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On the (1/2,+)-caloric capacity of Cantor sets

Joan Hernández

Abstract. In the present paper we characterize the (1/2,+)-caloric capacity (associated with

the 1/2-fractional heat equation) of the usual corner-like Cantor set of Rn+1. The results obtained

for the latter are analogous to those found for Newtonian capacity. Moreover, we also characterize

the BMO and Lip
α

variants (0 < α < 1) of the 1/2-caloric capacity in terms of the Hausdorff

contents Hn

∞
and Hn+α

∞
respectively.

Cantorin joukkojen (1/2,+)-lämpökapasiteetti

Tiivistelmä. Tässä työssä esitetään yhtäpitävä kaava avaruuden Rn+1 tavanomaisten Cantorin

kulmajoukkojen (1/2-murtoasteiseen lämpöyhtälöön liittyvälle) (1/2,+)-lämpökapasiteetille. Tulos

on vastaava kuin Newtonin kapasiteettille aiemmin löydetty. Lisäksi 1/2-lämpökapasiteetin BMO- ja

Lip
α
-muunnelmat (0 < α < 1) osoitetaan yhtäpitäviksi Hausdorffin sisältöjen Hn

∞
ja Hn+α

∞
kanssa.

1. Introduction

The work done by Mateu, Prat and Tolsa in [MPrTo] and subsequently by Mateu
and Prat in [MPr], motivates the study of caloric capacities in a similar manner
as it has been done for classical objects such as analytic, harmonic or Newtonian
capacities. In the former article, (1, 1/2)-Lipschitz caloric capacity was introduced
and, along with it, the notion of equivalence between the nullity of this quantity and
the removability of compact subsets for the heat equation, i.e. the one associated
with the differential operator Θ := (−∆x) + ∂t, where (x, t) ∈ Rn × R. As one may
suspect, the different nature of the spatial and temporal variables of the equation
is key when formalizing the previous notions. Indeed, let us fix a compact subset
E ⊂ Rn+1 and f a solution of the heat equation in Rn+1 \ E, that is, Θf = 0 in
Rn+1 \E. The characterization of the removability of E (i.e. the possibility to extend
the solution to the whole Rn+1) in terms of its (1, 1/2)-Lipschitz caloric capacity can
be done as in [MPrTo] if f satisfies the following normalization conditions,

‖∇xf‖L∞(Rn+1) <∞, ‖∂
1/2
t f‖∗,p <∞.

Here, the norm ‖·‖∗,p stands for the usual BMO norm of Rn+1 but computed with re-
spect to parabolic cubes. The choice to endow Rn+1 with a parabolic metric topology,
that is, the metric induced by the distance

dp
(
(x, t), (y, s)

)
:= max

{
|x− y|, |t− s|1/2

}
;

becomes natural in light of the results presented by Hofmann [Ho, Lemma 1] or
Hofmann and Lewis [HoL, Theorem 7.4]. Indeed, recall that a function f(x, t) defined
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in Rn+1 is Lip 1/2 (or Hölder 1/2) in the t variable if

‖f‖Lip1/2,t := sup
x∈Rn

t,u∈R,t6=u

|f(x, t)− f(x, u)|

|t− u|1/2
<∞.

Then, the following estimate holds

‖f‖Lip1/2,t . ‖∇xf‖L∞(Rn+1) + ‖∂
1/2
t f‖∗,p.

This implies that if f satisfies the previously mentioned normalization conditions, it
also satisfies a (1, 1/2)-Lipschitz condition, that in turn explains the name given to
the caloric capacity presented in [MPrTo].

In the footsteps of [MPrTo], Mateu and Prat studied the corresponding caloric
capacities associated with the fractional heat equation in [MPr]. That is, the equation
associated with the pseudo-differential operator Θs := (−∆x)

s + ∂t, for 0 < s < 1.
In [MPr] the authors carried out their analysis distinguishing the cases s = 1/2,
1/2 < s < 1 and 0 < s < 1/2, focusing mainly on the first. The study of the second
and third cases turned out to be rather technical and cumbersome, and it resulted
in the possibility to only obtain the value of the critical dimension of the capacity
for the second case, and the bound from above by a certain s-parabolic Hausdorff
content for the third. Nevertheless, the study of the first case was quite fruitful,
deducing a similar removability result for the Θ1/2-equation, as it was done for the
genuine heat equation. For instance, if f is a solution of the 1/2-heat equation in
Rn+1 \ E satisfying

‖f‖L∞(Rn+1) <∞,

then E will be removable if and only if the 1/2-caloric capacity of E is null. Notice
that a particularity of the choice s = 1/2 is that the spatial and temporal variables
need no longer to be distinguished in the normalization condition. In addition, the
proper topology to endow Rn+1 also becomes the usual euclidean topology. All in
all, the study of this case is simplified and, in fact, additional results can be obtained
in the planar setting (n = 1), such as the non-comparability of the 1/2-caloric ca-
pacity with analytic and Newtonian capacities, despite that the three share critical
dimension 1.

In the present paper we aim at obtaining further results for the case s = 1/2
and give a more precise description of the 1/2-caloric capacity, once its definition
is restricted to positive Borel regular measures. Such version will be referred to
as (1/2,+)-caloric capacity. For instance, Section 4 is devoted to the estimation
of the (1/2,+)-caloric capacity of the usual corner-like Cantor set of Rn+1, that
finally yields Corollary 4.3. The behavior obtained is similar to that described by
Eiderman in [Ei] for radial nonnegative kernels. In our setting the kernel will be
nonnegative, but not radial. Nevertheless, to circumvent such inconvenience, the
author compares the usual (1/2,+)-caloric capacity with an auxiliary one, defined
also through a nonnegative kernel but lacking a temporal indicator function. Such
feature turns out to be essential to deduce, in a rather straightforward manner, the
desired estimate. In fact, it also yields the comparability of the (1/2,+)-caloric
capacity with the analogous capacity associated with the conjugate operator (and
thus conjugate equation),

Θ
1/2

:= (−∆x)
1/2 − ∂t.

In Sections 5 and 6 we characterize the BMO and Lipα variants (0 < α < 1)
of the 1/2-caloric capacity, obtaining in Theorems 5.3 and 6.4 their comparability
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with Hn
∞ and Hn+α

∞ respectively. The previous study has been motivated by the one
carried out for the BMO variant of analytic capacity by Astala, Iwaniec and Martin
in [AIMar, §13.5.1], which in turn was inspired by [Ka]; and that for the Lipα variant
of the same capacity presented by Mel’nikov [Me].

About the notation used in this text: as usual, the letter C stands for an absolute
positive constant that can depend on the dimension of the ambient space, and whose
value may change at different occurrences. The notation A . B means that there
exists a positive absolute (dimensional) constant, such that A ≤ CB. Moreover,
A ≈ B is equivalent to A . B . A. Also, A ≃ B will mean A = CB. We also
emphasize that the gradient symbol ∇ will refer to (∇x, ∂t), with x ∈ Rn and t ∈ R.

2. Notation and preliminary results

Our ambient space will be Rn+1, and a generic point will be denoted as x =
(x, t) ∈ Rn+1, where x ∈ Rn will be usually referred to as the spatial variable, and
t ∈ R the time variable. Let Θ1/2 be the 1/2-heat operator, that is

Θ1/2 := (−∆)1/2 + ∂t,

where (−∆)1/2 = (−∆x)
1/2 is a pseudo-differential operator known as the 1/2-

Laplacian with respect to the spatial variable. It may be defined through its Fourier
transform,

̂(−∆)1/2f(ξ, t) = |ξ|f̂(ξ, t),

or by its integral representation

(−∆)1/2f(x, t) ≃ p.v.

ˆ

Rn

f(x, t)− f(y, t)

|x− y|n+1
dLn(y)

≃

ˆ

Rn

f(x+ y, t)− 2f(x, t) + f(x− y, t)

|y|n+1
dLn(y).

The reader may find more details about the properties of such operator in [DPV, §3]
or [St]. Borrowing the notation of [MPr], let P be the fundamental solution of the
1/2-heat equation in Rn+1, which is given by [Va, Eq. 2.2]

P (x) =
t

(
t2 + |x|2

)(n+1)/2
χ{t>0}(x),

where χ is the usual indicator function. For short, such expression will be written as

P (x) =
t

|x|n+1
χ{t>0}.

Notice that the previous kernel is not differentiable at any point of the form (x, 0).
Another fundamental function that will appear in the sequel is P ∗,

P ∗(x) := P (−x) =
−t

|x|n+1
χ{t<0}.

Observe that, on the one hand,

(−∆)1/2P ∗(x) = C ′

ˆ

Rn

P ∗(x+ y, t)− 2P ∗(x, t) + P ∗(x− y, t)

|y|n+1
dLn(y)

= C ′

ˆ

Rn

P (−x− y,−t)− 2P (−x,−t) + P (−x+ y,−t)

|y|n+1
dLn(y)

= (−∆)1/2P (−x),
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while on the other,

∂tP
∗(x) = −∂tP (−x).

Therefore, if we define the operator

Θ
1/2

:= (−∆)1/2 − ∂t,

we have that

Θ
1/2
P ∗(x) = Θ1/2P (−x),

implying that P ∗ is the fundamental solution of Θ
1/2

.

Definition 2.1. (1/2-caloric capacity) Given a compact set E ⊂ Rn+1 define its
1/2-caloric capacity as

γΘ1/2(E) = sup |〈T, 1〉|,

where the supremum is taken over all distributions T with supp(T ) ⊆ E satisfying

‖P ∗ T‖∞ := ‖P ∗ T‖L∞(Rn+1) ≤ 1.

Such distributions will be called admissible for γΘ1/2(E).

We also define the (1/2,+)-caloric capacity, denoted by γΘ1/2,+, in the same way
as γΘ1/2 , but with the supremum only taken over positive Borel regular measures µ
with supp(µ) ⊆ E and such that ‖P ∗ µ‖∞ ≤ 1.

We shall also introduce yet another variant of the previous capacity, γ̃Θ1/2,+, that
will be referred to as (1/2,+)-symmetric caloric capacity. Admissible measures for
γ̃Θ1/2,+ must also satisfy ‖P ∗∗µ‖∞ ≤ 1 as well as an n-growth condition with constant
1. Recall that a Borel measure µ in Rn+1 has s-growth (with constant C) if there
exists some absolute constant C > 0 such that

µ
(
B(x, r)

)
≤ Crs, for all x ∈ R

n+1, r > 0.

It is clear that this property is invariant if formulated using cubes instead of balls.
Also, it is straightforward that

γ̃Θ1/2,+(E) ≤ γΘ1/2,+(E) ≤ γΘ1/2(E).

