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On the Hausdorff dimension of radial slices

Tuomas Orponen

Abstract. Let t ∈ (1, 2), and let B ⊂ R2 be a Borel set with dimHB > t. I show that

H1({e ∈ S1 : dimH(B ∩ `x,e) ≥ t− 1}) > 0

for all x ∈ R2 \ E, where dimHE ≤ 2− t. This is the sharp bound for dimHE. The main technical
tool is an incidence inequality of the form

Iδ(µ, ν) .t δ ·
√
It(µ)I3−t(ν), t ∈ (1, 2),

where µ is a Borel measure on R2, and ν is a Borel measure on the set of lines in R2, and Iδ(µ, ν)

measures the δ-incidences between µ and the lines parametrised by ν. This inequality can be viewed
as a δ−ε-free version of a recent incidence theorem due to Fu and Ren. The proof in this paper
avoids the high-low method, and the induction-on-scales scheme responsible for the δ−ε-factor in
Fu and Ren’s work. Instead, the inequality is deduced from the classical smoothing properties of
the X-ray transform.

Radiaalisten viipaleiden Hausdorff-dimensio

Tiivistelmä. Olkoon t ∈ (1, 2), ja olkoon B ⊂ R2 Borel-joukko, jolla dimHB > t. Paperissa
osoitetaan, että

H1({e ∈ S1 : dimH(B ∩ `x,e) ≥ t− 1}) > 0

kaikilla x ∈ R2 \ E, missä dimHE ≤ 2 − t. Tämä on tarkka yläraja E:n Hausdorff-dimensiolle.
Tärkein tekninen työkalu on seuraava insidenssiepäyhtälö:

Iδ(µ, ν) .t δ ·
√
It(µ)I3−t(ν), t ∈ (1, 2),

missä µ on Borel-mitta tasossa, ν on Borel-mitta tason suorien joukossa, ja luku Iδ(µ, ν) mit-
taa δ-insidenssejä mittojen µ ja ν painottamien pisteiden ja suorien välillä. Insidenssiepäyhtälö
on tarkempi versio Fun ja Renin äskettäin todistamasta arviosta, josta on poistettu ylimääräinen
δ−ε-tekijä. Tämän paperin todistuksessa ei käytetä “high-low”-metodia eikä induktiota skaalojen
suhteen, mitkä Fun ja Renin todistuksessa aiheuttivat δ−ε-tekijän. Sen sijaan epäyhtälö johdetaan
Röntgen-muunnoksen klassisista silotusominaisuuksista.

1. Introduction

1.1. Background on projections and slices. This paper studies a Marstrand-
type slicing problem for radial projections. I start by recalling Marstrand’s original
work, and some subsequent developments.

For θ ∈ [0, 1], let πθ(z) := z · eθ denote the orthogonal projection of z to the
line spanned by eθ := (cos 2πθ, sin 2πθ). Marstrand [12] in 1954 proved the following
theorem concerning the dimension of slices of fractal subsets of the plane. Let B ⊂ R2

be a Borel set with dimH B > t for some t ∈ (1, 2], or in fact already the weaker
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hypothesis Ht(B) > 0 is sufficient. Here dimH denotes Hausdorff dimension, and Ht

is t-dimensional Hausdorff measure. Then, for almost every θ ∈ [0, 1],

(1.1) H1({r ∈ R : dimH(B ∩ π−1
θ {r}) ≥ t− 1}) > 0.

In English, for almost every “angle” θ ∈ [0, 1], positively many slices of B by lines
perpendicular to eθ have Hausdorff dimension at least t−1. In [17], I showed that the
same conclusion actually holds for all θ ∈ [0, 1] \ E, where dimH E ≤ 2− t. Results
of this kind are known as exceptional set estimates.

The threshold “2− t” is sharp, because it is already sharp for a weaker theorem
concerning projections. Namely, consider any θ ∈ [0, 1] such that (1.1) holds. Then
clearly

(1.2) H1(πθ(B)) > 0.

Indeed, (1.2) says that positively many slices B ∩ π−1
θ {r} are non-empty, whereas

(1.1) adds information about their dimension. The best that one can say about the
easier problem (1.2) was already established by Falconer [4] in 1982: provided that
dimH B ≥ t and B is Borel, (1.2) holds for all θ ∈ [0, 1] \ E where dimH E ≤ 2 − t.
This is sharp: the original construction is due to Peltomäki [23] from 1988, but for
those readers whose Finnish is rusty, another source is [13, Example 5.13].

While orthogonal projections are perhaps the most iconic projections in R2, an-
other nice family consists of the radial projections πx : R2 \ {x} → S1, defined by

πx(y) =
x− y
|x− y|

, y ∈ R2 \ {x}.

There is plenty of recent research [2, 3, 10, 11, 15, 18, 19, 22, 24, 25] related to
the following agenda: take a theorem which is known for orthogonal projections,
involving Hausdorff dimension or measures, and prove its sharp counterpart for radial
projections. Some of the listed papers also deal with this problem in finite fields and
higher dimensional Euclidean spaces.

Projection and slicing problems for radial projections are formally harder than
their counterparts for orthogonal projections: the family of orthogonal projections
can be transformed, in an incidence preserving way, to the family of radial projections
to any fixed line ` ⊂ R2. For a more careful explanation, see [22, Section 1.2]. One
might therefore expect that if one replaces the orthogonal projections πθ by radial
projections πx in either (1.1) or (1.2) (or other problems of the same nature), there
will be significantly more “exceptional” parameters x ∈ R2 than “exceptional” angles
θ ∈ [0, 1].

Surprisingly, the work in the papers listed above suggests the opposite: in some
cases it has been shown that the sharp bound for exceptional radial projections is no
larger than the sharp bound for exceptional orthogonal projections.

For example, as already mentioned, Falconer [4] in 1982 showed that (1.2) can
fail for an at most (2 − t)-dimensional set of angles θ ∈ [0, 1]. In [19], I showed
that the same remains true for radial projections: if B ⊂ R2 is a Borel set with
dimH B > t ∈ (1, 2], then

(1.3) H1(πx(B)) > 0

for all x ∈ R2 \ E, where dimH E ≤ 2−t. The sharpness of this estimate follows from
the sharpness of Falconer’s estimate, and the formal connection between orthogonal
and radial projections, see [19, Section 3.2] for the details.
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1.2. The radial slicing problem. Recall that (1.1) is stronger than (1.2).
Regardless, as shown in [17], the sharp exceptional set estimate for the problem (1.1)
is the same as the sharp exceptional set estimate for (1.2) – namely dimH E ≤ 2− t
in both cases.

How about the slicing version of the radial projection theorem (1.3)? Given a
Borel set B ⊂ R2 with dimH B > t ∈ (1, 2], for how many parameters x ∈ R2 can the
following fail:

(1.4) H1({e ∈ S1 : dimH(B ∩ π−1
x {e}) ≥ t− 1}) > 0?

Note that (1.3) is the radial projection counterpart of (1.1), and is stronger than
(1.3). Marstrand [12] originally proved that (1.3) holds for Ht almost all x ∈ B.

In joint work [15] with Mattila, we showed that (1.4) can fail for an at most
1-dimensional set of parameters x ∈ R2. We also proposed in [15, Question 1.4] that
the sharp number should be 2− t. The main result of the present paper verifies this
hypothesis:

Theorem 1.5. Let t ∈ (1, 2), and let B ⊂ R2 be a Borel set with dimH B > t.
Then (1.4) holds for all x ∈ R2 \ E, where dimH E ≤ 2− t.

Remark 1.6. Theorem 1.5 (re-)covers the sharp exceptional set estimates for
all the problems (1.1), (1.2), (1.3), and (1.3) at the same time, but still remains
slightly unsatisfactory. Namely, as in Marstrand’s original slicing theorem [12], one
might hope to prove Theorem 1.5 under the weaker hypothesis that Ht(B) > 0. This
remains open.

1.3. An incidence estimate. The main new tool for proving Theorem 1.5 is
the following weighted incidence inequality:

Theorem 1.7. Let µ be a finite Borel measure on B(1), and let ν be a finite
Borel measure on [1

4
, 3

4
]× [−1, 1]. Let δ ∈ (0, 1/50]. Then,

(1.8) Iδ(µ, ν) .t δ ·
√
I3−t(µ)It(ν), t ∈ (1, 2),

where Is(µ) =
˜
|x− y|−s dµx dµy is the s-dimensional Riesz energy for s ∈ (0, 2).

The notation will be properly defined in Section 2.4. Here I just mention that the
measure ν should be interpreted as being supported on the set of lines in R2, where
the lines are parametrised by [0, 1] × R. In fact, the parametrisation is concretely
(θ, r) 7→ {z ∈ R2 : z · (cos 2πθ, sin 2πθ) = r}. The quantity Iδ(µ, ν) is defined as

(1.9) Iδ(µ, ν) := (µ× ν)({(p, q) : p ∈ Tq(δ)}),
and Tq(δ) is the δ-tube around the line with parameter q.

Theorem 1.7 is closely related to the incidence estimates obtained recently by Fu
and Ren [6]. In fact, a version of Theorem 1.7 with δ−ε-losses could be deduced from
[6, Theorem 1.5]. However, the proof of Theorem 1.7 is completely different from
the proof in [6]. The δ−ε-factor in [6] arises from an induction-on-scales argument,
whereas (1.8) is deduced from the smoothing properties of the planar X-ray trans-
form, see Section 1.4 for a quick explanation. In the converse direction, Theorem 1.7
does not seem to imply [6, Theorem 1.5] in full generality (even if δ−ε-losses are
allowed).

Theorem 1.7 can also be viewed as a δ-discretised analogue of a finite-field inci-
dence estimate of Vinh [27, Theorem 3].

Remark 1.10. The δ−ε-freeness of Theorem 1.7 is undeniably useful for the
argument presented below for Theorem 1.5. Even a factor of order log(1/δ) would be
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unacceptable in the final estimates below (6.22). This was indeed the main reason
to seek a version of Fu and Ren’s estimates without the δ−ε-factor. Nonetheless, I
do not have a convincing philosophical reason why the δ−ε-freeness would be strictly
necessary for Theorem 1.5. In a related context, Harris [8, Theorem 4.2] proves a
Marstrand-type slicing theorem for vertical projections in the first Heisenberg group,
and the proof in that paper is crucially based on the endpoint (δ−ε-free) trilinear
Kakeya inequality.

1.4. Proof ideas and challenges. The full details of the incidence estimate
(1.8) are given in Section 2. Here we ignore the technicalities and just present the
simple idea. For f ∈ Cc([0, 1]× R), consider the adjoint X-ray transform

R∗f(z) :=

ˆ 1

0

f(θ, πθ(z)) dθ.

