˆ t

tk

|f ′(s)|p
|Θ′(s)|p ds

(
ˆ t

tk

|Θ′(s)|p′ ds
)p/p′

dt.

For any k there exists sk ∈ Ik such that δ = ϕ(bk)− ϕ(ak) = ϕ′(sk) · |Ik|. In view of
(6.2) we have |Θ′(s)| · |Ik| ≤ C1δ, s ∈ Ik, whence

(
ˆ t

tk

|Θ′(s)|q ds

)p/p′

≤ C2

(
δp

′

|Ik|p′−1

)p/p′

= C2
δp

|Ik|
.

for some constants C1, C2 > 0. Thus,

∑

k

ˆ

Ik

ˆ t

tk

|f ′(s)|p
|Θ′(s)|p ds

(
ˆ t

tk

|Θ′(s)|p′ ds
)p/p′

dt ≤ C2

∑

k

δp

|Ik|

ˆ

Ik

ˆ

Ik

|f ′(s)|p
|Θ′(s)|p ds dt

≤ C3δ
p‖f‖pp

by (6.3). We have shown that

‖f‖Lp(µ) ≤ D1/p(1 + C4δ)‖f‖p,
which proves the theorem. �
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