We have analogous definitions associated with the operator Θ
1/2

, giving rise to the
objects γ

Θ
1/2 , γ

Θ
1/2

,+
and γ̃

Θ
1/2

,+
. Moreover, it is usual to extend all of the above

definitions to a greater variety of sets. Namely, if E ⊆ Rn+1 is any Borel set,

γΘ1/2(E) := sup
K⊆E

Kcompact

γΘ1/2(K),

and similarly for the rest of capacities.
The main properties of γΘ1/2 regarding localization and comparability to the

Hausdorff measure are exhaustively covered in [MPr]. We highlight [MPr, Theo-
rem 4.2], that concerns the equivalence between the null sets of γΘ1/2 and the remov-
able sets for the Θ1/2-equation. More precisely:

Definition 2.2. (1/2-caloric removability) A compact subset E ⊂ Rn+1 is said
to be 1/2-caloric removable if any bounded function f : Rn+1 → R satisfying the
1/2-heat equation in Rn+1 \ E, also satisfies the same equation in E.

Theorem 2.1. [MPr, Theorem 4.2] A compact subset E ⊂ Rn+1 is 1/2-caloric

removable if and only if γΘ1/2(E) = 0.



On the (1/2,+)-caloric capacity of Cantor sets 215

Moreover, the 1/2-caloric capacity of a subset is tightly related to a certain
Hausdorff content of the latter. Such relation is conditioned, in particular, by a
growth restriction that admissible distributions for γΘ1/2 must satisfy.

Theorem 2.2. Let T be a distribution in Rn+1 with ‖P ∗ T‖∞ ≤ 1. If ϕ is a C1

function supported on Q ⊂ Rn+1 with ‖∇ϕ‖∞ ≤ ℓ(Q)−1, then

|〈T, ϕ〉| ≤ Cℓ(Q)n,

for some absolute dimensional constant C > 0.

If the previous property holds for a distribution T , we say that T has n-growth

(with constant C). It can be checked that this definition agrees with the usual
definition of n-growth if T is a positive Borel measure.

Theorem 2.3. For every compact subset E ⊂ Rn+1,

γΘ1/2(E) . Hn
∞(E).

Moreover, if dimH(E) > n, then γΘ1/2(E) > 0.

Given s > 0, recall that the s-dimensional Hausdorff content of a set E ⊂ Rn+1

is defined as

Hs
∞(E) := inf

{
∞∑

i=1

diam(Ai)
s : E ⊂

∞⋃

i=1

Ai, Ai ⊂ R
n+1

}
.

From the previous results we infer that the only possible candidate for the critical
dimension of γΘ1/2 is n. And, in fact, this is the case, since there exist examples of
compact subsets with positive n-dimensional Hausdorff measure and some of them
are 1/2-caloric removable [MPr, §5] while other are not (they can be obtained as a
consequence of [MPr, Theorem 4.3] via subsets of graphs of Lipschitz functions with
positive Hn-measure).

One may also ask if for the planar case (n = 1) the capacity γΘ1/2 is comparable
to analytic capacity or Newtonian capacity, two classical objects related to complex
analysis and potential theory sharing the same critical dimension with γΘ1/2 . By
[MPr, Proposition 6.1] we see that this is not the case, since there exist subsets of
R2 with positive γΘ1/2 and null Newtonian capacity (horizontal line segments), and
null γΘ1/2 but positive analytic capacity (vertical line segments).

3. Properties of γΘ1/2,+

In the sequel we will be concerned with estimating the (1/2,+)-caloric capacity
of a family of generalized Cantor sets of Rn+1. Previous to that, we shall present
some important features of γΘ1/2,+ that we consider of their own interest.

Proposition 3.1. Let E ⊂ Rn+1 be a Borel subset and λ > 0, τ ∈ Rn+1. Set

τ(E) := E + τ and denote by λE the dilation of E by λ. The following identities

hold:

1. Translation invariance: γΘ1/2,+(E) = γΘ1/2,+(τ(E)).
2. γΘ1/2,+(λE) = λnγΘ1/2,+(E).
3. Outer regularity: If (Ek)k is a nested sequence of compact subsets of Rn+1

that decreases to E :=
⋂∞

k=1Ek,

lim
k→∞

γΘ1/2,+(Ek) = γΘ1/2,+(E).
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4. Countable subadditivity: Let E1, E2, . . . be disjoint Borel subsets of Rn+1.

Then,

γΘ1/2,+

(
∞⋃

j=1

Ej

)
≤

∞∑

j=1

γΘ1/2,+(Ej).

Proof. During this proof we shall write γ+ := γΘ1/2,+ to ease notation. To verify
1, we pick E ⊂ Rn+1 compact and prove that for any µ admissible for γ+(E) there
exists a measure µτ , admissible for γ+(τ(E)), such that µ(E) = µτ (τ(E)). It is clear
that once this property is verified, the result will follow. Let µ be admissible for γ+(E)
and define µτ (X) := µ(X − τ) for any X ⊆ Rn+1 that is µ-measurable. This way µτ

is clearly a positive Borel regular measure supported on τ(E) with µτ (τ(E)) = µ(E).
In addition, for any x ∈ Rn+1,

|P ∗ µτ (x)| =

∣∣∣∣
ˆ

τ(E)

P (x− y) dµτ (y)

∣∣∣∣ =
∣∣∣∣
ˆ

E

P (x− τ − u) dµ(u)

∣∣∣∣ = |P ∗ µ(x− τ)| ≤ 1,

implying that µτ is admissible for γ+(τ(E)) and we are done. To deal with E an
arbitrary Borel subset of Rn+1 just notice that by Theorem 2.2 admissible measures
for γ+ are locally finite and Borel regular, and thus Radon [Ma, Corollary 1.11]. So
the quantity µ(E) can be computed as the limit limk→∞ µ(Ek), where Ek is a proper
sequence of compact subsets that approximates E.

The proof of 2 is analogous. Indeed, take the measure µλ(X) := λnµ(λ−1X)
supported on λE and just notice that for any x ∈ Rn+1

|P ∗ µλ(x)| =

∣∣∣∣
ˆ

λE

P (x− y)dµλ(y)

∣∣∣∣ = λn
∣∣∣∣
ˆ

E

P (x− λu)dµ(u)

∣∣∣∣ = |P ∗ µ(λ−1x)| ≤ 1.

Moving on to 3, observe that γ+(E) ≤ γ+(Ek) for any k. Hence γ+(E) ≤
limk→∞ γ+(Ek) and we are left to prove the converse inequality. To do so, let us
pick for each k an admissible measure µk for γ+(Ek) with

γ+(Ek)−
1

k
≤ µk(Ek) ≤ γ+(Ek),

We shall verify that there exists an admissible measure µ for γ+(E) so that for
each test function ϕ, limk→∞〈µk, ϕ〉 = 〈µ, ϕ〉, where we have used the notation
〈µ, ϕ〉 :=

´

ϕ dµ. If this is the case, for ϕ test function with ϕ ≡ 1 in a neighborhood
of E ,

lim
k→∞

γ+(Ek) ≤ lim
k→∞

µk(Ek) = lim
k→∞

〈µk, ϕ〉 = 〈µ, ϕ〉 = µ(E) ≤ γ+(E),

and we would be done. To construct such µ, let ϕ ∈ C∞
c (Rn+1) and observe that

〈µk, ϕ〉 = 〈Θ1/2P ∗ µk, ϕ〉 = 〈P ∗ µk,Θ
1/2
ϕ〉. By assumption P ∗ µk belongs to

the unit ball of L∞(Rn+1) ∼= L1(Rn+1)∗ and moreover, proceeding as in [MPr, §3],

it is clear that Θ
1/2
ϕ ∈ L1(Rn+1). Therefore, since L1(Rn+1) is separable, by the

sequential version of Banach–Alaoglu’s theorem we may assume that there exists
some S ∈ L∞(Rn+1) with ‖S‖∞ ≤ 1 and P ∗µk → S as k → ∞ in a weak⋆-L∞ sense.
Therefore,

lim
k→∞

〈µk, ϕ〉 = 〈S,Θ
1/2
ϕ〉, ∀ϕ ∈ C∞

c (Rn+1).

Let us define a distribution (a priori) µ acting on test functions as 〈µ, ϕ〉 := 〈S,Θ
1/2
ϕ〉,

so that we have limk→∞〈µk, ϕ〉 = 〈µ, ϕ〉 for any ϕ ∈ C∞
c (Rn+1). Observe that by the

latter identity, for any ϕ ≥ 0 we have 〈µ, ϕ〉 ≥ 0. It is not difficult to prove that
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such property implies that µ is a distribution of order 0 (we refer the reader to the
proof of [Ca, Theorem 2.7], for example), so applying [Ca, Theorem 2.5] and Riesz’s
representation theorem, we deduce that in fact µ is a positive Radon measure. In
addition, since the supports of µk are contained in Ek and Ek ↓ E , it follows that
supp(µ) ⊆ E . Therefore, if we prove that ‖P ∗ µ‖∞ ≤ 1 we will be done, since µ
would become an admissible measure for γ+(E). Such estimate will follow from the
equality P ∗ µ = S. To verify it, we regularize P ∗ µk and µk: take ψ ∈ C∞

c (B(0, 1))
positive and radial with

´

ψ = 1 and set ψε := ε−(n+1)ψ(·/ε). Then,

lim
k→∞

(
ψε ∗ P ∗ µk

)
(x) = ψε ∗ S(x), x ∈ R

n+1,

since P ∗ µk converges to S in a weak⋆-L∞ sense. On the other hand, as ψε ∗ P ∈
C∞(Rn+1) and by definition µk converges to µ in the weak topology of distributions,
we have

lim
k→∞

(
ψε ∗ P ∗ µk

)
(x) =

(
ψε ∗ P ∗ µ

)
(x), x ∈ R

n+1.

So ψε ∗ S = ψε ∗ P ∗ µ for every ε > 0, so S = P ∗ µ, and the proof of 3 is complete.
Finally we prove 4. Abusing notation, let us set E :=

⋃∞
j=1Ej , which is also

a Borel subset of Rn+1, and fix K ⊂ E ⊂ Rn+1 compact. Let µ be admissible for
γ+(K). Observe that for any X ⊆ Rn+1 µ-measurable, one has

µ(X) = µ

(
∞⋃

j=1

(K ∩ Ej) ∩X

)
=

∞∑

j=1

µ|K∩Ej
(X),

so in particular, since K is also a Borel set and thus µ-measurable,

µ(K) =

∞∑

j=1

µ|Ej
(K).

If we take the supremum over all admissible measures for γ+(K) on both sides of the
previous inequality, we have

γ+(K) ≤
∞∑

j=1

sup
supp(µ)⊆K
‖P∗µ‖∞≤1

µ|Ej
(K).

We claim that for each j ≥ 1 the following is true:

(3.1) sup
supp(µ)⊆K
‖P∗µ‖∞≤1

µ|Ej
(K) ≤ γ+(Ej ∩K).

To verify such estimate we assume that it does not hold and reach a contradiction.
So suppose that there exists µ admissible for γ+(K) with

µ|Ej
(K) > γ+(Ej ∩K).

Then, for any compact subset F ⊆ Ej ∩K we have µ|Ej
(K) > γ+(F ). Clearly µ|F is

admissible for γ+(F ). Indeed, for any x ∈ Rn+1,

|P ∗ µ|F (x)| =

ˆ

F

P (x− y) dµ(y) ≤

ˆ

K

P (x− y) dµ(y) ≤ ‖P ∗ µ‖∞ ≤ 1,

and the Borel regularity follows from that of µ and [Ma, Theorem 1.9], that can be
applied by the n-growth of µ. Thus γ+(F ) ≥ µ(F ). Hence, by hypothesis,

µ(Ej ∩K) > µ(F ), ∀F ⊆ Ej ∩K with F compact,
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which contradicts that µ enjoys an inner regularity property, since it is a Radon
measure on Rn+1. Therefore, (3.1) must hold, which implies

γ+(K) ≤

∞∑

j=1

γ+(Ej ∩K) ≤

∞∑

j=1

γ+(Ej).