If f is interpreted as a density on the set of lines, and g ∈ Cc(R2) is a density on the
set of points, then the quantity

(1.11) ”I(f, g)” :=

¨
g(z)R∗f(z) dz =

¨
Rg(θ, r)f(θ, r) dθ dr

arguably measures the incidences between the lines parametrised by f , and g. Here
R is the X-ray transform, see Definition 2.1.

Moving towards (1.8), assume that f is a fractal measure on the space of lines,
say It(f) ≤ 1 for t ∈ (0, 2) (here It(f) is the t-dimensional Riesz-energy, recall the
statement of Theorem 1.7). Then f ∈ H−(2−t)/2. By the duality of Hs and H−s, the
right hand side of (1.11) is bounded whenever Rg ∈ H(2−t)/2. By the well-known
1
2
-order smoothing behaviour of the operator R, this is true if

g ∈ H [(2−t)/2]−1/2 = H−[2−(3−t)]/2 ⇐⇒ I3−t(g) <∞.

The hypothesis t > 1 was needed in the final equivalence. To summarise, the quantity
“I(f, g)” will be bounded if It(f) <∞ and I3−t(g) <∞. This is (1.8). The additional
factor “δ” appears when one honestly expresses the quantity Iδ(µ, ν) from (1.9) in
the form (1.11), see the argument leading to (2.25).

Unfortunately, the proof of Theorem 1.5 is not as clean-cut. The first step is
to find a suitable δ-discretised version, and reduce matters to that version. This is
accomplished in Section 3. Roughly speaking, Theorem 3.1 says the following.

Assume that E,F ⊂ B(1) are a pair of δ-discretised sets with dist(E,F ) ≥ 1,
where E is (2 − t)-dimensional and F is t-dimensional. Assume that to each p ∈ E
there corresponds a family Tp of δ-tubes covering 99% of F . Then, for every τ < t,
there exists a tube T ∈ Tp (for some p ∈ E) such that Hτ−1

δ,∞ (F ∩ T ) &τ 1. Proving
this statement with τ = t would likely solve the problem mentioned in Remark 1.6.

The proof of Theorem 3.1 proceeds by making a counter assumption: Hτ−1
δ,∞ (F ∩

T ) ≤ ε for all T ∈ Tp and p ∈ E. This form of the counter assumption forebodes a
difficulty: life would be easier if one could assume Hτ−1

δ,∞ (F ∩ T ) ≤ δε. I do not know
how to reduce matters to this easier problem. This issue led to the introduction of
Theorem 1.7. With only the weaker form of the counter assumption available, the
proof of Theorem 3.1 may not introduce any factors which grow as functions of δ−1,
such as log(1/δ). Recalling that Theorem 3.1 is a statement about δ-tubes, this is a
non-trivial problem.

With some initial pigeonholing, the counter assumption allows one to find an
intermediate scale ∆ ∈ (δ, 1

2
] with ∆ = oε(1), where the intersections F ∩ T look
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“over-crowded” for many tubes T ∈ T :=
⋃
p∈E Tp. This pigeonholing only produces

factors of the order log(1/∆), which are manageable. It may be helpful to think that
∆ ∼ ε from now on.

Above the words “over-crowded” mean that tube-segments of the form T∩B(x0,∆)
are suspiciously rich with points from F ∩ B(x0,∆). Here B(x0,∆) is a judiciously
chosen but fixed ∆-disc. With such information in hand, one is tempted to apply
Theorem 1.7 to (suitable measures associated to)

F ∩B(x0,∆) and T ∩ F ∩B(x0,∆),

where T ∩ F ∩ B(x0,∆) = {T ∈ T : T ∩ F ∩ B(x0,∆) 6= ∅}. The good news is
that F ∩ B(x,∆) is still a t-dimensional set. The bad news is that there is no a
priori information about the family T ∩F ∩B(x0,∆). Fortunately, the statement of
Theorem 1.7 guides us in the right direction: we just need to show that T ∩B(x0,∆)
is a (3− t)-dimensional set, or at least contains a big (3− t)-dimensional subset.

The main observation is that the tube sets T q = {T ∈ T : q ∈ T} are roughly (2−
t)-dimensional, because T q ∼= πq(E), and E was assumed to be (2− t)-dimensional.
Consequently the family

T ′ :=
⋃

q∈F∩B(x0,∆)

T q ⊂ T ∩ F ∩B(x0,∆)

is a (dual) (2 − t, t)-Furstenberg set, and has dimension ≥ (3 − t) by [6, Theorem
1.6]. This is what was needed. Once it has been established that F ∩ B(x0,∆) is t-
dimensional and T ′ is (3− t)-dimensional, Theorem 1.7 produces an upper bound for
incidences which contradicts the “over-crowding” phenomenon for the tube segments
T ∩B(x0,∆).

The informal arguments with “dimension” in the previous paragraph need to be
quantified carefully. This work may have some independent interest. For example,
Theorem 4.9 is a quantitative version of [6, Theorem 1.6], and the proof is rather
different from Fu and Ren’s original argument. Concretely, in the proof Theorem 3.1,
one has access to information of the form “T q is a (δ, 2− t, log(1/∆))-set”. Then, to
proceed, one infers from Theorem 4.9 that T ′ contains a (δ, 3− t, log10(1/∆))-set.

Notation. I write A . B if there exists an absolute constant C > 0 such that
A ≤ CB. If C is allowed to depend on a parameter “p”, this is signified by writing
A .p B. Later, it will be agreed that the notation “.p” is abbreviated to “.” for
certain key parameters “p”.

For a bounded set A ⊂ Rd, and δ > 0, the notation |A|δ refers to the δ-covering
number of A, that is, the smallest number of closed balls of radius δ required to cover
A. The notation |A| refers to the cardinality of A. The notation A(δ) refers to the
closed δ-neighbourhood of A.

Acknowledgements. I am grateful to Pertti Mattila for introducing me to the
problem studied in Theorem 1.5, and for numerous fruitful discussions on the topic.
I am also grateful to the anonymous reviewer for reading the manuscript carefully,
and for pointing out a large number of small corrections.

2. Incidence estimates via the X-ray transform

In this section Theorem 1.7 is proved. The argument is mainly based on 1
2
-order

Sobolev smoothing property of the X-ray transform in the plane, which is classical
and very well documented, see for example [16, Theorem 5.3]. I decided to present
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the necessary theory without any prerequisites assumed on the X-ray transform, but
experts on this topic are advised to skip ahead to Section 2.4.

2.1. The X-ray transform. We start with the definitions.

Definition 2.1. (X-ray transform) For θ ∈ [0, 1], let eθ := (cos 2πθ, sin 2πθ),
and let πθ(z) := z · eθ be the orthogonal projection to the line spanned by θ. For
g ∈ Cc(R2) or g ∈ S(R2), the X-ray transform of g is defined by

Rg(θ, r) :=

ˆ
π−1
θ {r}

g(z) dH1(z), (θ, r) ∈ [0, 1]× R.

Thus, R maps g to a continuous function defined on the “space of lines” parametrised
by the pair (θ, r). For f ∈ Cc([0, 1]× R), consider also the adjoint X-ray transform

R∗f(z) :=

ˆ 1

0

f(θ, πθ(z)) dθ, z ∈ R2.

Remark 2.2. As the naming suggests, the operators R,R∗ indeed satisfy the
following formal adjointness property: given f ∈ Cc([0, 1]× R) and g ∈ Cc(R2),

ˆ
R2

R∗f(z)g(z) dz =

ˆ
R2

(ˆ 1

0

f(θ, πθ(z)) dθ

)
g(z) dz

=

ˆ 1

0

ˆ
R
f(θ, r)

ˆ
π−1
θ {r}

g(z) dH1(z) dr dθ

=

ˆ 1

0

ˆ
R
f(θ, r)(Rg)(θ, r) dr dθ.

Remark 2.3. Note that Rg(0, ·) = Rg(1, ·), so Rg can also be viewed as a 1-
periodic function in the 1st variable. This will be useful to keep in mind when we are
later computing the Fourier coefficients of Rg in the 1st variable.

The famous “projection slice-theorem” says that the X-ray transform has a neat
relation to the Fourier transform. We record this below. For h ∈ Cc([0, 1]× R), let

(2.4) h̃(θ, ρ) :=

ˆ
R
e−2πiρrh(θ, r) dr, (θ, ρ) ∈ [0, 1]× R,

be the Fourier transform of h in (only) the 2nd variable. Now, if g ∈ Cc(R2), we have
Rg ∈ Cc([0, 1]× R), and

(̃Rg)(θ, ρ) =

ˆ
R
e−2πiρr

ˆ
π−1
θ {r}

g(z) dH1(z) dr

=

ˆ
R2

e−2πiz·ρeθg(z) dz = ĝ(ρeθ), (θ, ρ) ∈ [0, 1]× R,(2.5)

where ĝ is the full Fourier transform of g in R2.

2.2. Angular derivative of the X-ray transform. The “angular” ∂θ-
derivative of Rg coincides with the “radial” ∂r-derivative of R(Pg), where P is a
first degree polynomial, [16, p. 12]. I repeat the calculation from the reference, using
the coordinates above for the X-ray transform. Let g ∈ S(R2) (Schwartz functions
in R2), and following [16, p. 12], write Rg in the following slightly imprecise way:

Rg(θ, r) =

ˆ
g(z)δ(r − z · eθ) dz,
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where δ stands for the Dirac δ on R. This could be made rigorous by replacing δ by
an approximate identity, see [16, p. 12]. Pretending that one may compute the ∂θ, ∂r
derivatives of (θ, r) 7→ δ(r−z ·eθ), one arrives a little formally at the following useful
relation, where ēθ := (sin 2πθ,− cos 2πθ):

∂θ(Rg)(θ, r) =

ˆ
g(z)[∂θδ(r − z · eθ)] dz

=

ˆ
g(z)(z · ēθ)δ′(r − z · eθ) dz

= ēθ · ∂r
ˆ
g(z)zδ(r − z · eθ) dz

= ēθ · (∂rR(zg))(θ, r), (θ, r) ∈ (0, 1)× R.(2.6)

Note that zg ∈ S(R2,R2) is a vector-valued Schwartz function with components
z1g and z2g. The notation R(zg) refers to the R2-valued function with components
R(z1g) and R(z2g), and the ∂r-derivative is calculated component-wise. We leave it
to the reader (of [16, p. 12]) to justify (2.6) rigorously for g ∈ S(R2).

2.3. Homogeneous Sobolev norms. I next survey the 1
2
-order smoothing

behaviour of the X-ray transform. This section can be viewed as an exposition of
[16, Theorem 5.3] albeit with slightly different notational conventions.