Then, since K was any compact subset contained in E, the desired estimate follows.
�

Remark. The argument we have presented for properties 1, 2 and 3 can be easily
adapted for general distributions. So, in particular, it can be checked that γΘ1/2 also
enjoys the outer regularity property.

The next result describes the behavior of γΘ1/2,+ under canonical reflections of
Rn+1.

Proposition 3.2. Let E ⊂ Rn+1 be a Borel set and for each i ∈ {1, . . . , n}
denote by Ri the reflection with respect to the hyperplane {xi = 0}, and by Rt the

reflection with respect to {t = 0}. Then,

γΘ1/2,+(E) = γΘ1/2,+(Ri(E)), 1 ≤ i ≤ n,

and moreover,

γΘ1/2,+(E) = γ
Θ

1/2
,+
(Rt(E)).

Proof. Fix i ∈ {1, . . . , n} and check, as in the proofs of properties 1 and 2 of
Proposition 3.1, that for any µ admissible for and γΘ1/2,+(E), there is µi, admissible
for γΘ1/2,+(Ri(E)), such that µ(E) = µi(Ri(E)). So we fix µ admissible for γΘ1/2,+(E)
and define

µi(X) := µ
(
R−1

i (X)
)
, ∀X ⊆ R

n+1 µ-measurable.

Again, µi is a positive Borel regular measure supported on Ri(E) such that µ(E) =
µi(Ri(E)). Finally, to verify the admissibility of µi, notice that for any x ∈ Rn+1 we
have

|P ∗ µi(x)| =

ˆ

Ri(E)

P (x− y) dµi(y) =

ˆ

E

P
(
x−Ri(u)

)
dµ(u)

Observe that Ri(u) = (u1, . . . ,−ui, . . . , un+1), so using the particular definition of
P ,

ˆ

E

P
(
x−Ri(u)

)
dµ(u) =

ˆ

E

P
(
Ri(x)− u

)
dµ(u) = P ∗ µ(Ri(x)) ≤ 1,

that is what we wanted to prove. On the other hand, if i = n + 1, that is, if xi = t,
the computations are similar, but let us make them explicit to emphasize the role of

the indicator function, that is responsible for the change of Θ1/2 into Θ
1/2

:

|P ∗ ∗ µn+1(x)| =

ˆ

E

P ∗
(
x−Rt(u)

)
dµ(u) =

ˆ

E

−t− u

|Rt(x)− u|n+1
χ{−t−u>0}(u) dµ(u)

=

ˆ

E

P
(
Rt(x)− u

)
dµ(u) = P ∗ µ(Rt(x)) ≤ 1,

that implies the desired result. �

Remark. Observe that combining the first result of Proposition 3.1 and Propo-
sition 3.2, the latter result also holds for any affine canonical reflection. That is, any
reflection with respect to hyperplanes of the form {xi = c} or {t = c}, for any c ∈ R.
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This implies, in particular, that if E presents any temporal axis of symmetry, then
its γΘ1/2,+ and γ

Θ
1/2

,+
capacities coincide.

Remark. Notice that we have also obtained that if the measure µ satisfies the
condition ‖P ∗ µ‖∞ ≤ 1, then

‖P ∗ µτ‖∞ ≤ 1 and ‖P ∗ µi‖∞ ≤ 1, for i = 1, 2, . . . , n.

3.1. Comparability between γΘ1/2,+ and γ̃Θ1/2,+. One of the main charac-
teristics of the kernels P and P ∗ is the presence of an indicator function with respect
to the t-variable. Such fact seems to endow the temporal axis with a distinct feature
when it comes to constructing removable sets for the Θ1/2-equation, as it is exempli-
fied in [MPr, Proposition 6.1] with the vertical line segment {0} × [0, 1]. And what
about the time-reflected line segment {0} × [0,−1]? It is clear, by the translation
invariance of γΘ1/2,+, that its capacity is equally 0.

When trying to find a subset E ⊂ Rn+1 with non-comparable γΘ1/2,+ and γ
Θ

1/2
,+

capacities, the above trivial observation suggests that it may be not possible. In
fact, the following result was a first motivation to carry out the study of the present
subsection:

Proposition 3.3. The γΘ1/2,+ capacity of any non-horizontal line segment is

null.

Proof. It is clear that we may assume n = 1, that is, the ambient space is R2.
Denote by E the unit segment with one of its end-points at the origin and with
angle α ∈ (0, π) between the positive direction of the x-axis and E. We shall follow
the same method of proof given for [MPr, Proposition 6.1], that is: we will assume
γΘ1/2,+(E) > 0 and reach a contradiction.

Under the previous assumption, there exists an admissible measure µ for γΘ1/2,+(E)
with µ(E) > 0. Let us parameterize E as u 7→ (u cosα, u sinα), u ∈ [0, 1], and note
that since µ has linear growth (Theorem 2.2), given η > 0 we can take c ∈ (0, 1) such
that

µ
({

(u cosα, u sinα) : c ≤ u ≤ 1
})

< η.

Writing explicitly the normalization condition ‖P ∗ µ‖∞ ≤ 1, we have

P ∗ µ(x) =

ˆ 1

0

t− u sinα
(
x− u cosα

)2
+
(
t− u sinα

)2 χ{t−u sinα>0}dµ(u) ≤ 1,

for L2-a.e. x ∈ R2. Therefore, if we set F := {(u cosα, u sinα) : 0 ≤ u < c } and
choose x = (u0 cosα, u0 sinα) ∈ F , we get

sinα

ˆ u0

0

dµ(u)

u0 − u
≤ 1.

So for any x ∈ F there exists ℓ = ℓ(x) > 0 such that

sinα

ˆ u0

u0−ℓ

dµ(u)

u0 − u
≤ η.

Hence, since F is an interval, there exists a finite number of almost disjoint intervals
Ij with |Ij| = ℓj = ℓ(xj) such that F ⊂

⋃N
j=1 Ij and

µ(Ij) =

ˆ u0,j

u0,j−ℓj

dµ(u) ≤

ˆ u0,j

u0,j−ℓj

ℓj
u0,j − u

dµ(u) ≤ ℓj
η

sinα
.



220 Joan Hernández

All in all,

µ(E) < µ(F ) + η .

N∑

j=1

µ(Ij) + η ≤ η

(
1

sinα

N∑

j=1

ℓn + 1

)
. η

( c

sinα
+ 1
)
,

and this leads to a contradiction, since η can be chosen arbitrarily small. Therefore,
γΘ1/2,+(E) = 0 and this, together with the first and fourth properties of Proposi-
tion 3.1 suffices to generalize the result for any other line segment. �

Remark. We have proved this result only for γΘ1/2,+ just for the sake of simplic-
ity and to focus our study on its properties. However, by exactly the same method
of proof of [MPr, Proposition 6.1] (involving the approximation of distributions by
signed measures) one can obtain the same result for γΘ1/2 .

The second aspect that motivated the study of the comparability between γΘ1/2,+

and γ̃Θ1/2,+ is related to the different equivalent definitions admitted by the latter
capacity. We stress that in the proofs given for the forthcoming results, we will
exploit the fact that P is a nonnegative kernel. To ease notation, let us simply set

γ̃+ := γ̃Θ1/2,+.

As it is pointed out in [MPr, §4], one of the main advantages of working with γ̃+
instead of just γΘ1/2,+ is that it can be characterized in a similar manner as those
capacities defined through anti-symmetric kernels, by means of the L2-bound of a
particular operator. To make such property explicit, we shall first introduce some
notation.

For a given real compactly supported Borel regular measure µ with n-growth, we
define the operator Pµ acting on elements of L1

loc(µ) as

Pµf(x) :=

ˆ

Rn+1

P (x− y)f(y) dµ(y), x /∈ supp(µ).

Since P (x) . |x|−n, it is clear that the previous expression is defined pointwise on
Rn+1 \ supp(x); but the convergence of the integral may fail for x ∈ supp(µ). This
motivates the definition of a truncated version of P ,

Pµ,εf(x) :=

ˆ

|x−y|>ε

P (x− y)f(y) dµ(y), x ∈ R
n+1, ε > 0.

For a given 1 ≤ p ≤ ∞, we will say that Pµf belongs to Lp(µ) if the Lp(µ)-norm of
the truncations ‖Pµ,εf‖Lp(µ) is uniformly bounded on ε, and we write

‖Pµf‖Lp(µ) := sup
ε>0

‖Pµ,εf‖Lp(µ)

We will say that the operator Pµ is bounded on Lp(µ) if the operators Pµ,ε are
bounded on Lp(µ) uniformly on ε, and we equally set

‖Pµ‖Lp(µ)→Lp(µ) := sup
ε>0

‖Pµ,ε‖Lp(µ)→Lp(µ).

We also introduce the transposed operator associated with Pµ,

P∗
µf(x) :=

ˆ

Rn+1

P ∗(x− y)f(y) dµ(y), f ∈ L1
loc(µ), x /∈ supp(µ);

with all its corresponding definitions relative to truncations and Lp(µ)-boundedness.
Now we are ready to state a crucial property of the capacity γ̃+. To compactify
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notation, let Σ(E) be the collection of all positive Borel regular measures supported
on E that have n-growth with constant 1. The result reads as follows:

Theorem 3.4. ([MPr, Theorem 4.3]). For any E ⊂ Rn+1 compact subset,

γ̃+(E) ≈ γ2,+(E) := sup
{
µ(E) : µ ∈ Σ(E), ‖Pµ‖L2(µ)→L2(µ) ≤ 1

}
,

where the implicit constant in the above estimate does not depend on E.

We move on with our study introducing, for any x 6= 0, the following kernel

Psy(x) :=
1

2

[
P (x) + P (−x)

]
=

1

2

[
t

|x|n+1
χ{t>0} −

t

|x|n+1
χ{t<0}

]
=

|t|

2|x|n+1
.

Lemma 3.5. Let E ⊂ Rn+1 be compact and define

γsy,+(E) := sup
µ

{µ(E) : µ ∈ Σ(E), ‖Psy ∗ µ‖∞ ≤ 1} .

Then,
1

2
γsy,+(E) ≤ γ̃+(E) ≤ γsy,+(E).

Proof. Take µ any admissible measure for γ̃+(E) and observe that by definition
of Psy,

‖Psy ∗ µ‖∞ ≤
1

2
[‖P ∗ µ‖∞ + ‖P ∗ ∗ µ‖∞] ≤ 1,

that yields γ̃+(E) ≤ γsy,+(E). Conversely, if we consider any µ ∈ Σ(E) with ‖Psy ∗
µ‖∞ ≤ 1, since P is nonnegative, P ≤ 2Psy and P ∗ ≤ 2Psy, and therefore

‖P ∗ µ‖∞ ≤ 2, ‖P ∗ ∗ µ‖∞ ≤ 2.