Definition 2.7. (Fourier transforms and Sobolev norms) For f ∈ L1([0, 1]×R),
define the (full) Fourier transform

(Ff)(n, ρ) :=

ˆ 1

0

ˆ
R
e−2πi(nθ+ρr)f(θ, r) dρ dθ, (n, θ) ∈ Z× R.

For s ≥ 0, define the (homogeneous) Sobolev norm

‖f‖2
Hs

0
:=
∑
n∈Z

ˆ
R
|(Ff)(n, ρ)|2|(n, ρ)|2s dρ, f ∈ L1([0, 1]× R).

(The possibility ‖f‖2
Hs

0
=∞ is allowed.) For g ∈ L1(R2) and s ∈ R, we also denote

‖g‖2
Hs

0
:=

ˆ
R2

|ĝ(ξ)|2|ξ|2s dξ.

The correct interpretation of ‖h‖Hs
0
is always clear from the domain of h.

Remark 2.8. A common trick below will be to use Plancherel in (only) the 1st

variable. If g ∈ Cc([0, 1]× R) is a function with g(0, ·) = g(1, ·), then

(2.9)
∑
n∈Z

ˆ
R
|(Fg)(n, ρ)|2 dρ =

ˆ 1

0

ˆ
R
|g̃(θ, ρ)|2 dρ dθ,

where g̃(θ, ρ) is the Fourier transform in the 2nd variable defined in (2.4). The formula
(2.9) follows by noting that (Fg)(n, ρ) is the nth Fourier coefficient of the function
θ 7→ g̃(θ, ρ), which is 1-periodic by the hypothesis g(0, ·) = g(1, ·).

Remark 2.10. The Fourier transform Ff is defined with respect to both the
“angular” variable θ and the “radial” variable r. Therefore also the Sobolev regularity
of f encodes smoothness in both variables. However, if f = Rg for some g ∈ S(R2),
formula (2.6) shows that the angular and radial smoothness of f are closely related.
This observation is the key to the proof of the next lemma. The argument is virtually
copied (up to notational conventions) from the proof of [16, Theorem 5.2].
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Lemma 2.11. For every χ ∈ C∞c (R2) (smooth compactly supported functions)
there exists a constant Cχ > 0 such that

‖R(gχ)‖H1
0
≤ Cχ‖g‖H1/2

0
, g ∈ S(R2).

Recall that S(R2) stands for the Schwartz functions in R2.

Proof. Since |(n, ρ)|2 . |n|2 + |ρ|2 for (n, ρ) ∈ Z× R, we have

‖R(gχ)‖2
H1

0
.
∑
n∈Z

ˆ
R
|F [R(gχ)](n, ρ)n|2 dρ+

∑
n∈Z

ˆ
R
|F [R(gχ)](n, ρ)|2|ρ|2 dρ =: Σ1+Σ2.

To treat the term I1, recall from basic Fourier series (or check by integration by
parts) that if h ∈ C1([0, 1]) and h(0) = h(1), then

∂̂θh(n) = (2πin)ĥ(n), n ∈ Z.

Similarly for the Fourier transform: if h ∈ C1
c (R), then (2πiρ)ĥ(ρ) = ∂̂rh(ρ). For

fixed r ∈ R, the function θ 7→ R(gχ)(θ, r) is 1-periodic, so

F [R(gχ)](n, ρ)n = 1
2πi
F(∂θ[R(gχ)])(n, ρ)

(2.6)
= 1

2πi
ēθ · F(∂r[R(zgχ)])(n, ρ) = ēθ · F [R(zgχ)](n, ρ)ρ.

Abbreviate ḡ := zgχ ∈ S(R2,R2). Plugging the formula above into the definition
of Σ1, applying Plancherel in the first variable, and eventually integrating in polar
coordinates, one finds

Σ1 ≤
ˆ 1

0

ˆ
R
|R̃ḡ(θ, ρ)|2|ρ|2 dρ dθ (2.5)

=

ˆ 1

0

ˆ
R
|ˆ̄g(ρeθ)||ρ|2 dρ dθ(2.12)

.
ˆ
R2

|ˆ̄g(ξ)|2|ξ| dξ.

Since g 7→ z1gχ and g 7→ z2gχ are bounded operators on H1/2
0 , with norm depending

on χ (see [16, Chapter VII, Lemma 4.5]), one finally deduces that

(2.13) Σ1 .χ ‖g‖2

H
1/2
0

.

Treating the term Σ2 is simpler, because the power |ρ|2 already appears. In fact, we
simply apply Plancherel in the first variable to deduce that

Σ2 =

ˆ 1

0

ˆ
R
|R̃(gχ)(θ, ρ)|2|ρ|2 dρ dθ.

The continuation of the estimate is the same as on line (2.12), and thus Σ2 .χ
‖g‖2

H
1/2
0

. �

Lemma 2.11 provides one endpoint for an upcoming interpolation argument. The
following lemma provides the second endpoint:

Lemma 2.14. For every g ∈ S(R2),

‖Rg‖L2([0,1]×R) . ‖g‖H−1/2
0

.
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Proof. Fix g ∈ S(R2). In the following we first apply Plancherel in the 2nd

coordinate and then integrate in polar coordinates:

‖Rg‖2
L2 =

ˆ 1

0

ˆ
R
|R̃g(θ, ρ)|2 dρ dθ (2.5)

=

ˆ 1

0

ˆ
R
|ĝ(ρeθ)|2 dρ dθ

∼
ˆ
R2

|ĝ(ξ)|2|ξ|−1 dξ = ‖g‖2
H−1/2 .

This is what was claimed. �

Lemmas 2.11 and 2.14 show (up to the χ-multiplication) that R maps

H
1/2
0 → H1

0 and H
−1/2
0 → L2 = H0

0 .

Now, for s1 6= s2 and 0 < θ < 1, one has

H(1−θ)s1+θs2 = (Hs1 , Hs2)[θ].

That is, H(1−θ)s1+θs2 is the complex interpolation space between Hs1
0 and Hs2

0 with
parameter θ. Indeed, the version of this for non-homogeneous Sobolev spaces is stated
in [1, Theorem 6.4.5(7)], and on [1, p. 150] the authors remark that the results in
[1, Chapter 6] extend to homogeneous Sobolev spaces (see also [1, Remark 6.9.3]).
Using this fact formally leads to the conclusion that R maps

Hs
0 → H

s+1/2
0

for s ∈ [−1/2, 1/2] (taking the multiplication by χ into account appropriately).
The minor technical issue with this reasoning is that our Sobolev space consists

of functions defined on [0, 1]×R, and not on Rn as in the reference [1], so the results
of [1] are not formally applicable. Instead of writing that “everything works the same
way” I decided to provide an argument which avoids direct reference to interpolation
spaces.

I will instead apply the following Lp-interpolation theorem of Stein and Weiss
(see [1, p. 17, Exercise 12] or [1, Theorem 5.4.1] or [26] for the original reference):

Theorem 2.15. (Stein–Weiss) Let 0 < p ≤ ∞ and 0 < θ < 1. Let µ, ν be
positive measures on spaces X, Y . Let w0, w1 be non-negative µ-measurable weights,
and let v0, v1 be non-negative ν measurable weights. Write wθ := w1−θ

0 wθ1 and vθ :=
v1−θ

0 vθ1. Assume that T is a linear map defined on Lp(X,w0dµ)∪Lp(X,w1dµ) which
maps

T : Lp(X,w0dµ)→ Lp(Y, v0dν) and T : Lp(X,w1dµ)→ Lp(Y, v1dν)

with operator normsM0 ≥ 0 andM1 ≥ 0 respectively. Then T extends to an operator

T : Lp(X,wθdµ)→ Lp(Y, vθdν)

with norm ≤M1−θ
0 M θ

1 .

Theorem 2.16. For every χ ∈ C∞c (R2) there exists a constant Cχ > 0 such that

(2.17) ‖R(gχ)‖
H
s+1/2
0

≤ Cχ‖g‖Hs
0
, g ∈ S(R2), −1

2
≤ s ≤ 1

2
.

Proof. The plan is to apply Theorem 2.15 in the spaces X = R2 and Y = Z×R
equipped with the measures µ = L2 (Lebesgue measure) and ν = H0 × L1.

Consider the following linear map T := Tχ which takes Schwartz functions to
functions defined on Y = Z× R:

(Tg)(n, ρ) := F [R(ǧχ)](n, ρ), (n, ρ) ∈ Z× R, g ∈ S(R2).
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Consider the following non-negative weights on R2 and Z× R, respectively{
w0(ξ) := |ξ|−1,

w1(ξ) := |ξ|,
and

{
v0(n, ρ) ≡ 1,

v1(n, ρ) := |(n, ρ)|2.

It now follows from Lemmas 2.11-2.14 that T is (more precisely: extends to) a
bounded linear map L2(X,w0dµ)→ L2(Y, v0dν) and L2(X,w1dµ)→ L2(Y, v1dν):

‖Tg‖2
L2(v0dν) = ‖R(ǧχ)‖2

L2([0,1]×R)

L. 2.14

. ‖ǧχ‖2

H
−1/2
0

.χ ‖ǧ‖2

H
−1/2
0

= ‖g‖2
L2(w0dµ)

and

‖Tg‖2
L2(v1dν) = ‖R(ǧχ)‖2

H1
0

L. 2.11

.χ ‖ǧ‖2

H
1/2
0

= ‖g‖2
L2(w1dµ).

Consequently, by Theorem 2.15, for all 0 < θ < 1 and g ∈ S(R2),∑
n∈Z

ˆ
R
|F [R(ǧχ)](n, ρ)|2|(n, ρ)|2θ dρ = ‖Tg‖2

L2(vθdν) .χ ‖g‖2
L2(wθdµ)

=

ˆ
R2

|g(ξ)|2|ξ|2θ−1 dξ.

When applied to ĝ ∈ S(R2) in place of g, this inequality is equivalent to (2.17). �

2.4. Estimating incidences. In this section, the smoothing estimates for the
X-ray transform developed above are applied to study weighted incidences between
points and δ-tubes in R2. I start by introducing terminology.

Definition 2.18. (δ-tube) For δ > 0, a δ-tube is the closed δ-neighbourhood of
a line in R2. Write `θ,r := π−1

θ {r}, for θ ∈ [0, 1], r ∈ R. Recall that πθ(z) = z · eθ.
Then, denote

Tθ,r(δ) := {z ∈ R2 : dist(z, `θ,r) ≤ δ}.
Thus Tθ,r is the δ-tube indexed by (θ, r) ∈ [0, 1]× R.