So µ/2 becomes admissible for γ̃+(E) and we deduce the remaining inequality. �

Hence γ̃+ is comparable to the capacity defined through the symmetric kernel
Psy. Let us now proceed with introducing another auxiliary capacity:

γ̃′+(E) := sup
µ

{
µ(E) : µ ∈ Σ(E), ‖P ∗ µ‖L∞(µ) ≤ 1, ‖P ∗ ∗ µ‖L∞(µ) ≤ 1

}
.

Lemma 3.6. For a compact set E ⊂ Rn+1,

γ̃+(E) . γ̃′+(E).

Proof. As it is pointed out at the beginning of the proof of [MPr, Theorem 4.3],
the arguments to show the above estimate are standard. However, for the sake of
completeness, we shall present them (they are inspired by [MaP, Lemma 5.4]).

Let µ ∈ Σ(E) with ‖P ∗ µ‖∞ ≤ 1 and ‖P ∗ ∗ µ‖∞ ≤ 1. We aim to prove
‖P ∗ µ‖L∞(µ) . 1 and ‖P ∗ ∗ µ‖L∞(µ) . 1. We will study the first inequality (the
computations for the second will be analogous), and to verify it we will argue by
contradiction. That is, we assume that there exists F ⊆ E with µ(F ) > 0 so
that P ∗ µ attains arbitrarily big values there (notice that this does not contradict
‖P ∗µ‖∞ ≤ 1, since F may be Ln+1-null). Under this assumption, consider 0 < ε < 1
and x ∈ F , and observe that

‖P ∗ µ|B(x,ε)‖L1(B(x,ε/2)) ≤

ˆ

B(x,ε/2)

(
ˆ

B(x,ε)

dµ(y)

|z − y|n

)
dLn+1(z)

≤

ˆ

B(x,ε)

(
ˆ

B(y,2ε)

dLn+1(z)

|z − y|n

)
dµ(y) . ε µ(B(x, ε))

≤ εn+1 ≃ Ln+1
(
B(x, ε/2)

)
.
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So by the Lebesgue differentiation theorem we can pick z ∈ B(x, ε/2) with |P ∗µ(z)| ≤
‖P ∗ µ‖∞ ≤ 1 and such that for a positive dimensional constant A1,

∣∣P ∗ µ|B(x,ε)(z)
∣∣ ≤ A1.

Notice that the constant A1 does not depend on x, since the procedure above can be
repeated for any other point obtaining the same estimate. Therefore,

∣∣P ∗ µ|Rn+1\B(x,ε)(x)− P ∗ µ(z)
∣∣

=

∣∣∣∣
ˆ

|x−y|>ε

P (x− y) dµ(y)−

ˆ

Rn+1

P (z − y) dµ(y)

∣∣∣∣

≤

ˆ

|x−y|>ε

∣∣P (x− y)− P (z − y)
∣∣ dµ(y) + A1.

Write x = (x, tx), y = (y, ty) and z = (z, tz) and consider the auxiliary point
x̂ = (z − y, tx − ty). Applying the mean value theorem (component-wise) exactly as
it is done in the proof of [MPr, Lemma 2.1] we have

ˆ

|x−y|>ε

∣∣P (x− y)− P (z − y)
∣∣dµ(y)

≤

ˆ

|x−y|>ε

∣∣P (x− y)− P (x̂)
∣∣ dµ(y) +

ˆ

|x−y|>ε

∣∣P (x̂)− P (z − y)
∣∣ dµ(y)

≤ A2ε

ˆ

|x−y|>ε

dµ(y)

|x− y|n+1
+ A3ε

ˆ

|x−y|>ε

dµ(y)

|x− y|n+1

Splitting the domain of integration into the annuli Aj := B
(
x, 2j+1ε

)
\B
(
x, 2jε

)

for j ≥ 0, and using the n-growth of µ we obtain, regarding the above integrals,

ε

ˆ

|x−y|>ε

dµ(y)

|x− y|n+1
= ε

∞∑

j=1

ˆ

Aj

dµ(y)

|x− y|n+1
≤ ε

∞∑

j=1

(
2j+1ε

)n

(2jε)n+1
=

∞∑

j=1

1

2j
= 1.

Therefore,
∣∣P ∗ µ|Rn+1\B(x,ε)(x)

∣∣ ≤ |P ∗ µ|Rn+1\B(x,ε)(x)− P ∗ µ(z)|+ |P ∗ µ(z)|

≤ A2 + A3 + A1 + ‖P ∗ µ‖∞ <∞,

and as x ∈ F was arbitrary and the previous constants are absolute, we get the
contradiction we were looking for. �

Observe that in the previous proof we have deduced that for a given µ ∈ Σ(E),

(3.2) if ‖P ∗ µ‖∞ ≤ 1, then ‖P ∗ µ‖L∞(µ) . 1.

To establish one additional inequality, we continue by introducing some more
standard terminology adapted to our particular setting. We write ∆ := {(x, y) ∈
Rn+1 × Rn+1 : x = y} the diagonal of Rn+1 × Rn+1.

Definition 3.1. (m-dimensional Calderón–Zygmund kernel) Consider the (ker-
nel) function K : (Rn+1 × Rn+1) \∆ → C, with the property that there exist C1 > 0
and m > 0 such that for any x 6= y,

|K(x, y)| ≤
C1

|x− y|m
.
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Suppose also that for any x′ with |x − x′| ≤ |x − y|/2, there exist C2 > 0, η > 0 so
that

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤
C2|x− x′|η

|x− y|m+η
.

If such estimates are satisfied, K is called an m-dimensional Calderón–Zygmund

kernel. It is clear that the function K(x, y) := P (x−y) is an n-dimensional Calderón–
Zygmund kernel with η = 1.

We are now ready to state [To4, Theorem 3.21] in our particular context. Let us
also remark that such result (in a general setting of n-dimensional Calderón–Zygmund
operators with respect to measures with n-growth which may be non-doubling) was
originally proved in [NTV], although we present a refinement that can be obtained
from the results in [NTV2] or [To2], as mentioned in [To4, §3.7.2].

Theorem 3.7. Let E ⊂ Rn+1 be a compact subset and µ ∈ Σ(E). Then, the

operator Pµ extends to a bounded operator on L2(µ) if and only if there exists c > 0
such that

‖Pµ,εχQ‖L2(µ|Q) ≤ cµ(2Q)1/2 and ‖P∗
µ,εχQ‖L2(µ|Q) ≤ cµ(2Q)1/2,

uniformly on ε > 0, for any cube Q ⊂ Rn+1.

In light of such result, the following lemma follows from the nonnegativity of P :

Lemma 3.8. For E ⊂ Rn+1 compact subset,

γ̃′+(E) . γ2,+(E).

Proof. Let µ be admissible for γ̃′+(E). Since by definition of this capacity we
have ‖Pµ,ε1‖L∞(µ) ≤ 1 and ‖P∗

µ,ε1‖L∞(µ) ≤ 1 uniformly on ε > 0, and both the kernel

P and measure µ are nonnegative, we have for every ε > 0 and every cube Q ⊂ Rn+1

‖Pµ,εχQ‖L2(µ|Q) =

(
ˆ

Q

∣∣∣∣
ˆ

Q∩{|x−y|>ε}

P (x− y) dµ(y)

∣∣∣∣
2

dµ(x)

)1/2

≤

(
ˆ

Q

∣∣∣∣
ˆ

|x−y|>ε

P (x− y) dµ(y)

∣∣∣∣
2

dµ(x)

)1/2

≤ ‖Pµ,ε1‖L∞(µ) µ(Q)
1/2 ≤ µ(2Q)1/2,

and analogously for P∗
µ,ε. Therefore, by a direct application of Theorem 3.7 we deduce

the desired estimate. �

All the above results yield the following corollary, which encapsulates the different
ways to understand γ̃+.

Corollary 3.9. For E ⊂ Rn+1 compact subset,

γ̃+(E) ≈ γ̃′+(E) ≈ γ2,+(E) ≈ γsy,+(E).

To be able to compare γΘ1/2,+ and γ̃+, we will need two additional definitions,
firstly introduced in [To1]. We remark that

in the forthcoming Definitions 3.2 and 3.3, as well as Lemma 3.10, µ will

always be a positive compactly supported Borel regular measure on Rn+1 with

n-growth.
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Notice that the previous conditions ensure that the degree of growth of µ is the
same as the degree of homogeneity of P , understood as an n-dimensional Calderón–
Zygmund kernel on Rn+1. Moreover, as we have pointed out in the proof of Propo-
sition 3.1, observe that µ is locally finite and therefore becomes a Radon measure.

Definition 3.2. (BMOρ(µ)) Given ρ > 1 and f ∈ L1
loc(µ), we say that f belongs

to BMOρ(µ) if for some constant c > 0,

sup
Q

1

µ(ρQ)

ˆ

Q

∣∣f(x)− fQ,µ

∣∣dµ(x) ≤ c,

where the supremum is taken among all cubes such that µ(Q) 6= 0, and fQ,µ is the
average of f in Q with respect to µ. The infimum over all values c satisfying the
above inequality is the so-called BMOρ(µ) norm of f .

If f ∈ L∞(µ), then f ∈ BMOρ(µ), ∀ρ > 1. Also, given a ∈ R and Q ⊂ Rn+1

cube,
ˆ

Q

∣∣f(x)− fQ,µ

∣∣ dµ(x) ≤
[
ˆ

Q

∣∣f(x)− a
∣∣ dµ(x) +

ˆ

Q

∣∣a− fQ,µ

∣∣ dµ(x)
]

≤ 2

ˆ

Q

∣∣f(x)− a
∣∣ dµ(x).

Therefore, if for each cube Q with µ(Q) 6= 0 we are able to find cQ so that

1

µ(ρQ)

ˆ

Q

∣∣f(x)− cQ
∣∣ dµ(x) ≤ c,

where c is constant independent of Q, we deduce that f belongs to BMOρ(µ).

Definition 3.3. (µ-weakly bounded) We will say that the operator Pµ is µ-
weakly bounded if for any cube Q ⊂ Rn+1,

∣∣〈Pµ,εχQ, χQ

〉∣∣ :=
∣∣∣∣
ˆ

Q

(
ˆ

Q∩{|x−y|>ε}

P (x− y) dµ(y)

)
dµ(x)

∣∣∣∣ ≤ cµ(2Q),

uniformly on ε > 0.

Lemma 3.10. Assume that ‖P ∗µ‖L∞(µ) ≤ 1. Then, the operator Pµ is µ-weakly

bounded and P ∗ ∗ µ ∈ BMOρ(µ) for ρ ≥ 2.

Proof. Condition ‖P ∗µ‖L∞(µ) ≤ 1 can be simply rewritten as supε>0 ‖Pµ,ε1‖L∞(µ)

≤ 1; so for any ε > 0, by the nonnegativity of P and µ,
∣∣∣∣
ˆ

Q

(
ˆ

Q∩{|x−y|>ε}

P (x− y) dµ(y)

)
dµ(x)

∣∣∣∣ ≤ ‖Pµ,ε1‖L∞(µ)µ(Q) ≤ µ(2Q).

Hence Pµ is µ-weakly bounded. Finally, notice that by Tonelli’s theorem,
ˆ

Rn+1

P ∗ ∗ µ(x) dµ(x) =

ˆ

Rn+1

P ∗ µ(y) dµ(y) ≤ µ(Rn+1) <∞,

so P ∗ ∗µ ∈ L1(µ) ⊂ L1
loc(µ), and P ∗ ∗µ is indeed a candidate to belong to BMOρ(µ).

To estimate its BMOρ(µ) norm, fix a cube Q = Q(x0, ℓ(Q)), µ(Q) 6= 0 and consider
the characteristic function χ2Q associated with 2Q. Denote also χ2Qc := 1 − χ2Q.
Consider the constant

cQ := P ∗ ∗ (χ2Qcµ)(x0),
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that is an expression pointwise well-defined, since x0 /∈ supp(χ2Qcµ). Indeed,

cQ =

ˆ

Rn+1\2Q

P ∗(x0 − z) dµ(z) ≤

ˆ

Rn+1\2Q

dµ(z)

|x0 − z|n
≤
µ(Rn+1)

(2ℓ(Q))n
<∞.

Observe that the following estimate holds

1

µ(ρQ)

ˆ

Q

|P ∗ ∗ µ(y)− cQ| dµ(y)

≤
1

µ(ρQ)

ˆ

Q

P ∗ ∗ (χ2Qµ)(y) dµ(y)

+
1

µ(ρQ)

ˆ

Q

|P ∗ ∗ (χ2Qcµ)(y)− P ∗ ∗ (χ2Qcµ)(x0)| dµ(y)

≤
1

µ(ρQ)

ˆ

Q

(
ˆ

2Q

P ∗(y − z) dµ(z)

)
dµ(y)

+
1

µ(ρQ)

ˆ

Q

(
ˆ

Rn+1\2Q

|P ∗(y − z)− P ∗(x0 − z)| dµ(z)

)
dµ(y) =: I1 + I2.

For I1, by Tonelli’s theorem together with the assumptions ‖P ∗ µ‖L∞(µ) ≤ 1 and
ρ ≥ 2,

I1 =
1

µ(ρQ)

ˆ

2Q

P ∗ µ(z) dµ(z) ≤
µ(2Q)

µ(ρQ)
≤ 1.

For I2, apply the third estimate of [MPr, Lemma 2.1], Theorem 2.2 and split the
domain of integration into annuli to obtain

I2 .
1

µ(ρQ)

ˆ

Q

(
ˆ

Rn+1\2Q

|y − x0|

|z − x0|n+1
dµ(z)

)
dµ(y) ≤ ℓ(Q)

µ(Q)

µ(ρQ)

ˆ

Rn+1\2Q

dµ(z)

|z − x0|n+1

≤ ℓ(Q)

∞∑

j=1

ˆ

2j+1Q\2jQ

dµ(z)

|z − x0|n+1
. ℓ(Q)

∞∑

j=1

(2j+1ℓ(Q))n

(2jℓ(Q))n+1
.

∞∑

j=1

1

2j
= 1,

and the desired result follows. �

The previous lemma allows us to prove the main result of this subsection:

Theorem 3.11. Let E ⊂ Rn+1 be a compact subset. Then, if γ+ := γΘ1/2,+,

γ+(E) ≈ γ̃+(E).

Proof. It suffices to prove γ+(E) . γ̃+(E). To this end, consider µ an admissible
measure for γ+(E), i.e. µ is a positive Borel regular measure supported on E such
that ‖P ∗ µ‖∞ ≤ 1. We know by Theorem 2.2 that µ has n-growth with an absolute
dimensional constant C > 0. Hence, up to such constant, µ ∈ Σ(E). Moreover, by
relation (3.2) and Lemma 3.10 we have, for any ρ ≥ 2,

1. Pµ1 ∈ L∞(µ) and thus Pµ1 ∈ BMOρ(µ),
2. P∗

µ1 ∈ BMOρ(µ),
3. Pµ1 is µ-weakly bounded.

Applying a suitable T1-theorem, namely [To2, Theorem 1.3], we deduce

‖Pµ‖L2(µ)→L2(µ) . 1.
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This implies (again, up to a dimensional constant) that µ is admissible for γ2,+(E);
and by the arbitrariness of µ we have γ+(E) . γ2,+(E). So we conclude, by Theo-
rem 3.4,

γ+(E) . γ2,+(E) ≈ γ̃+(E). �

A particular consequence of the last result is

γΘ1/2,+(E) ≈ γsy,+(E) = sup
µ

{
µ(E) : µ ∈ Σ(E), ‖Psy ∗ µ‖∞ ≤ 1

}
.

Since the same proof of Proposition 3.2 yields that γsy,+ is invariant under temporal
reflections, we also obtain

γΘ1/2,+(E) ≈ γsy,+(E) = γsy,+(Rt(E)) ≈ γΘ1/2,+(Rt(E)) = γ
Θ

1/2
,+
(E).

Corollary 3.12. The capacities γΘ1/2,+, γΘ1/2
,+

and γsy,+ are comparable.

4. The γΘ1/2,+ capacity of Cantor sets

Let us move on to finally estimate the (1/2,+)-caloric capacity of a certain family
of Cantor sets, which generalize the particular example given in [MPr, §5]. In such
example we are presented with a Cantor set E inspired by the one constructed in
[Ga, Chapter IV, §2] with positive Hn-measure and removable for the Θ1/2-equation,
meaning that γΘ1/2(E) = 0. Our goal will be to generalize the above example and
study its γΘ1/2,+ capacity.

Let λ = (λj)j be a sequence of real numbers satisfying 0 < λj < 1/2. We
shall define its associated Cantor set E ⊂ Rn+1 by the following algorithm. Set
Q0 := [0, 1]n+1 the unit cube of Rn+1 and consider 2n+1 disjoint cubes inside Q0 of
side length ℓ1 := λ1, with sides parallel to the coordinate axes and such that each
cube contains a vertex of Q0. Continue this same process now for each of the 2n+1

cubes from the previous step, but now using a contraction factor λ2. That is, we
end up with 22(n+1) cubes with side length ℓ2 := λ1λ2. It is clear that proceeding
inductively we have that at the k-th step of the iteration we encounter 2k(n+1) cubes,
that we denote Qk

j for 1 ≤ j ≤ 2k(n+1), with side length ℓk :=
∏k

j=1 λj . We will refer
to them as cubes of the k-th generation. We define

Ek = E(λ1, . . . , λk) :=

2k(n+1)⋃

j=1

Qk
j ,

and from the latter we obtain the Cantor set associated with λ,

(4.1) E = E(λ) :=

∞⋂

k=1

Ek.

If we chose λj = 2−(n+1)/n for every j, we would recover the particular Cantor set
presented in [MPr, §5]. We are first concerned with studying the Hausdorff dimension
of E in terms of λ, which we want it to be n, the critical dimension for γΘ1/2. An
example of restriction one imposes to (λj)j to ensure the latter, as it is done in [MTo]
or [To3], is the following

lim
k→∞

ℓk 2
k(n+1)/n = 1.

Observe that a particular consequence of the previous equality is that there exists
a constant C > 0 depending on λ so that

ℓk2
k(n+1)/n ≥ C, ∀k ≥ 1.
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Using such property one deduces Hn(E) > 0. Indeed, consider the probability mea-
sure µ defined on E such that for each generation k, µ(Qk

j ) := 2−k(n+1), 1 ≤ j ≤

2k(n+1). Let Q be any cube, that we may assume to be contained in Q0, and pick k
with the property ℓk+1 ≤ ℓ(Q) ≤ ℓk, so that Q can meet, at most, 2n+1 cubes Qk

j .

Thus µ(Q) ≤ 2−(k−1)(n+1) and we deduce

µ(Q) ≤
22(n+1)

2(k+1)(n+1)
= 22(n+1)

(
ℓk+12

(k+1)(n+1)/n
)−n

ℓnk+1

≤
22(n+1)

Cn
ℓ(Q)n ≃ ℓ(Q)n,

(4.2)

meaning that µ presents n-growth. Therefore, by [Ga, Chapter IV, Lemma 2.1],
which follows from Frostman’s lemma, we get Hn(E) ≥ Hn

∞(E) > 0. Moreover,
observe that for a fixed 0 < δ ≪ 1, there is k large enough so that diam(Qk

j ) ≤ δ and

ℓk 2
k(n+1)/n ≤ 2. Thus, as Ek defines a covering of E admissible for Hn

δ , we get

Hn
δ (E) ≤

2k(n+1)∑

j=1

diam(Qk
j )

n ≃ ℓnk 2
k(n+1) =

(
ℓk 2

k(n+1)/n
)n

≤ 2n.

Since this procedure can be done for any δ, we also have Hn(E) < ∞ and thus
dimH(E) = n as wished.

In order to state in a more compact way the results we are interested in, we
introduce the following density for each k ≥ 1:

θk :=
1

ℓnk 2
k(n+1)

=
µ(Qk)

ℓnk
,

where µ is the probability measure defined above and Qk is any cube of the k-th
generation. We also set θ0 := 1.

Theorem 4.1. Let (λj)j be a sequence of real numbers satisfying 0 < λj ≤ τ0 <
1/2 for every j, and E its associated Cantor set as in (4.1). Then, for each generation

k,

γΘ1/2,+(Ek) .

(
k∑

j=0

θj

)−1

,

where the implicit constant in the relation . only depends on n and τ0.

Proof. Fix a positive integer k and µ the probability measure supported on Ek

defined as

µk :=
1

|Ek|
Ln+1|Ek

:=
1

Ln+1(Ek)
Ln+1|Ek

.

Observe that for every cube Qj
i of the j-th generation, with 0 ≤ j ≤ k and 1 ≤ i ≤

2j(n+1),

µk(Q
j
i ) =

1

2k(n+1)ℓn+1
k

2(k−j)(n+1)ℓn+1
k = 2−j(n+1).

Fix any x = (x, t) ∈ Ek and consider the corresponding chain of cubes associated
with x,

x ∈ ∆k ⊂ ∆k−1 ⊂ · · · ⊂ ∆1 ⊂ ∆0 =: Q0,
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where ∆j is the unique cube of the family Ej that contains x. Observe that
ˆ

Ek

Psy(y − x) dµk(y) =

ˆ

∆0

Psy(y − x) dµk(y)

=

k−1∑

j=0

ˆ

∆j\∆j+1

Psy(y − x) dµk(y) +

ˆ

∆k

Psy(y − x) dµk(y) =:

k−1∑

j=1

Ij + Ik.

If for each 0 ≤ j ≤ k − 1 we write ∆̃j+1 the cube of Ej+1 contained in ∆j diagonally
opposite to ∆j+1,

Ij :=

ˆ

∆j\∆j+1

|s− t|

2|y − x|n+1
dµk(y) ≥

ˆ

∆̃j+1

|s− t|

2|y − x|n+1
dµk(y)

&
ℓj − 2ℓj+1

ℓn+1
j

µk(∆̃j+1) =
1

ℓnj

(
1− 2λj+1

)
2−(j+1)(n+1) & θj(1− 2τ0) ≃ θj .