Definition 2.19. (Weighted incidences) Let µ be a finite Borel measure on B(1),
and let ν be a finite Borel measure on [0, 1] × R. For δ > 0 and q ∈ [0, 1] × R, let
Tq(δ) be the δ-tube from Definition 2.18. Set

(2.20) Iδ(µ, ν) := (µ× ν)({(p, q) : p ∈ Tq(δ)}).
The following lemma is key to relating incidences to the X-ray transform:

Lemma 2.21. Let q = (θ0, r0) ∈ (0, 1) × R and δ ∈ (0, θ0). Recall the δ-tube
Tq(δ) from Definition 2.18. Then,

1Tq(δ)(p) ≤ δ−1

ˆ 1

0

1B(q,3δ)(θ, πθ(p)) dθ, p ∈ B(1).

Proof. Fix p ∈ B(1) ∩ Tq(δ). It suffices to show that (θ, πθ(p)) ∈ B(q, 3δ) for
all |θ − θ0| ≤ δ. By definition Tq(δ) = {z ∈ R2 : dist(z, π−1

θ0
{r0}) ≤ δ}. Therefore

dist(p, π−1
θ0
{r0}) ≤ δ, and consequently

(2.22) |πθ0(p)− r0| ≤ δ.

If |θ − θ0| ≤ δ, one has |πθ(p)− πθ0(p)| ≤ |θ − θ0| ≤ δ since p ∈ B(1), and therefore

|πθ(p)− r0| ≤ |πθ(p)− πθ0(p)|+ |πθ0(p)− r0|
(2.22)
≤ 2δ.

This implies that (θ, πθ(p)) ∈ B(q, 3δ) for all |θ − θ0| ≤ δ. �
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Now all is ready to prove Theorem 1.7, which I restate below:

Theorem 2.23. Let µ be a finite Borel measure on B(1), and let ν be a finite
Borel measure on [c, 1− c]× [−1, 1] for some c ∈ (0, 1). Let δ ∈ (0, c/7]. Then,

Iδ(µ, ν) .t δ ·
√
I3−t(µ)It(ν), t ∈ (1, 2).

Proof. I only consider the case where µ ∈ C∞c (R2). The general case is easily
reduced to this via convolution approximation.

Let ψ ∈ C∞c (R2) be a function with 1B(0,1/2) ≤ ψ ≤ 1B(1) and
´
ψ ∼ 1. As usual,

write ψδ(q) := δ−2ψ(q/δ). For δ > 0, consider νδ := ν ∗ ψ6δ ∈ C∞c (R2), and notice
that

(2.24) ν(B(q, 3δ)) . δ2νδ(q), q ∈ R2.

Next, fix p ∈ sptµ ⊂ B(1). Applying Lemma 2.21 for each q ∈ spt ν ⊂ [c, 1− c]×R,
and also using Fubini’s theorem,ˆ

1Tq(δ)(p) dνq ≤ δ−1

ˆ ˆ 1

0

1B(q,3δ)(θ, πθ(p)) dθ dνq

= δ−1

ˆ 1

0

ν(B((θ, πθ(p)), 3δ)) dθ
(2.24)
. δ

ˆ 1

0

νδ(θ, πθ(p)) dθ

= δR∗(νδ)(p).

Consequently, by the definition of Iδ(µ, ν),

δ−1Iδ(µ, ν) = δ−1

¨
1Tq(δ)(p) dνq dµp .

ˆ
R∗(νδ)(p) dµp.

So far the continuous density of µ was not needed, but it is used next to make sense
of Rµ, and to apply the adjoint property of R,R∗ legitimately:

(2.25) δ−1Iδ(µ, ν) .
ˆ 1

0

ˆ
R
νδ(θ, r)(Rµ)(θ, r) dr dθ.

Since ν is compactly supported on [c, 1 − c] × R, and δ ≤ c/7, the convolution
νδ = ν∗ψ6δ is still compactly supported on [0, 1]×R. In particular both νδ and Rµ are
1-periodic (or more precisely have 1-periodic extensions) in the θ-variable. Motivated
by this, one uses Plancherel and Cauchy–Schwarz, at the same time introducing the
parameter t ∈ (1, 2):

δ−1Iδ(µ, ν) .
∑
n∈N

ˆ
R
|F(νδ)(n, ρ)||F(Rµ)(n, ρ)| dρ

≤

(∑
n∈Z

ˆ
R
|F(νδ)(n, ρ)|2|(n, ρ)|t−2 dρ

)1/2(∑
n∈Z

ˆ
R
|F(Rµ)(n, ρ)|2|(n, ρ)|2−t dρ

)1/2

.

Denote the two factors above by Π1 and Π2. The claim is that

Π1 .t It(ν)1/2 and Π2 .t I3−t(µ)1/2.

Consider first Π1. Start by noting that

F(νδ)(n, ρ) =

ˆ 1

0

ˆ
R
e−2πi(nθ+ρr)νδ(θ, r) dρ dθ = ν̂δ(n, ρ)

coincides with the usual Fourier transform of νδ in R2, since spt νδ ⊂ [0, 1] × R. In
particular

|F(νδ)(n, ρ)| . |ν̂(n, ρ)|, δ > 0, (n, ρ) ∈ Z× R.
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Moreover, since ν is supported on [0, 1] × R, one may easily check (employing the
usual trick of writing dν(θ, r) = χ(θ) dν(θ, r) for a suitable χ ∈ S(R)) that

|ν̂(n, ρ)| .
ˆ n+1

n−1

|ν̂(η, ρ)| dη, (n, ρ) ∈ Z× R.

Consequently,

(2.26)
∑
n∈Z

ˆ
R
|F(νδ)(n, ρ)|2|(n, ρ)|t−2 dρ .

∑
n∈Z

ˆ
R

(ˆ n+1

n−1

|ν̂(η, ρ)|2 dη
)
|(n, ρ)|t−2 dρ.

If either |n| ≥ 1 or n = 0 and |ρ| ≥ 1, one has

|(n, ρ)|t−2 . inf{|(η, ρ)|t−2 : n− 1 ≤ η ≤ n+ 1}.
Therefore, isolating the pairs {(0, ρ) : |ρ| ≤ 1}, the right hand side of (2.26) can be
further estimated asˆ 1

−1

ˆ 1

−1

|ν̂(η, ρ)|2|ρ|t−2 dη dρ+

ˆ
R2

|ν̂(ξ)|2|ξ|t−2 dξ.

The second term is ∼t It(µ) by [14, Lemma 12.12]. For the first term, simply estimate
|ν̂(η, ρ)|2 ≤ ν(R2)2 .t It(ν), recalling that spt ν ⊂ [−1, 1]2, and then note that´ 1

−1
|ρ|t−2 dρ .t 1 since t > 1. Putting these estimates together shows that Π1 .t

It(ν)1/2.
Moving on to Π2, one may resort to Theorem 2.16, after realising that

Π2
2 =

∑
n∈Z

ˆ
R
|F(Rµ)(n, ρ)|2|(n, ρ)|2−t dρ = ‖Rµ‖2

H
(2−t)/2
0

.

Since (2−t)/2 = s+1/2 for s = (1−t)/2 ∈ (−1
2
, 0) and t ∈ (1, 2), and µ ∈ C∞c (B(1)),

one may deduce from (2.17) that

‖Rµ‖2

H
(2−t)/2
0

. ‖µ‖2

H
(1−t)/2
0

=

ˆ
R2

|µ̂(ξ)|2|ξ|1−t dξ =

ˆ
R2

|µ̂(ξ)|2|ξ|(3−t)−2 dξ ∼t I3−t(µ).

In the final estimate [14, Lemma 12.12] was applied again. Combining the estimates
above completes the proof of Π2 .t I3−t(µ)1/2, and the proof of Theorem 2.23. �

3. Discretising the main theorem

I start moving towards the proof of Theorem 1.5. The first task it to reduce
Theorem 1.5 to a suitable δ-discretised counterpart. This is the statement below:

Theorem 3.1. For every s ∈ (0, 1] and t ∈ (1, 2] such that s+t > 2, for every τ ∈
(1, t), and C ≥ 1, there exist constants δ0 = δ0(C, s, t, τ) > 0 and ε = ε(C, s, t, τ) > 0
such that the following holds for all δ ∈ 2−N ∩ (0, δ0]. Let µ, ν be Borel probability
measures supported on B(1), and satisfying dist(sptµ, spt ν) ≥ 1

2
. Assume that

µ(B(x, r)) ≤ Crt and ν(B(x, r)) ≤ Crs, x ∈ R2, r > 0.

Let E ⊂ spt ν and F ⊂ sptµ be Borel sets with full ν measure and µ measure,
respectively. Assume that to every x ∈ E there corresponds a family Tx of δ-tubes
such that x ∈ T for all T ∈ Tx, and
(3.2) µ(∪Tx) ≥ C−1, x ∈ E.
Then, there exists x ∈ E and a tube T ∈ Tx such that Hτ−1

δ,∞ (F ∩ 10T ) ≥ ε. Here
10T = `θ,r(10δ) if T = `θ,r(δ).
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Here Hτ−1
δ,∞ refers to a variant of the usual Hausdorff content where the covering

sets are balls of radii in [δ,∞). The purpose of the remainder of this section is to
reduce Theorem 1.5 to Theorem 3.1:

Proof of Theorem 1.5 assuming Theorem 3.1. Fix t ∈ (1, 2) and a Borel set
B ⊂ R2 as in Theorem 1.5. One may assume that B ⊂ R2 is compact; this reduction
is simply achieved by choosing a compact subset F ⊂ B with dimH F > t. From now
on, I will use the notation “F ” in place of “B”.

Given a compact set F ⊂ R2 with dimH F > t, it suffices to prove the following:
if E ⊂ R2 \ F is another compact set with dimHE > 2− t, then there exists a point
x ∈ E such that

(3.3) H1({e ∈ S1 : dimH(F ∩ `x,e) ≥ t− 1}) > 0.

This is what we aim to prove. However, it is useful to record one more reduction. The
claim above is formally equivalent to a superficially weaker version of itself, where
the conclusion (3.3) is relaxed to: for every τ ∈ (1, t), there exists x ∈ E such that

(3.4) H1({e ∈ S1 : Hτ−1(F ∩ `x,e) > 0}) > 0.

Indeed, if this version has already been proven, and we are provided compact sets
E,F with dimHE > 2 − t and dimH F > t, then observe that dimH E > 2 − t̄ and
dimH F > t̄ for some t̄ ∈ (t, 2). At this point (3.4) may be applied with τ := t ∈ (1, t̄)
to deduce (3.3).

We finally prove (3.4). Fix compact sets E,F ⊂ R with dimH E > 2 − t and
dimH F > t. Assume with no loss of generality that E,F ⊂ B(1) with dist(E,F ) ≥ 1

2
.