Regarding Ik, consider the cube Qx := Q(x, 2 diam(∆k)), that clearly contains ∆k,
and for each positive integer j write

Fj := Qx ∩
{
(y, s) : |t− s| > 2−jdiam(∆k)

}
,

as well as F0 := ∅. Set F̂j := Fj+1 \ Fj , and notice that {F̂j}j≥0 is a disjoint open

covering of Qx. Therefore, since {F̂j ∩∆k}j≥0 is also a disjoint covering ∆k,

Ik =
1

|Ek|

ˆ

∆k

|t− s|

2|x− y|n+1
dLn+1(y) &

1

|Ek|ℓ
n+1
k

∞∑

j=0

ˆ

F̂j∩∆k

|t− s| dLn+1(y)

&
1

|Ek|ℓnk

∞∑

j=0

|F̂j ∩∆k|

2j+1
≃

ℓk
|Ek|

∞∑

j=0

1

22j+1
≃

ℓk
|Ek|

=
1

2k(n+1)ℓnk
= θk.

Thus, there exists some positive constant C = C(n, τ0) such that

ˆ

Ek

Psy(y − x) dµk(y) ≥ C−1
k∑

j=0

θj , ∀x ∈ Ek.

The last inequality can be rewritten as

(4.3) 1 ≤ C

(
k∑

j=0

θj

)−1
ˆ

Ek

Psy(y − x) dµk(y), ∀x ∈ Ek.

Take ν any admissible measure for γsy,+(Ek). Integrating on both sides of equation
(4.3) and applying Tonelli’s theorem together with ‖Psy ∗ ν‖∞ ≤ 1,

ν(Ek) ≤ C

(
k∑

j=0

θj

)−1
ˆ

Ek

Psy ∗ ν(y) dµk(y) ≤ C

(
k∑

j=0

θj

)−1

.

Hence, since ν was arbitrary, by Corollary 3.12, we finally conclude

γΘ1/2,+(Ek) . γsy,+(Ek) ≤ C

(
k∑

j=0

θj

)−1

. �
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Theorem 4.2. Let (λj)j be a sequence of real numbers satisfying 0 < λj ≤ τ0 <
1/2, for every j. Then, for any fixed generation k,

γΘ1/2,+(Ek) &

(
k∑

j=0

θj

)−1

,

where the implicit constant of . only depends on n and τ0.

Proof. Fix a generation k as well as the measure introduced in the proof of
Theorem 4.1,

µk :=
1

|Ek|
Ln+1|Ek

.

Recall that µk(Q
j
i ) = 2−j(n+1) for any cube of the j-th generation, with 0 ≤ j ≤ k

and 1 ≤ i ≤ 2j(n+1). Let us fix any x ∈ Rn+1 and proceed in an inductive way as
follows:

1. If d(x,Q0) ≥ 1, it is clear that P ∗ µk(x) ≤ 1 = θ0. If d(x,Q0) < 1, denote
by ∆1 one of the cubes of the first generation E1 that is closest to x. Observe that
d(x, E1 \∆1) & 1− 2λ1 ≥ 1− 2τ0. Then,

P ∗ µk(x) =

ˆ

Ek

P (x− y) dµk(y) ≤

ˆ

E1\∆1

dµk(y)

|x− y|n
+

ˆ

∆1

dµk(y)

|x− y|n

.
θ0

(1− 2τ0)n
+

ˆ

∆1

dµk(y)

|x− y|n
.

2. If d(x,∆1) ≥ ℓ1, it is clear that the above remaining integral satisfies
ˆ

∆1

dµk(y)

|x− y|n
≤
µk(∆1)

ℓn1
= θ1,

and therefore P ∗ µk(x) . θ0 + θ1. On the other hand, if d(x,∆1) < ℓ1, we repeat
the process of step 1 and pick ∆2 one of the cubes of E2 that is closest to x. In the
current setting notice that d(x, E2 \∆2) & (1− 2τ0)ℓ1, which implies

P ∗ µk(x) .
θ0

(1− 2τ0)n
+

ˆ

∆1\∆2

dµk(y)

|x− y|n
+

ˆ

∆2

dµk(y)

|x− y|n

.
1

(1− 2τ0)n
(θ0 + θ1) +

ˆ

∆2

dµk(y)

|x− y|n
.

In general, for 1 ≤ m < k− 1, the (m+1)-th step of the above process we would
begin by dealing with an estimate of the form

P ∗ µk(x) .
1

(1− 2τ0)n
(θ0 + θ1 + · · ·+ θm−1) +

ˆ

∆m

dµk(y)

|x− y|n
,

and we would distinguish whether if d(x,∆j) ≥ ℓj or not. If the inequality is satisfied,
it follows that P ∗ µk(x) .

∑m
j=0 θj . If on the other hand d(x,∆j) < ℓj , write ∆m+1

one of the cubes of Em+1 that is closest to x and notice that d(x, Em+1 \∆m+1) &
(1−2τ0)ℓm, and move on to stepm+2. The previous process can carry on a maximum
of k steps (this is the case, for example, if x ∈ Ek), and in this situation x satisfies
d(x,∆k) < ℓk as well as the estimate

P ∗ µk(x) .
1

(1− 2τ0)n

k−1∑

j=0

θj +

ˆ

∆k

dµk(y)

|x− y|n
,
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that cannot be dealt with the same iterative method. We name the remaining integral
Ik and write Qk := Q

(
x, 5ℓk

)
so that ∆k ⊂ Qk. We split the previous cube into the

annuli Aj := Q
(
x, 5ℓk2

−j
)
\Q
(
x, 5ℓk2

−j−1
)
, for j ≥ 0 integer. Therefore,

Ik ≤
1

|Ek|

∞∑

j=0

ˆ

Aj

dLn+1(y)

|x− y|n
≤

1

|Ek|

∞∑

j=0

(5 ℓk2
−j)n+1

(5ℓk2−j−1)n
≃

ℓk
|Ek|

∞∑

j=0

1

2j
≃ θk.

With this we conclude that, in general, there exists a constant C = C(n, τ0) > 0 so
that

P ∗ µk(x)

(
C

k∑

j=0

θj

)−1

≤ 1, ∀x ∈ R
n+1,

so the measure
(
C
∑k

j=0 θk
)−1

µk is admissible for γΘ1/2,+(Ek), and the result follows.
�

Combining both Theorems 4.1 and 4.2, we obtain the following result:

Corollary 4.3. Let (λj)j be a sequence of real numbers satisfying 0 < λj ≤ τ0 <
1/2, for every j. Then, if E denotes the associated Cantor set as in (4.1),

γΘ1/2,+(E) ≈

(
∞∑

j=0

θj

)−1

.

where the implicit constants only depend on n and τ0.

Proof. The estimate follows from Theorem 4.1 and the monotonicity of γΘ1/2,+;
and from Theorem 4.2 combined with the third point of Proposition 3.1 (outer reg-
ularity). �

4.1. An additional estimate for γΘ1/2. Let us present one last result of
similar nature to [MPr, Theorem 5.3] that admits an analogous proof and concerns
not only γΘ1/2,+, but also γΘ1/2. To obtain it, however, we need to assume that the

sequence (θk)k is decreasing (which is equivalent to assuming that 2−
n+1
n ≤ λk for

every k) and θk ≥ κ, for some absolute constant κ > 0 and every k. Notice that this
last condition implies Hn(E) < ∞. Indeed, for any fixed 0 < δ ≪ 1, we may pick a
generation k large enough so that

Hn
δ (E) ≤ Hn

δ (Ek) . 2k(n+1)ℓnk = θ−1
k ≤ κ−1,

meaning that Hn(E) <∞.

Theorem 4.4. Let (λj)j satisfy 0 < 2−
n+1
n ≤ λj < 1/2, for every j, and let E

be its associated Cantor set as in (4.1). If θk ≥ κ, for some κ > 0 and every k,

γΘ1/2(E) = 0.

Proof. Since the sequence (θk)k is non-increasing and θ0 = 1, we have κ ≤
θk ≤ 1, for every k. Notice also that if µ is the probability measure on E with
µ(Qk

j ) = 2−k(n+1) for every generation k and 1 ≤ j ≤ 2k(n+1), by an analogous
argument to that of (4.2), we get that µ presents n-growth. Moreover, since we can
assume without loss of generality that 0 < Hn(E) <∞, we deduce that µ coincides
with Hn|E modulo a constant factor.

Let us proceed with the proof, which will be analogous to that of [MPr, Theo-
rem 5.3]. Indeed, if we assume that γΘ1/2(E) > 0, we are able to reach a contradiction
as follows: by [MPr, Theorem 5.1] we may pick ν a signed measure supported on
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E with |〈ν, 1〉| > 1, ‖P ∗ ν‖∞ ≤ 1 and satisfying that there exists a Borel function
f ∈ L∞(µ) such that

ν = fµ.

The contradiction we are looking for arises from the bound [MPr, Equation (5.7)],
i.e.

P̃ν,∗(x) := sup
k≥0

∣∣PνχRn+1\∆k
(x)
∣∣ ≤ K ′, ∀x ∈ E,

where recall that for any x ∈ E, ∆k is the unique cube of the family Ek that contains
x. Proceeding exactly as in the proof of [MPr, Theorem 5.3], we are able to reach
the estimate

P̃ν,∗(z) &

(
k+m−1∑

h=k

θh

)
f(x0)− ε

(
k+m∏

j=k+1

1

λj

)n

θk ≥ κ(m− 1)f(x0)− 2m(n+1)ε,

where z = (z1, . . . , zn, t) is one of the upper leftmost corners of ∆k (with z1 minimal
and t maximal in ∆k), x0 ∈ E is a Lebesgue point (with respect to µ) for f = dν/dµ
satisfying f(x0) > 0 , m≫ 1 is an integer parameter independent of k and 0 < ε≪ 1
is a parameter that, once fixed, also fixes the value of k. Therefore, by choosing m
large enough and then ε small enough, we reach the desired contradiction. �

5. The BMO variant of γΘ1/2

We devote the final sections of our paper to characterize the BMO and Lipα

variants of the 1/2-caloric capacity. In the present section we study the former case,
similarly as it is done in [AIMar, §13.5.1] for analytic capacity. That is, the main
goal of this section is to give an analogous description of such object in terms of a
particular Hausdorff content. To introduce it, let us recall the definition of the usual
BMO space of Rn+1 (rather than its generalization of Definition 3.2).

Definition 5.1. (BMO) A function f ∈ L1
loc(R

n+1) belongs to the BMO space
if its BMO norm is finite, that is

‖f‖∗ := sup
Q

1

|Q|

ˆ

Q

∣∣f(x)− fQ
∣∣ dLn+1(x),

where |Q| := Ln+1(Q) and fQ := 1
|Q|

´

Q
f dLn+1.

We now introduce the BMO variant of the 1/2-caloric capacity:

Definition 5.2. (BMO 1/2-caloric capacity) Given a compact subset E ⊂ Rn+1,
define its BMO 1/2-caloric capacity as

γΘ1/2,∗(E) = sup |〈T, 1〉|,

where the supremum is taken among all distributions T with supp(T ) ⊆ E satisfying

‖P ∗ T‖∗ ≤ 1

Such distributions will be called admissible for γΘ1/2,∗(E).

Since γΘ1/2 ≤ γΘ1/2,∗, Theorem 2.1 implies that if γΘ1/2,∗(E) = 0, then E is
1/2-caloric removable.

5.1. Comparability of γΘ1/2,∗ to the Hausdorff measure. We begin by
noticing that distributions admissible for the BMO 1/2-caloric capacity exhibit the
same growth condition to that described in Theorem 2.2.



232 Joan Hernández

Theorem 5.1. Let T be a distribution in Rn+1 with ‖P ∗ T‖∗ ≤ 1. If ϕ is a C1

function supported on Q ⊂ Rn+1 with ‖∇ϕ‖∞ ≤ ℓ(Q)−1, then

|〈T, ϕ〉| . ℓ(Q)n.

Proof. Let T and ϕ satisfy the conditions of the statement. Since P is the
fundamental solution of Θ1/2,

|〈T, ϕ〉| = |〈Θ1/2(P ∗ T ), ϕ〉|

≤ |〈P ∗ T − (P ∗ T )2Q, (−∆)1/2ϕ〉|+ |〈P ∗ T − (P ∗ T )Q, ∂tϕ〉| =: I1 + I2.

Regarding I2, use the normalization condition ‖∂tϕ‖∞ ≤ ‖∇ϕ‖∞ ≤ ℓ(Q)−1 to deduce

I2 ≤

ˆ

Q

∣∣P ∗ T (x)− (P ∗ T )Q
∣∣∣∣∂tϕ(x)

∣∣ dLn+1(x)

≤ ℓ(Q)n+1

(
1

|Q|

ˆ

Q

∣∣P ∗ T (x)− (P ∗ T )Q
∣∣∣∣∂tϕ(x)

∣∣dLn+1(x)

)

≤ ‖P ∗ T‖∗ ℓ(Q)
n ≤ ℓ(Q)n.

For I1, write Q = Q1 × IQ ⊂ Rn × R and observe that

I1 ≤

ˆ

2Q1×IQ

∣∣P ∗ T (x)− (P ∗ T )2Q
∣∣∣∣(−∆)1/2ϕ(x)

∣∣dLn+1(x)

+

ˆ

(Rn\2Q1)×IQ

∣∣P ∗ T (x)− (P ∗ T )2Q
∣∣∣∣(−∆)1/2ϕ(x)

∣∣ dLn+1(x)

=: I11 + I12.

To deal with I11 we apply the Cauchy–Schwarz inequality,

I11 ≤

ˆ

2Q

∣∣P ∗ T (x)− (P ∗ T )2Q
∣∣∣∣(−∆x)

1/2ϕ(x)
∣∣ dLn+1(x)

≤

(
ˆ

2Q

∣∣P ∗ T (x)− (P ∗ T )2Q
∣∣2 dLn+1(x)

)1/2(ˆ

2Q

∣∣(−∆)1/2ϕ(x)
∣∣2 dLn+1(x)

)1/2

.

Observe that by John–Nirenberg’s inequality [Du, Corollary 6.12], the first factor
satisfies
(
ˆ

2Q

∣∣P ∗ T (x)− (P ∗ T )2Q
∣∣2 dLn+1(x)

)1/2

. ℓ(Q)(n+1)/2‖P ∗ T‖∗ ≤ ℓ(Q)(n+1)/2.

On the other hand, concerning the second one recall that

(−∆)1/2ϕ = (−∆x)
1/2ϕ ≈

N∑

j=1

Rj∂jϕ,

with Rj , 1 ≤ j ≤ n, being the Riesz transforms with Fourier multiplier ξj/|ξ|. Since
these operators are bounded on L2,

(
ˆ

2Q

∣∣(−∆)1/2ϕ(x)
∣∣2 dLn+1(x)

)1/2

.

n∑

j=1

‖Rj∂jϕ‖L2(2Q)

.

n∑

j=1

‖∂jϕ‖L2(2Q) .
ℓ(Q)(n+1)/2

ℓ(Q)
,
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where in the last step we have applied the normalization estimate ‖∂jϕ‖∞ ≤ ‖∇ϕ‖∞
≤ ℓ(Q)−1. Therefore, combining the bounds for both factors we finally get I11 .
ℓ(Q)n. Regarding I12 let us name f := P ∗ T so that

I12 ≤

ˆ

(Rn\2Q1)×2IQ

∣∣f(x)− f2Q
∣∣∣∣(−∆)1/2ϕ(x)

∣∣ dLn+1(x)

=
∞∑

j=1

ˆ

Cj+1\Cj

∣∣f(x)− f2Q
∣∣∣∣(−∆)1/2ϕ(x)

∣∣ dLn+1(x),

where we have defined the cylinders Cj := 2jQ1 × I2Q for j ≥ 1. Continue by
observing that since ϕ is supported on Q, by the divergence theorem (see [Al, A8.8],
for example) it is clear that

´

Q1
∂jϕ(z, t) dLn(z) = 0, for each t ∈ IQ. Therefore, for

any x /∈ 2Q1 × I2Q, if x0 ∈ Rn denotes the center of Q1,

∣∣(−∆)1/2ϕ(x)
∣∣ ≤

n∑

j=1

∣∣Rj∂jϕ(x)
∣∣ =

n∑

j=1

∣∣∣∣
ˆ

Q1

∂jϕ(z, t)
zj − xj

|z − x|n+1

∣∣∣∣ dL
n(z)

=

n∑

j=1

∣∣∣∣
ˆ

Q1

∂jϕ(z, t)

(
zj − xj

|z − x|n+1
−

x0,j − xj
|x0 − x|n+1

)∣∣∣∣ dL
n(z)

.

n∑

j=1

ˆ

Q1

∣∣∂jϕ(z, t)
∣∣ |zj − x0,j |

|z̃ − x|n+1
dLn(z)

.

n∑

j=1

ℓ(Q)

|x0 − x|n+1
‖∇xϕ‖∞ℓ(Q)

n .
ℓ(Q)n

|x0 − x|n+1
,

where we have applied the mean value theorem so that z̃ ∈ Q1 depends on z. Notice
also that |z̃ − x| ≈ |x0 − x|, since x /∈ 2Q1. This way we obtain

I12 .

∞∑

j=1

ℓ(Q)n

(2jℓ(Q))n+1

ˆ

Cj+1\Cj

∣∣f(x)− f2Q
∣∣ dLn+1(x)

≤
1

ℓ(Q)

∞∑

j=1

1

2j(n+1)

(
ˆ

Cj+1\Cj

∣∣f(x)− f2jQ
∣∣ dLn+1(x) +

ˆ

Cj+1\Cj

∣∣f2Q − f2jQ
∣∣ dLn+1(x)

)
.

For the first integral we shall apply Hölder’s inequality for some exponent q, that
will be fixed later on, as well as John–Nirenberg’s inequality,

ˆ

Cj+1\Cj

∣∣f(x)− f2jQ
∣∣ dLn+1(x)

≤

(
ˆ

2jQ

∣∣f(x)− f2jQ
∣∣q dLn+1(x)

)1/q

Ln+1(Cj+1 \ Cj)
1/q′

.
(
2jℓ(Q)

)(n+1)/q
‖f‖∗

(
2ℓ(Q) 2njℓ(Q)n

)1/q′

≤ ℓ(Q)n+1 2j(n+1/q)+1/q′ .

For the second integral apply, for example, [Du, Proposition 6.5] to deduce that f2jQ
and fQ are majored by ‖f‖∗ ≤ 1. Thus,

ˆ

Cj+1\Cj

∣∣f2jQ − fQ
∣∣ dLn+1(x) . Ln+1(Cj+1 \ Cj) . ℓ(Q)n+1 2jn+1.
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All in all we obtain

I12 . ℓ(Q)n
∞∑

j=1

1

2j(n+1)

(
2j(n+1/q)+1/q′ + 2jn+1

)
. ℓ(Q)n

(
1 +

∞∑

j=1

21/q
′

2j(1−1/q)

)
.

This last sum is convergent if and only if q > 1. So fixing an exponent satisfying this
last condition we deduce the result. �

The previous growth result combined with [MPr, Lemma 5.2] yields the following:

Theorem 5.2. Let E ⊂ Rn+1 be a compact subset with Hn(E) < ∞ and T an

admissible distribution for γΘ1/2,∗(E). Then T is a signed measure which is absolutely

continuous with respect to Hn|E and there exists a Borel function f : E → R such

that T = f Hn|E and that satisfies ‖f‖L∞(Hn|E) . 1.

Let us turn to the result we are interested in. Its statement reads as follows:

Theorem 5.3. There are (dimensional ) constants C1, C2 > 0 so that for any

E ⊂ Rn+1 compact,

C1H
n
∞(E) ≤ γΘ1/2,∗(E) ≤ C2H

n
∞(E).

Proof. Let us focus first on the right-hand side inequality. Although it seems
that it would follow directly from Theorem 5.2, we shall give an standard argument
based only on Theorem 5.1 to avoid the possible dependence of f with respect to T .
We proceed by fixing ε > 0 and {Ak}k a collection of sets in Rn+1 that cover E such
that

∞∑

k=1

diam(Ak)
n ≤ Hn

∞(E) + ε.

For each k let Qk an open cube centered at some point ak ∈ Ak with side length
ℓ(Qk) = diam(Ak), so that E ⊂

⋃
kQk. By compactness, we can assume this last

open covering to be finite. We denote it {Q1, . . . , QN}. By the usual Harvey–Polking
lemma [HPo, Lemma 3.1] there exists a collection of smooth functions {ϕk}

N
k=1 such

that
∑N

k=1 ϕk = 1 in
⋃N

k=1Qk and 0 ≤ ϕk ≤ 1, supp(ϕk) ⊂ 2Qk, ‖∇ϕk‖∞ ≤ ℓ(Qk)
−1,

for each 1 ≤ k ≤ N . By Theorem 5.1, if T is any distribution admissible for
γΘ1/2,∗(E),

|〈T, 1〉| =

∣∣∣∣
N∑

k=1

〈T, ϕk〉

∣∣∣∣ .
N∑

k=1

ℓ(Qk)
n =

N∑

k=1

diam(Ak)
n ≤ Hn

∞(E) + ε.

Since this holds for any T and ε > 0 can be arbitrarily small, the inequality follows.
For the left-hand side inequality we will apply Frostman’s lemma [Ma, Theo-

rem 8.8]. Assume then Hn
∞(E) > 0 and consider a non trivial positive Borel reg-

ular measure µ supported on E with µ(E) ≥ cHn
∞(E) and µ(B(x, r)) ≤ rn for all

x ∈ Rn+1, r > 0. If we prove that

‖P ∗ µ‖∗ . 1,

we will be done, since this would imply γΘ1/2,∗(E) & 〈µ, 1〉 = µ(E) & Hn
∞(E). To

control the BMO norm of P ∗ µ we proceed exactly as in Lemma 3.10: fix a cube
Q = Q(x0, ℓ(Q)) and consider χ2Q together χ2Qc := 1− χ2Q. Choose the constant

cQ := P ∗ (χ2Qcµ)(x0),
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and observe that

1

|Q|

ˆ

Q

|P ∗ µ(y)− cQ| dL
n+1(y)

≤
1

|Q|

ˆ

Q

(
ˆ

2Q

P (y − z) dµ(z)

)
dLn+1(y)

+
1

|Q|

ˆ

Q

(
ˆ

Rn+1\2Q

|P (y − z)− P (x0 − z)| dµ(z)

)
dLn+1(y) =: I1 + I2.