We make a counter assumption: there exists τ ∈ (1, t) such that

(3.5) Hτ−1(F ∩ `x,e) = 0

for all x ∈ E, for H1 a.e. e ∈ S1.
Let µ, ν be Borel probability measures on F,E, respectively, satisfying µ(B(x, r)) ≤

Crt and ν(B(x, r)) ≤ Crs for all x ∈ R2 and r > 0, where s + t > 2. By renaming
the sets E,F if necessary, we assume that

F = sptµ and E = spt ν.

It follows from [19, Theorem 1.11] that there exists a set E0 ⊂ E of full ν measure
such that

πxµ� H1|S1 , x ∈ E0.

Fix x ∈ E0. Since πxµ� H1|S1 , our counter assumption (3.5) implies:

Hτ−1(F ∩ `x,e) = 0 for πxµ a.e. e ∈ S1.

In other words, the set S ′x := {e ∈ S1 : Hτ−1(F ∩ `x,e) = 0} has (πxµ)(S ′x) = 1.
Write

(3.6) ε := ε(2C, s, t, τ) > 0,

where ε(2C, s, t, τ) > 0 is the constant provided by Theorem 3.1.
For every x ∈ E0 and e ∈ S ′x, choose a cover Bx,e of F ∩ `x,e by open discs

satisfying

(3.7)
∑

B∈Bx,e

diam(B)τ−1 < ε.

Since F ∩ `x,e is compact, we may assume that (the cardinality) |Bx,e| <∞.
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Fix x ∈ E0, e ∈ S ′x, and write Bx,e :=
⋃
{B : B ∈ Bx,e}. We claim that there

exists δx,e > 0 such that

(3.8) F ∩ `x,e(δx,e) ⊂ Bx,e.

If this were not the case, we might choose radii δj ↘ 0 and points

yj ∈ (F ∩ `x,e(δj)) \ Bx,e ⊂ F.

Since F is compact, the points yj converge (up to a subsequence) to a limit y ∈ F∩`x,e.
On the other hand, yj ∈ R2 \ Bx,e for all j ∈ N. Since Bx,e is open, also the limit
y ∈ (F ∩ `x,e) \ Bx,e. This is a contradiction, since F ∩ `x,e ⊂ Bx,e.

Note that since Bx,e is finite, and δx,e may be taken smaller if desired, we may
assume that

(3.9) 0 < δx,e ≤ min{diam(B) : B ∈ Bx,e}.

The scale δx,e > 0 depends on x and e, but we next seek to remove the dependence
by passing to suitable subsets. Namely, first for every x ∈ E0, let δx > 0 be so small
that δx,e ≥ δx for a set Sx ⊂ S ′x with (πxµ)(Sx) ≥ 1

2
. Finally, let δ ∈ 2−N be so small

that δx ≥ 10δ for a Borel set E1 ⊂ E0 with ν(E1) ≥ 1
2
. In summary,

(3.10) 0 < 10δ ≤ δx ≤ δx,e, x ∈ E1, e ∈ Sx.

Let ν̄ := ν(E1)−1ν|E1 . Then ν̄ is a Borel probability measure, satisfies the Frostman
condition ν̄(B(x, r)) ≤ 2Crs, and E1 ⊂ spt ν̄ has full ν̄ measure.

For x ∈ E1, define the family Tx of δ-tubes Tx := {`x,e(δ) : e ∈ Sx}, where
`x,e = x+ span(e) is the line in direction e containing x. Then

µ (
⋃
Tx) ≥ (πxµ)(Sx) ≥ 1

2
, x ∈ E1,

This verifies property (3.2), in fact with absolute constant “ 1
2
”.

Finally, let us check that

(3.11) Hτ−1
δ,∞ (F ∩ 10T ) < ε

(3.6)
= ε(2C, s, t, τ), x ∈ E1, T ∈ Tx.

This will contradict Theorem 3.1 applied to µ, ν̄, and therefore complete the proof
of Theorem 1.5. To see (3.11), fix x ∈ E1 and T = `x,e(δ) ∈ Tx, where e ∈ Sx. Recall
from (3.8)+(3.10) that

F ∩ 10T = F ∩ `x,e(10δ) ⊂ F ∩ `x,e(δx,e) ⊂ Bx,e.

Now (3.11) follows immediately from (3.7), and recalling that diam(B) ≥ δx,e ≥ δ
for all B ∈ Bx,e with x ∈ E1 and e ∈ Sx. �

4. A quantitative Furstenberg set estimate

Starting from this section, it will be convenient to use dyadic δ-tubes. These
objects have appeared many times in approximate incidence geometry literature, see
for example [21, Section 2.3] for a thorough treatment. I use a slightly different
notational convention, introduced below (this is simply because lines in this paper
are parametrised as `θ,r = π−1

θ {r}, and not as `a,b = {(x, y) : y = ax+ b}, as in [21]).

Definition 4.1. (Dyadic cubes and tubes) Let δ ∈ 2−N. For K ⊂ R2, we write
Dδ(K) for the family of all standard dyadic δ-squares intersecting K. In the special
case K = [0, 1)× R, we abbreviate Dδ := Dδ([0, 1)× R).
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For (θ, r) ∈ [0, 1) × R, recall the notation `θ,r = π−1
θ {r}, where πθ(z) = z ·

(cos 2πθ, sin 2πθ). For Q ∈ Dδ, define the set

T (Q) :=
⋃
{`θ,r : (θ, r) ∈ Q}.

The collection T δ := {T (Q) : Q ∈ Dδ} is called the family of dyadic δ-tubes. If
T ⊂ T δ is a family of dyadic δ-tubes, the notation Hs

δ,∞(T ) refers to the Hausdorff
content of union of the family of parameter squares {Q ∈ Dδ : T (Q) ∈ T }, in symbols

Hs
δ,∞(T ) := Hs

δ,∞(∪{Q ∈ Dδ : T (Q) ∈ T }).
Remark 4.2. Since elements of T δ contain lines of various slopes, they do not

resemble ordinary δ-tubes at scales much greater than 1. However, all of our analysis
of dyadic δ-tubes happens inside B(1), and there the geometry of dyadic δ-tubes is
roughly the same as that of ordinary δ-tubes. For example, I record that if Q ∈ Dδ,
then

(4.3) T (Q) ∩B(2) ⊂ `θ,r(10δ), (θ, r) ∈ Q.
Here, and below, A(δ) = {x ∈ Rd : dist(x,A) ≤ δ} refers to the closed δ-

neighbourhood of A ⊂ Rd. The statement of Theorem 4.9 below, and its proof, uses
the notions of both (δ, s)-sets and Katz–Tao (δ, s)-sets. These are defined below.

Definition 4.4. (Katz–Tao (δ, s, C)-set) Given a metric space (X, d), and a
constant C > 0, a Katz–Tao (δ, s, C)-set is a set P ⊂ X satisfying

(4.5) |P ∩B(x, r)|δ ≤ C
(
r
δ

)s
, x ∈ X, r ≥ δ.

Recall that |A|δ is the δ-covering number of A. If the constant C > 0 is absolute,
P is called simply a Katz–Tao (δ, s)-set. A family of dyadic δ-tubes T is called a
Katz–Tao (δ, s, C)-set if the union of the parameter squares {Q : T (Q) ∈ T } is a
Katz–Tao (δ, s, C)-subset of R2.

Definition 4.4 is due to Katz and Tao [9, Definition 1.2]. It is distinct from the
following notion of (δ, s)-sets :

Definition 4.6. ((δ, s, C)-set) With the notation of Definition 4.4, the set P ⊂ X
is called a (δ, s, C)-set if

(4.7) |P ∩B(x, r)|δ ≤ Crs|P |δ, x ∈ X, r ≥ δ.

Remark 4.8. To grasp the difference between (δ, s)-sets and Katz–Tao (δ, s)-
sets, the following observation is useful: a non-empty (δ, s, C)-set P ⊂ X satisfies
|P |δ ≥ δ−s/C (apply (4.7) with r = δ), whereas a Katz–Tao (δ, s, C)-set P ⊂ B(1)
satisfies |P |δ ≤ Cδ−s (apply (4.5) with r = 1).

In fact, in doubling metric spaces (thus in all spaces we need in this paper) every
(δ, s, C)-set can be written as a disjoint union of / C|P |δt Katz–Tao (δ, s)-sets, see
[20, Lemma 3.2]. All statements below could in principle be expressed in terms of the
Katz–Tao condition only, but using both definitions leads to a cleaner exposition.

Theorem 4.9 is a quantitative version of the case s + t ≥ 2 of [6, Theorem 1.6].
The proof is rather different from the argument presented in [6, Section 5].

Theorem 4.9. Let t ∈ (1, 2], s ∈ (2 − t, 1], C ≥ 1. Assume that µ is Borel
measure on B(1) ⊂ R2 satisfying µ(B(p, r)) ≤ Crt for all p ∈ R2 and r > 0. Fix
δ ∈ 2−N, and for every p ∈ Dδ(sptµ), let Tp ⊂ T δ be a (δ, s, C)-set such that T ∩p 6= ∅
for all T ∈ Tp. Then,
(4.10) Hσ+1

δ,∞ (T ) &σ,s,t µ(R2)/C3, σ ∈ [0, s),
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where T is the union of the families Tp with p ∈ Dδ(sptµ). In particular, T contains
a Katz–Tao (δ, σ + 1)-set T ′ of cardinality |T ′| &σ,s,t µ(R2)δ−(σ+1)/C3.

Remark 4.11. The “In particular...” part follows immediately from the Haus-
dorff content lower bound combined with [5, Proposition A.1].

Proof of Theorem 4.9. One may assume that t ∈ (1, 2), because if t = 2, the
measure µ also satisfies µ(B(p, r)) ≤ Crt

′ for some t′ ∈ (1, 2) with s ∈ (2− t′, 1].
Fix σ ∈ (2− t, s) (the cases σ ∈ [0, 2− t] of (4.10) follow by monotonicity if one

manages to treat σ ∈ (2− t, s).) Assume to the contrary that

(4.12) Hσ+1
δ,∞ (T ) ≤ ε · µ(R2)/C3,

where

(4.13) ε := ε(σ, s, t) := inf
0<∆≤1/2

c∆2(σ−s)

log10(1/∆)
> 0,

and c = c(σ, t) > 0 is a constant to be determined later.
The counter assumption (4.12) can be used to effectively cover T by Katz–Tao

(σ + 1,∆j)-sets at various scales ∆j ∈ 2−N ∩ [δ, 1
2
]. The existence of such coverings

was originally observed by Katz and Tao [9, Lemma 7.5(a)], but refined versions have
later appeared in [7, Lemma 2] and [2, Lemma 11]. I literally use the version from
[2] (whose proof is a striking 3 lines long). Namely, for every ∆j = 2−j ∈ 2−N ∩ [δ, 1

2
],

one may find a (possibly empty) Katz–Tao (σ + 1,∆j)-set Tj ⊂ T ∆j such that:

(a)
∑log(1/δ)

j=1 ∆σ+1
j |Tj| . Hσ+1

δ,∞ (T ) ≤ ε · µ(R2)/C3.
(b) every tube T ∈ T is contained in exactly one tube from some collection Tj.
We then use the pigeonhole principle to find a particularly useful index “j”. Start

by noting that for every p ∈ P := Dδ(sptµ) fixed, property (b) implies

Tp =

log(1/δ)⋃
j=1

(Tp ∩ Tj).