Regarding I1, after applying Tonelli’s theorem we may directly integrate using polar
coordinates to obtain

I1 .
1

|Q|

ˆ

2Q

(
ˆ

Q

dLn+1(y)

|y − z|n

)
dµ(z) .

ℓ(Q)µ(2Q)

|Q|
. 1.

where the last step is due to the fact that µ has n-growth with constant 1. Turning
to I2, the third estimate of [MPr, Lemma 2.1] yields

I2 .
1

|Q|

ˆ

Q

(
ˆ

Rn+1\2Q

|y − x0|

|z − x0|n+1
dµ(z)

)
dLn+1(y)

≤ ℓ(Q)

ˆ

Rn+1\2Q

dµ(z)

|z − x0|n+1
= ℓ(Q)

∞∑

j=1

ˆ

2j+1Q\2jQ

dµ(z)

|z − x0|n+1

. ℓ(Q)
∞∑

j=1

(2j+1ℓ(Q))n

(2jℓ(Q))n+1
.

∞∑

j=1

1

2j
= 1,

and so the desired result follows. �

6. The Lip
α

variant of γΘ1/2

In this last section we shall study a variant of the capacity γΘ1/2 defined through
a normalization condition that involves a Lipα seminorm. This study has been mo-
tivated by the one carried out in [Me] for analytic capacity. We also clarify that,
in this subsection, the symbols ≃ and .,& will denote equalities and inequalities
respectively, with implicit constants that may depend on the dimension n and also
the parameter α. Let us begin by reminding a basic definition:

Definition 6.1. (Lipα function) A function f : Rn+1 → R is Lipα for some 0 <
α < 1 if

‖f‖Lipα
:= sup

x,y∈Rn+1

|f(x)− f(y)|

|x− y|α
. 1.

Definition 6.2. (Lipα 1/2-caloric capacity) Given a compact subset E ⊂ Rn+1

and a fixed 0 < α < 1, define its Lipα 1/2-caloric capacity as

γΘ1/2,Lipα
(E) = sup |〈T, 1〉|,

where the supremum is taken among all distributions T with supp(T ) ⊆ E and sat-
isfying ‖P ∗T‖Lipα

≤ 1. Such distributions will be called admissible for γΘ1/2,Lipα
(E).

6.1. Comparability of γΘ1/2,Lipα
to the Hausdorff measure. In the current

setting, distributions admissible for the Lipα 1/2-caloric capacity exhibit a different
growth condition to that of the genuine 1/2-caloric capacity and its BMO variant.
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Theorem 6.1. Let T be a distribution in Rn+1 with ‖P ∗ T‖Lipα
≤ 1. If ϕ is a

C1 function supported on Q ⊂ Rn+1 with ‖∇ϕ‖∞ ≤ ℓ(Q)−1, then

|〈T, ϕ〉| . ℓ(Q)n+α.

Proof. Let T and ϕ satisfy the conditions of the statement. WriteQ = Q(x0, ℓ(Q))
and proceed as in the proof of Theorem 5.1,

|〈T, ϕ〉| ≤ |〈P ∗ T − P ∗ T (x0), (−∆)−1/2ϕ〉|+ |〈P ∗ T − P ∗ T (x0), ∂tϕ〉| =: I1 + I2.

Concerning I2, the normalization conditions ‖∂tϕ‖∞ ≤ ‖∇ϕ‖∞ ≤ ℓ(Q)−1 and ‖P ∗
T‖Lipα

≤ 1 now imply

I2 ≤

ˆ

Q

∣∣P ∗ T (x)− P ∗ T (x0)
∣∣∣∣∂tϕ(x)

∣∣dLn+1(x)

≤
1

ℓ(Q)

ˆ

Q

|x− x0|
α dLn+1(x) ≤ ℓ(Q)n+α.

To deal with the remaining integral I1, proceed as in Theorem 5.1 to deduce for the
corresponding term I11,

I11 ≤

(
ˆ

2Q

∣∣P ∗ T (x)− P ∗ T (x0)
∣∣2 dLn+1(x)

)1/2( ˆ

2Q

∣∣(−∆)1/2ϕ(x)
∣∣2 dLn+1(x)

)1/2

. ℓ(Q)α+(n+1)/2

(
n∑

j=1

‖∂jϕ‖L2(2Q)

)
. ℓ(Q)α+(n+1)/2

(
1

ℓ(Q)
ℓ(Q)(n+1)/2

)

= ℓ(Q)n+α.

Regarding the current term I12, we also name f := P ∗ T so that now

I12 .
1

ℓ(Q)

∞∑

j=1

1

2j(n+1)

ˆ

Cj+1\Cj

∣∣f(x)− f(x0)
∣∣ dLn+1

≤
1

ℓ(Q)

∞∑

j=1

1

2j(n+1)

(
ˆ

2jQ

|x− x0|
αqdLn+1(x)

)1/q

Ln+1(Cj+1 \ Cj)
1/q′

.
1

ℓ(Q)

∞∑

j=1

1

2j(n+1)

(
2jℓ(Q)

)α(
2jℓ(Q)

)(n+1)/q
ℓ(Q)(n+1)/q′ 2(jn+1)/q′

= ℓ(Q)n+α
∞∑

j=1

21/q
′

2j(1−α−1/q)
,

that converges if and only if q > 1/(1−α). So fixing a proper q we deduce the desired
estimate. �

The previous growth condition implies an analogous result to Theorem 5.2, that
reads as follows:

Theorem 6.2. Let E ⊂ Rn+1 be a compact subset with Hn+α(E) < ∞ and

T an admissible distribution for γΘ1/2,Lipα
(E). Then T is a signed measure which

is absolutely continuous with respect to Hn+α|E and there exists a Borel function

f : E → R such that T = f Hn+α|E and ‖f‖L∞(Hn+α|E) . 1.

The above statement follows from Theorem 5.1 and the following lemma.
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Lemma 6.3. Let E ⊂ Rn+1 be a compact subset with Hn+α(E) < ∞ and T a

distribution supported on E with (n+α)-growth. Then T is a signed measure which

is absolutely continuous with respect to Hn+α|E and there exists a Borel function

f : E → R such that T = f Hn+α|E and ‖f‖L∞(Hn+α|E) . 1.

Proof. The result follows by the same arguments given in [MPr, Lemma 5.2],
just by changing the rate of growth from n to n + α and using Theorem 6.1 instead
of [MPr, Corollary 3.3]. �

Finally, let us present a similar result to that of Theorem 5.3 in the current Lipα

setting, which in turn is analogous to [Me, Theorem 1].

Theorem 6.4. Let 0 < α < 1. Then, there exist constants C1, C2 > 0, depend-

ing on n and α, so that for any compact subset E ⊂ Rn+1

C1H
n+α
∞ (E) ≤ γΘ1/2,Lipα

(E) ≤ C2H
n+α
∞ (E).

Proof. For the right-hand side inequality consider ε > 0 and {Ak}k a collection
of sets in Rn+1 that cover E such that

∞∑

k=1

diam(Ak)
n+α ≤ Hn+α

∞ (E) + ε.

By Theorem 6.1, the same argument given for Theorem 5.3 yields the estimate.
For the left-hand side inequality we will also apply Frostman’s lemma. Assume

Hn+α
∞ (E) > 0 and consider a non trivial positive Borel regular measure µ supported

on E with µ(E) ≥ cHn+α
∞ (E) and µ(B(x, r)) ≤ rn+α for all x ∈ Rn+1, r > 0. If we

prove that

‖P ∗ µ‖Lipα
. 1,

we will be done. Choose x, y ∈ Rn+1, x 6= y, and consider the following partition of
Rn+1,

R1 :=
{
z : |x− y| ≤ |x− z|/2

}
∪
{
z : |y − x| ≤ |y − z|/2

}
,

R2 := R
n+1 \R1 =

{
z : |x− y| > |x− z|/2

}
∩
{
z : |y − x| > |y − z|/2

}
,

with their corresponding characteristic functions χ1, χ2 respectively. This way, we
have

|P ∗ µ(x)− P ∗ µ(y)|

|x− y|α
≤

1

|x− y|α

ˆ

|x−y|≤|x−z|/2

|P (x− z)− P (y − z)| dµ(z)

+
1

|x− y|α

ˆ

|y−x|≤|y−z|/2

|P (x− z)− P (y − z)| dµ(z)

+
1

|x− y|α

ˆ

R2

|P (x− z)− P (y − z)| dµ(z) =: I1 + I2 + I3.

Regarding I1, the third estimate of [MPr, Lemma 2.1] yields

I1 .
1

|x− y|α

ˆ

|x−y|≤|x−z|/2

|x− y|

|x− z|n+1
dµ(z).

Split the previous domain of integration into the annuli

Aj := 2j+1B
(
x, |x− y|

)
\ 2jB

(
x, |x− y|

)
, for j ≥ 1,
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and use that µ has growth of degree n+ α with constant 1 to deduce

I1 .
1

|x− y|α−1

∞∑

j=1

ˆ

Aj

dµ(z)

|x− z|n+1
.

1

|x− y|α−1

∞∑

j=1

(2j+1|x− y|)n+α

(2j|x− y|)n+1

.

∞∑

j=1

1

2(1−α)j
. 1,

that is what we wanted to see. For I2, we argue as in I1 just interchanging the roles
of x and y. Finally, for I3, observe that

I3 ≤
1

|x− y|α

ˆ

R2

dµ(z)

|x− z|n
+

1

|x− y|α

ˆ

R2

dµ(z)

|y − z|n

≤
1

|x− y|α

ˆ

|x−y|>|x−z|/2

dµ(z)

|x− z|n
+

1

|x− y|α

ˆ

|y−x|>|y−z|/2

dµ(z)

|y − z|n
=: I31 + I32.

Concerning I31, split the domain of integration into the (decreasing) annuli

Ãj := 2−jB
(
x, |x− y|

)
\ 2−j−1B

(
x, |x− y|

)
, for j ≥ −1.

Thus, in this case we have

I31 .
1

|x− y|α

∞∑

j=−1

ˆ

Ãj

dµ(z)

|x− z|n
.

1

|x− y|αp

∞∑

j=−1

(2−j|x− y|)n+α

(2−j−1|x− y|)n
.

∞∑

j=−1

1

2αj
. 1.

To obtain I32 . 1 we argue similarly, interchanging the roles of x and y. Combining
the estimates obtained for I1, I2 and I3 we deduce

|P ∗ µ(x)− P ∗ µ(y)|

|x− y|α
. 1,

and since the points x 6= y were arbitrarily chosen, we deduce the Lipα condition. �
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