(Here Tp ∩ Tj consists of those tubes in Tp whose dyadic ∆j-ancestor lies in Tj.)
Therefore, one may find an index j = j(p) ∈ {1, . . . , log(1/δ)} such that

(4.14) |Tp ∩ Tj| & |Tp|/j2.

Write Pj := {p ∈ P : j(p) = j}, for j ∈ {1, . . . , log(1/δ)}. Then P is contained in
the union of the sets Pj, so one may find and fix an index j ∈ {1, . . . , log(1/δ)} such
that µ(∪Pj) & µ(R2)/j2. We write ∆ := 2−j for the index “j” found above.

Write P∆ := D∆(Pj), and let µ∆ be the absolutely continuous measure on R2

which has constant density on ∆-squares, and is determined by

µ∆(p) := µ(p), p ∈ P∆.

Note that

(4.15) µ∆(∪P∆) ≥ µ(∪Pj) & µ(R2)/ log2(1/∆).

Furthermore, it follows easily from the hypothesis µ(B(x, r)) ≤ Crt that

(4.16) It(µ∆) .t Cµ∆(R2) log(1/∆) ≤ Cµ(R2) log(1/∆).

Abbreviate T := Tj. For p ∈ P∆, define

Tp := {T ∈ T : T ∩ p 6= ∅}.
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Let us check that

(4.17) |Tp| &
∆−s

C log2(1/∆)
, p ∈ P∆.

If p ∈ P∆, one may pick p ∈ Pj with p ⊂ p. First observe that Tp contains all the
dyadic ∆-ancestors of Tp ∩T. Namely, if T ∈ Tp ∩T, then (a) the dyadic ∆-ancestor
T of T is contained in T by definition of Tp ∩ T, and (b) T ∩ p 6= ∅ by definition of
Tp. Therefore also T ∩ p ⊃ T ∩ p 6= ∅, hence T ∈ Tp.

Next, by the (δ, s, C)-set property of Tp, every fixed ancestor T ∈ Tp can contain
≤ C∆s|Tp| elements of Tp ∩ T. Combining this observation with (4.14) leads to the
inequality

|Tp|/ log2(1/∆) . |Tp ∩ T| ≤ |Tp| · (C∆s|Tp|),
which is equivalent to (4.17).

The plan is now to apply Theorem 2.23 to the pair of measures µ∆ and ν∆, where
ν∆ is a uniformly distributed measure on T giving unit mass to each T ∈ T. To make
this precise, ν∆ actually needs to be defined on the parameter set [0, 1]× R by

(4.18) ν∆ :=
∑
q∈Q

∆−21q,

where Q = {q ∈ D∆([0, 1]× R) : T (q) ∈ T}. To find a lower bound for the weighted
incidences between µ∆ and ν∆, the idea is simply that for each p ∈ P∆, the family
Tp ⊂ T has many elements thanks to (4.17). To actually filter this idea through the
formal definition of weighted incidences is slightly cumbersome. To do this carefully,
let Qp := {q : T (q) ∈ Tp} ⊂ Q be the parameter set of Tp, for p ∈ P∆. The
following is the key observation:

(4.19)
⋃

q∈Qp

q ⊂ {q : p ∈ Tq(20∆)}, p ∈ p ∈ P∆,

where Tq(20∆) is the ordinary 20∆-tube from Definition 2.18. To see this, fix p ∈
p ∈ P∆ and q ∈ Qp and q ∈ q. Then T (q) ∈ Tp, so T (q) ∩ p 6= ∅ by the definition
of Tp. Since p ⊂ B(2), it follows from (4.3) that dist(p, `q) ≤ 10∆, and therefore
p ∈ p ⊂ Tq(20∆). This is what was claimed.

With the inclusion above secured, the weighted incidences between µ∆ and ν∆

can be estimated easily:

I20∆(µ∆, ν∆)
def.
=

ˆ
ν∆({q : p ∈ Tq(20∆)}) dµ∆(p)

=
∑
p∈P∆

ˆ
p

ν∆({q : p ∈ Tq(20∆)}) dµ∆(p)

≥
∑
p∈P∆

µ∆(p)ν∆

 ⋃
q∈Qp

q

 =
∑
p∈P∆

µ∆(p)|Tp| &
µ(R2)∆−s

C log4(1/∆)
,

where the final inequality combined (4.15) and (4.17).
The plan is now to compare this lower bound against the upper bound provided by

Theorem 2.23. The (3−t)-energy of ν∆ can be controlled by the Katz–Tao (∆, σ+1)-
set property of T (which is by definition the same as the Katz–Tao (∆, σ + 1)-set
property of Q), and recalling from the beginning of the proof that σ + 1 > 3− t:

I3−t(ν∆) .σ,t |T|∆−(σ+1)
(a)
. (ε · µ(R2)/C3) ·∆−2(σ+1).



200 Tuomas Orponen

Recalling also (4.16), and applying Theorem 2.23 at scale 20∆ yields

µ(R2)∆−s

C log4(1/∆)
.σ,t ∆

√
ε · C−2µ(R2)2∆−2(σ+1) log(1/∆)

≤
√
ε · µ(R2)

C
·∆−σ log(1/∆).

Rearranging this inequality leads to ε &σ,t ∆2(σ−s) log−10(1/∆), which contradicts the
choice at (4.13) if c = c(σ, t) > 0 is small enough. This completes the proof.

I omitted the minor detail that in order to apply Theorem 1.5, the measure ν∆

should actually be supported on [1
2
, 3

4
]×R. This can be arranged by initially reducing

the proof of the current theorem to the case where angles of the tubes Tp lie in the
interval [1

2
, 3

4
]. �

5. A quantitative radial projection estimate

The following result is [20, Proposition 4.8]. This preprint was not published in
original form, but the higher dimensional counterpart is [2, Proposition 23].

Proposition 5.1. For every s ∈ (0, 1], t > 1, and σ ∈ (0, s), there exist δ0 =
δ0(s, σ, t) > 0 and ε = ε(s, σ, t) > 0 such that the following holds for all δ ∈ (0, δ0].
Let E,F ⊂ B(1) ⊂ R2 be non-empty δ-separated sets, where E is a (δ, s, δ−ε)-set,
and F is a (δ, t, δ−ε)-set (recall Definition 4.6), and dist(E,F ) ≥ 1

2
. Then, there exists

q ∈ F such that

(5.2) |πq(E ′)|δ ≥ δ−σ, E ′ ⊂ E, |E ′| ≥ δε|E|.
The proof of Theorem 3.1 will require the following corollary:

Corollary 5.3. For every s ∈ (0, 1], σ ∈ (0, s), t ∈ (1, 2], and C > 0, there exists
a constant K = K(C, s, σ, t) ≥ 1 such that the following holds. Let µ, ν be Borel
probability measures supported on B(1), with dist(sptµ, spt ν) ≥ 1

2
. Assume

(5.4) µ(B(x, r)) ≤ Crt and ν(B(x, r)) ≤ Crs

for all x ∈ R2 and r > 0. Then, there exists q ∈ sptµ such that

Hσ
∞(πq(E

′)) ≥ 1
K

(ν(E ′))K

for all Borel sets E ′ ⊂ spt ν.

Remark 5.5. In fact, the proof shows that “q ∈ sptµ” can be replaced by
“q ∈ F ” where F ⊂ sptµ is any Borel set with µ(F ) = 1.

Proof of Corollary 5.3. The plan is to apply Proposition 5.1 with parameters
s, t and σ, so let ε > 0 and δ0 > 0 be the constants provided by the proposition with
these parameters. The constant K ≥ 1 will need to be so large that the following
requirements are met:

• K−1 ≤ min{δ0, ε/10},
• AC logA(1/∆) ≤ ∆−ε/4 for all ∆ ≤ K−1, for a suitable absolute constant
A ≥ 1,

The proof starts with a counter assumption: for every q ∈ F := sptµ there exists
a Borel set Eq ⊂ E := spt ν such that

Hσ
∞(πq(Eq)) <

1
K

(ν(Eq))
K ,
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in particular ν(Eq) > 0. Write 2−j =: ∆j for j ≥ 1. Using the definition of Hausdorff
content, find families of ∆j-tubes T jq containing q such that

(5.6) Eq ⊂
⋃
j≥1

∪T jq and
∑
j≥1

∆σ
j |T jq | ≤ 1

K
(ν(Eq))

K ≤ 1
K
.

(In this proof it is not needed that the families T jq are Katz–Tao (∆j, σ)-sets.) By
the pigeonhole principle, one may for each q ∈ F pick an index j = j(q) ≥ 1 such
that

(5.7) ν(Eq ∩ (∪T jq )) &
ν(Eq)

j2
> 0.

Note that, by the final inequality in (5.6), and since σ ≤ 1, one may deduce that
T jq = ∅ for all j ∈ {1, . . . , logK}. Therefore j(q) ≥ logK, or in other words ∆j(q) ≤
K−1 ≤ δ0.

By a second application of the pigeonhole principle, find an index j ≥ 1 such
that the set Fj := {q ∈ F : j(q) = j} satisfies µ(Fj) & 1/j2. Fix this index j ≥ 1 for
the rest of the proof, and abbreviate

∆ := ∆j ≤ δ0, Tq := T jq and F̄ := Fj.

From (5.7), one sees that Tq 6= ∅ for all q ∈ F̄ , therefore |Tq| ≥ 1. One may
combine this information with (5.6) to find

∆σ ≤ ∆σ|Tq| ≤ (ν(Eq))
K =⇒ ν(Eq) ≥ ∆σ/K ≥ ∆1/K ≥ ∆ε/10,

and consequently, by the choice of K,

(5.8) ν(Eq ∩ (∪Tq))
(5.7)
&

ν(Eq)

log2(1/∆)
≥ ∆1/K

log2(1/∆)
≥ ∆ε/8.

Consider the family F∆ := D∆(F̄ ). Evidently µ(∪F∆) ≥ µ(F̄ ) & log−2(1/∆). For
each q ∈ F∆, fix one distinguished point q ∈ F̄ ∩ q, and let

Eq := ∪{p ∈ D∆(E) : p ∩ (∪Tq) 6= ∅} ⊃ Eq ∩ (∪Tq).
Recalling that Tq is a collection of ∆-tubes containing q, hence intersecting q, one
has

(5.9) |πq′(Eq)|∆ . |Tq|
(5.6)
≤ 1

K
∆−σ < ∆−σ, q′ ∈ q.

(This also uses dist(E,F ) ≥ 1
2
.) Furthermore, ν(Eq) & ∆ε/8 for all q ∈ F∆, by (5.8).

To summarise, we have now located a set F∆ ⊂ D∆ with µ(∪F∆) & log−2(1/∆)
such that for every q ∈ F∆, there exists a set Eq ⊂ ∪D∆(E) with ν(Eq) & ∆ε/8

and small ∆-scale radial projection from every point in q in the sense (5.9). This
nearly contradicts Proposition 5.1 applied at scale ∆, except that the measures ν
and µ need to replaced by a (∆, s,∆−ε)-set and a (∆, t,∆−ε)-set, respectively. This
is routine pigeonholing, but I sketch the details.

Start by pigeonholing a subset F ′∆ ⊂ F∆ such that
• µ(q)/µ(q′) ∈ [1

2
, 2] for q,q′ ∈ F ′∆, and

• µ(∪F ′∆) & log−3(1/∆).
It now follows from the Frostman condition (5.4) on µ that F ′∆ is a (∆, t, O(C log3(1/∆)))-
set. In particular F ′∆ is a (∆, t,∆−ε/2)-set by the choice of K.

Next, for each q ∈ F ′∆, find by a similar procedure (now using the s-Frostman
property of ν) a (∆, s,∆−ε/4)-subset Ēq ⊂ Eq with ν(∪Ēq) ≥ ∆ε/4, and such that
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p 7→ ν(p) is almost constant (depending on q) for p ∈ Ēq. Finally, verify (using
Cauchy–Schwarz) that some fixed subset E := Ēq0 satisfies

ν(E ∩ Ēq) ≥ ∆ε, q ∈ F ′′∆,
where F ′′∆ ⊂ F ′∆ has |F ′′∆| ≥ ∆ε/2|F ′∆|. Now F ′′∆ is a (∆, t,∆−ε)-set, E is a (∆, s,∆−ε)-
set, and for each q ∈ F ′′∆ the fat subset E ∩ Ēq ⊂ E continues to satisfy (5.9).
This contradicts Proposition 5.1 at scale ∆ ≤ δ0, and completes the proof of the
corollary. �

6. Proof of the discretised main theorem

In this section the δ-discretised Theorem 3.1 is proven. Here is the statement
again:

Theorem 6.1. For every s ∈ (0, 1] and t ∈ (1, 2] such that s+t > 2, for every τ ∈
(1, t), and C ≥ 1, there exist constants δ0 = δ0(C, s, t, τ) > 0 and ε = ε(C, s, t, τ) > 0
such that the following holds for all δ ∈ 2−N ∩ (0, δ0]. Let µ, ν be Borel probability
measures supported on B(1), with dist(sptµ, spt ν) ≥ 1

2
. Assume

µ(B(x, r)) ≤ Crt and ν(B(x, r)) ≤ Crs, x ∈ R2, r > 0.

Let E ⊂ spt ν and F ⊂ sptµ be Borel sets with full ν measure and µ measure,
respectively. Assume that to every p ∈ E there corresponds a family Tp ⊂ T δ of
dyadic δ-tubes such that B(p, 2δ)

⋂
T 6= ∅ for all T ∈ Tp, and

(6.2) µ(∪Tp) ≥ C−1, p ∈ E.
Then, there exists p ∈ E and a tube T ∈ Tp such that Hτ−1

δ,∞ (F ∩ T ) ≥ ε.

Remark 6.3. There are the following minor differences compared to the first
version of Theorem 3.1: the families Tp now consist of dyadic δ-tubes instead of
ordinary δ-tubes, the requirement p ∈ T is relaxed to T ∩ B(p, 2δ) 6= ∅, and the
conclusion is about F ∩ T instead of F ∩ 10T . It is routine to pass between these
two forms of the theorem. (Hint: check that if T is an ordinary δ-tube containing
p, then T can be covered by . 1 dyadic δ-tubes T1, . . . , TN intersecting B(p, 2δ) and
such that F ∩ Tj ⊂ F ∩ 10T for 1 ≤ j ≤ N .) The formulation of Theorem 6.1 is
more convenient to prove: for example, automatically |Tp| . δ−1 for all p ∈ E, and
summing over T ∈ Tp makes sense.

Proof of Theorem 6.1. Fix t ∈ (1, t) and s < s so close to t, s, respectively, that

(6.4) s > 2− t.
We treat s, t as functions of s, t: dependence on s, t is recorded as a dependence on
s, t.

The proof starts by restricting µ to a “good set” F ′ ⊂ sptµ of measure 1−(2C)−1.
Namely, let K = K(2C2, s, s, t) ≥ 1 be the constant from Corollary 5.3 with the
parameters listed in parentheses. I claim that there exists a subset F ′ ⊂ sptµ with
µ(F ′) ≥ 1− (2C)−1 and the following property. If q ∈ F ′, then
(6.5) Hs

∞(πq(E
′)) ≥ 1

K
(ν(E ′))K , E ′ ⊂ spt ν Borel.

Let Fbad ⊂ sptµ be the set of points q ∈ sptµ failing (6.5). If µ(Fbad) > (2C)−1, then
the renormalised measure µ̄ := µ(Fbad)−1µ|Fbad

is a probability measure satisfying the
Frostman condition µ̄(B(x, r)) ≤ 2C2rt. One may then apply Corollary 5.3 to µ̄, ν.
By the choice of the constant K = K(2C2, s, s, t), one finds a point q ∈ Fbad (a set
of full µ̄ measure) satisfying (6.5). This contradicts the definition of Fbad.
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Define F ′ := sptµ \ Fbad. It was established above that µ(F ′) ≥ 1− (2C)−1. In
particular, by (6.2),

µ(F ′ ∩ (∪Tp)) ≥ (2C)−1, p ∈ E.

This observation shows that the measures µ and µ|F ′ satisfy the same hypotheses,
up to replacing “C” by “2C”. Since it also suffices to show that Hτ−1

δ,∞ (F ′ ∩ T ) ≥ ε for
some p ∈ E and T ∈ Tp, it is now safe to restrict µ to F ′. I do this without altering
notation: in other words I assume in the sequel that µ(F ′) = 1 and (6.5) holds for
all q ∈ F .

Now comes main counter assumption:

(6.6) Hτ−1
δ,∞ (F ∩ T ) ≤ ε, p ∈ E, T ∈ Tp.

Here

(6.7) ε := 1
A

inf{log−A(1/∆)∆τ−t : ∆ ∈ (0, 1
2
]}

and A = A(C, s, t, τ) ≥ 1 is a constant to be determined on the last line of the proof.
Note that ε &C,s,t,τ 1 since τ < t. For the remainder of the argument, I use the
convention that the constants in the “.” notation are allowed to depend on C, s, t, τ .

 

F ∩ T

B(1)

Figure 1. The family R(p, T ).

The counter assumption (6.6) and the pigeonhole principle will next be applied
to find useful, relatively large, subsets of E and F . Start by fixing p ∈ E and T ∈ Tp.
According to (6.6), one can find a family of disjoint (“dyadic”) rectangles R(p, T )
which are contained in T , cover F ∩ T , and satisfy

(6.8)
∑

R∈R(p,T )

diam(R)τ−1 . ε.

To be accurate, the objects in R(p, T ) are only “almost rectangles”, because T is a
dyadic tube, see Figure 1: for each R ∈ R(p, T ) there exists a proper rectangle R′ of
dimensions δ × 2−j, δ ≤ 2−j ≤ 1, such that cR′ ⊂ R ⊂ CR′ for absolute constants
c, C > 0. When we discuss the “dimensions” of R ∈ R(p, T ), we really mean the
dimensions of the genuine rectangle R′. We may assume that these dimensions are
δ × 2−j for some δ ≤ 2−j ≤ 1.

We then group the rectangles in R(p, T ) according to their (longer) side-lengths:

R(p, T, j) := {R ∈ R(p, T ) : R is a δ × 2−j-rectangle},

for j ∈ {1, . . . , log(1/δ)}. With this notation, observe that

log(1/δ)∑
j=1

ˆ
E

∑
T∈Tp

∑
R∈R(p,T,j)

µ(R) dνp

 ≥ ˆ
E

µ(∪Tp) dνp ≥
1

C
,
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according to (6.2). It follows that there exists an index j ∈ {1, . . . , log(1/δ)} such
that

(6.9)
ˆ
E

∑
T∈Tp

∑
R∈R(p,T,j)

µ(R) dνp ≥ c

Cj2
.

This index “j” will be fixed for the remainder of the proof. Abusing notation, I
abbreviate R(p, T ) := R(p, T, j) for this index “j”, and write

∆ := 2−j ∈ [δ, 1
2
].

Estimate (6.9) further implies that there exists a subset Ē ⊂ E with ν(Ē) ≥
c/(C log2(1/∆)) and the property

(6.10)
∑
T∈Tp

∑
R∈R(p,T )

µ(R) ≥ c

C log2(1/∆)
, p ∈ Ē.

The families Tp and R(p, T ) still need pruning. Fix p ∈ Ē, and note that |Tp| . δ−1,
since Tp is a family of dyadic δ-tubes intersecting B(p, 2δ). A tube T ∈ Tp is called
heavy, denoted T ∈ Tp,heavy, if

(6.11)
∑

R∈R(p,T )

µ(R) ≥ c′δ

C log2(1/∆)

for a suitable constant c′ > 0. Since |Tp| . δ−1, it follows from (6.10) that∑
T∈Tp,heavy

∑
R∈R(p,T )

µ(R) ≥ 1
2

∑
T∈Tp

∑
R∈R(p,T )

µ(R), p ∈ Ē.

Since this lower bound is just as good as (6.10) for future purposes, I will assume
that Tp = Tp,heavy for all p ∈ Ē, or in other words every tube T ∈ Tp satisfies (6.11).

Finally, for p ∈ E and T ∈ Tp = Tp,heavy fixed, the family R(p, T ) needs pruning.
Observe from (6.8) that |R(p, T )| . ε·∆1−τ . A rectangle R ∈ R(p, T ) is called heavy,
denoted R ∈ R(p, T )heavy, if

(6.12) µ(R) ≥ c′′δ

Cε ·∆1−τ log2(1/∆)

for a suitable constant c′′ > 0. Since |R(p, T )| . ε ·∆1−τ , it follows from (6.11) that∑
R∈R(p,T )heavy

µ(R) ≥ 1
2

∑
R∈R(p,T )

µ(R), T ∈ Tp.

Again, this lower bound for the sum over R ∈ R(p, T )heavy is just as useful as the lower
bound for the full sum over R ∈ R(p, T ), so I assume that R(p, T )heavy = R(p, T ) to
begin with, for all p ∈ Ē and T ∈ Tp.

Here is a summary of the achievements so far. We have found:
(i) A set Ē ⊂ E satisfying ν(Ē) & 1/(C log2(1/∆)).
(ii) For each p ∈ Ē the tubes T ∈ Tp cover substantial µ measure, according to

(6.10). In fact,

µ(Fp) &
1

C log2(1/∆)
, where Fp :=

⋃
T∈Tp

⋃
R∈R(p,T )

R.

(iii) For p ∈ Ē and T ∈ Tp, every rectangle R ∈ R(p, T ) is heavy, thus satisfying
(6.12).
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From now on the following notational convention will be in place: for the scale
∆ ∈ [δ, 1

2
] located above, I will write A /∆ B if

A ≤ C logC(1/∆)B

for some constant C ≥ 1 which may depend on C, s, t, τ . Any ∆-dependence of this
form is harmless. (In contrast, constants of the form log(1/δ) would be detrimental.)

Observe that ˆ
F

ν({p ∈ Ē : q ∈ Fp}) dµq =

ˆ
Ē

µ(Fp) dνp '∆ 1.

by properties (i) and (ii) above. Consequently, there exists a set G ⊂ F such that
µ(G) '∆ 1, and

(6.13) ν({p ∈ Ē : q ∈ Fp}) '∆ 1, q ∈ G.
Write Eq := {p ∈ Ē : q ∈ Fp} for q ∈ G.

I claim that it is possible to select a distinguished square Q ∈ D∆ with the
property

(6.14) µ(G ∩Q) '∆ µ(10Q).

Indeed, if this fails for all squares Q ∈ D∆, then the bounded overlap of the squares
10Q would immediately contradict µ(G) '∆ 1. Now, fix a square Q ∈ D∆ satisfying
(6.14) for the remainder of the proof, see Figure 2.

 

E

Eq

Q
q

F

Figure 2. The square Q, a point q ∈ G ∩ Q, the set Eq, and the tube family T q0 . The darker
patches around q signify the (δ ×∆)-rectangles R(T ) ∈ R(p, T ), p ∈ Eq, all of which contain q and
are contained in 10Q.

Fix q ∈ G ∩ Q ⊂ F , and recall that ν(Eq) '∆ 1 by (6.13). Consequently,
according to (6.5) applied to E ′ = Eq, and recalling that K = K(2C2, s, s, t) is a
constant depending on C, s, t only (since s is a function of s, t),

(6.15) Hs
∞(πq(Eq)) ≥ 1

K
(ν(Eq))

K '∆ 1.

To draw benefit from (6.15), recall that Eq = {p ∈ Ē : q ∈ Fp}, where further

Fp =
⋃
T∈Tp

⋃
R∈R(p,T )

R.

Thus, for every p ∈ Eq, there exists a tube T = T (p, q) ∈ Tp and a rectangle
R = R(T ) ∈ R(p, T ) with

q ∈ R ⊂ T and T ∩B(p, 2δ) 6= ∅.
The family T q0 := {T (p, q) : p ∈ Eq} now consists of δ-tubes containing q, and Eq
is contained in the (2δ)-neighbourhood of the union ∪T q0 , see Figure 2. The lower
bound (6.15) says (slightly informally) that the Hs

δ,∞-content of T
q

0 is bounded from
below by '∆ 1. More accurately, the Hs

δ,∞-content of the parameter δ-squares of the
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tubes in T q0 is '∆ 1. Therefore, applying [5, Proposition A.1] at scale δ/∆ ≥ δ, one
can select a (δ/∆, s,≈∆ 1)-set

T q ⊂ T q0
consisting of (δ/∆)-separated elements (since the tubes in T q0 contain q, this is equiv-
alent to saying that the angles of the tubes in T q are (δ/∆)-separated).

For each T = T (p, q) ∈ T q, recall that q ∈ R(T ) ⊂ T . Since q ∈ Q, and
diam(R(T )) ≤ 2∆, and Q is a square of side ∆, it holds that R(T ) ⊂ 10Q. Conse-
quently, one may infer from (6.12), and (iii), that

(6.16) µ(T ∩ 10Q) ≥ µ(R(T )) '∆ ε−1(δ/∆)∆τ , T ∈ T q.

Informally speaking, every tube in T :=
⋃
q∈G∩Q T q has many incidences with µ|10Q.

Before attempting to formalise this statement properly, let us examine the tube
family T . For q ∈ G ∩ Q, the family T q was by definition a (δ/∆)-separated
(δ/∆, s,≈∆ 1)-set of δ-tubes incident to q. The morale for “δ/∆” is that we are
seeking upper and lower bounds on incidences between T and µ|10Q, and it is natural
to “renormalise” the problem by rescaling µ|10Q by a factor of ∆−1.

In fact, consider the measure µ supported on [0, 1]2, defined by

µ := ∆−tS10Q(µ|10Q),

where S10Q is the scaling map taking 10Q to [0, 1]2. Note that the normalisation by
∆−t preserves the t-Frostman condition, that is, µ(B(x, r)) . Crt for all x ∈ R2 and
r > 0.

For q = S10Q(q) ∈ S10Q(G ∩Q), consider also the rescaled tube family

T q := {S10Q(T ) : T ∈ T q}.

Rescaling does not affect angular separation, but simply thickens the tubes: T q is a
(δ/∆)-separated (δ/∆, s,≈∆ 1)-set of (δ/∆)-tubes incident to q, for q ∈ S10Q(G ∩
Q) =: G.

To be accurate, whereas T q consists of dyadic δ-tubes, the rescaled sets S10Q(T )
are not exactly dyadic (δ/∆)-tubes. To mend this, I associate to each set S10Q(T ) ∈
T q a suitable dyadic (δ/∆)-tube. The important properties of the sets S10Q(T ) ∈ T q

are:
(a) they contain q = S10Q(q), and
(b) µ(S10Q(T )) = ∆−tµ(T ∩ 10Q) '∆ ε−1(δ/∆)∆τ−t by (6.16).

It is desirable to preserve these properties when replacing S10Q(T ) by a dyadic (δ/∆)-
tube. Fixing T ∈ T q, cover S10Q(T ) ∩ [0, 1]2 by . 1 dyadic (δ/∆)-tubes. Then, at
least one of them, say T, still satisfies

(6.17) µ(T) '∆ ε−1(δ/∆)∆τ−t,

and also T ∩ B(q, A(δ/∆)) 6= ∅ for a suitable absolute constant A ≥ 1; this is a
little weaker than (a), but perfectly adequate. Redefine T q to consist of the dyadic
(δ/∆)-tubes obtained in this way.

Let us record that

(6.18) µ(G) = ∆−tµ(G ∩Q) '∆ ∆−tµ(10Q)

by (6.14). On the other hand, using that µ(B(x, r)) . Crt and t < t,

(6.19) It(µ) . µ(R2) = ∆−tµ(10Q).

It is crucial that the same factor µ(10Q) appears in both bounds (6.18)–(6.19).
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Recall from (6.4) that s > 2− t > 2− t. Fix σ < s such that still

(6.20) σ > 2− t.

Recall again that for each q ∈ G, the family T q ⊂ T δ/∆ is a (δ/∆, s,≈∆ 1)-set. Apply
Theorem 4.9 to the families T q, q ∈ G, to the measure µ|G, and with parameters
t, s, σ. The conclusion is that the union

⋃
q∈G T q contains a Katz–Tao (δ/∆, σ+1)-set

T of cardinality

(6.21) |T | '∆ µ(G)

(
δ

∆

)−(σ+1) (6.18)
&

(
δ

∆

)−(σ+1)

∆−tµ(10Q).

Let ν be the (δ/∆)-discretised measure on T ⊂ T δ/∆ which gives unit mass to
each element T ∈ T . Formally, much like in (4.18), ν is defined as an absolutely
continuous measure on the “parameter” space [0, 1]× R of dyadic (δ/∆)-tubes:

ν =
∑
Q∈Q

( δ
∆

)−21Q,

where Q = {Q ∈ Dδ/∆([0, 1]×R) : T (Q) ∈ T } is the collection of “parameter squares”
for the tubes in T . Recall from (4.3) that

(6.22) T (Q) ∩B(2) ⊂ `θ,r(10(δ/∆)), (θ, r) ∈ Q.

Since σ+1 > 3−t by (6.20), andQ is a Katz–Tao (δ/∆, σ+1)-set, it is straightforward
to check that

´
dν(y)/|x− y|(3−t) . (δ/∆)−(σ+1) for all x ∈ R2. Therefore

(6.23) I3−t(ν) .
(
δ
∆

)−(σ+1)
ν(R2) =

(
δ
∆

)−(σ+1) |T |.

Next, recall from (6.17) that the tubes in T have many (δ/∆)-incidences with µ. In
fact,

I10(δ/∆)(µ,ν)
(2.20)
=

ˆ
µ(`θ,r(10(δ/∆)) dν(θ, r)

=
∑
Q∈Q

(
δ
∆

)−2
¨
Q

µ(`θ,r(10(δ/∆)) dθdr

(6.22)
≥

∑
Q∈Q

µ(T (Q))
(6.17)
'∆ |T | · ε−1(δ/∆)∆τ−t.(6.24)

On the other hand, one may use Theorem 2.23 to bound I10(δ/∆) from above:

I10(δ/∆)(µ,ν) .
δ

∆

√
I3−t(ν)It(µ)

(6.19)+(6.23)
.

δ

∆

√
(δ/∆)−(σ+1)|T | ·∆−tµ(10Q).

Combining this with the lower bound from (6.24), and rearranging, yields

|T | /∆ ε2∆t−2τ ·
(
δ
∆

)−(σ+1)
µ(10Q).

Comparing this with the lower bound for |T | recorded in (6.21), and rearranging
some more, one ends up with ε '∆ ∆τ−t. This means the same as

ε ≥ C−1 log−C(1/∆)∆τ−t

for some constant C = C(C, s, t, τ) ≥ 1. This however contradicts the choice of “ε”
at (6.7), choosing finally A > C. The proof of Theorem 6.1 is complete. �
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